Как найти высоту равностороннего треугольника теорема пифагора


Download Article


Download Article

To calculate the area of a triangle you need to know its height. To find the height follow these instructions. You must at least have a base to find the height.

  1. Image titled Find the Height of a Triangle Step 1

    1

    Recall the formula for the area of a triangle. The formula for the area of a triangle is

    A=1/2bh.

    [1]

    • A = Area of the triangle
    • b = Length of the base of the triangle
    • h = Height of the base of the triangle
  2. Image titled Find the Height of a Triangle Step 2

    2

    Look at your triangle and determine which variables you know. You already know the area, so assign that value to A. You should also know the value of one side length; assign that value to «‘b'».

    Any side of a triangle can be the base,

    regardless of how the triangle is drawn. To visualize this, just imagine rotating the triangle until the known side length is at the bottom.

    Example
    If you know that the area of a triangle is 20, and one side is 4, then:
    A = 20 and b = 4.

    Advertisement

  3. Image titled Find the Height of a Triangle Step 3

    3

    Plug your values into the equation A=1/2bh and do the math. First multiply the base (b) by 1/2, then divide the area (A) by the product. The resulting value will be the height of your triangle!

    Example
    20 = 1/2(4)h Plug the numbers into the equation.
    20 = 2h Multiply 4 by 1/2.
    10 = h Divide by 2 to find the value for height.

  4. Advertisement

  1. Image titled Find the Height of a Triangle Step 4

    1

    Recall the properties of an equilateral triangle. An equilateral triangle has three equal sides, and three equal angles that are each 60 degrees. If you

    cut an equilateral triangle in half, you will end up with two congruent right triangles.

    [2]

    • In this example, we will be using an equilateral triangle with side lengths of 8.
  2. Image titled Find the Height of a Triangle Step 5

    2

    Recall the Pythagorean Theorem. The Pythagorean Theorem states that for any right triangle with sides of length a and b, and hypotenuse of length c:

    a2 + b2 = c2.

    We can use this theorem to find the height of our equilateral triangle![3]

  3. Image titled Find the Height of a Triangle Step 6

    3

    Break the equilateral triangle in half, and assign values to variables a, b, and c. The hypotenuse c will be equal to the original side length. Side a will be equal to 1/2 the side length, and side b is the height of the triangle that we need to solve.

    • Using our example equilateral triangle with sides of 8, c = 8 and a = 4.
  4. Image titled Find the Height of a Triangle Step 7

    4

    Plug the values into the Pythagorean Theorem and solve for b2.[4]
    First square c and a by multiplying each number by itself. Then subtract a2 from c2.

    Example
    42 + b2 = 82 Plug in the values for a and c.
    16 + b2 = 64 Square a and c.
    b2 = 48 Subtract a2 from c2.

  5. Image titled Find the Height of a Triangle Step 8

    5

    Find the square root of b2 to get the height of your triangle! Use the square root function on your calculator to find Sqrt(2. The answer is the height of your equilateral triangle!

    • b = Sqrt (48) = 6.93
  6. Advertisement

  1. Image titled Find the Height of a Triangle Step 9

    1

    Determine what variables you know. The height of a triangle can be found if you have 2 sides and the angle in between them, or all three sides. We’ll call the sides of the triangle a, b, and c, and the angles, A, B, and C.

    • If you have all three sides, you’ll use

      Heron’s formula

      , and the formula for the area of a triangle.

    • If you have two sides and an angle, you’ll use the formula for the area given two angles and a side.

      A = 1/2ab(sin C).[5]

  2. Image titled Find the Height of a Triangle Step 10

    2

    Use Heron’s formula if you have all three sides. Heron’s formula has two parts. First, you must find the variable

    s, which is equal to half of the perimeter of the triangle.

    This is done with this formula:

    s = (a+b+c)/2.[6]

    Heron’s Formula Example
    For a triangle with sides a = 4, b = 3, and c = 5:
    s = (4+3+5)/2
    s = (12)/2
    s = 6

    Then use the second part of Heron’s formula, Area = sqr(s(s-a)(s-b)(s-c). Replace Area in the equation with its equivalent in the area formula: 1/2bh (or 1/2ah or 1/2ch).
    Solve for h. For our example triangle this looks like:
    1/2(3)h = sqr(6(6-4)(6-3)(6-5).
    3/2h = sqr(6(2)(3)(1)
    3/2h = sqr(36)

    Use a calculator to calculate the square root, which in this case makes it 3/2h = 6.
    Therefore, height is equal to 4, using side b as the base.

  3. Image titled Find the Height of a Triangle Step 11

    3

    Use the area given two sides and an angle formula if you have a side and an angle. Replace area in the formula with its equivalent in the area of a triangle formula: 1/2bh. This gives you a formula that looks like 1/2bh = 1/2ab(sin C). This can be simplified to

    h = a(sin C)

    , thereby eliminating one of the side variables.[7]
    Note that angle C and side a are both positioned across from the height that you need to find (both on the right side from it, or both on the left side).

    Finding Height with 1 Side and 1 Angle Example
    For example, with a = 3, and C = 40 degrees, the equation looks like this:
    h = 3(sin 40)
    Use your calculator to finish the equation, which makes h roughly 1.928.

  4. Advertisement

Practice Problems and Answers

Add New Question

  • Question

    How do I find the area of an equilateral triangle when only the height is given?

    Community Answer

    H = height, S = side, A = area, B = base. You know that each angle is 60 degrees because it is an equilateral triangle. If you look at one of the triangle halves, H/S = sin 60 degrees because S is the longest side (the hypotenuse) and H is across from the 60 degree angle, so now you can find S. The base of the triangle is S because all the sides are the same, so B = S. Using A = (1/2)*BH, you get A = (1/2)*SH, which you can now find.

  • Question

    How do I calculate the height of a right triangle, given only the length of the base and the interior angle at the base?

    Donagan

    Look up the tangent of the angle in a trigonometry table. Multiply the tangent by the length of the base.

  • Question

    How do I determine the height of a triangle when I know the length of all three sides?

    Community Answer

    You already know the base, so calculate the area by Heron’s formula. Then, substitute the values you know in the formula. Area=1/2 * base * height or height=2 * Area/base and find your answer.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

References

About This Article

Article SummaryX

If you know the base and area of the triangle, you can divide the base by 2, then divide that by the area to find the height. To find the height of an equilateral triangle, use the Pythagorean Theorem, a^2 + b^2 = c^2. Cut the triangle in half down the middle, so that c is equal to the original side length, a equals half of the original side length, and b is the height. Plug a and c into the equation, squaring both of them. Then subtract a^2 from c^2 and take the square root of the difference to find the height. If you want to learn how to calculate the area if you only know the angles and sides, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 2,407,187 times.

Reader Success Stories

  • Kai Parker

    «My Geometry teacher is not the best teacher, and I usually have to look up terms and lessons so I can teach myself…» more

Did this article help you?

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

1. Через площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

где p – это полупериметр треугольника, который рассчитывается так:

3. Через длину прилежащей стороны и синус угла

4. Через стороны и радиус описанной окружности

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

2. Через стороны треугольника

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Теорема Пифагора.

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение

между сторонами прямоугольного треугольника.

Будет полезно сохранить таблицу Пифагора.

Считается, что доказана греческим математиком Пифагором, в честь которого и названа.

Геометрическая формулировка теоремы Пифагора.

Изначально теорема была сформулирована следующим образом:

В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов,

построенных на катетах.

Алгебраическая формулировка теоремы Пифагора.

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b:

Обе формулировки теоремы Пифагора эквивалентны, но вторая формулировка более элементарна, она не

требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и

Обратная теорема Пифагора.

Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то

Или, иными словами:

Для всякой тройки положительных чисел a, b и c, такой, что

,

существует прямоугольный треугольник с катетами a и b и гипотенузой c.

Теорема Пифагора для равнобедренного треугольника.

Теорема Пифагора для равностороннего треугольника.

Доказательства теоремы Пифагора.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема

Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие

можно объяснить лишь фундаментальным значением теоремы для геометрии.

Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них:

доказательства методом площадей, аксиоматические и экзотические доказательства (например,

с помощью дифференциальных уравнений).

1. Доказательство теоремы Пифагора через подобные треугольники.

Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся

напрямую из аксиом. В частности, оно не использует понятие площади фигуры.

Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим

её основание через H.

Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC.

,

что соответствует —

Сложив a 2 и b 2 , получаем:

или , что и требовалось доказать.

2. Доказательство теоремы Пифагора методом площадей.

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они

используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

  • Доказательство через равнодополняемость.

Расположим четыре равных прямоугольных

треугольника так, как показано на рисунке

Четырёхугольник со сторонами c – квадратом,

так как сумма двух острых углов 90°, а

развёрнутый угол — 180°.

Площадь всей фигуры равна, с одной стороны,

площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и

Что и требовалось доказать.

3. Доказательство теоремы Пифагора методом бесконечно малых.

Рассматривая чертёж, показанный на рисунке, и

наблюдая изменение стороны a , мы можем

записать следующее соотношение для бесконечно

малых приращений сторон с и a (используя подобие

Используя метод разделения переменных, находим:

Более общее выражение для изменения гипотенузы в случае приращений обоих катетов:

Интегрируя данное уравнение и используя начальные условия, получаем:

Таким образом, мы приходим к желаемому ответу:

Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной

пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми

вкладами от приращения разных катетов.

Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения

(в данном случае катет b). Тогда для константы интегрирования получим:

Высота равностороннего треугольника — свойства, формулы и примеры нахождения

Формулы, используемые для этого, несложны. Вывод выражений основан на свойствах треугольника, при этом точка пересечения высот считается замечательной и даже имеет своё название — ортоцентр.

Общие сведения

Три отрезка, не принадлежащие одной прямой, каждый из которых соединяется с другими в двух точках, образуют геометрическую фигуру — треугольник. Прямые линии — это стороны, а точки их соприкосновения вершины. Один из отрезков, обычно который проходит параллельно горизонтальной плоскости, называют основанием.

В зависимости от размера внутренних углов замкнутой фигуры, треугольники разделяют на следующие виды:

  • остроугольные — все углы тела не превышают 90 градусов;
  • тупоугольные — один из разворотов имеет тупую форму;
  • прямоугольные — размер одного из трёх углов составляет 90 градусов.

По числу равных сторон треугольные фигуры разделяют на разносторонние, равнобедренные, равносторонние. Последние часто называют правильными, так как все стороны у такого объекта равны друг другу. Кроме этого, из особенностей равносторонней фигуры можно отметить, что центры вписанной и описанной окружности совпадают, а каждый из углов равен 60 градусам. Сумма всех углов треугольника равняется 180 градусам.

В любой трёхугольной фигуре можно построить так называемые 3 замечательные линии: медиана, биссектриса и высота.

В правильном треугольнике эти 3 отрезка совпадают, то есть линия, опущенная из вершины к противолежащей стороне, одновременно являясь медианой, биссектрисой и высотой, образует прямой угол с основанием. При этом она делит его пополам. Фактически высота играет роль катета.

Получается, что в середине фигуры можно построить 3 отрезка, которые и будут высотами. Две из них будут опущены на боковые грани, а одна на основание. Точка пересечения перпендикулярных линий называется ортоцентром. Она располагается внутри геометрического тела и совпадает с центром вписанной окружности.

Для трёхугольного тела существует 2 теоремы. Одна из них утверждает, что противолежащие боковые стороны имеют одинаковую длину, а вторая, что если 2 угла невырожденного треугольника равны, то грани, противоположные им, также равны.

Интересно то, что эти правила справедливы как для абсолютной, так и сферической геометрии.

Свойства равносторонней фигуры

При решении задач, связанных с нахождением высоты в равностороннем треугольнике, часто приходится использовать его свойства. Зная их, найти нужные параметры будет несложно. Тем более что все они связаны с главной особенностью фигуры — равенством его всех сторон.

Равностороннее тело с тремя углами обладает следующими особенностями:

  • в нём все углы одинаковые и равны 60 градусов;
  • середина пересечения отрезков, совпадающих с высотой, биссектрисой и медианой, является центром геометрического тела;
  • радиус описанной окружности превышает радиус вписанной в 2 раза;
  • в равностороннем треугольнике длины всех элементов выражаются через длину стороны.

Эти свойства очевидны. Если начертить треугольник с равными сторонами и вписать его в окружность, за центр можно принять точку O, при этом радиус описанного круга будет OK. Тогда линия, проведённая из неё к вершине, будет радиусом. Пусть конечная точка будет B. Но так как место пересечения является общим и для высот и медиан, из свойства последних можно сделать вывод, что в точке линия делится в отношении 2 к 1. Отсчёт следует вести с вершины треугольника. Значит: OB = 2 * OK.

Из основных формул, которые используются при вычислениях, в первую очередь нужно запомнить:

  • радиус описанной окружности: R = (a * √3) / 3;‎
  • диаметр вписанного круга: r = (a * √3) / 6;
  • медиана: h = (a * √3) / 2;
  • площадь: s = (a2 * √3) / 4;
  • периметр: p = 3 * a.

Если рассмотреть треугольник ABC с проведённой высотой BN, можно утверждать, что грань АВ = ВС = АС = AN /2 = NC /2. Так как фигура ABN является копией BNC в зеркальном отражении, разделённые углы у вершины будут одинаковыми, а и их разворот составлять 30 градусов. Из этого следует, что угол A равен 60 градусам, значит, отрезок BN = AB * sin 60 0 = (AB * √3) / 2.

Зная длину медианы (высоты), вычислить другие параметры треугольника не составит труда. Например, периметр, P = 2 √3 * h; площадь — S = (h * 2) / √3.

При этом замечательным свойством является ещё и то, что ортоцентр одновременно будет в фигуре и центром тяжести (центроидом), поэтому точка пересечения высот и делит отрезок в отношении 2 к 1.

Формула высоты

В равностороннем треугольнике длина стороны равна произведению удвоенной высоты и квадратного корня из трёх. Эту формулу легко доказать, используя теорему Пифагора. Так как высота одновременно является и биссектрисой, она, проведённая на противоположное основание, разделяет треугольник на 2 симметричные фигуры. Исходя из того, что отрезок — это перпендикуляр, полученные геометрические тела будут прямоугольными.

Гипотенуза будет являться гранью основного тела, одним из катетов — проведённая линия, а вторым — половина основания. Последнее утверждение правдиво, так как в равносторонней фигуре все стороны равны. Соответственно, используя теорему Пифагора: c 2 = b 2 + a 2 , для рассматриваемого случая можно записать следующую формулу: a 2 = h 2 + a 2 / 2 2 , где: a — грань. После математических преобразований выражение примет вид: a = (2 * h) / √‎3. Отсюда уже можно вывести формулу для нахождения длины: h = (a * √‎3) / 2.

Аналогичное определение можно получить, используя для доказательства формулу Герона. Отрезок, являющийся высотой, можно найти из выражения: h = (2 * √‎p * (p — a) * (p — b) * (p — a)) / b. В равенстве p является периметром и находится как сумма всех сторон: p = (a + b + a). Так как одна из граней делится пополам, формулу можно привести к виду: p = (a + b + a) / 2 = a + b / 2.

После подстановки полученного выражения в формулу Герона, оно примет вид: h = 2 * √((a + b/2) * (b/2) * (a -b/2) * (b/2)) / b. Используя формулу сокращённого умножения: разность квадратов, равенство можно привести к виду: (a + b / 2) * (a — b / 2) = a 2 — (b / 2) 2 .

Для упрощения выражения под корень можно внести двойку и знаменатель b. Таким образом, формула примет вид: h = √(2 2 * (a 2 — (b/2) 2 * (b/2) 2 ) * b 2 ). Выполнив ряд сокращений, равенство можно будет представить: h = √(a 2 — (b 2 /4)). Из-за того, что стороны в трёхугольной фигуре совпадают, окончательный вариант можно записать: h = (a√3) / 2. Что и следовало доказать.

Высоту можно определить, и зная радиус вписанной окружности. Её можно найти по формуле: r = (a √ 3) / 6. Если выражение переписать как r = (1 / 3) * ((a √3) / 2), возможно увидеть, что второй множитель как раз и есть высота. Соответственно, r = (1/3) * h. Отсюда: h = 3 * r. Это довольно простая формула, которая часто используется при геометрических вычислениях, поэтому её тоже нужно запомнить.

Решение примеров

Самостоятельное решение задач позволяет закрепить теоретические знания и запомнить формулы. Существуют определённые типы примеров, с помощью которых можно довольно быстро проработать весь изученный материал. Вот некоторые из них, рассчитанные на учеников восьмых классов средней школы:

  1. Определить высоту равносторонней фигуры, если её грань равняется 6 см. Решение задачи нужно строить следующим образом. У такого треугольника все стороны равны. Так как высота является медианой, она делит противоположную сторону вершины, из которой опущена, на 2 равные части. Треугольник можно обозначить ABC, а искомый перпендикуляр BH. Образованное геометрическое тело является прямоугольным. Причём, согласно условию, у него известна гипотенуза и катет. Оставшийся катет, который и является высотой, легко найти по теореме Пифагора: BH 2 + 3 2 = 6 2 . Отсюда: BH 2 = 25. Высота рассматриваемой фигуры будет равна 5 см.
  2. Сторона правильного треугольного тела равна √3. Узнать, чему будет равен радиус описанной окружности. Эту задачу можно решить, воспользовавшись свойством высоты в равностороннем треугольнике: точка пересечения медиан делит их в отношении 2 :1. Для наглядности можно нарисовать треугольник c вершинами ABC и высоту AK, а точку пересечения обозначить буквой O. Линия AO будет искомым радиусом окружности и составлять 2/3 от всей высоты AK. Длина отрезка равна: AK = √ (AB2 — AK2). Отсюда: R = (2 * √ (AB2 — AK2)) / 3 = (2 * √ (√ 32 — (3/2)2)) / 3 = 1. Задача решена.

Проверить правильность решения можно, используя онлайн-калькуляторы. Это интернет-сервисы, которые позволяют своим пользователям в автоматическом режиме вычислять различные математические примеры. Свои услуги они предоставляют бесплатно, от пользователя требуется только установленный веб-обозреватель и подключение к сети.

Важно ещё, что калькуляторы не только выдают быстро правильный ответ, но и показывают пошаговое решение. Это очень удобно, когда необходимо определить, на каком этапе была допущена ошибка.

Кроме этого, на своих страницах такого рода сервисы содержат краткий теоретический материал и даже примеры заданий. Так что калькуляторы будут полезны и на стадии обучения.

источники:

http://www.calc.ru/1429.html

http://nauka.club/matematika/geometriya/vysot%D0%B0-ravnostoronnego-treugolnika.html


Загрузить PDF


Загрузить PDF

Для вычисления площади треугольника вам необходимо знать его высоту. Если она не дана, вы можете вычислить ее по известным вам величинам! В этой статье мы расскажем о нескольких способах найти высоту треугольника по известным значениям других величин.

  1. Изображение с названием Find the Height of a Triangle Step 1

    1

    Напомним формулу для вычисления площади треугольника. Площадь треугольника вычисляется по формуле: A = 1/2bh.[1]

    • А — площадь треугольника
    • b — сторона треугольника, на которую опущена высота.
    • h — высота треугольника
  2. Изображение с названием Find the Height of a Triangle Step 2

    2

    Посмотрите на треугольник и подумайте, какие величины вам уже известны. Если вам дана площадь, обозначьте ее буквой «А» или «S». Вам также должно быть дано значение стороны, обозначьте ее буквой «b». Если вам не дана площадь и не дана сторона, воспользуйтесь другим методом.

    • Имейте в виду, что основанием треугольника может быть любая его сторона, на которую опущена высота (независимо от того, как расположен треугольник). Чтобы лучше понять это, представьте, что вы можете повернуть этот треугольник. Поверните его так, чтобы известная вам сторона была обращена вниз.
    • Например, площадь треугольника равна 20, а одна из его сторон равна 4. В этом случае «‘А = 20″‘, ‘»b = 4′».
  3. Изображение с названием Find the Height of a Triangle Step 3

    3

    Подставьте данные вам значения в формулу для вычисления площади (А = 1/2bh) и найдите высоту. Сначала умножьте сторону (b) на 1/2, а затем разделите площадь (А) на полученное значение. Таким образом, вы найдете высоту треугольника.

    • В нашем примере: 20 = 1/2(4)h
    • 20 = 2h
    • 10 = h

    Реклама

  1. Изображение с названием Find the Height of a Triangle Step 4

    1

    Вспомните свойства равностороннего треугольника. В равностороннем треугольнике все стороны и все углы равны (каждый угол равен 60˚). Если в таком треугольнике провести высоту, вы получите два равных прямоугольных треугольника. [2]

    • Например, рассмотрим равносторонний треугольник со стороной 8.
  2. Изображение с названием Find the Height of a Triangle Step 5

    2

    Вспомните теорему Пифагора. Теорема Пифагора гласит, что в любом прямоугольном треугольнике с катетами «а» и «b» гипотенуза «с» равна: a2+b2=c2. Эту теорему можно использовать, чтобы найти высоту равностороннего треугольника![3]

  3. Изображение с названием Find the Height of a Triangle Step 6

    3

    Разделите равносторонний треугольник на два прямоугольных треугольника (для этого проведите высоту). Затем обозначьте стороны одного из прямоугольных треугольников. Боковая сторона равностороннего треугольника – это гипотенуза «с» прямоугольного треугольника. Катет «а» равен 1/2 стороне равностороннего треугольника, а катет «b» – это искомая высота равностороннего треугольника.

    • Итак, в нашем примере с равносторонним треугольником с известной стороной, равной 8: c = 8 и a = 4.
  4. Изображение с названием Find the Height of a Triangle Step 7

    4

    Подставьте эти значения в теорему Пифагора и вычислите b2. Сначала возведите в квадрат «с» и «а» (умножьте каждое значение само на себя). Затем вычтите a2 из c2.

    • 42 + b2 = 82
    • 16 + b2 = 64
    • b2 = 48
  5. Изображение с названием Find the Height of a Triangle Step 8

    5

    Извлеките квадратный корень из b2, чтобы найти высоту треугольника. Для этого воспользуйтесь калькулятором. Полученное значение и будет высотой вашего равностороннего треугольника!

    • b = √48 = 6,93

    Реклама

  1. Изображение с названием Find the Height of a Triangle Step 9

    1

    Подумайте, какие значения вам известны. Вы можете найти высоту треугольника, если вам известны значения сторон и углов. Например, если известен угол между основанием и боковой стороной. Или если известны значения всех трех сторон. Итак, обозначим стороны треугольника: «a», «b», «c», углы треугольника: «А», «В», «С», а площадь — буквой «S».

    • Если вам известны все три стороны, вам понадобится значение площади треугольника и формула Герона.
    • Если вам известны две стороны и угол между ними, можете использовать следующую формулу для нахождения площади: S=1/2ab(sinC).[4]
  2. Изображение с названием Find the Height of a Triangle Step 10

    2

    Если вам даны значения всех трех сторон, используйте формулу Герона. По этой формуле придется выполнить несколько действий. Сначала нужно найти переменную «s» (мы обозначим этой буквой половину периметра треугольника). Для этого подставьте известные значения в эту формулу: s = (a+b+c)/2.[5]

    • Для треугольника со сторонами а = 4, b = 3, c = 5, s = (4+3+5)/2. В результате получается: s=12/2, где s=6.
    • Затем вторым действием мы находим площадь (вторая часть формулы Герона). Площадь = √(s(s-a)(s-b)(s-c)). Вместо слова «площадь» вставьте эквивалентную формулу для поиска площади: 1/2bh (или 1/2ah, или 1/2ch).
    • Теперь найдите эквивалентное выражение для высоты (h). Для нашего треугольника будет справедливо следующее уравнение: 1/2(3)h = (6(6-4)(6-3)(6-5)). Где 3/2h=√(6(2(3(1))). Получается, 3/2h = √(36). С помощью калькулятора вычислите квадратный корень. В нашем примере: 3/2h = 6. Получается, что высота (h) равна 4, сторона b – основание.
  3. Изображение с названием Find the Height of a Triangle Step 11

    3

    Если по условию задачи известны две стороны и угол, вы можете использовать другую формулу. Замените площадь в формуле эквивалентным выражением: 1/2bh. Таким образом, у вас получится следующая формула: 1/2bh = 1/2ab(sinC). Ее можно упростить до следующего вида: h = a(sin C), чтобы убрать одну неизвестную переменную.[6]

    • Теперь осталось решить полученное уравнение. Например, пусть «а» = 3, «С» = 40 градусов. Тогда уравнение будет выглядеть так: «h» = 3(sin 40). С помощью калькулятора и таблицы синусов подсчитайте значение «h». В нашем примере h = 1,928.

    Реклама

Об этой статье

Эту страницу просматривали 437 335 раз.

Была ли эта статья полезной?

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

  • Нахождение высоты треугольника

    • Высота в разностороннем треугольнике

    • Высота в равнобедренном треугольнике

    • Высота в прямоугольном треугольнике

    • Высота в равностороннем треугольнике

  • Примеры задач

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Высота в разностороннем треугольнике ABC

1. Через площадь и длину стороны

Формула для нахождения высоты треугольника через его площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

Формула для нахождения высоты треугольника через длины его сторон

где p – это полупериметр треугольника, который рассчитывается так:

Формула для расчета полупериметра треугольника

3. Через длину прилежащей стороны и синус угла

Формула для нахождения высоты треугольника через длину стороны и синуса угла

4. Через стороны и радиус описанной окружности

Формула для нахождения высоты треугольника через длины сторон и радиус описанной окружности

Описанная вокруг разностороннего треугольника окружность

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Формула для нахождения высоты к основанию в равнобедренном треугольнике

Опущенная на основание равнобедренного треугольника высота

Высота в прямоугольном треугольнике

Проведенная к гипотенузе высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

2. Через стороны треугольника

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через длины его сторон

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Формула для нахождения высоты в равностороннем треугольнике

Высота в равностороннем треугольнике

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Нахождение высоты треугольника через длину стороны и синус прилежащего угла (пример)

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Нахождение основания равнобедренного треугольника через высоту и боковую сторону (пример)

Высота равностороннего треугольника


Высота равностороннего треугольника

4.7

Средняя оценка: 4.7

Всего получено оценок: 172.

4.7

Средняя оценка: 4.7

Всего получено оценок: 172.

Равносторонний треугольник определяется всего одной величиной – значением стороны. Все стороны в таком треугольнике равны между собой, а углы известны заранее и равны 60 градусам каждый, поэтому чтобы посчитать любую характеристику или величину равностороннего треугольника достаточно знать его сторону. Убедимся в этом и выведем формулу высоты равностороннего треугольника.

Что такое равносторонний треугольник?

Для начала нужно вспомнить, что такое равносторонний треугольник, определить некоторые его свойства и только тогда выводить формулу высоты.

Равносторонний треугольник – это треугольник, все стороны которого равны между собой. Все углы в таком треугольнике равны между собой (60 градусов).

Правильный треугольник

Рис. 1. Правильный треугольник.

Равносторонний треугольник является равнобедренным, но основанием можно считать любую часть треугольника.

Формула

Формулу высоты равностороннего треугольника выведем тремя способами: через теорему Пифагора, с помощью формулы площади прямоугольного треугольника и через тригонометрическую функцию. Три способа используем, чтобы показать несколько вариантов доказательства и иметь возможность максимально быстро найти значение высоты при любом условии задачи.

Рисунок к доказательству

Рис. 2. Рисунок к доказательству.

Сначала выведем формулу через площадь.

В классической формуле, подходящей для любого треугольника, площадь равна половине произведения основания на высоту. Существует также формула площади для правильного треугольника: $S=sqrt{3}*{a^2over4}$

Приравняем две формулы и выведем формулу высоты.

$$S=sqrt{3}*{a^2over4}$$

$$S={1over2}*a*h$$

${1over2}*a*h=sqrt{3}*{a^2over4} $ – сократим обе части на а.

${1over2}*h=sqrt{3}*{aover4} $ – умножим на 2.

$H=sqrt{3}*{aover2}$ – и получим формулу высоты равностороннего треугольника.

С другой стороны, в равностороннем треугольнике высота, проведенная к основанию, является медианой и высотой. То есть, высоту можно найти как катет прямоугольного треугольника через теорему Пифагора.

Рисунок к доказательству

Рис. 3. Рисунок к доказательству.

$$h=sqrt{a^2-{aover2}^2}=sqrt{a^2-{a^2over4}}$$

Если в том же малом прямоугольном треугольнике обратить внимание на известный острый угол, то можно вывести значение высоты через синус угла в 60 градусов.

Синус – это отношение противолежащего катета к гипотенузе.

Воспользуемся этим отношением и выразим высоту.

$$sin(60)={hover {a}}$$

$h=a*sin(60)={a*sqrt{3}over{2}}$ – как видно, получился тот же результат, что и в первом способе. Это говорит о том, что в равностороннем треугольнике только две формулы высоты, а все остальные способы доказательства можно свести к получившимся выводам.

Заключение

Что мы узнали?

Мы узнали, что такое равносторонний треугольник, вывели несколько формул для нахождения высоты равностороннего треугольника. Показали несколько путей вывода формул, которые могут помочь быстро вспомнить, как находится высота или использовать те же приемы для нахождения других величин в равностороннем треугольнике.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Никита Червоненко

    4/5

  • Nikita Repey

    5/5

  • Лиля Келгёкмен

    4/5

Оценка статьи

4.7

Средняя оценка: 4.7

Всего получено оценок: 172.


А какая ваша оценка?

Понравилась статья? Поделить с друзьями:
  • Как найти сайт оператора мтс
  • Гугл таблицы как составить расписание
  • Как исправить акт согласования
  • Кто знает как найти украденный телефон
  • Как составить акт к авансовому отчету