Как найти высоту сосуда физика 7 класс

Как найти высоту столба жидкости, если известны плотность и давление?

  1. Володяха

    8 октября, 16:20


    +3

    Формула давления P=p*g*h

    где P — давление, p — плотность, h — высота столба жидкости, g — ускорение свободного падения (const ~ 9.8)

    Получим h = P / p*g

    • Комментировать
    • Жалоба
    • Ссылка

Найди верный ответ на вопрос ✅ «Как найти высоту столба жидкости, если известны плотность и давление? …» по предмету 📙 Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Главная » Физика » Как найти высоту столба жидкости, если известны плотность и давление?

Давление жидкостей и газов. Закон Паскаля

  1. Особенности давления жидкостей и газов
  2. Закон Паскаля
  3. Давление столба жидкости
  4. Давление столба газа
  5. Задачи

п.1. Особенности давления жидкостей и газов

Давление жидкостей и газов отличается от давления твердых тел. Причина – в особенностях поведения частиц вещества в разных агрегатных состояниях (см. §16 данного справочника).

В отличие от твердых тел, молекулы жидкостей и газов подвижны.

Жидкость принимает форму сосуда, который предохраняет её от растекания. Поэтому жидкость в сосуде оказывает давление не только на дно, но и на стенки. Верхние слои жидкости давят на нижние, и давление растет с глубиной (с увеличением столба жидкости).

Газ заполняет весь предоставленный ему объем. В закрытом сосуде хаотически движущиеся молекулы газа будут сталкиваться с дном, стенками и крышкой сосуда. Таким образом, газ будет оказывать давление во все стороны: вниз, по бокам и даже вверх.

Давление газа также растет с увеличением высоты столба. Однако за счет малой плотности газов этот рост менее заметен по сравнению с жидкостями. В небольшом сосуде давление газа можно считать постоянным во всем объеме сосуда.

п.2. Закон Паскаля

При давлении на жидкость или газ в определенной области происходит сжатие; расстояние между молекулами становится меньше, начинают сильнее действовать силы отталкивания. В результате молекулы перемещаются из области сжатия с большим давлением в области с меньшим давлением. Это происходит достаточно быстро; например, у кислорода при 0°С средняя скорость молекул 425 м/с, у паров воды — 570 м/с. Поэтому в течение небольшого времени давление в сосуде выравнивается.

Закон Паскаля
Жидкости и газы передают давление по всем направлениям одинаково.

Для подтверждения закона Паскаля можно провести следующие эксперименты.

п.3. Давление столба жидкости

Как было замечено выше, давление жидкостей заметно увеличивается с глубиной. Это объясняется тем, что верхние слои давят на нижние.

Найдем давление столба жидкости высотой (h)

Согласно закону Паскаля, давление в жидкости передается во всех направлениях одинаково. Поэтому на данной глубине (h) в каждой точке уровня давление будет постоянно.

Давление столба жидкости Рассмотрим сосуд в форме прямоугольного параллелепипеда. Пусть в его основании – прямоугольник с длиной (a) и шириной (b).
Нальем в этот сосуд воду до отметки высотой (h).
Нас интересует давление воды на дно сосуда.
Сила давления на дно направлена вертикально вниз и равна силе тяжести: $$ F=mg=rho Vg $$ Объем воды в сосуде: $$ V=abh $$

Получаем: $$ F=rhocdot abhcdot g $$ Давление на дно сосуда равно отношению силы давления к площади дна: $$ p=frac FS=frac{rhocdot abh cdot g}{ab}=rho gh $$

Давление столба жидкости
На глубине (h) давление жидкости равно $$ p=rho gh $$

Давление не зависит от площади дна, и, следовательно, не зависит от его формы.

Полученное выражение будет справедливо для вертикального столба жидкости высотой (h) с любым сечением (квадратным, круглым, треугольным, совершенно фантазийным).

Это интересно

Давление столба жидкости Давление не зависит ни от формы, ни от размеров сечения столба жидкости, зато резко увеличивается с высотой.
Это свойство использовал Паскаль, продемонстрировав своим современникам забавный эксперимент.
Он взял прочную дубовую бочку, наполнил ее доверху водой, плотно закрыл и вставил очень узкую, но очень длинную трубку (около 4 м). Затем он поднялся на второй этаж и вылил в трубку кружку воды.
Бочка тут же …лопнула.
Действительно, ведь давление в бочке увеличилось на (p=1000cdot 10cdot 4=40 text{кПа}): её будто «придавило» четырьмя тоннами воды, хотя понадобилась всего лишь кружка.
Тем не менее, результат этого фокуса всегда кажется неожиданным.

п.4. Давление столба газа

Газы, как и жидкости, также имеют некоторую плотность. Поэтому, рассматривая давление столба газа по аналогии с жидкостью, можно прийти к тем же результатам.

Давление столба газа
Давление столба газа высотой (h) равно $$ p=rho gh $$

Понимание того, что газ также оказывает разное давление в разных слоях, возникло не сразу. Это объясняется небольшой плотностью газов по сравнению с жидкостями.

Давление столба газа Для иллюстрации рассчитаем давление столба воды и столба воздуха высотой (h=1 text{м}).
Плотность воды (rho_text{воды}=1000 text{кг/м}^3), плотность воздуха при 20°C (rho_text{возд}=1,2 text{кг/м}^3).
Получаем: begin{gather*} p_text{вода}= rho_text{вода}ghapprox 1000cdot 10cdot 1=10000 (text{Па})\[7pt] p_text{возд}= rho_text{возд}ghapprox 1,2cdot 10cdot 1=12 (text{Па}) end{gather*} Из-за разности в плотности, давление отличается почти в 1000 раз, ведь масса кубометра воды – 1 тонна, а масса кубометра воздуха – всего 1,2 кг.

Поэтому при изучении процессов в небольших сосудах разность в давлении газа в верхних и нижних слоях практически не заметна.

С другой стороны, если рассматривать значительные по высоте «столбы» газов, например, атмосферу планеты, давление становится существенной величиной. Так, на поверхности Земли атмосферное давление составляет около 100 000 (Па). Подробней этот вопрос будет рассмотрен в §31 данного справочника.

В итоге, для открытого сосуда с жидкостью, где на поверхность дополнительно оказывает давление атмосфера, давление жидкости на глубине h равно сумме: $$ p=p_text{атм}+rho gh $$

п.5. Задачи

Задача 1. Пятый этаж расположен выше первого на 15 м.
На каком этаже давление в трубах водопровода больше и на сколько?

Дано:
(h=15 text{м})
(p=1000 text{кг/м}^3)
(gapprox 10 text{м/с}^2)
__________________
(Delta p-?)

Давление в водопроводе на первом этаже $$ p_1=p_text{внеш}+rho gh, $$ где (p_text{внеш}) – давление, связанное с действием внешних сил (атмосфера, водонапорная башня, насос и т.п.), второе слагаемое – давление вертикального столба жидкости в трубе в доме.
Давление в водопроводе на пятом этаже (p_5=p_text{внеш}).
Давление больше на первом этаже.
Разность давлений $$ Delta p=p_1-p_5= p_text{внеш}+rho gh -p_text{внеш}=rho gh $$ Получаем: $$ Delta p=1000cdot 10cdot 15=150 000 (text{Па})=150 (text{кПа}) $$ Ответ: на первом; на 150 кПа

Задача 2. Давление в трубах водопровода (4cdot 10^5 text{Па}). На какую максимальную высоту можно достать струей воды в случае пожара, если подключить оборудование к пожарному гидранту на поверхности земли? Атмосферное давление примите равным (1cdot 10^5 text{Па})

Дано:
(p=4cdot 10^5 text{Па})
(p_text{атм}=1cdot 10^5 text{Па})
(p=1000 text{кг/м}^3)
(gapprox 10 text{м/с}^2)
__________________
(h-?)

При подключении на струю воды, направленную вертикально вверх, будет действовать снизу давление водопровода, сверху атмосферное давление.
Под действием разности этих давлений вода может подняться на высоту $$ h=frac{p-p_text{атм}}{rho g} $$ Получаем: $$ h=frac{(4-1)cdot 10^5}{1000cdot 10}=30 (text{м}) $$ Ответ: 30 м

Задача 3. Рассчитайте, какую силу давления воды должен выдерживать жесткий водолазный скафандр, предназначенный для глубоководных работ на глубине до 365 м, если общая поверхность скафандра составляет 2,5 м2?
(Плотность морской воды 1010 кг/м3, g=9,8 м/с2). Ответ округлите до меганьютонов.

Дано:
(rho=1010 text{кг/м}^3)
(g=9,8 text{м/с}^2)
(h=365 text{м})
(S=2,5 text{м}^2)
__________________
(F-?)

Давление воды на максимальной глубине $$ p=rho gh $$ Сила давления $$ F=pS=rho ghS $$ Получаем: $$ F=1010cdot 9,8cdot 365cdot 2,5approx 9,03cdot 10^6 (text{Н})=9 (text{МН}) $$ Ответ: ≈9 МН

Задача 4*. В цилиндрический сосуд налиты ртуть и вода. Общая высота столба жидкости 20 см. Чему равно давление, создаваемое жидкостями на дно сосуда, если:
а) объемы жидкостей одинаковы; б массы жидкостей одинаковы?

Дано:
(rho_1=1000 text{кг/м}^3)
(rho_2=13600 text{кг/м}^3)
(H=20 text{см}=0,2 text{м})
(gapprox 10 text{м/с}^2)
(text{а)} V_1=V_2; text{б)} m_1=m_2)
__________________
(p-?)

Ответ: а) 14,6 кПа; б) 3,7 кПа

Содержание

  1. Расчет давления жидкости на дно и стенки сосуда
  2. Содержание
  3. Расчет давления жидкости на дно и стенки сосуда
  4. Примеры применения и задача
  5. Сообщающиеся сосуды
  6. Жидкое агрегатное состояние
  7. Сообщающиеся сосуды
  8. Применение сообщающихся сосудов
  9. Давление столба жидкости
  10. Как найти высоту сосуда с водой
  11. Название величины
  12. Обозначение
  13. Единица измерения
  14. Формула
  15. Высота столба жидкости
  16. h = p / (pg)
  17. Плотность жидкости
  18. кг/м 3
  19. p = p / (gh)
  20. Давление
  21. p = pgh
  22. Постоянная
  23. g ≈ 10 или 9,8 или 9,81
  24. Н/кг (= м/с 2 )
  25. Физика 7 класс: все формулы и определения МЕЛКО на одной странице
  26. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
  27. Теория для решения задач.

Расчет давления жидкости на дно и стенки сосуда

Содержание

Как вы уже знаете, согласно закону Паскаля, давление в жидкостях распространяется одинаково во всех направлениях. Что же необходимо знать, чтобы рассчитать это давление? От чего зависит давление жидкости?

Взгляните на рисунок 1.

Рисунок 1. Три разных сосуда с жидкостью.

Как вы думаете, в каком сосуде больше жидкости? А будет ли одинаково давление, оказываемое на дно сосудов? С этими вопросами нам и предстоит разобраться.

Расчет давления жидкости на дно и стенки сосуда

Для начала рассмотрим задачу для сосуда в форме прямоугольного параллелепипеда (рисунок 2).

Рисунок 2. Определение давления жидкости на дно прямоугольного параллелепипеда.

Давление жидкости p рассчитывается по формуле: $p=FS$, где $F$ – это сила, действующая на дно сосуда, а $S$ – это площадь дна сосуда.

  1. Сила $F$ в данном случае равна весу $P$ жидкости, которая находится в сосуде.
  2. Как узнать вес жидкости? Необходимо знать массу $m$ жидкости.
  3. Массу $m$ мы можем вычислить по известной нам формуле:
  1. Так как нам известна жидкость, находящаяся в сосуде, мы знаем ее плотность . Остается вычислить объем $V$ жидкости. Обозначим высоту столба жидкости буквой $h$, площадь дна сосуда – $S$. Тогда объем можно вычислить по формуле:
  1. Итак, подставляем наши данные в формулу для вычисления массы и получаем:
  1. Таким образом, возвращаемся к весу жидкости и получаем, что:

С другой стороны, мы знаем, что вес столба жидкости равен силе, с которой жидкость давит на дно сосуда, поэтому, если мы разделим вес $P$ на площадь $S$, то получим искомое давление жидкости:

Рассмотрим измерительные величины, которые мы будем использовать в данной формуле: плотность мы будем выражать в килограммах на кубический метр ($frac<кг><м^3>$), $g=9,8 frac<кг>$, высоту столба жидкости – в метрах (м), тогда давление $p$ будет выражено в паскалях (Па).

Так мы с вами вывели формулу для расчета давления жидкости на дно сосуда. Какие выводы мы можем сделать?

1. Давление жидкости не зависит от формы сосуда, оно зависит только от плотности жидкости и высоты ее столба (обратите внимание, что во многих случаях, когда говорят о высоте столба жидкости, говорят о глубине).

2. По этой формуле можно вычислить давление на стенки сосуда или внутри жидкости, так как на одной глубине давление в жидкости будет одинаково во всех направлениях.

Давление жидкости не зависит от формы сосуда, оно зависит только от плотности жидкости и высоты ее столба

Примеры применения и задача

Как вы думаете, изменится ли давление на дно цилиндрического сосуда, частично заполненного водой, если в него опустить деревянный брусок?

В данном случае, уровень воды поднимется, и высота столба станет больше, значит и давление увеличится.

Какая вода: пресная или соленая оказывает большее давление на дно сосуда при одинаковом объеме?

Здесь достаточно вспомнить, что в соленой воде нам намного проще плавать и держаться на поверхности, что о говорит о ее большей плотности. Соответственно, большее давление оказывает соленая вода.

Задача. Определите давление керосина на дно цистерны, если высота столба керосина $8 м$, а его плотность $800 кг/м^3$.

Источник

Сообщающиеся сосуды

О чем эта статья:

Жидкое агрегатное состояние

Давайте для начало разберемся, как ведет себя жидкость в различных сосудах.

В мире есть три агрегатных состояния: твердое, жидкое и газообразное.

Их характеристики — в таблице:

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

близко друг к другу

малоподвижны, при нагревании скорость движения молекул увеличивается

занимают предоставленный объем

больше размеров молекул

хаотичное и непрерывное

В этом состоянии сохраняется объем, но не сохраняется форма. Например, если перелить молоко из кувшина в стакан — молоко, имевшее форму кувшина, примет форму стакана. Кстати, в корове у молока тоже была другая форма.

Расстояние между молекулами в жидком состоянии чуть больше, чем в твердом, но все равно невелико. При этом частицы не собраны в кристаллическую решетку, а расположены хаотично. Молекулы почти не двигаются, но при нагревании жидкости делают это более охотно.

Вспомните, что происходит, если залить чайный пакетик холодной водой — он почти не заваривается. А вот если налить кипяточку — чай точно будет готов.

Агрегатных состояния точно три?

На самом деле, есть еще четвертое — плазма. Звучит, как что-то из научной фантастики, но это просто ионизированный газ — газ, в котором помимо нейтральных частиц, есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.

Сообщающиеся сосуды

Поскольку жидкость принимает форму сосуда, в который ее поместили, имеет место быть такое явление, как сообщающиеся сосуды.

  • Сообщающиеся сосуды — это сосуды, соединенные между собой ниже уровня жидкости (в каждом сосуде). Так жидкость может перемещаться из одного сосуда в другой.

Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.

Если в колена сообщающихся сосудов налить жидкости, плотности которых будут различны, то меньший объём более плотной жидкости в одном колене уравновесит больший объём менее плотной жидкости в другом колене сосуда.

Другими словами, высота столба жидкости с меньшей плотностью больше, чем высота столба жидкости с большей плотностью. Давайте рассчитаем, во сколько высота столба жидкости с меньшей плотностью больше высоты столба жидкости с большей плотностью, если эти две несмешивающиеся жидкости находятся в сообщающихся сосудах.

p = ρgh, p1 = p2, ρ1 gh1= ρ2 gh2,

Применение сообщающихся сосудов

На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор состоит из двух сообщающихся сосудов: двух вертикальных стеклянных трубок, соединенных между собой третьей изогнутой трубкой.

Одна из вертикальных трубок заполняется жидкостью, плотность которой нужно определить, а другая — жидкостью известной плотности (например, водой, плотность которой равна 1000 кг/м^3). Жидкости должны заполнить трубки настолько, чтобы их уровень в изогнутой трубке посередине был на отметке прибора 0. Высоты жидкостей в трубках над этой отметкой измеряют и находят плотность исследуемой жидкости, зная, что высоты обратно пропорциональны плотностям (об этом мы говорили выше).

Также на законе сообщающихся сосудах основаны устройства, которые определяют уровень жидкости в закрытых сосудах: резервуарах, паровых котлах.

Чтобы судно могло переплыть из одной водного бассейна в другой, если уровни воды в них разные, необходимо использовать шлюз. Устройство шлюза также основано на принципе сообщающихся сосудов. В первых воротах шлюза открывается клапан, камера соединяется с водоёмом, они становятся сообщающимися сосудами, уровни воды в них выравниваются. После этого ворота открываются, и судно проходит в первую камеру. Открывается следующий клапан, после выравнивания уровней воды открываются ворота, и так повторяется столько раз, сколько камер имеет шлюз.

Давление столба жидкости

Выведем формулу давления столба жидкости через основную формулу давления.

Давление

p = F/S

В случае давления жидкости на дно сосуда мы можем заменить силу в формуле на силу тяжести.

Также мы можем представить массу жидкости, как произведение плотности на объем:

Из геометрии мы знаем, что объем тела вращения (например, цилиндра) — это произведение площади основания на высоту: V = Sh.

Следовательно, высота будет равна h = V/S. Подставляем в формулу высоту вместо отношения объема к площади.

В сообщающихся сосудах давление жидкости на одном уровне (на одной и той же высоте) будет одинаковым.

А можно сделать так, чтобы давление было разным?

С помощью перегородки можно сделать так, чтобы уровень жидкости, а следовательно, и давления в сообщающихся сосудах отличались.

Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем дополнительное давление. Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд, где её уровень ниже — до тех пор, пока высота жидкости в обоих сосудах не станет одинаковой.

Этот принцип используют в водонапорной башне. Чтобы создать высокое давление, башню наполняют водой. Затем открывают трубы на нижнем этаже, и вода устремляется в дома в наши краны и батареи.

Задачка

Какой площади необходимо сделать малый поршень в гидравлическом прессе, для того, чтобы выигрыш в силе получился равным 2? Площадь большого поршня равна 10 см^2.

Решение:

Гидравлический пресс — это два цилиндрических сообщающихся сосуда. Площадь большого поршня, с приложенной силой F1, равна 10 см^2.

Площадь малого поршня обозначим Sмал, к нему приложена сила F2.

Давления в сообщающихся сосудах на одинаковой высоте равны: p1 = p2

Подставим формулу давления:
F1/Sбол=F2/Sмал.

Выразим Sмал, получим:

Sмал = (F2/F1) * Sбол

Так как по условию выигрыш в силе F2/F1 равен 2, то:

Sмал=2*Sбол= 2*10 = 20 см^2

Ответ: малый поршень необходимо сделать с площадью равной 20 см^2

Источник

Как найти высоту сосуда с водой

Формулы, используемые на уроках «Задачи на давление жидкостей и газов».

Название величины

Обозначение

Единица измерения

Формула

Высота столба жидкости

h = p / (pg)

Плотность жидкости

кг/м 3

p = p / (gh)

Давление

p = pgh

Постоянная

g ≈ 10 или 9,8 или 9,81

(зависит от условия задачи)

Н/кг (= м/с 2 )

Физика 7 класс: все формулы и определения МЕЛКО на одной странице

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1. Определить давление бензина на дно цистерны, если высота столба бензина 2,4 м, а его плотность 710 кг/м 3

Задача № 2. Какая жидкость находится в сосуде, если столб высотой 0,3 м оказывает давление 5400 Па ?

Задача № 3. Плотность спирта 800 кг/м 3 . Какова будет высота столба спирта при давлении 2,4 кПа?

Задача № 4. В цилиндре с маслом на поршень действует сила 40 Н. Чему равна сила давления на внутреннюю поверхность цилиндра площадью 8 дм 2 ? Площадь поршня 2,5 см 2 . Вес масла не учитывайте.

Задача № 5. Вычислите давление и силу давления керосина на дно бака площадью 50 дм 2 , если высота столба керосина в баке 40 см.

Задача № 6. Площадь малого поршня гидравлического пресса равна 10 см 2 , большого — 50 см 2 . На малый поршень поместили гирю массой 1 кг. Какой груз нужно поместить на большой поршень, чтобы жидкость осталась в равновесии?

Задача № 7. Рыба камбала находится на глубине 1200 м и имеет площадь поверхности 560 см 2 . С какой силой она сдавливается водой?

Задача № 8. На какой глубине давление воды в море равно 412 кПа?

Задача № 9 (повышенной сложности). Брусок массой m = 2 кг имеет форму параллелепипеда. Лежа на одной из граней, он оказывает давление p1 = 1 кПа, лежа на другой — давление 2 кПа, стоя на третьей — давление 4 кПа. Каковы размеры бруска?

ОТВЕТ: 5 см х 10 см х 20 см.

РЕШЕНИЕ. Обозначим размеры бруска а, b, с, где а > b > с. Тогда из условия следует, что b = а/2, с = а/4, p1 = mg/(ab) = 2mg/a 2 . Отсюда , а = 20 см.

Задача № 10 (олимпиадный уровень). Оцените массу атмосферы Земли (радиус Земли R = 6400 км)

ОТВЕТ: примерно 5 • 10 18 кг

РЕШЕНИЕ. Вес атмосферы равен силе давления воздуха на всю поверхность Земли, площадь которой S = 4πR 2 . Следовательно, mg = ра • 4πR 2 , где ра = 10 5 Па — атмосферное давление. Отсюда m = 4πR 2 ра /g = 5 • 10 18 кг. Эта величина составляет менее одной миллионной части полной массы нашей планеты. Такая простая оценка массы атмосферы возможна потому, что основная часть атмосферы сосредоточена на высотах, малых по сравнению с радиусом Земли. Поэтому можно считать, что вес атмосферы равен mg, где g — ускорение свободного падения вблизи поверхности Земли.

Теория для решения задач.

Давление жидкости на покоящееся в ней тело называют гидростатическим давлением. Гидростатическое давление на глубине h равно р = ратм + p*g*h

Закон Паскаля. Жидкость и газ передают оказываемое на них давление во всех направлениях одинаково.

Конспект урока «Задачи на давление жидкостей».

Источник

Как вы уже знаете, согласно закону Паскаля, давление в жидкостях распространяется одинаково во всех направлениях. Что же необходимо знать, чтобы рассчитать это давление? От чего зависит давление жидкости?

Взгляните на рисунок 1.

Рисунок 1. Сосуды разной формы, наполненные жидкостью

Как вы думаете, в каком сосуде больше жидкости? А будет ли одинаково давление, оказываемое на дно сосудов? С этими вопросами нам и предстоит разобраться. 

Вывод формулы

Выведем формулу для расчета давления жидкости на дно сосуда, имеющего форму прямоугольного параллелепипеда (рисунок 2).

Рисунок 2. Определение давления жидкости на дно прямоугольного параллелепипеда

Давление жидкости $p$ рассчитывается по формуле: $p = frac{F}{S}$, где $F$ — это сила, действующая на дно сосуда, а $S$ — это площадь дна сосуда.

  1. Сила $F$ в данном случае равна весу $P$ жидкости, которая находится в сосуде;
  2. Как узнать вес жидкости? Необходимо знать массу $m$ жидкости;
  3. Массу $m$ мы можем вычислить по известной нам формуле: 
    $m = rho V$;
  1. Так как нам известна жидкость, находящаяся в сосуде, мы знаем ее плотность . Остается вычислить объем $V$ жидкости. Обозначим высоту столба жидкости буквой $h$, площадь дна сосуда — $S$. Тогда объем можно вычислить по формуле:
    $V = Sh$;
  1. Итак, подставляем наши данные в формулу для вычисления массы и получаем:
    $m = rho Sh$;
  1. Таким образом, возвращаемся к весу жидкости и получаем, что: 
    $P = mg$, где $g$ — ускорение свободного падения, или $P = g rho Sh$.

С другой стороны, мы знаем, что вес столба жидкости равен силе, с которой жидкость давит на дно сосуда. Поэтому если мы разделим вес $P$ на площадь $S$, то получим искомое давление жидкости:
$p = frac{P}{S}$,
или $p =frac{g rho Sh}{S}$,

То есть:

$p = rho gh$.

Рассмотрим измерительные величины, которые мы будем использовать в данной формуле: плотность мы будем выражать в килограммах на кубический метр ($frac{кг}{м^3}$), $g = 9.8 frac{H}{кг}$, высоту столба жидкости  — в метрах ($м$). Тогда давление $p$ будет выражено в паскалях ($Па$).

Выводы

Так мы с вами вывели формулу для расчета давления жидкости на дно сосуда. Какие выводы мы можем сделать? 

От каких величин зависит давление жидкости на дно сосуда?

Давление жидкости не зависит от формы сосуда, оно зависит только от плотности жидкости и высоты ее столба.

Обратите внимание, что во многих случаях, когда говорят о высоте столба жидкости, говорят о глубине.

По какой формуле рассчитывают давление жидкости на стенки сосуда, давление внутри жидкости?

По формуле $p = rho gh$ можно вычислить давление на стенки сосуда или внутри жидкости, так как на одной глубине давление в жидкости будет одинаково во всех направлениях.

Давление жидкости не зависит от формы сосуда, оно зависит только от плотности жидкости и высоты ее столба

Вопросы и пример задачи

Вопрос №1

Как вы думаете, изменится ли давление на дно цилиндрического сосуда, частично заполненного водой, если в него опустить деревянный брусок (рисунок 3)?

Рисунок 3. Иллюстрация к задаче

Посмотреть ответ

Скрыть

Ответ:

В данном случае уровень воды поднимется и высота столба станет больше, значит и давление увеличится.

Вопрос №2

Какая вода: пресная или соленая оказывает большее давление на дно сосуда при одинаковом объеме?

Посмотреть ответ

Скрыть ответ

Ответ:

Здесь достаточно вспомнить, что в соленой воде нам намного проще плавать и держаться на поверхности, что о говорит о ее большей плотности. А давление прямо пропорционально плотности. Соответственно, большее давление оказывает соленая вода.

Задача

Определите давление керосина на дно цистерны, если высота столба керосина $8 space м$, а его плотность $800 frac{кг}{м^3}$.

Дано:
$rho = 800 frac{кг}{м^3}$
$h = 8 space м$

$p — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Давление рассчитывается по формуле:
$p= rho gh$.

Подставим все величины и рассчитаем его:
$p = 800 frac{кг}{м^3} cdot 9.8 frac{Н}{кг} cdot 8 space м = 62 720 space Па approx 63 space кПа$.

Ответ: $p approx 63 space кПа$.

Упражнения

Упражнение №1

Определите давление на глубине $0.6 space м$ в воде, керосине, ртути.

Дано:
$h = 0.6 space м$
$rho_1 = 1000 frac{кг}{м^3}$
$rho_2 = 800 frac{кг}{м^3}$
$rho_3 = 13600 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

$p_1 — ?$
$p_2 — ?$
$p_3 — ?$

Показать решение и ответ

Скрыть

Решение:

Для расчета давления на заданной глубине будем использовать формулу $p = rho gh$.

Давление в воде:
$p_1 = rho_1 gh$,
$p_1 = 1000 frac{кг}{м^3} cdot 9.8 frac{Н}{кг} cdot 0.6 space м = 5880 space Па approx 5.9 space кПа$.

Давление в керосине:
$p_2 = rho_2 gh$,
$p_2 = 800 frac{кг}{м^3} cdot 9.8 frac{Н}{кг} cdot 0.6 space м = 4704 space Па approx 4.7 space кПа$.

Давление в ртути:
$p_3 = rho_3 gh$,
$p_3 = 13600 frac{кг}{м^3} cdot 9.8 frac{Н}{кг} cdot 0.6 space м = 79 space 968 space Па approx 80 space кПа$.

Ответ: $p_1 approx 5.9 space кПа$, $p_2 approx 4.7 space кПа$, $p_3 approx 80 space кПа$.

Упражнение №2

Вычислите давление воды на дно одной из глубочайших морских впадин — Марианской, глубина которой приблизительно равна $10 space 900 space м$. Плотность морской воды равна $1030 frac{кг}{м^3}$.

Дано:
$h = 10 space 900 space м$
$rho = 1030 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

$p — ?$

Показать решение и ответ

Скрыть

Решение:

Рассчитаем давление на дне Марианской впадины по формуле:
$p = rho gh$,
$p = 1030 frac{кг}{м^3} cdot 9.8 frac{Н}{кг} cdot 10 space 900 space м = 110 space 024 space 600 space Па approx 110 space МПа$.

Ответ: $p approx 110 space МПа$.

Упражнение №3

На рисунке 3 изображена футбольная камера, соединенная с вертикально расположенной стеклянной трубкой. В камере и трубке находится вода. На камеру положена дощечка, а на нее — гиря массой $5 space кг$. Высота столба воды в трубке равна $1 space м$. Определите площадь соприкосновения дощечки с камерой.

Рисунок 3. Футбольная камера с подсоединенной трубкой под давлением гири

Дано:
$m = 5 space кг$
$h = 1 space м$
$rho = 1000 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

$S — ?$

Показать решение и ответ

Скрыть

Решение:

Гиря оказывает давление на футбольную камеру:
$p_1 = frac{F}{S}$.

Сила $F$, с которой она давит, будет определяться ее весом:
$F = P = F_{тяж} = mg$.

Тогда формула для давления примет следующий вид:
$p_1 = frac{mg}{S}$.

В то же время вода в трубке и камере давит на нее изнутри снизу вверх:
$p_2 = rho gh$.

Так как гиря и камера находятся в равновесии:
$p_1 = p_2$,
$frac{mg}{S} = rho gh$,
$S = frac{m}{rho h}$.

Рассчитаем эту площадь:
$S = frac{5 space кг}{1000 frac{кг}{м^3} cdot 1 space м} = 0.005 space м^2 = 50 space см^2$.

Ответ: $S = 50 space см^2$.

Задания

Задание №1

Возьмите высокий сосуд. В боковой поверхности его на разной высоте от дна сделайте три небольших отверстия. Закройте отверстия спичками и наполните сосуд водой. Откройте отверстия и проследите за струйками вытекающей воды (рисунок 4). Почему вода вытекает из отверстий? Из чего следует, что давление увеличивается с глубиной?

Рисунок 4. Увеличение давления с глубиной на наглядном опыте

Показать ответ

Скрыть

Ответ:

Вода вытекает из отверстий по действием давления самой жидкости. Мы видим, что из самого нижнего отверстия бьет струйка воды с самым сильным напором, а из верхнего отверстия — с самым слабым. Этот момент объясняется тем, что с увеличением глубины давление увеличивается.

Задание №2

Налейте в стеклянный сосуд (стакан или банку) произвольное количество воды. Сделайте необходимые измерения и рассчитайте давление воды на дно сосуда.

Дано:
$h = 0.086 space м$
$rho = 1000 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

$p — ?$

Показать решение и овет

Скрыть

Решение:

Рассчитаем давление воды на дно нашего стакана по формуле:
$p = rho gh$,
$p = 1000 frac{кг}{м^3} cdot 9.8 frac{Н}{кг} cdot 0.086 space м = 842.8 space Па approx 843 space Па$.

Ответ: $p approx 843 space Па$.

Конспект по физике для 7 класса «Расчёт давления жидкости на дно и стенки сосуда». ВЫ УЗНАЕТЕ: Что такое гидростатическое давление. Как рассчитать давление жидкости на дно сосуда. Как рассчитать давление жидкости на стенки сосуда. ВСПОМНИТЕ: Как формулируется закон Паскаля? Как определить давление твёрдого тела на опору? Как зависит масса тела от его плотности? Что такое вес тела? Как вес тела зависит от его массы?

Конспекты по физике    Учебник физики    Тесты по физике


Расчёт давления жидкости на дно и стенки сосуда

Жидкость, находящаяся в сосуде, оказывает давление как на дно сосуда, так и на его стенки. Поверхность жидкости, которая не соприкасается со стенками сосуда, называют свободной поверхностью жидкости. Давление, оказываемое покоящейся жидкостью, называют гидростатическим.

РАСЧЁТ ДАВЛЕНИЯ ЖИДКОСТИ НА ДНО СОСУДА

Вычислим давление жидкости на дно сосуда площадью S, если высота столба жидкости в этом сосуде равна h. Как известно, давление определяется по формуле p = F/S.

В нашем случае сила F, с которой жидкость действует на дно сосуда, равна её весу. Вес жидкости определяется по формуле Р = mg.   (1)

Следовательно, для определения веса жидкости необходимо найти её массу. Для этого воспользуемся формулой m = pV, где р — плотность жидкости, а V — объём жидкости. Для определения объёма необходимо найти произведение площади дна сосуда и высоты столба жидкости: V = Sh.

Следовательно, масса жидкости в сосуде определяется по формуле m = рSh.   (2)

Подставим это выражение в формулу (1) и получим Р = gpSh.    (3)

Теперь для нахождения давления необходимо вес жидкости разделить на площадь сосуда: P = gpSh/S

Сократив в полученном выражении S в числителе и знаменателе, получим формулу для расчёта давления жидкости на дно сосуда: p = pgh. (4)

Давление жидкости на дно сосуда рассчитывают по формуле p = pgh.

РАСЧЁТ ДАВЛЕНИЯ ЖИДКОСТИ НА СТЕНКИ СОСУДА

Так как по закону Паскаля давление внутри жидкости на одном и том же уровне одинаково по всем направлениям, то по формуле (4) можно находить давление жидкости на стенки сосуда на любой глубине.

Из формулы (4) видно, что давление жидкости на дно и стенки сосуда прямо пропорционально высоте столба жидкости и зависит по только от высоты столба жидкости, но и от плотности жидкости р. Чем больше плотность жидкости, тем большее давление она оказывает при условии, что высота столба жидкости остаётся постоянной.

Даже при использовании дыхательных трубок, выступающих над водой, глубина погружения человека не может превышать 1,5 м, так как из-за давления воды у него не хватает сил увеличив объём грудной клетки и вдохнуть воздух. В 1943 г французами Ж. Кусто и Э. Ганьяном был изобретён акваланг специальный аппарат со сжатым воздухом, предназначенный для дыхания под водой и позволяющий находиться под водой от нескольких минут (на глубине около 40 м) до часа и более.

В соответствии с формулой (4) давление жидкости также зависит от ускорения свободного падения g. Значит, если представить себе один и тот же сосуд с жидкостью, помещенный на разные планеты, то давление на дно и стенки сосуда в нем будет различно в зависимости от значения g на планете.

ГИДРОСТАТИЧЕСКИЙ ПАРАДОКС

Из формулы (4) видно, что давление жидкости на дно и стенки сосуда зависит только от плотности и высоты столба жидкости и не зависит от формы сосуда.

Приведённая схема опыта показывает, что сила, с которой жидкость оказывает давление на дно сосудов различной формы, но с одинаковой площадью дна и одинаковой высотой столба жидкости в них, будет одной и той же. Каждый из сосудов снабжён съемным дном, и динамометры показывают именно 3 силу воздействия воды на дно сосудов, но не вес жидкости. Очевидно, что вес жидкости в сосудах будет различным, так как объёмы жидкости в сосудах неодинаковы.

По закону Паскаля давление столба жидкости высотой h равномерно передаётся в любую точку дна каждого из сосудов. Именно поэтому сила, с которой жидкость оказывает давление на дно, больше веса жидкости в сосуде В, но меньше веса жидкости в сосуде С. Несмотря на кажущееся противоречие, ничего парадоксального в этих опытах нет.

ОПЫТ ПАСКАЛЯ

Даже небольшим количеством воды можно создать очень большое давление. В 1648 г. этот факт очень убедительно продемонстрировал В. Паскаль, поразив своих современников. В прочную, наполненную водой и закрытую со всех сторон бочку площадью поверхности 2 м2 была вставлена тоненькая трубочка площадью сечения 1 см2 и высотой 5 м. Затем Паскаль поднялся на балкон второго этажа и влил в эту трубочку всего кружку воды. Из-за малого диаметра трубки вода поднялась до большой высоты, и давление на стенки бочки так возросло, что планки (клёпки) бочки разошлись и вода стала вытекать из бочки.


Вы смотрели Конспект по физике для 7 класса «Расчёт давления жидкости на дно и стенки сосуда»: Что такое гидростатическое давление. Как рассчитать давление жидкости на дно сосуда. Как рассчитать давление жидкости на стенки сосуда.

Вернуться к Списку конспектов по физике (В оглавление).

Понравилась статья? Поделить с друзьями:
  • Как найти трек на радио рекорд
  • Как найти косинус икс формула
  • Как найти площадь прикосновения в физике
  • Как найти игроков с которыми играл
  • Как составить executive summary