Как найти высоту средней линии прямоугольной трапеции


1. Формула средней линии трапеции через основания (для всех видов трапеции)

Формула средней линии трапеции через основания

a — нижнее основание

b — верхнее основание

m — средняя линия

Формула средней линии, (m ):

Формула средней линии трапеции через основания

2. Формулы средней линии через основания, высоту и угол при нижнем основании

Формулы средней линии прямоугольной трапеции через основание, высоту и углы

a, b — основания трапеции

c — боковая сторона под прямым углом к основаниям

d — боковая сторона

α — угол при основании

h — высота трапеции

m — средняя линия

Формулы средней линии трапеции, (m ):

Формулы средней линии прямоугольной трапеции через высоту

Формулы средней линии прямоугольной трапеции через боковую сторону

Формулы средней линии прямоугольной трапеции через боковые стороны


3. Формула средней линии трапеции через диагонали, высоту и угол между диагоналями

Формула средней линии прямоугольной трапеции через диагонали, высоту и угол между диагоналями

d1 , d2 — диагонали трапеции

α , β — углы между диагоналями

h — высота трапеции

m — средняя линия

Формулы средней линии трапеции, (m ):

Формула средней линии трапеции через диагонали, высоту и угол между диагоналями


4. Формула средней линии трапеции через площадь и высоту (для всех видов трапеции)

Формула средней линии трапеции через площадь и высоту

S — площадь трапеции

h — высота трапеции

m — средняя линия

Формула средней линии трапеции, (m ):

Формула средней линии трапеции через площадь и высоту



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

Подробности

Опубликовано: 19 октября 2013

Обновлено: 13 августа 2021

Прямоугольная трапеция. Формулы, признаки и свойства прямоугольной трапеции

Определение.

Прямоугольная трапеция — это трапеция у котрой одна из боковых стороны перпендикулярна основам.

Изображение прямоугольной трапеции с обозначениями
Рис.1

Признаки прямоугольной трапеции

Трапеция будет прямоугольной если выполняется одно из этих условий:

1. В тапеции есть два смежных прямых угла:

∠BAD = 90° и ∠ABC = 90°

2. Одна боковая сторона перпендикулярна основам:

AB BC, AB AD

Основные свойства прямоугольной трапеции

1. В трапеции есть два смежных прямых угла:

∠BAD = ∠ABC = 90°

2. Одна боковая сторона перпендикулярна основам:

AB BC AD

3. Высота равна меньшей боковой стороне:

h = AB

Стороны прямоугольной трапеции

Формулы длин сторон прямоугольной трапеции:

1. Формулы длины оснований через стороны и угол при нижнем основании:

a = b + d cos α = b + c ctg α = b + √d 2c2

b = ad cos α = ac ctg α = a — √d 2c2

2. Формулы длины оснований через стороны, диагонали и угол между ними:

a =  d1d2 · sin γb =  d1d2 · sin δb
c c
b =  d1d2 · sin γa =  d1d2 · sin δa
c c

3. Формулы длины оснований трапеции через площадь и другие стороны:

a =  2S b      b =  2S a
c c

4. Формула боковой стороны через другие стороны и угол при нижнем основании:

c = √d 2 — (ab)2 = (ab) tg α = d sin α

5. Формулы боковой стороны через основы, диагонали и угол между ними:

c =  d1d2 · sin γ =  d1d2 · sin δ
a + b a + b

6. Формулы боковой стороны через площадь, основы и угол при нижнем основании:

d =  S  =  2S
m sin α (a + b) sin α

7. Формула боковой стороны через другие стороны, высоту и угол при нижнем основании:

d =  ab  =  c  =  h  = √c2 + (ab)2
cos α sin α sin α

Средняя линия прямоугольной трапеции

Формулы длины средней линии прямоугольной трапеции:

1. Формулы средней линии через основание, высоту (она же равна стороне c ) и угол α при нижнем основании:

m =  ah · ctg α  =  b + h · ctg α
2 2

2. Формулы средней линии через основания и боковые стороны сторону:

m =  a d 2c2  =  b + d 2c2
2 2

В данной публикации мы рассмотрим различные формулы, с помощью которых можно вычислить высоту прямоугольной трапеции.

Напомним, в прямоугольной трапеции одна из боковых сторон перпендикулярна ее основаниями, и потому одновременно является высотой фигуры.

  • Нахождение высоты прямоугольной трапеции

    • Через длины сторон

    • Через основания и прилежащий угол

    • Через боковую сторону и прилежащий угол

    • Через диагонали и угол между ними

    • Через площадь и основания

Нахождение высоты прямоугольной трапеции

Через длины сторон

Высота прямоугольной трапеции abcd

Зная длины обоих оснований и большей боковой стороны прямоугольной трапеции, можно найти ее высоту (или меньшую боковую сторону):

Формула для нахождения высоты прямоугольной трапеции через ее стороны

Данная формула следует из теоремы Пифагора. В данном случае высота h – это неизвестный катет прямоугольного треугольника, гипотенуза которого равняется d, а известный катет – разности оснований, т.е. (a-b).

Через основания и прилежащий угол

Высота прямоугольной трапеции

Если даны длины оснований и любой из прилежащих к ним острых углов, то вычислить высоту прямоугольной трапеции можно по формуле:

Формула для нахождения высоты прямоугольной трапеции через ее основания и прилежащий угол

Через боковую сторону и прилежащий угол

Высота прямоугольной трапеции с углом при основании α

Если известна длина боковой стороны прямоугольной трапеции и прилежащий к ней угол (любой), найти высоту фигуры удастся таким образом:

Формула для нахождения высоты прямоугольной трапеции через боковую сторону и прилежащий угол

Примечание: с помощью этой формулы можно, в т.ч., доказать, что меньшая боковая сторона – это и есть высота трапеции:

Расчет высоты прямоугольной трапеции через боковую сторону и прямой угол

Через диагонали и угол между ними

Диагонали прямоугольной трапеции

При условии, что известны длины оснований прямоугольной трапеции, диагонали и угол между ними, рассчитать высоту фигуры можно так:

Формула для нахождения высоты прямоугольной трапеции через диагонали и угол между ними

Если вместо суммы оснований известна длина средней линии, то формула примет вид:

Формула для нахождения высоты прямоугольной трапеции через диагонали и угол между ними

Элементы прямоугольной трапеции

m – средняя линия, которая равна половине суммы оснований, т.е.m = (a+b)/2.

Через площадь и основания

Высота и средняя линия прямоугольной трапеции

Если известна площадь прямоугольной трапеции и длина ее оснований (или средней линии), найти высоту можно таким образом:

Формула для нахождения высоты прямоугольной трапеции через ее площадь и основания (среднюю линию)

Термин «трапеция» произошёл от греческого слова «столик». В русском языке от того же слова произошло
понятие «трапеза» — еда.

Средняя линия — отрезок, который прокладывается через противолежащие стороны, и который дробит их
точно на половинки.

Средняя линия трапеции имеет три отличительных черты:

  • Она параллельна базовым сторонам четырёхугольника;
  • Эквивалентна половинке суммирования оснований;
  • Разбивает первоначальный четырёхугольник на две поменьше. Вместе с тем их площади имеют
    конкретное соотношение друг к другу.
  • Средняя линия трапеции через длины оснований
  • Средняя линия трапеции через площадь и высоту
  • Средняя линия трапеции через нижнее основание, высоту и
    углы при нижнем основании
  • Средняя линия трапеции через верхнее основание, высоту и
    углы при нижнем основании
  • Средняя линия трапеции через диагонали, высоту и угол между
    диагоналями
  • Средняя линия трапеции через боковые стороны, верхнее
    основание и углы при нижнем основании
  • Средняя линия трапеции через боковые стороны, нижнее
    основание и углы при нижнем основании
  • Средняя линия равнобедренной трапеции через боковую
    сторону, нижнее основание и угол между ними
  • Средняя линия равнобедренной трапеции через боковую
    сторону, верхнее основание и угол при нижнем основании
  • Средняя линия прямоугольной трапеции через нижнее
    основание, высоту и острый угол при нижнем основании
  • Средняя линия прямоугольной трапеции через верхнее
    основание, высоту и острый угол при нижнем основании

Через длины оснований

Рис 1

Имеется одно основная формулировка, которая позволяет рассчитывать величину средней линии. Величина
средней линии будет равна сумме базовых сторон фигуры, поделённой напополам. Формула следующая:

M = a + b / 2

где a и b — наибольшая и наименьшая стороны.

Цифр после
запятой:

Результат в:

Пример. Если наибольшая базовая сторона равна 8, а наименьшая — 10, то (8 + 10) / 2 = 9. Или, если
наибольшая базовая сторона равна 15, а наименьшая — 3. Тогда:
(3 + 15) / 2 = 9.

Через площадь и высоту

Рис 2

Формулировка поиска величины срединного отрезка через площадь и перпендикуляр:

M = S / h

где S — площадь, h — перпендикуляр.

Цифр после
запятой:

Результат в:

Пример. Если площадь равняется 20, а высота — 5, тогда: M = 20 / 5 = 4. Если площадь равна 50, а
высота равна 5, тогда срединный отрезок:
M = 50 / 5 = 10.

Через верхнее основание, высоту и углы при нижнем основании

Рис 4

Равенство расчёта величины срединного отрезка через наибольшую базовую сторону, высоту и углы при
наименьшей базовой стороне выглядит:

M = b + h * (ctg α + ctg β)/2

где b — наибольшая базовая сторона, α и β — углы при наименьшей базовой стороне, h — высота.

Цифр после
запятой:

Результат в:

Пример. Наибольшая сторона равняется 15, высота — 6, а углы — 45 и 30. В таком случае:
m = 15 + 6 · (ctg 45 + ctg 30)/2 = 15 + 6 · (1 + √3)/2 ≈ 23,196.

Через диагонали, высоту и угол между диагоналями

Рис 5

Формулировка исчисления величины срединного отрезка через диагонали, высоту и уголок между
диагоналями описывается:

M = (d1 * d2)/2h * sin α

где d1, d2 — диагонали, α — уголок между диагоналями, h — высота.

Цифр после
запятой:

Результат в:

Пример. Пусть диагонали четырёхугольника равняются 15 и 4, высота — 5, а уголок между диагоналями
фигуры — 30 градусов. Значит:
m = (15 * 4)/(2 * 5) * sin 30 = 6 * 1/2 = 3.

Если в качестве диагоналей взять 20 и 5, высоты — 6, а угла — 30, тогда: m = (20 * 5)/(2 * 6) * sin
30 ≈ 8,33 * 1/2 ≈ 4,167.

Через нижнее основание, высоту и углы при нижнем основании

Рис 3

Формулировка нахождения величины срединного отрезка через наименьшую базовую сторону, высоту и углы
при наименьшей базовой стороне приведена далее:

M = a — h * (ctg α + ctg β)/ 2

где a — наименьшая базовая сторона, α и β — углы при наименьшей базовой стороне, h — высота
четырёхугольника.

Цифр после
запятой:

Результат в:

Пример. Если наименьшая базовая сторона четырёхугольника равносильна 5, углы — 45 и 45, а высота — 2,
тогда: 5 – 2 · (ctg 45 + ctg 45)/ 2 = 3.

Через боковые стороны, верхнее основание и углы при нижнем основании

Рис 6

Тождество поиска величины срединного отрезка через вспомогательные стороны, наибольшую сторону и углы
при наименьшей стороне:

m = (2b + c * cos α + d * cos β) / 2

где b — наибольшая сторона, c и d — вспомогательные стороны, α и β — углы при наименьшей стороне.

Цифр после
запятой:

Результат в:

Пример. Если в качестве наибольшей стороны взять 15, наклонных сторон — 7 и 9, а углов при наименьшей
стороне — 60 и 60 градусов. Следовательно: m = (2 * 15 + 7 * cos 60 + 9 * cos 60) / 2 = (30 +
3,5 + 4,5) / 2 = 19.

Через боковые стороны, нижнее основание и углы при нижнем основании

Рис 7

Выражение исчисления величины срединного отрезка через вспомогательные стороны, меньшую сторону и углы при меньшей стороне:

m = (2a — c * cos α — d * cos β) / 2

где a — меньшая сторона, c и d — наклонные стороны, α и β — углы.

Угол (α):

Угол (β):

Цифр после запятой:

Результат в:

К примеру, если нижняя сторона равна 8, боковая сторона 5, а угол при нижней стороне фигуры — 60, тогда:
m = (2 · 8 – 2 · 5 · cos 60) / 2 = 3.

Если же нижняя сторона равняется 12, боковая сторона 6, а угол при нижней стороне — 60, в таком случае:
m = (2 · 12 – 2 · 6 · cos 60) / 2 = 9.

Средняя линия равнобедренной трапеции через боковую сторону, верхнее основание и угол при нижнем
основании

Рис 9

Формула расчёта длины срединного отрезка через боковые стороны, верхнюю сторону и углы при нижней
стороне:

m = (2b + 2c · cos β) / 2

где b — верхняя сторона, c — боковая сторона четырёхугольника, β — угол.

Цифр после
запятой:

Результат в:

Например, если верхняя сторона четырёхугольника равняется 5, боковая сторона 8, а угол при нижней
стороне фигуры — 60, тогда срединный отрезок рассчитывается следующим образом: m = (2 · 5 – 2 ·
8 · cos 60) / 2 = 1.

Если представить верхнюю сторону длиной 6, боковую сторону длиной 5, а угол при нижней стороне
четырёхугольника — 60, в таком случае: m = (2 · 6 – 2 · 5 · cos 60) / 2 = 3,5.

Через боковые стороны, нижнее основание и углы при нижнем основании

Рис 8

Выражение исчисления величины срединного отрезка через вспомогательные стороны, меньшую сторону и
углы при меньшей стороне:

m = (2a — c * cos α — d * cos β) / 2

где a — меньшая сторона, c и d — наклонные стороны, α и β — углы.

Цифр после
запятой:

Результат в:

К примеру, если нижняя сторона равна 8, боковая сторона 5, а угол при нижней стороне фигуры — 60,
тогда: m = (2 · 8 – 2 · 5 · cos 60) / 2 = 3.

Если же нижняя сторона равняется 12, боковая сторона 6, а угол при нижней стороне — 60, в таком
случае: m = (2 · 12 – 2 · 6 · cos 60) / 2 = 9.

Средняя линия прямоугольной трапеции через нижнее основание, высоту и острый угол при нижнем
основании

Рис 10

Формула определения длины срединного отрезка через боковые стороны, верхнюю сторону и углы при нижней
стороне:

m = a – h · ctg β / 2

где a — нижняя сторона, h — высота, β — острый уголок при нижней стороне.

Цифр после
запятой:

Результат в:

Пример. Пусть нижняя сторона четырёхугольника равняется 8, высота — 3, а острый уголок — 45, в таком
случае: m = 8 – 3 · ctg 45 / 2 = 6,5.

Средняя линия прямоугольной трапеции через верхнее основание, высоту и острый угол при нижнем
основании

Рис 11

Формула определения длины срединного отрезка через боковые стороны, верхнюю сторону и углы при нижней
стороне:

m = b + h · ctg β / 2

где b — верхняя сторона, h — высота, β — острый угол при нижней стороне.

Цифр после
запятой:

Результат в:

Пример. В качестве верхнего возьмём 4, высоты — 2, острого угла — 45. В таком случае формула
такая: m = 4 + 2 · ctg 45 / 2 = 5.

Общее понятие трапеции

Трапеция — геометрическая фигура, четырёхугольник, две противолежащие стороны которого размещены на
параллельных прямых. В свою очередь, две иные стороны должны быть не параллельными. Нередко в
описании четырёхугольника не обращают внимания на завершающее требование.

Впервые эту фигуру описал математик Древней Греции Евклид в своих работах. В своей книге «Начала» он
таким образом характеризует всякий четырёхугольник, не являющийся параллелограммом.

Описывая трапецию, необходимо выделить следующие элементы:

  • Параллельные противолежащие стороны именуются основаниями фигуры;
  • Две иные стороны именуют боковыми или наклонными сторонами;
  • Отрезок, который объединяет средины вспомогательных сторон, прозвали средней линией
    четырёхугольника;
  • Углом при основании трапеции прозвали её внутренний уголок, который образовало основание с
    наклонной стороной.

Выделяют такие характеристики трапеции:

  1. Срединный отрезок трапеции пролегает параллельно основаниям и равняется половине их
    суммирования;
  2. Отрезок, который объединяет средины диагоналей трапеции, равняется половинке разности оснований
    и пролегает по средней линии;
  3. Отрезок, который параллелен основаниям и пролегает через точку скрещивания диагоналей,
    разделяется последней напополам и равняется 2xy / (x + y) среднему гармоническому (один из
    методов, которым можно характеризовать «среднюю» величину определённой совокупности чисел)
    величин оснований трапеции;
  4. В трапецию можно вписать окружность, если суммирование величин оснований четырёхугольника
    равняется суммированию величин её вспомогательных сторон;
  5. Точка скрещивания диагоналей трапеции, точка скрещивания последующих продлений её
    вспомогательных сторон и средины оснований располагаются на единой прямой;
  6. Если суммирование углов при одном из оснований трапеции равняется 90°, в таком случае
    продолжения наклонных сторон перекрещиваются под прямым углом, а отрезок, объединяющий средины
    оснований, равняется половинке их разности;
  7. Диагонали четырёхугольника разделяют его на четыре треугольника. Два из них, которые прилегают к
    основаниям, подобны. Два иных, которые прилегают к вспомогательным сторонам, имеют равную
    площадь;
  8. Если отношение оснований равно K, тогда отношение площадей треугольников, которые прилегают к
    ним, равняется K2;
  9. Прямая Ньютона (прямая, которая объединяет серединки диагоналей четырёхугольника) для
    четырёхугольника сходится с её срединным отрезком.

Рассмотренная версия трапеции — это наиболее популярная разновидность геометрической фигуры. Однако,
выделяют и дополнительные ситуации.

Равнобедренная или равнобокая или равнобочная трапеция — та, у которой наклонные, иными словами,
непараллельные, стороны равняются друг другу. В евклидовой геометрии равнобедренной трапецией
именуется выпуклый четырёхугольник с осью симметрии, которая пролегает через средины двух
противолежащих сторон. Во всякой равнобедренной трапеции два противолежащих основания параллельны,
две наклонные стороны имеют одинаковые величины (характеристика, которой параллелограмм также
соответствует). Диагонали также имеют равносильные величины. Углы при всяком основании равняются
друг другу и углы при разнообразных основаниях считаются смежными, иначе говоря, в сумме
составляющие 180 градусов.

Трапеция является равнобедренной лишь в том случае, когда выполняется одно из таких эквивалентных
условий:

  • Прямая, пролегающая через средины оснований, ортогональна ним;
  • Перпендикуляр, который проложен из вершины на наиболее протяжённое основание, разделяет его на
    две части, одна из которых равняется половине суммирования оснований, а другая — половинке
    разности;
  • Углы при всяком основании равносильны;
  • Суммирование противолежащих углов равняется 180 градусам;
  • Величины диагоналей равносильны;
  • Вокруг следующего четырёхугольника можно описать окружность;
  • Вершинами подобного четырёхугольника ещё считаются вершины какого-либо антипараллелограмма или
    контрпараллелограмма (плоского четырёхугольника, где всякие две противолежащие стороны равняются
    друг другу, но не параллельны, в сравнении с параллелограммом);
  • Если в равнобедренной трапеции диагонали ортогональны, тогда перпендикуляр равняется половине
    суммирования базовых сторон.

Диагонали равнобедренной трапеции равносильны. Иными словами, всякая равнобедренная трапеция
считается равнодиагональным четырёхугольником. Тем не менее диагонали равнобедренной трапеции
разделяются в одинаковой пропорции.

Прямоугольная трапеция — та, где одна из наклонных сторон и основание формируют прямой угол (в 90
градусов).

Иным особенным случаем считается трапеция с тремя равносильными сторонами. В иностранной литературе
её именуют трёхсторонней трапецией или триравнобедренной трапецией. Подобный четырёхугольник
анализируется как отсечение четырёх последовательных вершин от правильного многоугольника, который
имеет пять или больше сторон.

По заданному описанию параллелограмм и прямоугольник — особые случаи трапеции. Тем не менее при
применении подобного термина основная доля характеристик равнобедренной трапеции становится
недействительна, так как параллелограмм становится её особым случаем.

Анализирование трапеции неразрывно связано с окружностью:

  1. Если суммирование базовых сторон трапеции равносильно суммированию вспомогательных сторон, то в
    неё можно вписать окружность. Средняя линия в такой ситуации равносильна суммированию наклонных
    сторон, разделённой на два, ведь средняя линия трапеции равносильна половинке суммирования
    оснований;
  2. В четырёхугольнике его вспомогательная сторона различима из центра вписанной окружности
    ортогонально;
  3. Если четырёхугольник можно вписать в окружность, в такой ситуации она равнобедренная.
  • Печать

Средняя линия прямоугольной трапеции

Средняя линия прямоугольной трапеции — это отрезок, который соединяет средины двух боковых сторон фигуры и является параллельным ее основаниям (MK).

Свойство средней линии

Средняя линия трапеции (косоугольной и прямоугольной) параллельна основаниям фигуры и равна половине их суммы.

Пример задачи

Условие:

Средняя линия трапеции (прямоугольной) равна 9 см. Одно основание в 2 раза больше другого. Острый угол при основании а равен 45 градусов. Нужно найти площадь трапеции.

Решение:

  1. Средняя линия равняется полусумме оснований, таким образом, сумма оснований: 2*9 = 18 см.
  2. Примем размер меньшего основания как х, тогда размер большего – 2х. Исходя из этого:

    18 = х+2х -> 18=3х -> х = 6 см
  3. Второе основание: 2*6 = 12 см.
  4. Опустим на большее основание высоту. Она отсечет от фигуры равнобедренный прямоугольный треугольник (так как оба угла будут равны 45 градусам), один катет которого будет высотой, а второй — частью большего основания.
  5. Второй катет находится как разница между большим основанием и меньшим: 12 — 6 = 6 см.
  6. Так как треугольник равнобедренный, то высота равняется 6 см.
  7. Площадь прямоугольной трапеции равняется произведению средней линии на высоту:

    S = 9*6=54 см2

Существует также понятие второй средней линии – это отрезок, который соединяет средины оснований трапеции.

Понравилась статья? Поделить с друзьями:
  • Format error not a pdf or corrupted как исправить
  • Как найти edit as html
  • Портфолио для школьника как его составить
  • Как найти градус угла между двумя точками
  • Gta 5 как найти ларри таппера