Как найти высоту тела в момент времени


1. Определить, на какой высоте находится тело, в любой точке траектории движения

Рисунок тела брошенного под углом к горизонту, высота

h — высота тела в момент времени t

hну — высота ниже уровня броска (принимает отрицательное значение)

S — дальность полета по горизонтали

t — время полета

Vo — начальная скорость тела

α — угол под которым брошено тело

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула для определения значения высоты тела в момент времени t

Формула для расчета максимальной высоты

Формула для определения значения высоты тела через расстояние S по горизонтали

Формула для расчета максимальной дальности полета

hну — высота ниже уровня броска, принимает отрицательное значение

2. Найти максимальную высоту, на которую поднялось тело

Рисунок тела брошенного под углом к горизонту, максимальные значения

hmax — максимальная высота

Smax — максимальная дальность полета, если бросок и падение на одном уровне

Sh — расстояние пройденное по горизонтали до момента максимального подъема

tmax — время всего полета

th — время за которое тело поднялось на максимальную высоту

Vo — начальная скорость тела

α — угол под которым брошено тело

g ≈ 9,8 м/с2 — ускорение свободного падения

Формула для расчета максимальной высоты достигнутое телом, если даны, начальная скорость Vo и угол α под которым брошено тело. :

Формула для расчета максимальной высоты

Формула для вычисления максимальной высоты, если известны, максимальное расстояние S max или расстояние по горизонтали при максимальной высоте Sh и угол α под которым брошено тело. :

Формула 1 для расчета максимальной высоты

По этой формуле, можно определить максимальную высоту, если известно время th за которое тело поднялось на эту высоту. :

Формула 2 для расчета максимальной высоты

Подробности

Опубликовано: 11 августа 2015

Обновлено: 13 августа 2021

Если тело бросить горизонтально с некоторой высоты, оно будет одновременно падать и двигаться вперед. Это значит, что оно будет менять положение относительно двух осей: ОХ и ОУ. Относительно оси ОХ тело будет двигаться с постоянной скоростью, а относительно ОУ — с постоянным ускорением.

Кинематические характеристики движения

Важные факты!

Графически движение горизонтально брошенного тела описывается следующим образом:

  1. Вектор скорости горизонтально брошенного тела направлен по касательной к траектории его движения.
  2. Проекция начальной скорости на ось ОХ равна v0: vox = v0. Ее проекция на ось ОУ равна нулю: voy = 0.
  3. Проекция мгновенной скорости на ось ОХ равна v0: vx = v0. Ее проекция на ось ОУ равна нулю: vy = –gt.
  4. Проекция ускорения свободного падения на ось ОХ равна нулю: gx = 0. Ее проекция на ось ОУ равна –g: gy = –g.

Модуль мгновенной скорости в момент времени t можно вычислить по теореме Пифагора:

Подставив в эту формулу значения проекций мгновенной скорости в момент времени t, получим:

Минимальная скорость в течение всего времени движения равна начальной скорости: vmin = v0.

Максимальной скорости тело достигает в момент приземления. Поэтому максимальной скоростью тела в течение всего времени движения является его конечная скорость: vmax = v.

Время падения — время, в течение которого перемещалось тело до момента приземления. Его можно выразить через формулу высоты при равноускоренном прямолинейном движении:

h0 — высота, с которой тело бросили в горизонтальном направлении.

Дальность полета — перемещение тела относительно ОХ. Обозначается буквой l. Так как относительно ОХ тело движется с постоянной скоростью, для вычисления дальности полета можно использовать формулу перемещения при равномерном прямолинейном движении:

l = sx = v0tпад

Выразив время падения через высоту и ускорение свободного падения, формула для определения дальности полета получает следующий вид:

Горизонтальное смещение тела — смещение тела вдоль оси ОХ. Вычислить горизонтальное смещение тела в любой момент времени t можно по формуле координаты x:

Учитывая, что x0 = 0, и проекция ускорения свободного падения на ось ОХ тоже равна нулю, а проекция начальной скорости есть модуль этой скорости, данная формула принимает вид:

x = v0t

Мгновенная высота — высота, на которой находится тело в выбранный момент времени t. Она вычисляется по формуле координаты y:

Пример №1. Из окна, расположенного 5 м от земли, горизонтально брошен камень, упавший на расстоянии 8 м от дома. С какой скоростью был брошен камень?

Так как нам известна высота места бросания и дальность полета, начальную скорость тела можно вычислить по формуле:

Выразим начальную скорость и вычислим ее:

Горизонтальный бросок тела с горы

Горизонтальный бросок тела с горы — частный случай горизонтального броска. От него он отличается увеличенным расстоянием между местом бросания и местом падения. Это увеличение появляется потому, что плоскость находится под наклоном. И чем больше этот наклон, тем больше времени требуется телу, чтобы приземлиться.

График горизонтального броска тела с горы

α — угол наклона плоскости к горизонту, s — расстояние от места бросания до места падения

Дальность полета — смещение тела относительно оси ОХ от места бросания до места падения. Она равна произведению расстояния от места бросания до места падения и косинуса угла наклона плоскости к горизонту:

l = s • cosα

Начальная высота — высота, с которой было брошено тело. Обозначается h0. Начальная высота равна произведению расстояния от места бросания до места падения и синусу угла наклона плоскости к горизонту:

h0 = s sinα

Пример №2. На горе с углом наклона 30о бросают горизонтально мяч с начальной скоростью 15 м/с. На каком расстоянии от точки бросания вдоль наклонной плоскости он упадет?

Выразим это расстояние через дальность полета:

Дальность полета выражается по формуле:

Подставим ее в формулу для вычисления расстояния от точки бросания до точки падения:

Выразим с учетом формулы начальной высоты:

Преобразуем:

Поделим обе части выражения на общий множитель s:

Подставим известные значения:

Задание EF18083

Шарик, брошенный горизонтально с высоты H с начальной скоростью υ0, за время t пролетел в горизонтальном направлении расстояние L (см. рисунок).

В другом опыте на этой же установке шарик массой 2m бросают со скоростью 2υ0.

Что произойдёт при этом с временем полёта, дальностью полёта и ускорением шарика? Сопротивлением воздуха пренебречь. Для каждой величины определите соответствующий характер её изменения:

  1. увеличится
  2. уменьшится
  3. не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

  1. Записать формулы для каждой из величин.
  2. Определить, как зависит эта физическая величина от начальной скорости и массы.
  3. Определить характер изменения физической величины при увеличении начальной скорости и массы шарика.

Решение

Время полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, время никак не зависит от начальной скорости и массы тела. Поэтому оно при увеличении начальной скорости и массы вдвое никак не изменится.

Дальность полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, дальность полета зависит от начальной скорости прямо пропорционально. Поэтому, если начальная скорость тела будет увеличена вдвое, дальность полета тоже увеличится (вдвое). От массы дальность полета никак не зависит.

Ускорение свободного падения — величина постоянная для нашей планеты. Поэтому изменение начальной скорости никак не повлияет на него. Ускорение не изменится.

Значит, верный ответ — 313.

Ответ: 313

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18048

Шарик, брошенный горизонтально с высоты H с начальной скоростью υ0, за время t пролетел в горизонтальном направлении расстояние L (см. рисунок).

Что произойдёт с временем полёта, дальностью полёта и ускорением шарика, если на этой же установке уменьшить начальную скорость шарика в 2 раза? Сопротивлением воздуха пренебречь. Для каждой величины определите соответствующий характер её изменения:

  1. увеличится
  2. уменьшится
  3. не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

  1. Записать формулы для каждой из величин.
  2. Определить, как зависит эта физическая величина от начальной скорости.
  3. Определить характер изменения физической величины при уменьшении начальной скорости.

Решение

Время полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, время никак не зависит от начальной скорости. Поэтому оно при уменьшении начальной скорости вдвое не изменится.

Дальность полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, дальность полета зависит от начальной скорости прямо пропорционально. Поэтому, если начальная скорость тела будет уменьшена вдвое, дальность полета тоже уменьшится (вдвое).

Ускорение свободного падения — величина постоянная для нашей планеты. Поэтому изменение начальной скорости никак не повлияет на него. Ускорение не изменится.

Значит, верный ответ — 323.

Ответ: 323

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 18.3k

Движение тела, брошенного вертикально вверх

Тело, брошенное вертикально вверх, движется равномерно замедленно с начальной скоростью u0 и ускорением
a = -g.

Перемещение тела за время t представляет собой высоту подъема h.
Для этого движения справедливы формулы:

Если:
u0 — начальная скорость движения тела ,
u — скорость падения тела спустя время t,
g — ускорение свободного падения, 9.81 (м/с²),
h — высота на которую поднимется тело за время t,
t — время,
То, движение тела, брошенного вертикально вверх описывается следующими формулами:

Высота подъема тела за некоторое время, зная конечную скорость

[ h = frac{u_0 + u}{2} t ]

Высота подъема тела за некоторое время, зная ускорение свободного падения

[ h = u_0 t — frac{g t^2}{2} ]

Скорость тела через некоторое время, зная ускорение свободного падения

[ u = u_0 — gt ]

Скорость тела на некоторой высоте, зная ускорение свободного падения

[ u = sqrt{ u_0^2 — 2gh} ]

Максимальная высота подъема тела, зная первоначальную скорость и ускорение свободного падения

Тело, брошенное вертикально вверх, достигает максимальной высоты в тот момент, когда его скорость обращается в ноль. Поднявшись на максимальную высоту тело начинает свободное падение вниз.

[ h_{max} = frac{u_0^2}{2g} ]

Время подъема на максимальную высоту подъема тела, зная первоначальную скорость и ускорение свободного падения

[ t_{hmax} = frac{u_0}{g} ]

Примечание к статье: Движение тела, брошенного вертикально вверх

  • Сопротивление воздуха в данных формулах не учитывается.
  • Ускорение свободного падения имеет приведенное значение (9.81 (м/с²)) вблизи земной поверхности. Значение g на других расстояниях от поверхности Земли изменяется!

Движение тела, брошенного вертикально вверх

стр. 409

Что такое движение тела брошенного под углом к горизонту

Определение

Движением тела под углом к горизонту в физике называют сложное криволинейное перемещение, которое состоит из двух независимых движений, включая равномерное прямолинейное движение в горизонтальном направлении и свободное падение по вертикали.

В процессе подбрасывания объекта вверх под углом к горизонту вначале наблюдают его равнозамедленный подъем, а затем равноускоренное падение. Скорость перемещения тела, относительно поверхности земли, остается постоянной.

Направление

 

На графике изображено схематичное движение тела, которое подбросили под углом к горизонту. В этом случае α является углом, под которым объект начал свое перемещение. Характеристики такого процесса будут следующими:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  1. Направление вектора скорости тела, которое подбросили под определенным углом к горизонту, будет совпадать с касательной к траектории его перемещения.
  2. Начальная скорость отличается от направления горизонтальной линии, а обе ее проекции не равны нулю.
  3. Проекция скорости в начале движения на ось ОХ составляет (V_{ox}=V_{0}cos alpha).
  4. Проекция начальной скорости на ось ОУ равна (V_{oy}=V_{0}sin alpha).
  5. Проекция мгновенной скорости на ось ОХ следующая: (V_{x}=V_{0}cos alpha).
  6. Проекция мгновенной скорости на ось ОУ обладает нулевым значением и рассчитывается следующим образом: (V_{x}=V_{0}sin alpha-gt).
  7. Ускорение свободного падения на ось ОХ обладает нулевой проекцией, или (g_{x}=0).
  8. Проекция ускорения свободного падения на ось ОУ равна (–g), или (g_{y}=-g).

К числу кинематических характеристик движения тела, которое подбросили под углом к горизонту, относят модуль мгновенной скорости в определенное время t. Данный показатель можно рассчитать с помощью теоремы Пифагора:

(V=sqrt{V^{2}_{x}+V^{2}_{y}})

Минимальная скорость тела будет замечена в самой верхней точке траектории, а максимальная величина данной характеристики будет достигнута, когда объект только начинает перемещаться, а также в точке падения на поверхность земли. Время подъема представляет собой время, необходимое для достижения телом верхней точки траектории. За полное время объект совершает полет, то есть перемещается от начальной точки к точке приземления.

Дальность полета является перемещением объекта по отношению к оси ОХ. Такую кинематическую характеристику обозначают буквой l. По отношению к оси ОХ тело перемещается, сохраняя постоянство скорости.

Определение

Горизонтальным смещением тела называют смещение данного объекта, относительно оси ОХ.

Расчет горизонтального смещения тела в какой-либо момент времени t выполняют с помощью уравнения координаты х:

(x=x_{0}+V_{0x}t+frac{gxt^{2}}{2})

Зная следующие условия:

  • (x_{0}=0);
  • проекция ускорения свободного падения, относительно оси ОХ, также имеет нулевое значение;
  • проекция начальной скорости на ось ОХ составляет (V_{0}cos alpha).

Записанная формула приобретает следующий вид:

(x=V_{0}cos alpha t)

Мгновенной высотой принято считать высоту, на которой находится объект в определенный момент времени t. Наибольшей высотой подъема является расстояние от поверхности земли до верхней точки траектории движения тела под углом к горизонту.

Вывод формулы, как найти угол и дальность полета

Перемещение объекта, который был брошен под углом к горизонту, необходимо изобразить с помощью суперпозиций, характерных для двух типов движений:

  • равномерное горизонтальное движение;
  • равноускоренное перемещение в вертикальном направлении с ускорением свободного падения.

Движение тела

 

Скорость тела будет рассчитываться таким образом:

(v_{0x}=v_{x}=v_{0} cos alpha =const)

(v_{0y}=v_{0}sin alpha)

(v_{y}=v_{0}sin alpha-gt)

Уравнение координаты записывают в следующем виде:

(x=v_{0}cos alpha times t)

(y=v_{0}sin alpha times t-frac{gt^{2}}{2})

В любое время значения скорости тела будут равны:

(v=sqrt{v_{x}^{2}+v_{y}^{2}})

Определить угол между вектором скорости и осью ОХ можно таким образом:

(tan beta =frac{v_{y}}{v_{x}}=frac{v_{0}sin alpha -gt}{v_{0}cos alpha })

Время подъема на максимальную высоту составляет:

(t=frac{v_{0}sin alpha }{g})

Максимальная высота подъема будет рассчитана следующим образом:

(h_{max}=frac{v_{0}^{2}sin ^{2}alpha}{2g})

Полет тела будет длиться определенное время, которое можно рассчитать с помощью формулы:

(t=frac{2v_{0}sin alpha }{g})

Максимальная дальность полета составит:

(L_{max}=frac{v_{0}^{2}sin 2alpha }{g})

Примеры решения задач

В примерах, описывающих движение тела, на которое действует сила тяжести, следует учитывать, что а=g=9,8 м/с2.

Задача 1

Небольшой камень был брошен с ровной горизонтальной поверхности под углом к горизонту. Необходимо определить, какова максимальная высота подъема камня при условии, что, спустя 1 секунду после его начала движения, скорость тела обладала горизонтальным направлением.

Решение

Направление скорости будет горизонтальным в верхней точке перемещения камня. Таким образом, время, за которое он поднимется, составляет 1 секунду. С помощью уравнения времени подъема можно представить формулу произведения скорости в начале полета на синус угла, под которым бросили камень:

(V_{0}sin alpha =gt)

Данное равенство следует подставить в уравнение для расчета максимальной высоты, на которую поднимется камень, и выполнить вычисления:

(h=frac{V_{0}sin ^{2}alpha }{2g}=frac{(gt)^{2}}{2g}=frac{gt^{2}}{2}=frac{10times 1}{2}=5)

Ответ: максимальная высота подъема камня, который бросили под углом к горизонту, составляет 5 метров.

Задача 2

Из орудия выпустили снаряд, начальная скорость которого составляет 490 м/с, под углом 30 градусов к горизонту. Нужно рассчитать, какова высота, дальность и время полета снаряда без учета его вращения и сопротивления воздуха.

Решение

Систему координат и движение тела можно представить схематично:

Задача

 

Составляющие скорости, относительно осей ОХ и ОУ, будут совпадать во время начала движения снаряда:

(V_{0x}=V_{0} cos alpha) сохраняет стабильность значения в любой промежуток времени во время всего перемещения тела.

(V_{0y}=V_{0}sin alpha) будет меняться, согласно формуле равнопеременного движения (V_{y}=V_{0}sin alpha-gt).

В максимальной точке, на которую поднимется снаряд:

(V_{y}=V_{0}sin alpha-gt_{1}=0)

Из этого равенства следует:

(t=frac{V_{0sin alpha }}{g})

Полное время полета тела будет рассчитано по формуле:

(t=2t_{1}=frac{2V_{0}sin alpha }{g}=50)

Высота, на которую поднимется снаряд, определяется с помощью уравнения равнозамедленного перемещения тела:

(h=V_{0y}t_{1}-frac{gt_{1}^{2}}{2}=frac{V_{0}^{2}sin ^{2}alpha }{2g}=3060)

Дальность полета снаряда будет рассчитана таким образом:

(S=V_{0x}t=frac{V_{0}^{2}sin 2alpha }{g}=21000)

Ответ: высота составляет 3060 метров, дальность полета равна 21000 метров, время движения составит 50 секунд.

Вторник, а это значит, что сегодня мы снова решаем задачи. На это раз, на тему «свободное падение тел».

Присоединяйтесь к нам в телеграм и получайте актуальную рассылку каждый день!

Задачи на свободное падение тел с решением

Задача №1. Нахождение скорости при свободном падении

Условие

Тело падает с высоты 20 метров. Какую скорость оно разовьет перед столкновением с Землей?

Решение

Высота нам известна по условию. Для решения применим формулу для скорости тела в момент падения и вычислим:

Задача №1. Нахождение скорости при свободном падении

Ответ: примерно 20 метров в секунду.

Задача №2. Нахождение высоты и времени движения тела, брошенного вертикально.

Условие

Индеец выпускает стрелу из лука вертикально вверх с начальной скоростью 25 метров в секунду. За какое время стрела окажется в наивысшей точке и какой максимальной высоты она достигнет стрела?

Решение

Сначала запишем формулу из кинематики для скорости. Как известно, в наивысшей точке траектории скорость стрелы равна нулю:

Задача №2. Нахождение высоты и времени движения тела, брошенного вертикально.

Теперь запишем закон движения для вертикальной оси, направленной вертикально вверх.

Задача №2. Нахождение высоты и времени движения тела, брошенного вертикально.

Ответ: 2,5 секунды, 46 метров.

Задача №3. Нахождение времени движения тела, брошенного вертикально вверх

Условие

Мячик бросили вертикально вверх с начальной скоростью 30 метров в секунду. Через какое время мяч окажется на высоте 25 метров?

Решение

Запишем уравнение для движения мячика:

Задача №3. Нахождение времени движения тела, брошенного вертикально вверх

Мы получили квадратное уравнение. Упростим его и найдем корни:

Задача №3. Нахождение времени движения тела, брошенного вертикально вверх

Как видим, уравнение имеет два решения. Первый раз мячик побывал на высоте через 1 секунду (когда поднимался), а второй раз через 5 секунд (когда падал обратно).

Ответ: 1с, 5с.

Задача №4. Нахождение высоты при движении тела под углом к горизонту

Условие

Камень, брошенный с крыши дома под углом альфа к горизонту, через время t1=0,5c достиг максимальной высоты, а еще через время t2=2,5c упал на землю. Определите высоту Н дома. Сопротивлением воздуха пренебречь. Ускорение свободного падения g = 10 м/с2.

Решение

Задача №4. Нахождение высоты при движении тела под углом к горизонту

Камень брошен со скоростью v0 под углом α к горизонту с дома высотой Н. Эту скорость можно разложить на две составляющие: v0X (горизонтальная) и v0Y (вертикальная). В горизонтальном направлении на камень не действует никаких сил (сопротивлением воздуха пренебрегаем), поэтому горизонтальная составляющая скорости неизменна на протяжении всего времени полета камня (равномерное движение). Максимальная точка траектории камня над уровнем земли (исходя из кинематических соотношений):

Задача №4. Нахождение высоты при движении тела под углом к горизонту

Здесь t1 – время подъема камня с высоты Н на высоту h; g – ускорение свободного падения.

Вертикальную составляющую скорости можно вычислить исходя из геометрических соображений:

Задача №4. Нахождение высоты при движении тела под углом к горизонту

         
Подставив выражение для скорости в первое уравнение, получим:

Задача №4. Нахождение высоты при движении тела под углом к горизонту

Также высоту h можно выразить через время t2 падения камня с высоты h на землю (исходя из кинематических соотношений и учитывая, что с вертикальная составляющая скорости в наивысшей точке равна нулю):

Задача №4. Нахождение высоты при движении тела под углом к горизонту

         
Для высоты дома можно записать:

Задача №4. Нахождение высоты при движении тела под углом к горизонту         
Так как вертикальная составляющая скорости камня в максимальной точке траектории равна нулю:

Задача №4. Нахождение высоты при движении тела под углом к горизонту

Подставляем в формулу для высоты H и вычисляем:

Задача №4. Нахождение высоты при движении тела под углом к горизонту

Ответ: H = 30 м.

Задача №5. Нахождение закона движения тела

Условие

Найти закон движения тела против силы тяжести, при начальной скорости V0. И на какую максимальную высоту поднимется тело? Тело бросили под углом 90 градусов.

Решение

Задача №5. Нахождение закона движения тела

Тело брошено под углом α=90° к горизонту. Другими словами, тело брошено вертикально вверх с начальной скоростью V0. Направим координатную ось х вертикально вверх, так ее направление совпадает с вектором начальной скорости. F – сила тяжести, направленная вниз. В начальный момент тело находится в точке А.

В задаче нужно найти закон движения тела, то есть зависимость координаты тела от времени. В общем случае этот закон задается кинематическим соотношением:

Задача №5. Нахождение закона движения тела

где х0 – начальная координата тела; a – ускорение.

Так как мы поместили начало координат в точку А,  х0=0. Тело движется с ускорением свободного падения g, при этом сила тяжести направлена против начальной скорости, поэтому в проекции на вертикальную ось a=-g. Таким образом, искомый закон движения перепишется в виде:

Задача №5. Нахождение закона движения тела

Далее будем использовать еще одно общее кинематическое соотношение:

Задача №5. Нахождение закона движения тела

где V – конечная скорость.

Максимальная высота подъема тела указана на рисунке точной B, в этот момент конечная скорость V равна нулю, а координата х равна максимальной высоте Н подъема тела. Отсюда можно найти выражение для этой величины:

Задача №5. Нахождение закона движения тела

Полезные формулы для решения задач на свободное падение

Свободное падение описывается формулами кинематики. Мы не будем приводить их вывод, но запишем самые полезные.

Формула для максимальной высоты подъема тела, брошенного вертикально вверх c некоторой начальной скоростью:

Полезные формулы для решения задач на свободное падение

Кстати, как выводится именно эта формула можно посмотреть в последней задаче.

Формула для времени подъема и падения тела, брошенного вертикально вверх:

Полезные формулы для решения задач на свободное падение

Скорость тела в момент падения с высоты h:

Полезные формулы для решения задач на свободное падение

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.

Вопросы с ответами на свободное падение тел

Вопрос 1. Как направлен вектор ускорения свободного падения?

Ответ: можно просто сказать, что ускорение g направлено вниз. На самом деле, если говорить точнее, ускорение свободного падения направлено к центру Земли.

Вопрос 2. От чего зависит ускорение свободного падения?

Ответ: на Земле ускорение свободного падения зависит от географической широты, а также от высоты h подъема тела над поверхностью. На других планетах эта величина зависит от массы M и радиус R небесного тела. Общая формула для ускорения свободного падения:

Вопросы с ответами на свободное падение тел
Вопрос 3. Тело бросают вертикально вверх. Как можно охарактеризовать это движение?

Ответ: В этом случае тело движется равноускоренно. Причем время подъема и время падения тела с максимальной высоты равны.

Вопрос 4. А если тело бросают не вверх, а горизонтально или под углом к горизонту. Какое это движение?

Ответ: можно сказать, что это тоже свободное падение. В данном случае движение нужно рассматривать относительно двух осей: вертикальной и горизонтальной. Относительно горизонтальной оси тело движется равномерно, а относительно вертикальной – равноускоренно с ускорением g.

Баллистика – наука, изучающая особенности и законы движения тел, брошенных под углом к горизонту.

Вопрос 5. Что значит «свободное» падение.

Ответ: в данном контексте понимается, что тело при падении свободно от сопротивления воздуха.

Свободное падение тел: определения, примеры

Свободное падение – равноускоренное движение, происходящее под действием силы тяжести.

Первые попытки систематизированно и количественно описать свободное падение тел относятся к средневековью. Правда, тогда было широко распространено заблуждение, что тела разной массы падают с разной скоростью. На самом деле, в этом есть доля правды, ведь в реальном мире на скорость падения сильно влияет сопротивление воздуха.

Однако, если им можно пренебречь, то скорость падающих тел разной массы будет одинакова. Кстати, скорость при свободном падении возрастает пропорционально времени падения.

Ускорение свободно падающих тел не зависит от их массы.

Рекорд свободного падения для человека на данный момент принадлежит австрийскому парашютисту Феликсу Баумгартнеру, который в 2012 году прыгнул с высоты 39 километров и находился в свободном падении 36 402,6 метра. 

Примеры свободного падения тел:

  • яблоко летит на голову Ньютона;
  • парашютист выпрыгивает из самолета;
  • перышко падает в герметичной трубке, из которой откачан воздух.

При свободном падении тела возникает состояние невесомости. Например, в таком же состоянии находятся предметы на космической станции, движущейся по орбите вокруг Земли. Можно сказать, что станция медленно, очень медленно падает на планету.

Конечно, свободное падение возможно не только не Земле, но и вблизи любого тела, обладающего достаточной массой. На других комических телах падения также будет равноускоренным, но величина ускорения свободного падения будет отличаться от земной. Кстати, раньше у нас уже выходил материал про гравитацию.

При решении задач ускорение g принято считать равным 9,81 м/с^2. В реальности его величина варьируется от 9,832 (на полюсах) до 9,78 (на экваторе). Такая разница обусловлена вращением Земли вокруг своей оси.

Нужна помощь в решении задач по физике? Обращайтесь в профессиональный студенческий сервис в любое время.

Понравилась статья? Поделить с друзьями:
  • Глюкометр акку чек актив ошибка е5 как исправить
  • Как найти углы четырехугольника по координатам
  • Как найти вертикальную составляющую силы
  • Психология как исправить ошибку
  • Как исправить дату рождения на госуслугах если