Как найти высоту в подобных треугольниках abc

Подобные треугольники

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

II признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия.
  • Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Здесь вы найдете подборку задач по теме «Подобные треугольники» .

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

1. Через площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

где p – это полупериметр треугольника, который рассчитывается так:

3. Через длину прилежащей стороны и синус угла

4. Через стороны и радиус описанной окружности

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

2. Через стороны треугольника

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Подобные треугольники — признаки, свойства и теоремы

Общие сведения

Специалисты рекомендуют начинать любое обучение с азов. Следует применять принцип, который называется «от простого к сложному». В плоскостной геометрии (Евклида) существует два понятия: аксиомы и теоремы. К первым относятся утверждения, не требующие доказательства. Они являются базовыми элементами науки и позволяют доказывать другие гипотезы или утверждения.

Кроме того, на основании доказанных гипотез можно производить операции по доказательству более сложных теорем. Иными словами, геометрия состоит из базисных элементов — аксиом, при использовании которых можно преобразовывать утверждения в неоспоримые факты, а также при комбинациях появляется возможность доказательства более сложных (составных) элементов. Примером последнего случая является гипотеза Пифагора для прямоугольного треугольника. Чтобы ее доказать, нужно знать аксиомы геометрии, а также теорему об отношении площадей подобных треугольников (S/S’). Далее необходимо разобрать основные объекты геометрии.

Объекты геометрии

Простейшим объектом геометрии является точка. С помощью нее строятся простые фигуры, благодаря которым образуются более сложные формы. К элементарным компонентам можно отнести следующие: прямая, отрезок, луч. Первая состоит из множества точек, соединенных между собой в одной плоскости и находящихся в поперечном сечении, диаметр которого эквивалентен диаметру точек. При соединении простейших объектов получается бесконечная линия без перегибов.

Лучом называется часть прямой, имеющая начальную точку, но у которой нет конечной границы. Еще существует один элемент, у которого присутствуют обе границы (левая и правая). Он называется отрезком. Следует отметить, что луч и отрезок могут лежать на одной прямой, а также последний может являться частью первого.

При комбинации двух лучей, исходящих из одной точки получается плоский угол. Он измеряется в градусах или радианах. Следует отметить, что в геометрии существует понятие «нулевого» угла. Это возможно, когда лучи совпадают. При комбинации трех углов можно получить треугольник. Существует также другое определение этой фигуры: треугольником (Δ) называется фигура, состоящая из трех точек, одна из которых не лежит на одной прямой с остальными.

Треугольники бывают разносторонними, равнобедренными и равносторонними. Кроме того, в зависимости от градусной меры, они делятся на такие классы: остроугольные, тупоугольные и прямоугольные. Необходимо также отметить, что сумма углов этой геометрической фигуры эквивалентна 180 градусам.

Нужно обратить внимание на такие термины: высоту, медиану и биссектрису. Первой называется перпендикуляр, проведенный из вершины к противоположной стороне. Медиана — отрезок, проведенный из противоположной вершины к середине стороны. Биссектрисой угла является луч или отрезок, который делит его на два равнозначных по величине. В равнобедренном и равностороннем Δ эти элементы совпадают.

Основные аксиомы Евклида

Аксиомой называется утверждение, не требующее доказательств и воспринимаемое в виде факта. Существуют следующие утверждения, которые можно применять при решении задач:

  1. Если на плоскости существует некоторая прямая, то в этом случае точки классифицируются на две группы по отношению к ней: лежащие и не лежащие.
  2. Через две точки можно провести только одну прямую.
  3. При заданных прямой и точке, не лежащей на ней, через последнюю можно провести только одну прямую, которая будет параллельна (||) исходной.
  4. Когда даны три угла, один из которых эквивалентен другому, а последний — третьему, тогда можно сделать вывод об их равенстве. Аналогичное утверждение существует и для отрезков.
  5. Любая прямая содержит две точки, а также точку, лежащую между ними.
  6. Точки, находящиеся на одной плоскости, могут соединяться в любой последовательности вспомогательными отрезками.

Следует обратить внимание на последнюю аксиому. Она позволяет строить любые фигуры на плоскости и в пространстве. Математики очень часто применяют такой прием при решении задач и доказательстве некоторых тождеств при помощи создания дополнительных элементов на чертеже.

Например, в некотором упражнении по нахождению отдельных параметров треугольника в условии содержится очень мало данных. Последний можно вписать в окружность или дополнить до квадрата или прямоугольника. Далее следует разобраться в признаках подобия треугольников.

Подобие двух треугольников

Треугольники являются подобными, когда углы одного эквивалентны всем градусным мерам углов другого, а стороны одного равны сторонам другого, с учетом коэффициента гомотетии. Последний называют еще коэффициентом подобия. Он равен отношению сторон подобных треугольников. Например, дано два подобных Δ ABC и A’B’C’ (больший). Коэффициент подобия треугольников обозначается литерой «k». Он больше 0 и вычисляется по такой формуле: k = A’B’ / AB = B’C’ / BC = A’C’ / AC. Подобие фигур обозначается таким образом: ΔABC ∼ ΔA’B’C’.

Не во всех случаях бывают известны углы и стороны фигур. Для этого были сформулированы три признака (условия или критерия), по которым можно определить подобие.

Первое условие

Формулировка первого признака подобия треугольников гласит, что равенство двух углов между собой соответствует подобию двух фигур. Подробнее исходные данные записываются в таком виде: ΔABC ∼ ΔA’B’C’, когда ∠ВАС = ∠B’A’C’ и ∠ABC = ∠A’B’C’. Доказать утверждение довольно просто. Для этого следует рассчитать третий угол у треугольников исходя из того, что сумма трех углов составляет 180 градусов.

Далее необходимо наложить один Δ на другой, чтобы ∠ВАС совпал с ∠B’A’C’. Используя теорему Фалеса для сторон угла, которые делят на отрезки AC / A’C’ = BC / B’C’ вершины малого Δ на пропорциональные части. Аналогично доказывается пропорциональность для двух других сторон. Однако для этого следует наложить уже треугольники таким образом, чтобы совпали другие углы. Такие же действия проделать и для третьего угла. На основании определения о подобии треугольников утверждение доказано. Из доказательства математики получили некоторые следствия, которые будут очень полезны при решении задач:

  1. Фигуры (Δ) подобны при параллельности 3 сторон одного Δ сторонам другого, при перпендикулярности одно стороны другой, а также отсутствия || двух сторон одного Δ сторонам другого.
  2. Фигура, полученная при помощи параллельного переноса со сторонами, которые умножаются на некоторый постоянный коэффициент, подобна исходной.

Равенство AC / A’C’ = BC / B’C’ эквивалентно коэффициенту подобия. Этот факт можно использовать при решении задач и доказательства других геометрических утверждений или тождеств.

Второй критерий

Математики выделяют еще один признак подобия треугольников по двум пропорциональным сторонам и углу между ними. Для доказательства следует рассмотреть ΔABC и ΔA’B’C’ со сторонами, связанными таким тождеством: AB / A’B’ = AC / A’C’. Кроме того, углы между ними равны: ∠ВАС = ∠B’A’C’. Далее нужно достроить ΔABC до четырехугольника ABCС». Вершина С» должна располагаться в зеркальном отображении относительно стороны AB. Полученный ΔABC» ∼ ΔA’B’C’ по I признаку, поскольку у них два угла равны. Следовательно, тождество можно править таким образом: AB / A’B’ = AC» / A’C’.

По условию должно выполняться условие AB / A’B’ = AC / A’C’. Тогда AC = AC». На основании этого факта можно сделать вывод о равенстве ΔABC и ΔABC». Следовательно, теорема доказана, поскольку эти треугольники (ΔABC» и ΔA’B’C’) подобны по I признаку.

Третий признак

Третий признак подобия двух треугольников формулируется таким образом: два треугольника являются подобными, когда стороны одного пропорциональны сторонам другой фигуры. Для доказательства необходимо рассмотреть ΔABC и ΔA’B’C’ со сторонами: AB / A’B’ = AC / A’C’ = BC / B’C’.

Математики рекомендуют отметить некоторую точку C» относительно стороны AB. Она не должна лежать на последней. Кроме того, расстояния от C и C» до стороны AB должны быть эквивалентны. Иными словами, следует построить ΔABС», который является «зеркальным» отображением ΔABC относительно его стороны AB. Если AB / A’B’ = AC» / A’C’, то ΔABC» ∼ ΔA’B’C’ по I признаку.

Следующий шаг — доказательство равенства ΔABC и ΔABC». Они равны по двум сторонам AC = AC» и BC = BC». Следовательно, ΔABC ∼ ΔA’B’C’ подобные.

Теорема об отношении площадей

Для решения задач специалисты рекомендуют применять еще теорему об отношении площадей. Обязательным условием ее использования являются ΔABC ∼ ΔA’B’C’ с коэффициентом подобия «k». Ее формулировка имеет такой вид: величина отношения площадей двух подобных треугольников прямо пропорциональна квадрату гомотетии.

Исходя из равенства углов ∠ВАС = ∠B’A’C’ можно записать такое соотношение, в котором тригонометрическая функция не учитывается, поскольку при делении равных коэффициентов получается 1: S / S’ = (AB * AC) / (A’B’ * A’C’). По свойству произведения дробей верно такое преобразование: (AB / A’B’) * (AC / A’C’) = k * k = k 2 . Утверждение доказано полностью.

Некоторые свойства и следствия

Математики также считают, что используя некоторые свойства и следствия из теорем, можно расширить возможности по решению задач. Свойства подобных треугольников можно применять и к другим плоским или объемным фигурам. Следствия классифицируются на несколько типов:

  1. Отношение площадей плоских фигур прямо пропорционально квадрату их k.
  2. Куб коэффициента подобия прямо пропорционален объему большей фигуры и обратно пропорционален объему меньшей: V / V’ = k 3 .
  3. Коэффициент «k» эквивалентен отношению периметров (P), а также биссектрис, медиан, высот и перпендикуляров, которые являются серединными.
  4. В прямоугольном Δ длина высоты, опущенной на гипотенузу, эквивалентна среднему геометрическому двух проекций на соответствующий катет. Если она опущена из прямого ∠, то значит делит фигуру на подобные Δ по I признаку.
  5. Величина катета эквивалентна средней величине в геометрической интерпретации гипотенузы и произведению проекции катета на гипотенузу.

Например, второе свойство можно применить для решения такого упражнения: дан объем большего конуса V = 125 м 3 , а необходимо найти значение V’ для малого, зная коэффициент k, который равен 3. Задача решается очень просто: V’ = [V]^(1/3) = [125]^(1/3) = 5 (м 3 ).

Пример решения

Существуют множество типов задач, однако наиболее часто попадаются такие, в которых необходимо доказать, что фигуры являются подобными. Стороны ΔABC равны таким значениям: 10, 12 и 25. Кроме того, существует еще ΔA’B’C’ со сторонами 5, 6 и 10. Фигуры не имеют точек пересечения. Необходимо доказать их подобие.

Для решения рисунок чертить необязательно, поскольку для доказательства необходимо применение не геометрического метода, а алгебраического. Следует ввести обозначения для ΔABC: AB = 10, BC = 12 и AC = 25. Аналогичную процедуру необходимо сделать для ΔA’B’C’: сторона A’B’ равна числу 5, B’C’ = 6 и A’C’ = 10.

Далее нужно вычислить коэффициент k для каждой из сторон: k1 = AB / A’B’ = 10 / 5 = 2, k2 = BC / B’C’ = 12 / 6 = 2 и k3 = AC / A’C’ = 25 / 10 = 2,5. Из соотношений следует, что фигуры не являются подобными, поскольку не выполняется такое равенство: k = k1 = k2 = k3. Для наглядности можно построить также таблицу со значениями коэффициентов.

Таким образом, для решения задач по нахождению параметров подобных треугольников необходимо знать признаки подобия, а также некоторые свойства, которые рекомендуют использовать специалисты-математики.

источники:

Формулы для нахождения высоты треугольника

http://nauka.club/matematika/geometriya/podobny%D0%B5-treugolniki.html

Подобные треугольники

3 октября 2022

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.

Подобные треугольники — ключевая тема геометрии 8 класса. Они будут преследовать нас до самого конца школы. И сегодня мы разберём всё, что нужно знать о них.

План такой:

  1. Основное определение
  2. Лемма о подобных треугольниках
  3. Свойства подобных треугольников
  4. Разбор задач

1. Основное определение

Определение. Треугольники называются подобными, если их углы соответственно равны, а стороны одного треугольника пропорциональны соответственным сторонам другого.

Рассмотрим треугольники $ABC$ и $MNK$:

Подобные треугольники коэффициент подобия

У них есть равные углы: $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. И пропорциональные стороны:

[frac{AB}{MN}=frac{BC}{NK}= frac{AC}{MK}= frac{color{red}{3}}{color{red}{2}}]

Следовательно, треугольники $ABC$ и $MNK$ подобны. Записывается это так:

[Delta ABCsim Delta MNK]

Число $k={color{red}{3}}/{color{red}{2}};$ называется коэффициентом подобия. К нему мы ещё вернёмся.

Пропорциональные стороны подобных треугольников (например, $AB$ и $MN$, либо $BC$ и $NK$) в некоторых учебниках называют сходственными. На практике этот термин применяется редко. Мы будем говорить просто «соответственные стороны».

Дальше идёт очень важное замечание.

1.1. Обозначение подобных треугольников

В геометрии один и тот же треугольник можно называть по-разному. Например, $Delta ABC$, $Delta BCA$ или $Delta CAB$ — это всё один и тот же треугольник. То же самое касается и углов.

Но в подобных треугольниках есть негласное правило:

При обозначении подобных треугольников порядок букв выбирают так, чтобы равные углы перечислялись в одной и той же последовательности.

Вернёмся к нашим треугольникам $ABC$ и $MNK$:

Подобные треугольники ABC и MNK

Поскольку $anglecolor{red}{A}=anglecolor{red}{M}$ и $anglecolor{blue}{B}=anglecolor{blue}{N}$, можно записать $Deltacolor{red}{A}color{blue}{B}Csim Deltacolor{red}{M}color{blue}{N}K$. Или $Delta Ccolor{red}{A}color{blue}{B}sim Delta Kcolor{red}{M}color{blue}{N}$. Но никак не $Deltacolor{red}{A}color{blue}{B}Csim Delta Kcolor{red}{M}color{blue}{N}$.

Да, это негласное правило. И если вы нарушите последовательность букв, это не ошибка. Никто не снизит вам за это баллы. А если снизит — добро пожаловать на апелляцию.

Правильная запись позволяет быстро и безошибочно выписывать пропорциональные стороны треугольников. Рассмотрим два подобных треугольника:

[Delta ABCsim Delta MNK]

Берём две первые буквы из каждого треугольника: ${AB}/{MN};$. Затем две последние буквы: ${BC}/{NK};$. Наконец, вычёркиваем «центральную» букву: ${AC}/{MK};$.

Приравниваем полученные три дроби:

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]

Вот и всё! Даже рисунок не нужен! Этот приём настолько прост и эффективен, что его в обязательном порядке изучают на моих занятиях, курсах и вебинарах.

В будущем мы увидим, что подобные треугольники чаще всего ищут как раз для составления таких пропорций.

2. Лемма о подобных треугольниках

Подобные треугольники появляются всякий раз, когда прямая, параллельная стороне треугольника, пересекает его стороны.

Теорема 1. Прямая, пересекающая две стороны треугольника и параллельная третьей стороне, отсекает треугольник, подобный исходному.

Доказательство. Рассмотрим треугольник $ABC$. Пусть прямая $MNparallel AB$ отсекает треугольник $MNC$:

Параллельная прямая отсекает подобный треугольник

Докажем, что $Delta ABCsim Delta MNC$. Рассмотрим треугольники $ABC$ и $MNC$. У них есть общий угол $ACB$.

Углы $ABC$ и $MNC$ — соответственными при $MNparallel AB$ и секущей $BC$. Следовательно, они равны: $angle ABC=angle MNC$.

Аналогично равны углы $BAC$ и $NMC$. Следовательно, треугольники $ABC$ и $MNC$ имеют три соответственно равных угла.

Докажем теперь, что соответственные стороны пропорциональны. Т.е. докажем пропорцию

[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]

Рассмотрим угол $ACB$. Параллельные прямые $AB$ и $MN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:

[frac{AC}{MC}=frac{BC}{NC}]

Это равенство — второе в искомом:

[frac{AB}{MN}= color{red}{frac{BC}{NC}=frac{AC}{MC}}]

Осталось доказать первое равенство. Дополнительное построение: прямая $KNparallel AC$:

Параллельные прямые дополнительное построение

Поскольку $AMparallel KN$ (по построению) и $AKparallel MN$ (по условию), четырёхугольник $AKNM$ — параллелограмм. Поэтому $AK=MN$.

Рассмотрим угол $ABC$. Параллельные прямые $AC$ и $KN$ пересекают стороны этого угла. По теореме о пропорциональных отрезках:

[frac{AB}{AK}=frac{BC}{NC}]

Учитывая, что $AK=MN$, получаем

[frac{AB}{MN}=frac{BC}{NC}=frac{AC}{MC}]

Итак, соответственные углы треугольников $ABC$ и $MNC$ равны, а их стороны пропорциональны. Следовательно, по определению подобных треугольников

[Delta ABCsim Delta MNC]

Что и требовалось доказать.

Эта лемма — не признак подобия. Это самостоятельная теорема, которая ускоряет решение многих задач.

Признаки подобия разобраны в отдельном уроке — см. «Признаки подобия треугольников».

Частный случай этой леммы — средняя линия. Она отсекает треугольник со сторонами в два раза меньше, чем у исходного:

Средняя линия отсекает подобный треугольник

Оформляется это так. Поскольку $AM=MC$ и $BN=NC$, то $MN$ — средняя линия треугольника $ABC$. Следовательно, прямые $AB$ и $MN$ параллельны, откуда

[Delta ABCsim Delta MNC]

3. Свойства подобных треугольников

Два важнейших свойства: связь периметров и связь площадей.

3.1. Периметры подобных треугольников

Теорема 2. Отношение периметров подобных треугольников равно коэффициенту подобия.

Доказательство. Рассмотрим подобные треугольники $ABC$ и $MNK$:

Подобные треугольники ABC и MNK

Запишем равенство из определения подобия. Поскольку $Delta ABCsimDelta MNK$, стороны этих треугольников пропорциональны:

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]

Здесь число $color{red}{k}$ — коэффициент подобия. Полученное тройное равенство можно переписать так:

[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}; frac{AC}{MK}=color{red}{k}]

Или, что то же самое:

[begin{align}AB&=color{red}{k}cdot MN \ BC &=color{red}{k}cdot NK \ AC &=color{red}{k}cdot MK \ end{align}]

Периметр треугольника $MNK$:

[{{P}_{Delta MNK}}=MN+NK+MK]

Периметр треугольника $ABC$:

[begin{align}{{P}_{Delta ABC}} &=AB+BC+CD= \ &=color{red}{k}cdot MN+color{red}{k}cdot NK+color{red}{k}cdot MK= \ &=color{red}{k}cdot left( MN+NK+MK right)= \ &=color{red}{k}cdot {{P}_{Delta MNK}} end{align}]

Итого получаем равенство

[{{P}_{Delta ABC}}=color{red}{k}cdot {{P}_{Delta MNK}}]

Обычно именно в таком виде это равенство и применяют. Но можно записать его и как отношение:

[frac{{{P}_{Delta ABC}}}{{{P}_{Delta MNK}}}=color{red}{k}]

В любом случае, мы получили отношение, которое и требовалось доказать.

3.2. Площади подобных треугольников

Теорема 3. Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Доказательство. Первые шаги очень похожи на доказательство предыдущей теоремы. Вновь рассмотрим подобные треугольники $ABC$ и $MNK$:

Подобные треугольники ABC и MNK

Поскольку $Delta ABCsimDelta MNK$, углы $ABC$ и $MNK$ равны. Следовательно, равны синусы этих углов:

[begin{align}angle ABC &=angle MNK=color{blue}{alpha} \ sin angle ABC &=sin angle MNK=sin color{blue}{alpha} end{align}]

Кроме того, стороны подобных треугольников пропорциональны:

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}=color{red}{k}]

В частности, из этого равенства следует, что

[frac{AB}{MN}=color{red}{k}; frac{BC}{NK}=color{red}{k}]

Или, что то же самое:

[begin{align}AB &= color{red}{k}cdot MN \ BC &= color{red}{k}cdot NK \ end{align}]

Площадь треугольника $MNK$:

[{{S}_{Delta MNK}}=frac{1}{2}cdot MNcdot NKcdot sin color{blue}{alpha} ]

Площадь треугольника $ABC$:

[begin{align}{{S}_{Delta ABC}} &=frac{1}{2}cdot ABcdot BCcdot sincolor{blue}{alpha} = \ &=frac{1}{2}cdotcolor{red}{k}cdot MNcdotcolor{red}{k}cdot NKcdot sincolor{blue}{alpha} = \ &={color{red}{k}^{2}}cdot frac{1}{2}cdot MNcdot NKcdot sin alpha = \ &={color{red}{k}^{2}}cdot {{S}_{Delta MNK}} end{align}]

Получаем равенство

[{{S}_{Delta ABC}}={color{red}{k}^{2}}cdot {{S}_{Delta MNK}}]

Перепишем в виде отношения:

[frac{{{S}_{Delta ABC}}}{{{S}_{Delta MNK}}}={color{red}{k}^{2}}]

Что и требовалось доказать.

Для доказательства теоремы мы использовали формулу площади треугольника:

[{{S}_{Delta }}=frac{1}{2}absin alpha ]

Тригонометрию проходят после подобия, поэтому мы опираемся на ещё не изученный материал.

Впрочем, ничто не мешает взять уже известную формулу:

[{{S}_{Delta }}=frac{1}{2}ah]

Здесь $a$ — сторона треугольника, $h$ — высота, проведённая к этой стороне. Дело в том, что высоты в подобных треугольниках тоже пропорциональны. И не только высоты. Назовём это Свойством 3.3.:)

3.3. Элементы подобных треугольников

Теорема 4. Отношение высот, биссектрис и медиан, проведённых к соответствующим сторонам подобных треугольников, равно коэффициенту подобия.

Проиллюстрируем это на высотах. Пусть треугольники $ABC$ и $MNK$ подобны:

Подобные треугольники и высоты

В этом случае высоты $CDbot AB$ и $KLbot MN$ относятся как

[frac{CD}{KL}=frac{AB}{MN}= color{red}{k}]

Для доказательства этой теоремы нужно знать признаки подобия. Поэтому оставим его до следующего урока. А сейчас переходим к задачам.

4. Задачи на подобие

Здесь разобрано пять задач на подобие треугольников. Все они довольно простые. За сложными задачами добро пожаловать в задачник.:)

Задача 1. Готовые треугольники

Известно, что треугольники $ABC$ и $MNK$ подобны, причём $angle A=angle M$, $angle B=angle N$, $angle C=angle K$. Кроме того, стороны $AB=6$, $BC=7$, $AC=10$ и $MN=9$. Найдите стороны $NK$ и $MK$.

Решение. Построим треугольники $ABC$ и $MNK$, отметим известные стороны:

Подобные треугольники — задание 1

Из условия $Delta ABCsim Delta MNK$ следует, что верно равенство

[frac{AB}{MN}=frac{BC}{NK}=frac{AC}{MK}]

Подставим в это равенство всё, что нам известно:

[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}=frac{color{red}{10}}{MK}]

Опустим последнюю дробь и получим пропорцию

[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{7}}{NK}]

Найдём сторону $NK$:

[NK=frac{color{red}{9}cdot color{red}{7}}{color{red}{6}}=10,5]

Аналогично, убирая среднюю дробь, получим пропорцию

[frac{color{red}{6}}{color{red}{9}}=frac{color{red}{10}}{MK}]

Найдём сторону $MK$:

[NK=frac{color{red}{9}cdot color{red}{10}}{color{red}{6}}=15]

Ответ: $NK=10,5$, $MK=15$.

Задача 2. Прямая, параллельная стороне

Прямая, параллельная стороне $AC$ треугольника $ABC$, пересекает сторону $AB$ в точке $D$, а сторону $BC$ — в точке $E$. Найдите:

а) Отрезок $BD$, если $AB=16$, $AC=20$, $DE=15$.

б) Отрезок $AD$, если $AB=28$, $BC=63$, $BE=27$.

Решение. Для начала построим рисунок. Он будет общий для обоих пунктов.

Из условия следует, что прямая $DE$ пересекает стороны треугольника $ABC$:

Прямая параллельна стороне треугольника

Поскольку $DEparallel AC$, по лемме о подобных треугольниках прямая $DE$ отсекает от треугольника $ABC$ новый треугольник, подобный исходному:

[Delta ABCsim Delta DBE]

Из подобия треугольников $ABC$ и $DBE$ следует равенство

[frac{AB}{DB}=frac{BC}{BE}=frac{AC}{DE}]

Решаем пункт а). Подставляем в это равенство всё, что нам известно:

[frac{color{red}{16}}{DB}=frac{BC}{BE}=frac{color{red}{20}}{color{red}{15}}]

Вычёркиваем среднюю дробь и получаем пропорцию

[frac{color{red}{16}}{DB}=frac{color{red}{20}}{color{red}{15}}]

Отсюда легко найти $DB$ (или, что то же самое, $BD$):

[DB=frac{color{red}{16}cdotcolor{red}{15}}{color{red}{20}}=12]

Аналогично решаем пункт б). Подставляем в исходное равенство известные величины:

[frac{color{red}{28}}{DB}=frac{color{red}{63}}{color{red}{27}}=frac{AC}{DE}]

Первые две дроби образуют пропорцию, из которой вновь легко найти $DB$:

[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=12]

Осталось найти $AD$:

[begin{align}AD &=AB-BD= \ &=color{red}{28}-color{red}{12}=16 end{align}]

Ответ: а) $BD=12$; б) $AD=16$.

Важное замечание по работе с пропорциями. Ни в коем случае не нужно перемножать числа в числителе.

Напротив: нужно разложить их на множители и сократить!

Взгляните:

[DB=frac{color{red}{28}cdotcolor{red}{27}}{color{red}{63}}=frac{4cdotcolor{blue}{7}cdot 3cdotcolor{green}{9}}{color{blue}{7}cdotcolor{green}{9}}=12]

Так вы сэкономите время, избежите умножения столбиком и защитите себя от множества ошибок. Никогда не умножайте большие числа, если дальше их нужно будет сокращать.

Задача 3. Доказательство подобия

Точки $M$ и $K$ — середины сторон $CD$ и $AD$ квадрата $ABCD$ соответственно. Докажите, что треугольники $MDK$ и $BCD$ подобны.

Решение. Сделаем первоначальный рисунок по условию задачи:

Квадрат содержит два подобных треугольника

Здесь нет прямых, параллельных сторонам треугольника, поэтому лемма о подобных треугольниках не поможет. Докажем подобие по определению.

Сначала разберёмся с углами. Поскольку $ABCD$ — квадрат, и $KD=MD$ — половина стороны квадрата, треугольники $MDK$ и $BCD$ — прямоугольные и равнобедренные.

Все острые углы треугольников $MDK$ и $BCD$ равны 45°. Можем записать это так:

[begin{align}angle BCD &=angle MDK={90}^circ \ angle CBD &=angle DMK={45}^circ \ angle CDB &=angle DKM={45}^circ \ end{align}]

Дополнительное построение: диагональ квадрата $color{red}{AC}$:

Квадрат — дополнительное построение диагонали

Рассмотрим треугольник $ACD$. Отрезок $KM$ — средняя линия, поэтому $KM={color{red}{AC}}/{2};$. С другой стороны, $AC=BD$ как диагонали квадрата. Поэтому верно равенство

[frac{KM}{BD}=frac{KM}{color{red}{AC}}=frac{1}{2}]

Но тогда выполняется следующее равенство:

[frac{MD}{BC}=frac{DK}{CD}=frac{MK}{BD}=frac{1}{2}]

А это вместе с равенством углов как раз и означает, что треугольники $MDK$ и $BCD$ подобны:

[Delta MDKsim Delta BCD]

Доказательство завершено.

Мы доказали подобие треугольников по определению. Если пользоваться признаками подобия, всё будет намного быстрее. Но пока мы не вправе пользоваться этими признаками.

Задача 4. Вписанный ромб

В треугольник $ABC$ вписан ромб $BDEK$ так, как показано на рисунке. Найдите сторону ромба, если $AB=10$, $BC=15$.

Решение. Пусть искомая сторона ромба равна $color{red}{x}$. Из условия задачи получим такой рисунок:

Ромб вписан в треугольник

Зная, что $AB=10$ и $BC=15$, выразим $AK$ и $CD$:

[begin{align}AK &=10-color{red}{x} \ CD &=15-color{red}{x} \ end{align}]

Далее рассмотрим треугольник $ABC$. Поскольку $BDEK$ — ромб, то $KEparallel BC$. По лемме о подобных треугольниках имеем:

[Delta ABCsim Delta AKE]

В подобных треугольниках подобные стороны пропорциональны, поэтому

[frac{AB}{AK}=frac{BC}{KE}=frac{AC}{AE}]

Подставим в это равенство всё, что нам известно или выражено через $color{red}{x}$:

[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}=frac{AC}{AE}]

Последняя дробь оказалась бесполезной. Вычеркнем её и получим пропорцию:

[frac{10}{10-color{red}{x}}=frac{15}{color{red}{x}}]

Применяем основное свойство пропорции и уравнение:

[begin{align}10cdotcolor{red}{x} &=15cdot left( 10- color{red}{x} right) \ 2cdotcolor{red}{x} &=3cdot left( 10- color{red}{x} right) \ &cdots\ color{red}{x} &=6 end{align}]

Это и есть искомая сторона ромба. Она равна $color{red}{x}=6$.

Ответ: $BD=6$.

Задача 5. Свойства биссектрисы

В треугольнике $ABC$ стороны $AB=8$, $BC=12$, угол $ABC={120}^circ $. Отрезок $BD$ — биссектриса. Найдите длину $BD$.

Решение. Из условия задачи можно сделать вот такой рисунок:

Биссектриса в треугольнике

Поскольку $BD$ — биссектриса угла в треугольнике, точка $D$ делит сторону $AC$ на отрезки, пропорциональные сторонам $AB$ и $BC$. Это можно записать так:

[frac{AD}{CD}=frac{AB}{CB}=frac{color{red}{8}}{color{red}{12}}=frac{color{red}{2}}{color{red}{3}}]

Обозначим пропорциональные отрезки переменными. Пусть $AD=color{blue}{2x}$, $CD=color{blue}{3x}$.

Дополнительное построение: прямая $DMparallel AB$:

Дополнительное построение параллельная прямая

Рассмотрим угол $ACB$. Поскольку $DMparallel AB$, по теореме о пропорциональных отрезках получаем, что

[frac{BM}{CM}=frac{AD}{CD}=frac{color{red}{2}}{color{red}{3}}]

Вновь обозначим пропорциональные отрезки переменными. Пусть $BM=color{blue}{2y}$, $CM=color{blue}{3y}$. Но тогда

[BC=BM+MC=color{blue}{5y}=color{red}{12}]

Получаем, что $color{blue}{y}=color{red}{2,4}$. Отсюда легко найти длину $BM$:

[BM=color{blue}{2y}=2cdotcolor{red}{2,4}= color{red}{4,8}]

Далее заметим, что если угол $ABC$ равен 120°, то

[angle ABD=angle CBD={60}^circ ]

С другой стороны, прямые $AB$ и $MD$ параллельны по построению. Прямая $BD$ — секущая для этих параллельных прямых.

Следовательно, углы $ABD$ и $BDM$ — внутренние накрест лежащие, поэтому

[angle BDM=angle ABD={60}^circ ]

Рассмотрим треугольник $BDM$. В нём есть два угла по 60°. Следовательно, это равносторонний треугольник:

[BD=BM=color{red}{4,8}]

Мы нашли длину отрезка $BD$. Задача решена.

Ответ: $BD=4,8$.

Итак, с определением разобрались. В следующем уроке разберём признаки подобия.:)

Смотрите также:

  1. Как применяется теорема косинусов и подобие треугольников для решения широкого класса задач в планиметрии.
  2. Теорема менелая
  3. Комбинаторика в задаче B6: легкий тест
  4. Введение системы координат
  5. Четырехугольная пирамида: как найти координаты вершин
  6. Нестандартная задача B5 на площадь круга

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

  • Нахождение высоты треугольника

    • Высота в разностороннем треугольнике

    • Высота в равнобедренном треугольнике

    • Высота в прямоугольном треугольнике

    • Высота в равностороннем треугольнике

  • Примеры задач

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Высота в разностороннем треугольнике ABC

1. Через площадь и длину стороны

Формула для нахождения высоты треугольника через его площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

Формула для нахождения высоты треугольника через длины его сторон

где p – это полупериметр треугольника, который рассчитывается так:

Формула для расчета полупериметра треугольника

3. Через длину прилежащей стороны и синус угла

Формула для нахождения высоты треугольника через длину стороны и синуса угла

4. Через стороны и радиус описанной окружности

Формула для нахождения высоты треугольника через длины сторон и радиус описанной окружности

Описанная вокруг разностороннего треугольника окружность

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Формула для нахождения высоты к основанию в равнобедренном треугольнике

Опущенная на основание равнобедренного треугольника высота

Высота в прямоугольном треугольнике

Проведенная к гипотенузе высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

2. Через стороны треугольника

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через длины его сторон

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Формула для нахождения высоты в равностороннем треугольнике

Высота в равностороннем треугольнике

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Нахождение высоты треугольника через длину стороны и синус прилежащего угла (пример)

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Нахождение основания равнобедренного треугольника через высоту и боковую сторону (пример)

Свойства высот треугольника. Ортоцентр

Анна Малкова

Схема 1. В треугольнике АВС проведены высоты АМ и СК.
Н – точка пересечения высот треугольника (ортоцентр), Н=АМ∩СК

Запомните этот рисунок. Перед вами – схема, из которой можно получить сразу несколько полезных фактов.

1. Треугольники МВК и △АВС, подобны, причем коэффициент подобия
k=cosB, если , и , если 

  1. Четырехугольник АКМС можно вписать в окружность. Эта вспомогательная окружность поможет решить множество задач.
  2. Четырехугольник ВКМН также можно вписать в окружность.
  3. Радиусы окружностей, описанных вокруг треугольников АВС, АНС, ВНС и АВН, равны.
  4. BH=2Rleft | cosB right |,где R – радиус описанной окружности triangle ABC.

Докажем эти факты по порядку.

1) Заметим, что на рисунке есть подобные треугольники. Это АВМ и СВК, прямоугольные треугольники с общим углом В, и они подобны по двум углам

triangle ABM sim triangle CBKRightarrow frac{BM}{BK}=frac{AB}{BC}Rightarrow frac{BM}{AB}=frac{BK}{BC}.

Мы получили, что в треугольниках МВК и АВС стороны, прилежащие к углу В, пропорциональны. Получаем, что triangle MBK sim triangle ABC по углу и двум сторонам.

2) Докажем, что вокруг четырехугольника АКМС можно описать окружность. Для этого необходимо и достаточно, чтобы суммы противоположных углов четырехугольника АКМС были равны 180 ^{circ}.

Пусть ∠ACB=∠BKM=γ (поскольку треугольники МВК и АВС подобны), тогда
angle ACB= angle BKM=gamma – как смежный с углом ВКМ. Получили, что angle AKM = 180 ^{circ} - angle BKM=180 ^{circ} - gamma , и это значит, что четырехугольник AKMC можно вписать в окружность.

3) Рассмотрим четырехугольник KBMH. Его противоположные углы ВКН и ВМН — прямые, их сумма равна 180 ^{circ}, и значит, четырехугольник КВМН можно вписать в окружность.

4) По теореме синусов, радиус окружности, описанной вокруг треугольника АВС,
R_{triangle ABC}=frac{AC}{2sin angle ABC}.
Радиус окружности, описанной вокруг треугольника АНС, R_{triangle AHC}=frac{AC}{2sin angle AHC}.
Мы помним, что sinleft ( 180 ^{circ}-alpha right )=sinalpha. Значит, синусы углов АВС и АНС равны, и радиусы окружностей, описанных вокруг треугольников АВС и АНС равны.

5) Докажем, что BH=2Rleft | cosB right |,где R – радиус описанной окружности triangle ABC. Поскольку четырехугольник КВМН можно вписать в окружность и углы ВКН и ВМН – прямые, отрезок ВН является диаметром этой окружности. Треугольник МВК также вписан в эту окружность, и по теореме синусов, BH=frac{MK}{sin angle ABC}..

Диаметр окружности, описанной вокруг треугольника АВС, равен frac{AC}{sin angle ABC}. Поскольку треугольники МВК и АВС подобны, отношение диаметров описанных вокруг них окружностей равно left | cosB right |. Получили, что BH=2Rleft | cosB right |.

Задача ЕГЭ по теме «Высоты треугольника» (Профильный уровень, №16)

2. В остроугольном треугольнике KMN проведены высоты KB и NA.

а) Докажите, что угол ABK равен углу ANK.

б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что KN=8sqrt{2} и angle KMN=45{^circ }

а) Докажем, что angle ABK=angle ANK.
triangle MBK sim triangle MAN(по двум углам). Запишем отношение сходственных сторон: frac{MA}{MB}=frac{MN}{MK}.
Но это значит, что triangle ABMsim triangle NKM (по углу и двум сторонам), причем k=frac{MA}{MN}=cosangle KMN.

angle MAB=angle MNK,angle BAK- — смежный с углом angle MAB,
angle BAK = 180 ^{circ} - angle MAB = 180 ^{circ} - angle BNK,
angle BAK+angle BNK = 180 ^{circ},,четырехугольник ABNK можно вписать в окружность.
angle ABK=angle ANK (опираются на одну дугу).

б) Найдем R_{triangle ABM}, если KN=8sqrt{2} и angle KMN=45 ^{circ}
triangle ABM sim triangle NKM, k=cos angle KMN=frac{sqrt{2}}{2};
frac{AB}{KN}=k,: : : AB=frac{sqrt{2}}{2}cdot KN=frac{sqrt{2}}{2}cdot 8sqrt{2}=8.
По теореме синусов,

R_{triangle ABM}=frac{AB}{2sin angle AMB}=frac{8cdot 2}{2cdot sqrt{2}}=4sqrt{2}.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Свойства высот треугольника. Ортоцентр» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

§ 1. Подобие треугольников. Отношение площадей подобных треугольников. Свойства медиан, биссектрис и высот

Две фигуры $$ F$$ и $$ {F}^{text{‘}}$$  называются подобными, если они переводятся друг в друга преобразованием подобия, т. е. таким преобразованием, при котором расстояния между двумя точками изменяются (увеличиваются или уменьшаются) в одно и то же число раз. Если фигуры $$ F$$ и $$ {F}^{text{‘}}$$  подобны, то пишется $$ Fsim {F}^{text{‘}}$$Напомним, что в записи подобия треугольников $$ ∆ABC~∆{A}_{1}{B}_{1}{C}_{1}$$ предполагается, что вершины, совмещаемые преобразованием  подобия, стоят на соответствующих местах, т. е. $$ A$$ переходит в $$ {A}_{1}$$, $$ B$$ — в $$ {B}_{1}$$, $$ C$$ — в $$ {C}_{1}$$. Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, если $$ ∆ABC~∆{A}_{1}{B}_{1}{C}_{1}$$

$$ angle A=angle {A}_{1}, angle B=angle {B}_{1}, angle C=angle {C}_{1}, {displaystyle frac{AB}{{A}_{1}{B}_{1}}}={displaystyle frac{BC}{{B}_{1}{C}_{1}}}={displaystyle frac{AC}{{A}_{1}{C}_{1}}}$$.

Два треугольника подобны:

  • 1) если два угла одного соответственно равны двум углам другого;
  • 2) если две стороны одного пропорциональны двум сторонам другого и углы, образованные этими сторонами, равны;
  • 3) если три стороны одного треугольника пропорциональны трём сторонам другого.

Из признаков подобия следует утверждения, которые удобно использовать в решении задач: 

1°. Прямая, параллельная одной из сторон треугольника и пересекающая две другие в различных точках, отсекает треугольник, подобный данному.

Рис. 5

2°. Прямая, параллельная одной из сторон треугольника и пересекающая две другие стороны, отсекает на них отрезки, пропорциональные данным сторонам,   т. е. если  $$ MNleft|right|AC$$ (рис. 5), то

$$ {displaystyle frac{m}{n}}={displaystyle frac{p}{q}}=frac{m+p}{n+q}$$

3°. Если  прямая пересекает две стороны треугольника и отсекает на них пропорциональные отрезки, то она параллельна третьей стороне, т. е. если (см. рис. 5)

$$ {displaystyle frac{m}{n}}={displaystyle frac{m+p}{n+q}}$$ или $$ {displaystyle frac{m}{n}}={displaystyle frac{p}{q}}$$,

то $$ MN$$ параллельна $$ AC$$ (доказательство было дано в задании для  9 класса).

Прямая, проходящая через точку пересечения диагоналей трапеции параллельно её основаниям, пересекает боковые стороны трапеции в точках $$ M$$ и $$ N$$. Найти длину отрезка `MN`, если  основания  трапеции равны $$ a$$ и $$ b$$.

Пусть $$ O$$ точка пересечения диагоналей трапеции (рис. 6). Обозначим:

$$ AD=a, BC=b, MO=x, BO=p, OD=q.$$

$$1.;left.begin{array}{l}BCparallel AD\bigtriangleup BOCsimbigtriangleup DOA;(mathrm{по};mathrm{двум};mathrm{углам})end{array}right|Rightarrowdfrac ba=dfrac pq$$                                        (1)

$$2.;left.begin{array}{l}MOparallel AD\bigtriangleup MBOsimbigtriangleup ABDend{array}right|Rightarrowdfrac xa=dfrac p{p+q}$$.                                         (2)

Из (1) и (2) следует $$ x=a{displaystyle frac{p}{p+q}}=q{displaystyle frac{p/q}{p/q+1}}={displaystyle frac{ab}{a+b}}$$, т. е. $$ MO={displaystyle frac{ab}{a+b}}.$$

Аналогично устанавливаем, что $$ NO={displaystyle frac{ab}{a+b}}$$, поэтому $$ overline{)MN={displaystyle frac{2ab}{a+b}}}$$.

Результат этой задачи, как утверждение, верное для любой трапеции, следует запомнить. 

Рис. 6

Из определения подобия фигур следует, что в подобных фигурах все соответствующие линейные  элементы пропорциональны. Так, отношение периметров подобных треугольников равно отношению длин соответствующих сторон. Или, например, в подобных треугольниках отношение радиусов вписанных окружностей (также и описанных окружностей) равно отношению длин соответствующих сторон. Это замечание поможет нам решить следующую задачу.

Рис. 7

В прямоугольном треугольнике  $$ ABC$$ из вершины $$ C$$ прямого угла проведена высота $$ CD$$ (рис. 7). Радиусы  окружностей, вписанных в треугольники $$ ACD$$ и $$ BCD$$ равны соответственно $$ {r}_{1}$$ и $$ {r}_{2}$$. Найти радиус окружности, вписанной в треугольник $$ ABC$$.

 Обозначим искомый радиус $$ r$$, положим $$ AB=c$$, $$ AC=b$$, $$ BC=a$$. Из подобия прямоугольных треугольников $$ ACD$$ и $$ ABC$$ (у   них   равные углы при вершине $$ A$$) имеем $$ {displaystyle frac{r}{{r}_{1}}}={displaystyle frac{c}{b}}$$, откуда $$ b={displaystyle frac{{r}_{1}}{r}}c$$. Прямоугольные треугольники  $$ BCD$$ и  $$ BAC$$ также  подобны,  поэтому $$ {displaystyle frac{r}{{r}_{2}}}={displaystyle frac{c}{a}}$$, — откуда $$ a={displaystyle frac{{r}_{2}}{r}}c$$. Так как $$ {a}^{2}+{b}^{2}={c}^{2}$$ то, возводя в квадрат выражения для  $$ a$$ и $$ b$$ и складывая их, получим $$ {left(frac{{r}_{1}}{r}right)}^{2}{c}^{2}+{left(frac{{r}_{2}}{r}right)}^{2}{c}^{2}={c}^{2}$$ или $$ {displaystyle frac{{r}_{1}^{2}+{r}_{2}^{2}}{{r}^{2}}}=1$$.  Находим  $$ r=sqrt{{{r}_{1}}^{2}+{{r}_{2}}^{2}}$$. 

Напомним, что площади подобных фигур относятся как квадраты соответствующих линейных элементов. Для треугольников это утверждение можно сформулировать так: площади подобных треугольников относятся как квадраты соответствующих сторон. Рассмотрим характерную задачу на эту тему.

Рис. 8

Через точку $$ M$$, лежащую внутри треугольника $$ ABC$$, проведены три прямые, параллельные его сторонам. При этом образовались три треугольника (рис. 8), площади которых равны $$ {S}_{1}$$, $$ {S}_{2}$$  и $$ {S}_{3}$$. Найти  площадь треугольника $$ ABC$$.

Легко видеть, что треугольники $$ EKM$$, $$ MQF$$ и $$ PMN$$ подобны треугольнику $$ ABC$$.

Пусть $$ S$$ -площадь треугольника $$ ABC$$, тогда

$$ {displaystyle frac{{S}_{1}}{S}}={left({displaystyle frac{EM}{AC}}right)}^{2}; {displaystyle frac{{S}_{2}}{S}}={left({displaystyle frac{MF}{AC}}right)}^{2}; {displaystyle frac{{S}_{3}}{S}}={left({displaystyle frac{PN}{AC}}right)}^{2}.$$

Откуда находим

$$ EM=sqrt{{displaystyle frac{{S}_{1}}{S}}}AC, MF=sqrt{{displaystyle frac{{S}_{2}}{S}}}AC, PN=sqrt{{displaystyle frac{{S}_{3}}{S}}}AC.$$

А так как $$ EM=AP, MF=NC$$, то $$ EM+PN+MF=AP+PN+NC=AC$$.

Таким образом, $$ AC=AC·left(sqrt{{displaystyle frac{{S}_{1}}{S}}}+sqrt{{displaystyle frac{{S}_{2}}{S}}}+sqrt{{displaystyle frac{{S}_{3}}{S}}}right)$$, откуда следует

$$ S={left(sqrt{{S}_{1}}+sqrt{{S}_{2}}+sqrt{{S}_{3}}right)}^{2}$$.

Свойства медиан, высот, биссектрис треугольника

В наших заданиях 9-го и 10-го классов здесь повторяемые теоремы и утверждения были доказаны. Для некоторых из них  мы напоминаем пути доказательств, доказывая их моменты и давая поясняющие рисунки.

Рис. 9

Теорема 1. Три медианы треугольника пересекаются в одной точке  и  точкой пересечения каждая медиана делится в отношении `2 : 1`, считая от вершины.

Теорема 2. Три медианы, пересекаясь, разбивают треугольник на `6` треугольников с общей вершиной, площади которых равны между собой.

(На рис. 9 площадь каждого из `6` треугольников с вершиной `M` и основанием, равным половине стороны, равна $$ {displaystyle frac{1}{2}}{S}_{ABC}$$. Точка пересечения медиан называется центром тяжести треугольника. 

Теорема 3. Пусть $$ BD$$ — медиана треугольника 

$$ ABC (BC=a, AC=b, AB=c, BD={m}_{a})$$, тогда

$$ {m}_{c}^{2}={displaystyle frac{{a}^{2}+{b}^{2}}{2}}-{displaystyle frac{{c}^{2}}{4}}$$. (Доказательство приведено далее в §4 Задания).

Рис. 10

Медианы $$ A{A}_{1}$$ треугольника $$ ABC$$ пересекаются в точке $$ O$$, $$ A{A}_{1}=12$$ и $$ C{C}_{1}=6$$ и одна из сторон треугольника равна `12`. (рис. 10). Найти площадь треугольника  $$ ABC$$.

1. По теореме 1 имеем  $$ AO={displaystyle frac{2}{3}}A{A}_{1}=8$$, $$ CO={displaystyle frac{2}{3}}C{C}_{1}=4$$. 

Расставим на рисунке 10 длины отрезков медиан. По условию, одна из сторон треугольника равна `12`, сторона $$ AC$$ не может равняться `12`, иначе $$ AC=AO+OC$$ — нарушено неравенство треугольника. Также не может равняться `12` сторона $$ AB$$, так в этом случае $$ A{C}_{1}=6$$ и треугольник $$ AO{C}_{1}$$  со сторонами `8`, `2`, `6` не существует. Значит,  $$ BC=12$$ и $$ A{C}_{1}=6$$.

2. Площадь треугольника находим по формуле Герона:

$$ p=7, {S}_{{A}_{1}OC}=sqrt{7·1·3·3}=3sqrt{7}$$.

По теореме 2 площадь треугольника  $$ ABC$$ в `6` раз больше, находим $$ {S}_{ABC}=18sqrt{7}$$.

Теорема 4. Три высоты треугольника или три прямые, на которых лежат высоты, пересекаются в одной точке. (Эта точка называется ортоцентром треугольника). В остроугольном треугольнике точка пересечения высот лежит внутри треугольника.

Были доказаны также две леммы о высотах

1-ая лемма.

Если $$ A{A}_{1}$$ и $$ B{B}_{1}$$ — высоты треугольника $$ ABC$$, то треугольник $$ {A}_{1}{B}_{1}C$$ подобен треугольнику $$ ABC$$ с коэффициентом подобия $$ k={displaystyle frac{{A}_{1}{B}_{1}}{AB}}=left|mathrm{cos}Cright|$$. Можно это утверждение сформулировать так: Если соединить основания двух высот $$ A{A}_{1}$$ и $$ B{B}_{1}$$ треугольника $$ ABC$$, то образуется треугольник, подобный данному: $$ ∆{A}_{1}{B}_{1}C~∆ABC$$. 

Из прямоугольных треугольников $$ AC{A}_{1}$$ следует $$ {A}_{1}C=AC·mathrm{cos}C$$ или $$ {A}_{1}C=AC·mathrm{cos}(180°-C)=ACleft|mathrm{cos}Cright|$$ (рис. 11а, б), а из прямоугольных треугольников $$ BC{B}_{1}$$ следует $$ {B}_{1}C=BC·mathrm{cos}C$$ или $$ {B}_{1}C=BC·mathrm{cos}(180°-C)=BCleft|mathrm{cos}Cright|$$. Далее рассуждения очевидны.

2-ая лемма.

Если высоты $$ A{A}_{1}$$ и $$ B{B}_{1}$$ (или их продолжения) пересекаются в точке $$ H$$, то справедливо равенство $$ AH·H{A}_{1}=BH·H{B}_{1}$$ (рис. 12а, б).

Рис. 13

Высоты $$ A{A}_{1}$$ и $$ B{B}_{1}$$ пересекаются в точке $$ H$$ (рис. 13), при этом $$ AH=3H{A}_{1}$$ и $$ BH=H{B}_{1}$$. Найти косинус угла $$ ACB$$ и площадь треугольника $$ ABC$$, если $$ AC=a$$.  

Обозначим $$ H{A}_{1}=x, H{B}_{1}=y$$, 

1. Точка $$ H$$ — середина высоты (рис. 13). Если отрезок $$ MH$$ проходит через точку $$ H$$ и параллелен  основаниям,  то `MN` — средняя линия; `MN=a/2`.

2. $$left.triangle HA_1Nsimtriangle AA_1Cright|Rightarrowdfrac{HN}{AC}=dfrac x{4x},;HN=dfrac14a.$$ Значит, $$ MH=HN={displaystyle frac{a}{4}}$$ и $$ A{B}_{1}={B}_{1}C={displaystyle frac{a}{2}}$$ Треугольник  $$ ABC$$  равнобедренный, $$ AB=BC$$.

3. $$ angle {B}_{1}BC=90°-angle C$$, поэтому `ul(/_BHA_1=/_AHB_1=/_C)`, а по второй лемме о высотах  $$ AH·H{A}_{1}=BH·H{B}_{1}$$ т. е.  $$ 3{x}^{2}={y}^{2}, y=xsqrt{3}$$.

Далее, $$ mathrm{cos}C=mathrm{cos}(angle AH{B}_{1})={displaystyle frac{y}{3x}}$$, находим $$ mathrm{cos}C={displaystyle frac{1}{sqrt{3}}}$$.

4. $$ △AH{B}_{1}: A{B}_{1}^{2}=(3x{)}^{2}-{y}^{2}$$, $$ {displaystyle frac{{a}^{2}}{4}}=6{x}^{2}$$, $$ x={displaystyle frac{a}{2sqrt{6}}}$$, $$ y={displaystyle frac{a}{2sqrt{2}}}$$, тогда

$$ {S}_{ABC}={displaystyle frac{1}{2}}AC·B{B}_{1}=ay={displaystyle frac{{a}^{2}sqrt{2}}{4}}$$.

Теорема 5. Биссектриса угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим  сторонам, т. е.  если $$ AD$$ — биссектриса треугольника  $$ ABC$$ (рис. 14), то

$$ {displaystyle frac{BD}{DC}}={displaystyle frac{AB}{AC}} left({displaystyle frac{x}{y}}={displaystyle frac{c}{b}}right)$$

Доказательство легко выполните сами, применяя теорему синусов к треугольникам $$ ADB$$ и $$ ADC$$.

Теорема 6. Пусть $$ AD$$ — биссектриса треугольника $$ ABC$$ (рис. 14), тогда $$ AD=sqrt{AB·AC-DB·DC}$$ (в обозначениях рисунка 14а) 

`ul(AD=sqrt(bc-xy))`.

Эту теорему докажем. Опишем около треугольника $$ ABC$$ окружность, точку пересечения прямой $$ AD$$ и окружности обозначим $$ K$$ (рис. 14а).

Обозначим  $$ AD=z, DK=m.△ABDsim ∆AKC$$ $$ (angle ABD=angle AKC$$ и $$ angle 1=angle 2)$$. Из подобия следует $$ {displaystyle frac{AB}{AK}}={displaystyle frac{AD}{AC}}$$, т. е. $$ {displaystyle frac{c}{z+m}}={displaystyle frac{z}{b}}$$, откуда $$ {z}^{2}+zm=bc$$, $$ {z}^{2}=bc-zm$$.

По свойству пересекающихся хорд: $$ AD·DK=BD·CD$$, т. е. $$ z·m=x·y$$, тогда $$ {z}^{2}=bc-xy$$, $$ z=sqrt{bc-xy}$$.  

В треугольнике $$ ABC$$ со сторонами $$ AB=5$$, $$ AC=3$$ биссектриса $$ AD={displaystyle frac{15}{8}}$$. Найти сторону $$ BC$$ и радиус вписанной окружности.

По теореме 5 (см. рис. 14) имеем $$ {displaystyle frac{x}{y}}={displaystyle frac{5}{3}}$$ Обозначим $$ x=5z$$, тогда  $$ y=3z$$. По теореме 6 выполнено равенство $$ {left({displaystyle frac{15}{8}}right)}^{2}=5·3-5z·3z.$$ Легко находим $$ z={displaystyle frac{7}{8}}$$ значит `ul(BC=7)`. Радиус вписанной окружности найдём по формуле $$ S=pr$$ (`S` — площадь треугольника,  `p` -полупериметр). Имеем $$ p={displaystyle frac{15}{2}}$$, по формуле Герона $$ S=sqrt{{displaystyle frac{15}{2}}·{displaystyle frac{1}{2}}·{displaystyle frac{10}{2}}·{displaystyle frac{9}{2}}}={displaystyle frac{15sqrt{3}}{2}},$$ поэтому $$ r={displaystyle frac{S}{p}}={displaystyle frac{sqrt{3}}{2}}.$$  

Понравилась статья? Поделить с друзьями:
  • Как составить схему замещения трансформатора
  • Manifestloaderror network error как исправить
  • Как составить тезисный план произведения
  • Как составить хвостик разделительного вопроса
  • Как исправить картофельное пюре после блендера