Как найти высоту в прямоугольном треугольнике проведенную


В прямоугольном треугольнике катеты, являются высотами. Ортоцентр — точка пересечения высот, совпадает с вершиной прямого угла.

Формулы высоты прямого угла в прямоугольном треугольнике
H — высота из прямого угла

a, b — катеты

с — гипотенуза

c1 , c2 — отрезки полученные от деления гипотенузы, высотой

α, β — углы при гипотенузе

Формула длины высоты через стороны, (H):

Формула длины высоты через стороны

Формула длины высоты через гипотенузу и острые углы, (H):

Формула длины высоты через гипотенузу и острые углы

Формула длины высоты через катет и угол, (H):

Формула длины высоты через катет и угол

Формула длины высоты через составные отрезки гипотенузы , (H):

Формула длины высоты через составные отрезки гипотенузы



Подробности

Опубликовано: 09 октября 2011

Обновлено: 13 августа 2021

Высота прямоугольного треугольника, проведенная к гипотенузе

Как и в любом треугольнике прямоугольный треугольник имеет три высоты. Две из них совпадают с катетами, а вот третья высота, проведенная к гипотенузе, постоянно будоражит наши умы.

Поэтому представляю вашему вниманию основные формулы для ее нахождения.

Начну с самой важной.

1. Высота, проведенная к гипотенузе равна корню квадратному из произведения проекций катетов на эту гипотенузу.

2. Высоту, проведенную к гипотенузе, можно найти, разделив удвоенную площадь прямоугольного треугольника на гипотенузу.

Такая формула получается из классический формулы нахождения площади треугольника: половина произведения основания на высоту, проведенную к этому основанию.

3. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на гипотенузу.

Эта формула получится из второй если заменить площадь на половину произведения катетов.

Т.к. АВ — гипотенуза, то ее можно выразить через катеты АС и ВС, используя теорему Пифагора. Тогда формула примет другой вид:

4. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на диаметр описанной вокруг треугольника окружности (или на удвоенный радиус).

Так получается потому, что центр описанной окружности лежит в середине гипотенузы, значит, гипотенуза равна 2R или d.

5. Высоту, проведенную к гипотенузе, можно найти, используя геометрические определения синуса, тангенса и котангенса.

Надеюсь, что данная статья оказалась полезной!)

Готовься к экзамену вместе с нами! Заходи на нашу страницу в ВК.

Высота в прямоугольном треугольнике

Вспомним определение. Высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

В прямоугольном треугольнике катеты являются высотами друг к другу. Главный интерес представляет высота, проведённая к гипотенузе.

Один из типов экзаменационных задач в банке заданий ФИПИ — такие, где в прямоугольном треугольнике высота проведена из вершины прямого угла. Посмотрим, что получается:

angle BAC =angle BCH;

angle ABC =angle ACH;

sin Adisplaystyle = frac{a}{c}=frac{h}{b}=frac{BH}{a};

cos Adisplaystyle = frac{b}{c}=frac{h}{a}=frac{AH}{b};

displaystyle S_{ABC}= frac{ab}{2}=frac{ch}{2}.

Высота проведена к гипотенузе AB. Она делит треугольник ABC на два прямоугольных треугольника — AC mkern -3mu H и C mkern -3mu H mkern -3mu B. Смотрим внимательно на рисунок и находим на нем равные углы. Это и есть ключ к задачам по геометрии, в которых высота опущена на гипотенузу.

Мы помним, что сумма двух острых углов прямоугольного треугольника равна 90^{circ}. Значит, angle AC mkern -3mu H=90^{circ}-angle C mkern -3mu AH, то есть угол AC mkern -3mu H равен углу ABC. Аналогично, угол C mkern -3mu AB равен углу H mkern -3mu C mkern -3mu B.

Иными словами, каждый из трех углов треугольника ABC равен одному из углов треугольника AC mkern -3mu H (и треугольника BC mkern -3mu H). Треугольники ABC, AC mkern -3mu H и BC mkern -3mu H называются подобными. Давайте нарисуем их рядом друг с другом.

Подобные треугольники

Они отличаются только размерами. Стороны подобных треугольников пропорциональны. Что это значит?

Возьмем треугольники AC mkern -3mu H и ABC. Стороны треугольника ABC длиннее, чем стороны треугольника AC mkern -3mu H в k раз:

genfrac{}{}{}{0}{displaystyle AC}{displaystyle A mkern -3mu H} =genfrac{}{}{}{0}{displaystyle BC}{displaystyle C mkern -3mu H} = genfrac{}{}{}{0}{displaystyle AB}{displaystyle AC}.

Мы доказали свойство высоты прямоугольного треугольника. Его можно сформулировать как теорему.

Теорема 1. Высота прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, делит треугольника на три подобных друг другу треугольника:

triangle AHC approx triangle CHB approx triangle ACB.

При решении задач нам пригодится равенство углов треугольников ABC, AC mkern -3mu H и BC mkern -3mu H, а также пропорциональность их сторон. Обратите также внимание, что площадь треугольника ABC можно записать двумя разными способами: как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту. В геометрии это называется «метод площадей» и часто применяется в решении задач.

Задача 1.

В треугольнике ABC угол C равен 90^{circ}, CH — высота, BC = 3, cos A = genfrac{}{}{}{0}{displaystyle sqrt{35}}{displaystyle 6}. Найдите AH.

Решение:

Рассмотрим треугольник ABC. В нем известны косинус угла A и противолежащий катет BC. Зная синус угла A, мы могли бы найти гипотенузу AB. Так давайте найдем sin A:

sin{}^2A + cos{}^2A = 1.

Эта формула – основное тригонометрическое тождество. Конечно, вы его знаете:

sin{}^2 A + genfrac{}{}{}{0}{displaystyle 35}{displaystyle 36} = 1;

sin{}^2 A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 36};

sin A= genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6} (поскольку значение синуса острого угла положительно).

Тогда:

AB=BC: sin A = 3: genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6}=3 cdot 6=18.

Рассмотрим прямоугольный треугольник BC mkern -3mu H, angle H = 90^{circ}. Поскольку angle H mkern -3mu C mkern -3mu B = angle A,

sin H mkern -3mu C mkern -3mu B = H mkern -3mu B : BC.

Отсюда H mkern -3mu B=BC cdot sin HC mkern -3mu B = 3 cdot genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6}=0,5.

A mkern -3mu H = A mkern -3mu B - H mkern -3mu B=18-0,5=17,5.

Ответ: 16.

Задача 2.

В треугольнике ABC угол C равен 90{}^{circ}, AB = 13, tg A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 5}. К гипотенузе проведена высота CH. Найдите AH.

Решение:

Это чуть более сложная задача. Ведь вам неизвестны катеты a и b.

Запишем теорему Пифагора: a^2 + b^2 = 13^2. (1)

Нам известно также, что:

tg A = genfrac{}{}{}{0}{displaystyle a}{displaystyle b} = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 5}. (2)

Решая уравнения (1) и (2), найдем:

a = sqrt{6,5}:b=5sqrt{6,5}.

Запишем площадь треугольника AВС двумя способами:

S = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} ab = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} ch

и найдем длину CH = 2,5.

Найти высоту, проведенную из вершины прямого угла, можно было и другим способом. Мы выбрали самый короткий путь — составили и решили систему уравнений, как в алгебре.

Теорема 2. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, равна произведению катетов, деленному на гипотенузу.

Доказательство:

Из прямоугольного треугольника ABC с прямым углом C и гипотенузой AB:

sindisplaystyle (angle BAC)=frac{a}{c}.

Из прямоугольного треугольника AНС с прямым углом Н и гипотенузой AС:

sindisplaystyle (angle BAC)=frac{h}{b}.

Мы разными способами вычислили синус одного и того же угла. Приравняем полученные выражения:

displaystyle frac{h}{b}=frac{a}{c}.

Найдем высоту:

displaystyle h= frac{ab}{c}.

Что и требовалось доказать.

Задача 3. Катеты прямоугольного треугольника равны 15 и 20.
Найдите высоту, проведенную к гипотенузе.

Решение:

Воспользуемся теоремой 2 о высоте прямоугольного треугольника:

Катеты BС и AС нам известны: BC = 15, AC = 20. Найдем гипотенузу AB с помощью теоремы Пифагора:

{AB}^2={BC}^2+{AC}^2={15}^2+{20}^2={25}^2,    AB=25.

Найдем высоту, проведенную из вершины прямого угла:

displaystyle CH=frac{15cdot 20}{25}=12.

Ответ: 12.

Теорема 3. В прямоугольном треугольнике квадрат высоты, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу.

CH^2=BHcdot AH.

Сейчас мы докажем эту полезную формулу.

Вспомним, что такое проекция точки на прямую. Например, из точки С опускаем СН — перпендикуляр к прямой AВ. Точка Н и будет проекцией точки С. Тогда AН – проекция катета AВ, а BН – проекция катета BС.

Обозначим: BH=c_a, AH=c_b.

Доказательство проведем двумя способами.

Первый способ доказательства:

Из прямоугольного треугольника BНС с прямым углом Н и гипотенузой BС:

tgdisplaystyle (angle CBH)=frac{h}{c_a}.

Из прямоугольного треугольника AНС с прямым углом Н и гипотенузой AС:

ctgdisplaystyle (angle CAH) = frac{c_b}{h}.

Заметим, что угол CBН – это угол CBA, а угол CAН – это угол BAC. Тогда:

tg(angle ABC)=ctg(angle BAC);

tg(angle CBH)=ctg(angle CAH);

displaystyle frac{h}{c_a}=frac{c_b}{h}.

Мы воспользовались тем, что тангенс и котангенс двух разных острых углов прямоугольного треугольника равны друг другу. Это следует из определения тангенса и котангенса.

Преобразуем получившееся выражение:

displaystyle h=frac{c_a cdot c_b}{h} Rightarrow h^2 = c_a c_b .

Что и требовалось доказать.

Второй способ доказательства:

Воспользуемся подобием треугольников, о которых говорится в теореме 1.

Рассмотрим пару прямоугольных треугольников AНC и BНC. Как было показано выше, эти треугольники подобны по двум углам, поэтому

displaystyle frac{h}{c_a}=frac{c_b}{h}.

Мы получили такое же соотношение, как и в первом способе доказательства.

Далее аналогично получим, что

h^2 = c_a c_b .

Что и требовалось доказать.

Задача 4. На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH = 4, BH = 16. Найдите длину CH.

Решение:

Воспользуемся теоремой 3 о высоте прямоугольного треугольника:

CH^2=BHcdot AH.

Подставим данные задачи.

{CH}^2=4cdot 16=64, CH = 8.

Ответ: 8.

Разберем решения других задач ОГЭ и ЕГЭ по теме «Свойства высоты в прямоугольном треугольнике».

Задача 5. Катеты прямоугольного треугольника относятся как 3:4, а гипотенуза равна 50. Найти высоту, проведенную из вершины прямого угла и отрезки, на которые гипотенуза делится высотой.

Решение:

Рассмотрим прямоугольный треугольник ABС с гипотенузой AB. Проведем высоту CD=h.

Учитывая отношение катетов, обозначим их длины как: BC = 3x, AC = 4x.

Тогда по теореме Пифагора получим:

AB=sqrt{9x^2 +16 x^2} = sqrt{25 x^2}=5x.

По условию гипотенуза AB = 50. Следовательно, х = 10, BC = 30, AC = 40.

Далее можно действовать разными способами. Например, так.

displaystyle CD=frac{BCcdot AC}{AB}=frac{30cdot 40}{50}=24.

AD=ACcdot {cos A},; BD=BCcdot {cos B}, где по определению косинуса:

cos A displaystyle =frac{AC}{AB}=frac{4}{5},; cos Bdisplaystyle =frac{BC}{AB}=frac{3}{5}.

displaystyle AD=ACcdot frac{4}{5}=32,; BD=BCcdot frac{3}{5}=18.

Ответ: CD=24, ; AD=32,; BD=18.

Задача 6. В прямоугольном треугольнике ABC высота CD делит гипотенузу на отрезки AD = 3 см и BD = 2 см. Найти катеты треугольника.

Решение:

Найдем квадрат длины высоты с помощью теоремы 3:

{CD}^2=ADcdot BD=3cdot 2=6.

Из прямоугольного треугольника ADC по теореме Пифагора найдем

{AC}^2={AD}^2+{CD}^2=9+6=15,; AC= sqrt{15} см.

Из прямоугольного треугольника BDC по теореме Пифагора найдем

{BC}^2={BD}^2+{CD}^2=4+6=10,; BC= sqrt{10} см.

Ответ: sqrt{15} см и sqrt{10} см.

Задача 7. Точка D является основанием высоты, проведенной из вершины прямого угла C треугольника ABC к гипотенузе AB. Найдите AC, если AD=8, AB=32.

Указание:

Найдите отрезок BD = AB — AD, после чего задача сводится к предыдущей.

Длину высоты прямоугольного треугольника можно также найти, если известны гипотенуза и один из острых углов треугольника.

h = c sinalpha cosalpha = c sinbeta cosbeta.

Докажем эту формулу.

Рассмотрим прямоугольный треугольник ACD: CD=AC cos alpha.

В то же время из треугольника AВC: AC=AB sin alpha.

Таким образом, h = CD = AC cos⁡alpha = AB sinalpha cosalpha = c sinalpha cos⁡alpha.

Аналогично, из треугольника BCD получим: h = CD = BC cosbeta = AB sin⁡beta cosbeta = c sin beta cos⁡beta.

Задача 8. В прямоугольном треугольнике гипотенуза равна 10, а один из острых углов 15 градусов. Найти высоту, проведенную из вершины прямого угла.

Решение:

Воспользуемся доказанной выше формулой:

h = c sinalpha cosalpha = 10 sin {15}^circcos {15}^circ = 5sin {30}^circ = 2,5.

Ответ: 2,5.

Задача 9. Высота прямоугольного треугольника делит его гипотенузу на отрезки 6 см и 4 см. Найдите площадь этого треугольника.

Решение:

Гипотенуза прямоугольного треугольника равна сумме данных отрезков:

c=6+4=10 см.

Найдем высоту, проведенную из вершины прямого угла к гипотенузе: h=sqrt{6cdot 4}=2sqrt{6} см.

Площадь треугольника:

displaystyle S=frac{1}{2}ch=frac{1}{2}cdot 10cdot 2sqrt{6}=10sqrt{6} см{}^2.

Ответ: 10sqrt{6} см{}^2.

Если вам понравился наш материал — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Высота в прямоугольном треугольнике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

ВИДЕОУРОК

Высота прямоугольного треугольника.

Высотой
прямоугольного треугольника называется перпендикуляр, опущенный из вершины
треугольника на противоположную сторону.

В прямоугольном
треугольнике высоты, опущенные из вершин острых углов, совпадают с катетами
треугольника, а высота, опущенная из вершины прямого угла на гипотенузу, делит
треугольник на два треугольника, подобных исходному и подобных друг другу.

Длина высоты
треугольника 
АВС

проведённой к гипотенузе  ВС находится по формуле:

АК2 = ВК ∙ КС.

где  ВК  и  КС – проекции катетов на гипотенузу.

В
прямоугольном треугольнике высота, опущенная из вершины прямого угла на
гипотенузу, делит гипотенузу в таком отношении, в каком находятся квадраты прилежащих
катетов
:

В прямоугольном
треугольнике высота, проведённая из прямого угла, равна произведению катетов,
делённому на гипотенузу.

Каждый катет
прямоугольного треугольника есть среднее пропорциональное между гипотенузой и
отрезком гипотенузы, заключённым между катетом и высотой, проведённой из
вершины прямого угла.

Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.

                                    
Высоты  ha  и  hb  совпадают
с катетами
  и  a.

Отрезок  XY  есть среднее пропорциональное (или среднее
геометрическое) между отрезками 
АВ  и  СD, если

ЗАДАЧА:

В треугольнике  АВС: 

С = 90°,

А = 30°

АВ = 2√͞͞͞͞͞3.

Найдите высоту  СН.

РЕШЕНИЕ:

Начертим
чертёж
.

Так как катет, лежащий против угла  30°, равен половине гипотенузы, то

ВС = 0,5АВ = √͞͞͞͞͞3.

Найдём катет  АС  в треугольнике  АВС,
пользуясь теоремой Пифагора
:

АВ2 = АС2
+
ВС2,

АС2 = АВ2
ВС2 =

= (2√͞͞͞͞͞3)2 – (√͞͞͞͞͞3)2 =

 =12 – 3 = 9, АС = 3.

В треугольнике  АНС: АС
гипотенуза, НС – катет, лежащий против угла 
30°, значит

НС =
3 : 2 = 1,5.

ЗАДАЧА:

В треугольнике  АВС: 

С = 90°,

А = 30°

СН – высота.

Найдите 
АН, если  АВ = 2.

РЕШЕНИЕ:

Начертим
чертёж
.

Так как катет, лежащий против угла  30°, равен половине гипотенузы, то

ВС = 0,5АВ = 1.

Тогда
по теореме Пифагора из треугольника 
АВС
:

Из прямоугольного треугольника  АНС:

НС =
0,5АС =
√͞͞͞͞͞3 : 2.

Тогда
по теореме Пифагора
:

ЗАДАЧА:

В треугольнике  АВС: 

С = 90°,

А = 30°

СН – высота.

Найдите 
ВН, если  АВ = 4.

РЕШЕНИЕ:

Начертим
чертёж
.

Так как катет, лежащий против угла  30°, равен половине гипотенузы, то

ВС = 0,5АВ = 2.

Угол 
ВСН  равен  30° (90° – 60°),

значит 
ВН = 0,5ВС = 1.

ЗАДАЧА:

В прямоугольном треугольнике  АВС  высота  АК  делит гипотенузу
на отрезки

ВК = 3 см,

КС = 2 см.

Найдите  катеты
треугольника.

РЕШЕНИЕ:

Найдём квадрат длины высоты  АК  пользуясь формулой

АК2 = ВК КС = 3 2
= 6.

Рассмотрим
прямоугольные треугольники 
АКС  и  ВКС, и найдём в них стороны  АС  и  АВ.

Медиана прямоугольного треугольника.

Медиана – это отрезок, соединяющий вершину треугольника с
серединой противолежащей стороны.

Для прямоугольного треугольника это будут
медианы, проведённые с острого угла к серединам катетов или с прямого к центру
гипотенузы.

Свойства
медианы в прямоугольном треугольнике.

– медианы в прямоугольном треугольнике пересекаются в
одной точке, а точка пересечения делит их в соотношении два к одному считая от
вершины, из которой проведена медиана
;

– медиана, проведённая из
вершины прямого угла к гипотенузе, равна половине гипотенузу
;

– медиана, опущенная на гипотенузу прямоугольного треугольника, равна
радиусу окружности, описанной вокруг данного прямоугольного треугольника
;

сумма
квадратов медиан, опущенных на катеты прямоугольного треугольника равна пяти квадратам
медианы, опущенной на гипотенузу
;

сумма
квадратов медиан, опущенных на катеты прямоугольного треугольника равна пяти
четвёртых квадрата гипотенузы
;

медиана,
опущенная на гипотенузу, равна половине корня квадратного из суммы квадратов
катетов
;

медиана,
опущенная на гипотенузу, равна частному от деления длины катета на два синуса
противолежащего катету острого угла
;

медиана,
опущенная на гипотенузу, равна частному от деления длины катета на два косинуса
прилежащего катету острого угла
;

– сумма квадратов сторон
прямоугольного треугольникаравна восьми квадратам медианы, опущенной на его
гипотенузу
;

– медиана, проведённая к катету  а, равна
половине корня квадратного из суммы учетверённого квадрата катета 
b  и квадрата катета  а
;

– медиана, проведённая к катету  b, равна
половине корня квадратного из суммы учетверённого квадрата катета 
а  и квадрата катета  b
;

Обозначения в формулах.

a, bкатеты
прямоугольного треугольника
;

сгипотенуза
прямоугольного треугольника
.

Если обозначить треугольник, как  АВС, то

ВС = а, АС = b, АВ = с

(то есть стороны  а,
b, с – являются
противолежащими соответствующим углам).

та
медиана, проведённая к катету 
а;

тb – медиана,
проведённая к катету 
b;

тс
медиана, проведённая к гипотенузе 
с;

α (альфа)
угол 
САВ,
противолежащий стороне 
а.

ЗАДАЧА:

Две стороны треугольника равны  6 см  и  8 см. Медианы, проведённые к этим сторонам, пересекаются
под прямым углом. Найдите третью сторону треугольника.

РЕШЕНИЕ:

Начертим
чертёж.

Обозначим  

АN = х см. ВМ
= у
см.

Тогда 

АО = 2/3 х,
NО =
1/3 у,

ВО = 2/3 х,
МО =
1/3 у.

АМ2 = ОМ2
+
ОА2,

ВN2 = ОВ2 + ОN2,

5х2 + 5у2 = 225,

х2 + у2
= 45.

АВ2 = ВО2
+
ОА2 =

= 4/9 (х2
+
у2) = 20,
то

АВ = √͞͞͞͞͞20 = 2√͞͞͞͞͞5 см.

ЗАДАЧА:

В треугольнике  АВС:

АВ = √͞͞͞͞͞41, ВС = 13

ВН – высота, опущенная на
сторону 
АС, ВН = 5

Найдите
длину медианы
АМ.

РЕШЕНИЕ:

Начертим чертёж.

В прямоугольном
треугольнике 
ВНС  по
теореме Пифагора 

В прямоугольном
треугольнике 
АВН  по
теореме Пифагора 

Опустим из точки  М  перпендикуляр  МD  на сторону АС, МD – средняя линия треугольника  ВНС, следовательно

МD = 1/2 ВН = 5/2,

НD = DС = 1/2 НС = 6.

Тогда в прямоугольном треугольнике  АМD

АDМ = 90°,

АD = АН + НD =

= 4 + 6 = 10,

МD = 5/2.

По теореме Пифагора

ЗАДАЧА:

В прямоугольном треугольнике медианы, проведённые к
катетам равны 
√͞͞͞͞͞52  и √͞͞͞͞͞73. Найдите длину
гипотенузы.

РЕШЕНИЕ:

Начертим чертёж.

Проведём медианы  АК
 и  ВМ. Пусть 

АК = √͞͞͞͞͞52,

ВМ = √͞͞͞͞͞73,

х – половина длины
стороны 
АС,

у – половина длины
стороны 
ВС. Тогда из
прямоугольных треугольников 
АСК  и  ВСМ  имеем:

АК2 = АС2
+
СК2,

ВМ2 = МС2
+
ВС2

тогда  составим систему уравнений:

отсюда

5(х2 + у2) = 125,

х2 + у2
= 25,

АК2 = 4(х2
+
у2).

АВ = 10.

ЗАДАЧА:

Медианы  СМ  и 
ВN  прямоугольного
треугольника 
АВС ( С = 90°), перпендикулярны. Найдите катеты, если гипотенуза
равна 
с.

РЕШЕНИЕ:

Начертим чертёж.

МА = МС = МВ = с/2.

Пусть  = х,

Тогда 

ВО = 2/3 х, МО = с/6.

МВ2 = МО2 + ВО2,

Биссектриса прямоугольного треугольника.

Биссектрисою прямоугольного треугольника называют отрезок
биссектрисы угла треугольника, который соединяет его вершину с точкой на противоположной
стороне треугольника.

Биссектриса прямоугольного треугольника делит противоположную сторону на
отрезки, соответственно пропорциональные двум другим сторонам.

Связь угла  (α)  между
высотой и биссектрисой, проведёнными из прямого угла, определяется через острые
углы этого треугольника.

ЗАДАЧА:

Биссектриса прямого угла
прямоугольного треугольника образует с гипотенузой углы, один из которых
равен 
70°. Найдите острые углы этого треугольника.

РЕШЕНИЕ:

Начертим чертёж.

DBC = DBA = 45°,

DCB = 180°70°45° = 65°,

ADB = 180°70° = 110°,

CAB = 180°110°45° = 25°.

ЗАДАЧА:

Биссектриса прямого угла
прямоугольного треугольника делит гипотенузу на отрезки длиной 
15
см  и 
20
см. Найдите длины отрезков гипотенузы, на которые её делит высота треугольника.

РЕШЕНИЕ:

Биссектриса треугольника делит сторону на
отрезки, пропорциональные прилежащим сторонам.

Следовательно,

СВ
: АС = 15 : 20.

Пусть коэффициент этого
отношения будет 
х. Тогда

АС = 20х, ВС
= 15х,

АВ = 20 + 15 = 35.

По теореме Пифагора:

АС2 + ВС2 = АВ2,

400х2
+ 225
х2 = 1225.

х = √͞͞͞͞͞1,96 = 1,4,

АС = 20 ∙ 1,4 = 28,

ВС = 15 ∙ 1,4 = 21.

Катет прямоугольного треугольника есть среднее
пропорциональное между гипотенузой и отрезком гипотенузы, заключённым между
катетом и высотой.

ВС2 = АВ ВН,

441 = 35 ВН,

ВН
=
12,6,

АН = 35 – 12,6 =
22,4.

ЗАДАЧА:

Угол между биссектрисой и
медианой прямоугольного треугольника, проведёнными из вершины прямого угла,
равен 
14°.
Найдите меньший угол этого треугольника.

РЕШЕНИЕ:

Начертим чертёж.

Так как связь угла  (α)  между высотой и биссектрисой, проведёнными из
прямого угла, определяется через острые углы этого треугольника следующим
образом
:

ВАС
=
45° – α,

ВСА
=
45° + α,

α = МВD = 14°,

то меньший угол
треугольника 
ВАС  будет равен:

ВАС = 45°14° = 31°.

Задания к уроку 9

  • Задание 1
  • Задание 2
  • Задание 3

Другие уроки:

  • Урок 1. Точка и прямая
  • Урок 2. Угол
  • Урок 3. Параллельные и перпендикулярные прямые
  • Урок 4. Окружность
  • Урок 5. Угол и окружность
  • Урок 6. Треугольник (1)
  • Урок 7. Треугольник (2)
  • Урок 8. Прямоугольный треугольник (1)
  • Урок 10. Равнобедренный треугольник (1)
  • Урок 11. Равнобедренный треугольник (2)
  • Урок 12. Периметр треугольника
  • Урок 13. Периметр равнобедренного (равностороннего) треугольника
  • Урок 14. Треугольник и окружность
  • Урок 15. Прямоугольный треугольник и окружность
  • Урок 16. Равнобедренный треугольник и окружность
  • Урок 17. Четырёхугольники
  • Урок 18. Параллелограмм
  • Урок 19. Периметр параллелограмма
  • Урок 20. Прямоугольник
  • Урок 21. Периметр прямоугольника
  • Урок 22. Квадрат
  • Урок 23. Ромб
  • Урок 24. Периметр ромба
  • Урок 25. Трапеция
  • Урок 26. Равнобедренная трапеция
  • Урок 27. Периметр трапеции
  • Урок 28. Четырёхугольник и окружность (1)
  • Урок 29. Четырёхугольник и окружность (2)
  • Урок 30. Многоугольник
  • Урок 31. Правильный многоугольник
  • Урок 32. Осевая и центральная симметрии

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

1. Через площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

где p – это полупериметр треугольника, который рассчитывается так:

3. Через длину прилежащей стороны и синус угла

4. Через стороны и радиус описанной окружности

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

2. Через стороны треугольника

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Высота в прямоугольном треугольнике — свойства, признаки и формулы расчетов

Общие сведения

Следует отметить, что в геометрии существуют элементы, используя которые можно строить простые и сложные фигуры. Простейшим из них считается точка. С ее помощью можно создать прямую, луч, отрезок и угол. Точкой называется базовый «кирпич» геометрии, позволяющий осуществлять построение других элементов математической науки.

Прямая — совокупность множества точек, лежащих в одной плоскости и соединенных между собой таким образом, чтобы образовалась некоторая линия без перегибов и переломов. У нее нет вообще границ. Если говорят, что нужно провести прямую, то чертится только ее часть, а затем обозначается произвольной строчной буквой (a, b, c и т. д.). Простейшая фигура не имеет начала и конца. Математически границы записываются следующим образом: (- ∞; ∞). Следовательно, левая граница находится в точке — ∞, а правая — ∞.

Луч — разновидность прямой линии, имеющей только одну границу (точку). Из последней исходит прямая в бесконечность. Примером этой модели является Солнце, испускающее пучки световой энергии. Оно является источником света, который может проходить не только через Солнечную систему, но и уходить за ее пределы в бесконечность (космическое пространство). Луч обозначается также строчной литерой. Однако точку-источник следует обозначать прописной буквой.

Отрезком является часть прямой или луча, имеющая некоторые ограничения. Они обозначаются прописными литерами. Моделями являются следующие объекты и процессы: луч Солнца, идущий к Земле (Солнце — Земля), линейка, карандаш и т. д.

Плоским углом называется элементарная фигура, состоящая из общей точки и двух лучей, исходящих из нее и не лежащих на одной прямой. Измеряется в градусах и радианах. Далее следует разобрать виды прямоугольных треугольников.

Прямоугольный треугольник

Прямоугольным называется треугольник, имеющий угол, градусная мера которого эквивалентна 90. Он состоит из трех сторон, вершин и углов. К дополнительным параметрам можно отнести следующие:

Стороны, образующие прямой угол, называются катетами. Третья сторона, соединяющая их, является гипотенузой. Все остальные углы являются острыми. Если сумма углов любого треугольника эквивалентна 180 градусам, то 180 — 90 = 90. Следовательно, сумма двух остальных углов составляет 90, а значит, они являются острыми.

Периметр — вспомогательная величина, характеризующая суммарное значение сторон фигуры. Существует также понятие полупериметра. Последним называется полусумма всех его сторон. Площадью называется характеристика треугольника, показывающая его размерность.

Высота в прямоугольном треугольнике, проведенная к гипотенузе — отрезок, опущенный перпендикулярно относительно этой стороны. Ее еще называют проекцией. Медиана — отрезок, соединяющий вершину с серединой стороны. Если она проведена из прямого угла, то эквивалентна половине гипотенузы. Биссектрисой является некоторая прямая, которая делит искомый угол на два равных значения.

Следует отметить, что этот тип треугольника бывает двух видов — разносторонний и равнобедренный. В последнем три последних параметра не совпадают (медиана, высота и биссектриса).

Следует рассмотреть свойства высоты в прямоугольном треугольнике равнобедренного типа. Она является медианой и биссектрисой. Далее следует обратить внимание на теорему, которая применяется для взаимосвязи сторон фигуры.

Теорема Пифагора

Для удобства треугольник следует обозначить символом «Δ». Связь между сторонами прямоугольного Δ была открыта древнегреческим ученым Пифагором. Утверждение имеет следующую формулировку: в произвольном прямоугольном Δ (со сторонами a, b и c) должно выполняться равенство между квадратом гипотенузы c и алгебраической суммой квадратов двух катетов a и b. Следует отметить, что при несоблюдении этого условия заданная фигура не содержит прямой угол. Математическая запись теоремы имеет такой вид: a^2 + b^2 = c^2.

Доказательств теоремы существует огромное количество, поскольку применяются различные подходы. Однако наибольшей популярностью пользуется способ, полученный из аксиом. Кроме того, дополнительно применяется алгебраическая методика. Для выполнения операции по доказательству соотношения a^2 + b^2 = c^2 необходимо построить прямоугольный Δ с такими сторонами: BC = a, AC = b и AB = c. После этого проводится высота к гипотенузе из вершины, которая является точкой пересечения двух катетов.

В результате образовались два равных угла ∠АНС и ∠ВНС. Кроме того, они являются прямыми по свойству высоты. Затем нужно рассмотреть Δ АВС и Δ АСН (Δ СВН), которые подобны по двум углам. На основании признака подобия можно вывести такие соотношения в виде пропорций:

Далее нужно перемножить крайние и средние члены двух формул: а 2 = c * НВ и b 2 = c * AH. После этого для окончательного доказательства утверждения необходимо только сложить части. Получается равенство такого вида: а^2 + b 2 = c * [НВ + AH] = c 2 .

Утверждение о высоте

Для прямоугольного Δ и высоты была выведена специальная теорема, позволяющая оптимизировать процесс вычисления основных его параметров. Ее формулировка имеет следующий вид: в прямоугольном ΔABC высота CE, опущенная на гипотенузу, делит ее по соотношению квадратов катетов к частям гипотенузы. Для доказательства нужно использовать такой алгоритм:

  • Построить ΔABC (∠C = 90).
  • Провести высоту к CE к гипотенузе AB.
  • Следует доказать соотношение BE / EA = (BC^2) / (AC^2).
  • Используя теорему о пропорциональности отрезков прямоугольного Δ, можно сделать вывод о подобии ΔABC и ΔACE.
  • На основании 4 пункта получается формула: CA / AB = EA / CA.
  • Перемножив крайние и средние члены по свойству пропорции, можно вывести CA^2 = AB * EA.
  • Нужно рассмотреть ΔABC и ΔBCE. Их подобие доказывается аналогично пункту 4.
  • Пропорция имеет такой вид: BC / AB = BE / BC. Окончательно: BC^2 = AB * BE.
  • Разделить полученные равенства в 8 и 6 пунктах на AC^2. Формулу можно править таким образом: BC^2 / AC^2 = BE / EA.

​Теорема доказана. Существуют и другие утверждения о высоте в прямоугольном Δ. Их необходимо также рассмотреть, но без доказательств.

Тригонометрические функции

Полезными при решении различных задач считаются тригонометрические функции. Их всего четыре:

  • Синус (sin) эквивалентен отношению противолежащего катета к гипотенузе Δ: sin (∠CBA) = a / c.
  • Косинусом (cos) искомого угла называется величина, характеризующая отношение противолежащего катета к гипотенузе: cos (∠CBA) = b / c.
  • Тангенс (tg) — это значение отношения двух катетов (противолежащего к прилежащему): tg (∠CBA) = a / b.
  • Котангенс (ctg) является обратной величиной для функции tg (∠CBA). Он характеризует отношение прилежащего к противолежащему. Записывается в математическом виде следующим образом: ctg (∠CBA) = b / a или ctg (∠CBA) = 1 / (tg (∠CBA)= 1 / (a / b) = b / a.

Математики выделяют 4 обратные тригонометрические функции: arcsin, arccos, arctg и arcctg. Применяются они, когда получено одно из значений тригонометрической функции. На основании этого можно найти градусную меру угла. Расчет выполняется с использованием специальных таблиц (Брадиса) или при помощи онлайн-калькуляторов.

Другие соотношения

Формулы для нахождения длины высоты происходят от некоторых теорем. Их необходимо знать, поскольку это позволит существенно сэкономить время и избежать множества ошибок при вычислениях. Для этих целей необходимо начертить прямоугольный ΔABC, у которого ∠BAD = 90, а больший катет эквивалентен величине а. Основные теоремы о высоте, проведенной из прямого угла, имеют такие формулировки:

  • Высота делит гипотенузу на проекции катетов: Ca = a^2 / c и Cb = b^2 / c.
  • Высота эквивалентна средней геометрической величине проекций катетов: h = [Сa * Cb]^(1/2).
  • Проведенная из угла 90 высота делит исходный треугольник на 2 ему подобных.
  • Длина искомой высоты соответствует отношению произведения катетов к линейному значению гипотенузы: h = (a * b) / c.
  • Если медиана проведена из угла прямого типа, то она эквивалентна 1/2 гипотенузы. Кроме того, ее основание совпадает с центром описанной около Δ окружности, радиус которой равен медиане.
  • Радиус вписанного круга в Δ эквивалентен соотношению r = (a + b — c) / 2.
  • Размерность прямоугольного Δ или площадь S соответствуют величине, равной 1/2 от произведения катетов: S = (1/2) * a * b.

Следует отметить, что величину размерности можно найти из производных формул: S = (1/2) * c^2 * sin(∠CBA) * sin(∠BAC) = (1/2) * c^2 * sin(∠CBA) * cos(∠CBA) = (1/2) * c^2 * sin(∠BAC) * cos(∠BAC) = (1/2) * a^2 * tg(∠BAC) = (1/2) * a^2 * ctg(∠CBA).

Примеры решения задач

Для закрепления теоретических знаний специалисты рекомендуют решить несколько задач. Они делятся на простые и сложные. Первые решаются при помощи одной или нескольких элементарных операций. Таких примеров в интернете очень много. Однако попадаются и сложные варианты, которые позволяют использовать полученные знания на все 100%.

В интернете встречаются онлайн-приложения, позволяющие найти решение. Этот инструмент нужно использовать для проверки результата. Хотя многие им злоупотребляют, а затем не получают правильного результата. Для начала необходимо взять готовый решенный пример и ознакомиться с ним. Далее попытаться воспроизвести его на бумаге. Подсматривать в исходник нельзя. При помощи такого приема происходит формирование алгоритма решения в головном мозге.

Сложное задание

Условие задачи следующее: имеется ΔMNO (∠MNO = 90) с высотой NP и стороной NM = 3, а также с известным значением тригонометрической функции cos между большим катетом и гипотенузой (cos(∠NOM) = (35)^(1/2) / 6). Следует найти OP. Для этого необходимо следовать такому алгоритму:

  • Найти sin(∠NOM): [sin(∠NOM)]^2 + [cos(∠NOM)]^2 = 1. Отсюда следует, что sin(∠NOM) = [1 — [cos(∠NOM)]^2]^(1/2) = [1 — 35/36]^(1/2) = 1/6.
  • Вычислить длину гипотенузы: MO = MN / (sin(∠NOM)) = 3 / 1/6 = 18 (ед).
  • Рассмотреть ΔMNP: MN = 3, sin(∠NOM) = sin(∠MNP) = 1/6.
  • Найти MP: MP = MN * sin(∠MNP) = 3 * 1/6 = 1/2.
  • Искомая величина ОР высчитывается таким образом: OP = MO — MP = 18 — 1/2 = 17,5 (ед).

На основании пятого пункта можно сделать вывод, что длина искомого отрезка равна 17,5 (ед). Если проанализировать решение упражнения, то станет понятно, что очень часто применяются соотношения на основе тригонометрических функций.

Уровень турбо

В некоторых источниках задачи повышенной сложности называют «для турбо». К ним принадлежат все типы, которые имеют минимальный объем известных данных. Пусть дан равнобедренный ΔSTU (∠STU = 90). Гипотенуза на 2 больше катета. Необходимо найти его высоту TV, проведенную из прямого угла. Решение следует выполнять по такой инструкции:

  • Обозначить катет неизвестной «y», тогда ST = TU = y и SU = y + 2.
  • Записать формулу определения высоты: h = (a * b) / c.
  • Составить уравнение: (y + 2) = y^2 + y^2.
  • Раскрыть скобки и привести подобные слагаемые: y^2 + 4 * y + 4 — 2 * y^2 = -y^2 + 4 * y + 4 = y^2 — 4 * y — 4 = 0.
  • Найти величину дискриминанта: D = 16 + 16 = 32.
  • Первый корень: y1 = [-4 — 32^(1/2)] / 2 = [-4 — 4 * 2^(1/2)] / 2.
  • Второй: [-4 + 4 * 2^(1/2)] / 2 = -2 + 2 * 2^(1/2).
  • Первый не подходит, поскольку является величиной отрицательной.
  • ST = TU = -2 + 2 * 2^(1/2) и SU = -2 + 2 * 2^(1/2) + 2 = 2 * 2^(1/2).
  • Расчет высоты TV: TV = (-2 + 2 * 2^(1/2))^2 / 2 * 2^(1/2) = (4 — 8 * 2^(1/2) + 2) / 2 * 2^(1/2) = (6 — 8 * 2^(1/2)) / 2 * 2^(1/2) = 3 — 4 * 2^(1/2) / 2^(1/2) (ед).

Следует отметить, что в скобках необходимо указывать единицу измерения. Если размерность последней не дана, то нужно указывать ее условно.

Таким образом, для решения сложных задач по геометрии следует знать формулу высоты в прямоугольном треугольнике. Это позволяет оптимизировать решение и не совершать ошибок при вычислениях.

Высота в прямоугольном треугольнике

Вспомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

В прямоугольном треугольнике катеты являются высотами друг к другу. Главный интерес представляет высота, проведённая к гипотенузе.

Один из типов экзаменационных задач банке заданий ФИПИ — такие, где в прямоугольном треугольнике высота проведена из вершины прямого угла. Посмотрим, что получается:

Высота проведена к гипотенузе . Она делит треугольник на два прямоугольных треугольника — и . Смотрим внимательно на рисунок и находим на нем равные углы. Это и есть ключ к задачам по геометрии, в которых высота опущена на гипотенузу.

Мы помним, что сумма двух острых углов прямоугольного треугольника равна . Значит, , то есть угол равен углу . Аналогично, угол равен углу .

Иными словами, каждый из трех углов треугольника равен одному из углов треугольника (и треугольника ). Треугольники и называются подобными. Давайте нарисуем их рядом друг с другом.

Они отличаются только размерами. Стороны подобных треугольников пропорциональны. Что это значит?

Возьмем треугольники и . Стороны треугольника длиннее, чем стороны треугольника в раз:

При решении задач нам пригодится равенство углов треугольников и , а также пропорциональность их сторон. Обратите также внимание, что площадь треугольника можно записать двумя разными способами: как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту.

Ты нашел то, что искал? Поделись с друзьями!

1. В треугольнике угол равен , — высота, , . Найдите .

Рассмотрим треугольник . В нем известны косинус угла и противолежащий катет . Зная синус угла , мы могли бы найти гипотенузу . Так давайте найдем :

(поскольку значение синуса острого угла положительно). Тогда:

Рассмотрим прямоугольный треугольник , . Поскольку

2. В треугольнике угол равен , , . Найдите высоту .

Сделайте чертеж и рассмотрите прямоугольный треугольник .

3. В треугольнике угол равен , , . К гипотенузе проведена высота . Найдите .

Это чуть более сложная задача. Ведь вам неизвестны катеты и .

Зато можно записать теорему Пифагора: .

Нам известно также, что:

Решая эту систему из двух уравнений, найдем:

Запишем площадь треугольника АВС двумя способами:

Найти высоту, проведенную из вершины прямого угла, можно было и другим способом. Мы выбрали самый короткий путь — составили и решили систему уравнений.

источники:

http://nauka.club/matematika/geometriya/vysot%D0%B0-v-pryamougolnom-treugolnike.html

http://ege-study.ru/ru/ege/materialy/matematika/vysota-v-pryamougolnom-treugolnike-i-ee-svojstva/

Понравилась статья? Поделить с друзьями:
  • Как просто найти работу в москве
  • Как найти маршрут от точки до точки
  • Как найти сопротивление ампе
  • Как найти дисперсию 7 класс алгебра
  • Как найти эндр портал в майнкрафт