Как найти высоту в треугольнике авс решение

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

  • Нахождение высоты треугольника

    • Высота в разностороннем треугольнике

    • Высота в равнобедренном треугольнике

    • Высота в прямоугольном треугольнике

    • Высота в равностороннем треугольнике

  • Примеры задач

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Высота в разностороннем треугольнике ABC

1. Через площадь и длину стороны

Формула для нахождения высоты треугольника через его площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

Формула для нахождения высоты треугольника через длины его сторон

где p – это полупериметр треугольника, который рассчитывается так:

Формула для расчета полупериметра треугольника

3. Через длину прилежащей стороны и синус угла

Формула для нахождения высоты треугольника через длину стороны и синуса угла

4. Через стороны и радиус описанной окружности

Формула для нахождения высоты треугольника через длины сторон и радиус описанной окружности

Описанная вокруг разностороннего треугольника окружность

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Формула для нахождения высоты к основанию в равнобедренном треугольнике

Опущенная на основание равнобедренного треугольника высота

Высота в прямоугольном треугольнике

Проведенная к гипотенузе высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

2. Через стороны треугольника

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через длины его сторон

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Формула для нахождения высоты в равностороннем треугольнике

Высота в равностороннем треугольнике

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Нахождение высоты треугольника через длину стороны и синус прилежащего угла (пример)

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Нахождение основания равнобедренного треугольника через высоту и боковую сторону (пример)

Здесь рассмотрены все возможные способы нахождения высоты треугольников разных типов. Высота
треугольника – отрезок, проведенный из вершины треугольника перпендикулярно к противоположной
стороне. В задачах нахождение высоты часто является промежуточным звеном для поиска других значений.
Она и является катетом в треугольнике, который сама же образует, и участвует во многих формулах,
например, для нахождения площади.

  • Высота разностороннего треугольника через площадь и длину
    стороны
  • Высота разностороннего треугольника через длины всех
    сторон
  • Высота разностороннего треугольника через длину прилежащей
    стороны и синус угла
  • Высота разностороннего треугольника через стороны и радиус
    описанной окружности
  • Высота равнобедренного треугольника через основание и
    боковые стороны
  • Высота прямоугольного треугольника через длины отрезков,
    образованных на гипотенузе
  • Высота прямоугольного треугольника через все стороны
    треугольника
  • Высота равностороннего треугольника через сторону
    треугольника

Через площадь и длину стороны разностороннего треугольника

Через площадь и длину высота находится по формуле:

h = 2S / a

где S – площадь треугольника, а – сторона треугольника.

Цифр после
запятой:

Результат в:

Согласно этой формуле высота равна удвоенной площади, деленной на длину стороны, к которой она
проведена.

Пример.  Найдите высоту разностороннего треугольника, проведенную к стороне а,
площадь которого равна 27 см, а длина стороны а составляет одну треть от площади. Решение: Найдем
сторону а. Так как известно, что она составляет треть от площади, а = 27 / 3 = 9 см.
Теперь воспользуемся формулой для нахождения высоты: h = 2S / a. Подставим
известные значения. h = 2 * 27 / 9 = 6 см. Ответ: 6 см

Через длины всех сторон разностороннего треугольника

Через длины всех сторон высота разностороннего треугольника ищется по формуле:

h = (2 √(p (p-a)(p-b)(p-c))) / 2
p = (a + b + c) / 2

где h – высота, а, b, c – стороны треугольника, p – полупериметр треугольника.

Цифр после
запятой:

Результат в:

Полупериметр треугольника можно найти либо в два этапа через периметр, либо сразу по формуле. Этим
способом удобно пользоваться, когда треугольник разносторонний.

Пример. Периметр разностороннего треугольника равен 18 см. Длины сторон 6 см и 8 см. Найдите
высоту, проведенную к стороне а. Решение: P = a + b + c, значит с = P – a – b , то есть c = 18 – 8 – 6 = 4 см. Для
нахождения h будем использовать формулу h = (2 √(p (p-a)(p-b)(p-c))) / 2.
Сначала найдем полупериметр (p): p = p / 2 = 18 / 2 = 9 см. Подставим,
найденные значения в формулу высоты: h = (2 √(9 (9 — 6)(9 — 8)(9 — 4))) / 2 = √135 / 3 = 2,12 см

Через длину прилежащей стороны и синус угла разностороннего треугольника

Через длину прилежащей стороны и синус угла высота ищется по следующей формуле:

h = a * sin α

где а – длина стороны, sin α – синус прилежащей стороны.

Цифр после
запятой:

Результат в:

Пример. В разностороннем треугольнике высота проведена к стороне AB. Угол ACH равен
30˚, а длина стороны AB 12 см. Найдите длину высоты CH в треугольнике ABC. По теореме о сумме углов
в треугольнике найдем угол САН. ∠САН = 180 – (∠АСН + ∠АНС). ∠САН = 180 – 90 – 30 = 60˚  sin 60º = 1/2. СН = AB * sin ∠САН, СН = 12 * 1/2 = 6 см. Ответ:
6 см

Через стороны и радиус описанной окружности разностороннего треугольника

Через стороны и радиус описанной окружности высоту можно найти по следующей формуле:

h = bc / 2R

где r – радиус описанной около треугольника окружности, b,c – стороны треугольника

Цифр после
запятой:

Результат в:

Пример. Вокруг разностороннего треугольника описана окружность с радиусом 3 см. Из
вершины между сторонами b и с проведена высота. Стороны b и с соответственно равны 5 см и 6 см.
Найдите высоту. Решение: Найдем высоту, используя формулу h = 5 * 6 / 2 * 3 = 30 / 6 = 5 см. Ответ:
5 см.

Через длины отрезков прямоугольного треугольника, образованных на гипотенузе

Через длины отрезков образованных на гипотенузе высоту можно найти по следующей формуле:

h = √(C1 * C2)

где: C1, C2 — отрезки, образованные проведением высоты к гипотенузе.

Цифр после
запятой:

Результат в:

Пример. В прямоугольном треугольнике катеты равны 4 см и 3 см. Угол BAH равен 30˚.
Найдите высоту. По теореме Пифагора найдём сторону BC, которая является гипотенузой в треугольнике
ABC. BC² = AB² = AC²,  BC² = 4² + 3² = 16+9 = 25 см², BC = √25 = 5 см. Угол
АНВ равен 90˚, так как АН является высотой, то есть, проведена перпендикулярно к стороне ВС.
Следовательно, треугольник АНВ – прямоугольный. Сторона ВН лежит напротив угла 30˚ в прямоугольном
треугольнике, значит, ее длина равна половине длины гипотенузы. Найдем ВН. BH = 1/2 AB. BH = 1/2 × 4 = 2 см. BC = BH + HC,
значит, HC = BC – BH, HC = 5 – 2 = 3 см. По формуле найдем высоту
(АН). АН = √(2 * 3) = √6 = 2,4 см. Ответ: 2,4 см.

Через основание и боковые стороны равнобедренного треугольника

Через основание и боковые стороны высота равнобедренного треугольника находится по формуле:

h = √(b² — a²/4)

где а – основание треугольника, b – боковая сторона. Для равнобедренного треугольника.

Цифр после
запятой:

Результат в:

Пример. В равнобедренном треугольнике АВС боковая сторона равна 8 см. Из вершины В к
основанию АС проведена высота ВН. Отрезок АН равен 5 см. Найдите высоту. Решение: Так как по условию
треугольник АВС равнобедренный по условию, то АВ = ВС = 8 см высота ВН,
является и медианой, и биссектрисой. Значит, АН = НС, а АС = НС + АН, АС = 5 + 5 = 10 см. По
формуле найдем высоту ВН = √(АВ² — АС² / 4). ВН = √(8² — 10² / 4) = √(64 — 100 / 4) = √39 = 6 см.
Ответ: 6 см.

Высота прямоугольного треугольника через все стороны треугольника

Если известны все стороны прямоугольного треугольника, то можно найти его высоту по следующей
формуле:

h = ab / c

где a,b,c – стороны треугольника.

Цифр после
запятой:

Результат в:

Пример. В прямоугольном треугольнике угол между катетом и гипотенузой равен 45˚.
Длина стороны АС равна 6 см. Найти высоту АН. Решение: По теореме о сумме углов в треугольнике
найдем угол АСВ. ∠АСВ = 180˚ – (45˚ + 90˚) = 45˚. Так как АСВ = АСВ, то
треугольник АВС равнобедренный с основанием ВС. Таким образом, АС = АВ = 6 см. По теореме Пифагора найдем гипотенузу ВС. BC² = AB² + AC². BC² = 6² + 6² = 36 +36 = 72 см². ВС = √72 = 6√2 см. Найдем
высоту по формуле AH = AB * AC / BC. АН = 6 * 6 / 6√2= см. Домножим
полученное значение на √2: (6 * √2) / √2 * √2 = 6√2 / 2 = 3√2 см. Ответ:
3√2 см

Через сторону равностороннего треугольника

Высота равностороннего треугольника через сторону треугольника ищется по следующей формуле:

h = a√3 / 2

где a – сторона треугольника.

Цифр после
запятой:

Результат в:

Пример: Найдите высоту в равностороннем треугольнике, если известно, что его сторона
равна 4√3 см. Решение: Для нахождения высоты воспользуемся формулой h = a√3 / 2 = √3 * 4 √3 / 2 = 4 * 3 / 2 = 6 см. Ответ:
6 см

В зависимости от типа треугольника высота может располагаться по-разному:

  1. Например, в треугольнике KGM высота GH, проведённая из вершины G к стороне находится внутри
    треугольника, так как треугольник является остроугольным. Кроме того, треугольник в данном
    примере равнобедренный, значит, она же является биссектрисой и медианой. Знание этого пригодится
    при решении задач, например таким образом можно будет найти основание.Рисунок 1
  2. В тупоугольном треугольнике высота будет выходить за его пределы и для того чтобы её провести
    понадобится сначала продлить сторону. Например, на рисунке сторона ВС продлена до НС.Рисунок 2
  3. В случае, когда треугольник имеет прямой угол – высота совпадёт с одним из катетов, либо будет
    внутри треугольника (как в первом рассмотренном варианте) и проведена к гипотенузе.Рисунок 3

Способы нахождения высоты треугольника: теорема и формула

Определение высоты треугольника

Геометрия, являющаяся разделом математики, изучает структуры в пространстве и на плоскости. Одним из типов таких фигур являются геометрические фигуры. К ним можно отнести квадрат, прямоугольник, круг, пятиугольник, треугольник и другие. Из них можно делать более сложные фигуры или оставлять в первоначальном виде.

Треугольником является фигура, относящаяся к классу простых фигур, которая образована тремя точками, находящимися не на одной прямой, и соединенными между собой тремя отрезками.

Треугольники могут быть:

  • разными по величине углов: прямоугольными, тупоугольными и остроугольными;
  • разными по числу равных сторон: равносторонними, равнобедренными и разносторонними.

Помимо трех сторон, важными элементами треугольников являются медианы, высоты и биссектрисы.

Высотой треугольника является перпендикуляр, опущенный из угла треугольника вниз, на противоположную сторону.

В геометрии высота треугольника обозначается буквой h.

В зависимости от типа треугольника высота может:

  • падать на противоположную сторону — у остроугольного треугольника;
  • находиться вне треугольника — у тупоугольного треугольника;
  • совпадать с одной из сторон — у прямоугольного треугольника.

Чтобы сделать высоту графически явной и понятной на рисунке, ее нередко выделяют красной линией.

Для того чтобы определить графическое начертание высоты треугольника, необходимо:

  1. Найти вершину фигуры.
  2. Опустить вниз перпендикулярную линию к противоположной стороне.
  3. Продлить противоположную сторону до пересечения с высотой, если требуется.

Любой треугольник имеет 3 высоты — по числу углов. Их пересечение находится в точке ортоцентра, которая, в зависимости от типа треугольника, может находиться внутри треугольника, снаружи на пересечении продолжений высот или совпадать с вершиной прямого угла.

Все три высоты треугольника обратно пропорциональны сторонам, к которым опущены. Доказательством будет соотношение:

A × H A ÷ B × H B ÷ C × H C = 1 B C ÷ 1 A C ÷ 1 A B

Выглядеть графически это будет так:

Существует множество способов нахождения высоты треугольника в зависимости от имеющихся данных.

Через площадь и длину стороны, к которой опущена высота:

где S — уже известная площадь треугольника,

Через длины всех сторон:

h = 2 p p × a p × b p × c a

где a, b и c — стороны треугольника,

p — его полупериметр.

Данная формула подходит только для нахождения высоты разностороннего треугольника.

Через длину прилежащей стороны и синус угла:

s i n a — синус угла прилежащей стороны.

Данная формула подходит только для нахождения высоты разностороннего треугольника.

Через стороны и радиус описанной окружности.

Решать задачи с треугольником и описанной окружностью для нахождения высоты можно следующим образом:

где b, c — стороны разностороннего треугольника, к которым не опущена высота,

R — радиус описанной окружности.

Данная формула подходит только для нахождения высоты разностороннего треугольника.

Через длины отрезков, образованных на гипотенузе при проведении к ней высоты треугольника:

где C 1 и С 2 — длины отрезков, образованных на гипотенузе, проведенной к ней высотой.

Данная формула подходит только для нахождения высоты прямоугольного треугольника.

Нахождение высоты равнобедренного треугольника через основание и боковые стороны

Равнобедренным треугольником называют треугольник, имеющий одинаковые по длине катеты, которые образуют равные углы с основанием. В таком треугольнике высота будет опускаться ровно в середину основания, образуя с ним прямой угол.

Помимо высоты, проведенная линия будет являться также осью симметрии, биссектрисой вершинного угла и медианой.

Формула для нахождения высоты в этом случае:

где a — основание,

b — равные боковые стороны.

Свойства высоты в равностороннем треугольнике

Равносторонний треугольник — это треугольник, стороны которого, углы, высоты, медианы, оси симметрии и биссектрисы будут равны.

Такой треугольник является частным примером равнобедренного треугольника, но не наоборот.

Высоту в таком треугольнике можно найти с помощью следующей формулы:

где а — сторона равностороннего треугольника.

Главным свойством, которым обладает высота равностороннего треугольника, является тот факт, что она равна медиане и биссектрисе:

а — сторона правильного равностороннего треугольника.

Нахождение высоты прямоугольного треугольника через его катеты

Прямоугольным считается треугольник, у которого один из углов является прямым, то есть равным 90°. Высота, опущенная из такого угла, падает на гипотенузу треугольника и делит его на два прямоугольных треугольника, которые пропорциональны по отношению к большому треугольнику и друг к другу.

Важно отметить, что две другие высоты будут совпадать с катетами треугольника.

Найти высоту в прямоугольном треугольнике, можно через два его катета (a и b) и гипотенузу (c).

Причем гипотенуза также легко находится через катеты по теореме Пифагора:

Расчет высоты идет следующим образом:

где a, b и c — вышеупомянутые стороны треугольника.

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

1. Через площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

где p – это полупериметр треугольника, который рассчитывается так:

3. Через длину прилежащей стороны и синус угла

4. Через стороны и радиус описанной окружности

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

2. Через стороны треугольника

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Высота треугольника онлайн

С помощю этого онлайн калькулятора можно найти высоту треугольника. Для нахождения высоты треугольника введите известные элементы треугольника и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.

Открыть онлайн калькулятор

Высота треугольника. Определение

Определение 1. Отрезок, проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника.

Высота треугольника может содержаться внутри треугольника (Рис.1), совпадать со стороной треугольника (при прямоугольном треугольнике высота совпадает с катетом (Рис.2) ), проходить вне треугольника (при тупоугольном треугольнике(Рис.3)).

Теорема о пересечении высот треугольника

Теорема 1. Все три высоты треугольника (или их продолжения) пересекаются в одной точке.

Доказательство. Рассмотрим произвольный треугольник ABC (Рис.4). Докажем, что высоты ( small AA_1 ,) ( small BB_1 ,) ( small CC_1 ) пересекаются в одной точке. Из каждой вершины треугольника проведем прямую, параллельно противоположной стороне. Получим треугольник ( small A_2B_2C_2. ) Покажем, что точки ( small A, B, C ) являются серединами сторон треугольника ( small A_2B_2C_2. ) ( small AB=A_2C ) так как они являются противоположными сторонами параллелограмма ( small ABA_2C. ) ( small AB=CB_2 ) так как они являются противоположными сторонами параллелограмма ( small ABCB_2. ) Тогда ( small CB_2=CA_2, ) то есть точка ( small C ) является серединой стороны ( small A_2B_2 ) треугольника ( small A_2B_2C_2. ) Аналогично доказывается, что точки ( small A ) и ( small B ) являются серединами сторон ( small B_2C_2 ) и ( small A_2C_2, ) соответственно.

Далее из ( small AA_1⊥BC ) следует, что ( small AA_1⊥B_2C_2 ) поскольку ( small BC ǁ B_2C_2 ). Аналогично, ( small BB_1⊥A_2C_2, ) ( small CC_1⊥A_2B_2. ) Получили, что ( small AA_1,) ( small BB_1, ) ( small CC_1) являются серединными перпендикулярами сторон ( small B_2C_2, ) ( small A_2C_2, ) ( small A_2B_2, ) соответственно. Но серединные перпендикуляры треугольника пересекаются в одной точке (см. статью Серединные перпендикуляры к сторонам треугольника). Следовательно высоты треугольника или их продолжения пересекаются в одной точке.

Точка пересечения высот треугольника называется ортоцентром.

Высота треугольника по основанию и площади

Пусть известны сторона треугольника и площадь. Найти высоту треугольника, отпущенная на известную сторону (Рис.5).

Решение. Площадь треугольника по основанию и высоте вычисляется из формулы:

Пример 1. Сторона треугольника равна ( small a=5 ) а площадь ( small S=7. ) Найти высоту треугольника.

Применим формулу (1). Подставляя значения ( small a ) и ( small S ) в (1), получим:

Ответ:

Высота треугольника по трем сторонам

Формула площади треугольника по трем сторонам имеет следующий вид (см. статью на странице Площадь треугольника онлайн):

где ( small a, b, c ) стороны треугольника а полупериод ( small p ) вычисляется из формулы:

Высота треугольника, отпущенная на сторону ( small a) вычисляется из формулы (1). Подставляя (2) в (1), получим формулу вычисления высоты треугольника по трем сторонам:

Пример 2. Известны стороны треугольника: ( small a=5, ) ( small b= 4, ) ( small c=7. ) Найти высоту треугольника, отпущенная на сторону ( small a. )

Решение: Найдем, сначала полупериод ( small p ) треугольника из формулы (3):

Подставляя значения ( small a , b, c ) и ( small p ) в (4), получим:

Ответ:

Высота треугольника по двум сторонам и радиусу описанной окружности

Рассмотрим треугольник на рисунке 6. Из теоремы синусов имеем:

Далее, из теоремы синусов имеем:

Подставляя (6) в (7), получим:

Отметим, что радиус описанной окружности должен удовлетворять следующему неравенству:

(small max (b,c) ≤2R Пример 3. Известны стороны треугольника: ( small b=7, ) ( small c= 3 ) и радиус описанной окружности ( small R=4. ) Найти высоту треугольника, отпущенная на сторону ( small a. )

Решение: Проверим сначала условие (9):

(small max (7,3) ≤2 cdot 4 Ответ: ( small 2frac<5><8>. )

Высота треугольника по стороне и прилежащему к ней углу

Найдем высоту ( small h_a ) треугольника на рисунке 7. Из теоремы синусов имеем:

( small frac<large h_a><large sin angle B>=frac<large c><large sin 90°>, )

( small h_a=c cdot sin angle B. ) (11)

Пример 4. Известны сторона ( small c=12 ) треугольника и прилежащий угол ( small angle B=30°. ) Найти высоту треугольника, отпущенная на сторону ( small a. )

Решение: Для нахождения высоты треугольника подставим значения ( small c=12 ) и ( small angle B=30° ) в (11). Имеем:

источники:

Содержание материала

  1. Определение
  2. Видео
  3. Свойства равносторонней фигуры
  4. Высота треугольника по двум сторонам и радиусу описанной окружности
  5. Свойства высоты в равностороннем треугольнике
  6. В треугольнике проведены три высоты
  7. Задача наподобие треугольников
  8. Высота треугольника по основанию и площади
  9. Остроугольный треугольник и высота
  10. Примеры задач

Определение

Одной из таких характеристик является высота треугольника. Высота – это перпендикуляр, проведенный из вершины треугольника к его противоположной стороне. Вершиной называют одну из трех точек, которые вместе с тремя отрезками составляют треугольник.

Определение высоты треугольника может звучать и так: высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Это определение звучит сложнее, но оно точнее отражает ситуацию. Дело в том, что в тупоугольном треугольнике не получится провести высоту внутри треугольника. Как видно на рисунке 1, высота в этом случае получается внешней. Кроме того, нестандартной ситуацией является построение высоты в прямоугольном треугольнике. В этом случае, две из трех высот треугольника будут проходить через катеты, а третья от вершины к гипотенузе.

Рис. 1. Высота тупоугольного треугольника.

Рис. 1. Высота тупоугольного треугольника.

Как правило, высоту треугольника обозначают буквой h. Также обозначается высота и в других фигурах.

Видео

Свойства равносторонней фигуры

При решении задач, связанных с нахождением высоты в равностороннем треугольнике, часто приходится использовать его свойства. Зная их, найти нужные параметры будет несложно. Тем более что все они связаны с главной особенностью фигуры — равенством его всех сторон.

Равностороннее тело с тремя углами обладает следующими особенностями:

  • в нём все углы одинаковые и равны 60 градусов;
  • середина пересечения отрезков, совпадающих с высотой, биссектрисой и медианой, является центром геометрического тела;
  • радиус описанной окружности превышает радиус вписанной в 2 раза;
  • в равностороннем треугольнике длины всех элементов выражаются через длину стороны.

Эти свойства очевидны. Если начертить треугольник с равными сторонами и вписать его в окружность, за центр можно принять точку O, при этом радиус описанного круга будет OK. Тогда линия, проведённая из неё к вершине, будет радиусом. Пусть конечная точка будет B. Но так как место пересечения является общим и для высот и медиан, из свойства последних можно сделать вывод, что в точке линия делится в отношении 2 к 1. Отсчёт следует вести с вершины треугольника. Значит: OB = 2 * OK.

Из основных формул, которые используются при вычислениях, в первую очередь нужно запомнить:

  • радиус описанной окружности: R = (a * √3) / 3;‎
  • диаметр вписанного круга: r = (a * √3) / 6;
  • медиана: h = (a * √3) / 2;
  • площадь: s = (a2 * √3) / 4;
  • периметр: p = 3 * a.

Если рассмотреть треугольник ABC с проведённой высотой BN, можно утверждать, что грань АВ = ВС = АС = AN /2 = NC /2. Так как фигура ABN является копией BNC в зеркальном отражении, разделённые углы у вершины будут одинаковыми, а и их разворот составлять 30 градусов. Из этого следует, что угол A равен 60 градусам, значит, отрезок BN = AB * sin 60 = (AB * √3) / 2.

Зная длину медианы (высоты), вычислить другие параметры треугольника не составит труда. Например, периметр, P = 2 √3 * h; площадь — S = (h * 2) / √3.

При этом замечательным свойством является ещё и то, что ортоцентр одновременно будет в фигуре и центром тяжести (центроидом), поэтому точка пересечения высот и делит отрезок в отношении 2 к 1.

Высота треугольника по двум сторонам и радиусу описанной окружности

Рассмотрим треугольник на рисунке 6. Из теоремы синусов имеем:

(5) (5)

откуда

(6) (6)

Далее, из теоремы синусов имеем:

(7) (7)

Подставляя (6) в (7), получим:

или

(8) (8)

Отметим, что радиус описанной окружности должен удовлетворять следующему неравенству:

(small max (b,c) ≤2R < b+c ) (9)

Пример 3. Известны стороны треугольника: ( small b=7, ) ( small c= 3 ) и радиус описанной окружности ( small R=4. ) Найти высоту треугольника, отпущенная на сторону ( small a. )

Решение: Проверим сначала условие (9):

(small max (7,3) ≤2 cdot 4 < 7+3 ) (10)

Условие (9) удовлетворяется, следовательно такой треугольник существует. Для нахождения выстоты треугольника воспользуется формулой (8). Имеем:

Ответ: ( small 2frac{5}{8}. )

Свойства высоты в равностороннем треугольнике

Равносторонний треугольник — это треугольник, стороны которого, углы, высоты, медианы, оси симметрии и биссектрисы будут равны.

Такой треугольник является частным примером равнобедренного треугольника, но не наоборот.

Высоту в таком треугольнике можно найти с помощью следующей формулы:

Формула 7

h=a32

где а — сторона равностороннего треугольника.

Главным свойством, которым обладает высота равностороннего треугольника, является тот факт, что она равна медиане и биссектрисе:

h=m=l=32a

где h — высота,

m — медиана,

l — биссектриса,

а — сторона правильного равностороннего треугольника.

В треугольнике проведены три высоты

Как и для медиан, и для биссектрис, для высот треугольника верно следующее утверждение:

В любом треугольнике три высоты или их продолжения пересекаются в одной точке.

Доказывать это утверждение мы здесь, пожалуй, не будем.

Давай просто нарисуем, чтобы понять, как это бывает «высоты или их продолжения».

1. Треугольник остроугольный – тогда пересекаются сами высоты:

2. Треугольник тупоугольный – тогда пересекаются продолжения высот:

Что же полезного мы ещё не обсудили?

Задача наподобие треугольников

В прямоугольном треугольнике ABC (угол C = 90) проведена высота CD. Определите CD, если AD = 9 см, BD = 16 см

Решение.

Треугольники ABC, ACD и CBD подобны между собой . Это непосредственно следует из второго признака подобия (равенство углов в этих треугольниках очевидно).

Прямоугольные треугольники — единственный вид треугольников, которые можно разрезать на два треугольника, подобных между собой и исходному треугольнику.

Обозначения этих трех треугольников в таком порядке следования вершин: ABC, ACD, CBD. Тем самым мы одновременно показываем и соответствие вершин. (Вершине A треугольника ABC соответствует также вершина A треугольника ACD и вершина C треугольника CBD и т. д.)

Треугольники ABC и CBD подобны. Значит:

AD/DC = DC/BD, то есть

DC2=AD*BD

DC2=9*16

DC=12 см

Высота треугольника по основанию и площади

Пусть известны сторона треугольника и площадь. Найти высоту треугольника, отпущенная на известную сторону (Рис.5).

Решение. Площадь треугольника по основанию и высоте вычисляется из формулы:

.

Откуда:

(1). (1)

Пример 1. Сторона треугольника равна ( small a=5 ) а площадь ( small S=7. ) Найти высоту треугольника.

Решение:

Применим формулу (1). Подставляя значения ( small a ) и ( small S ) в (1), получим:

Ответ:

Остроугольный треугольник и высота

Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:

Что видим теперь? Ещё подобные треугольники!

Как от двух линий вообще могут получиться столько подобных треугольников?!

Но тем не менее…

Видишь, какое богатство? И всё это может быть использовано в задачах!

Ну вот, теперь ты узнал что-то новенькое про высоты треугольника.

Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее — которое с косинусом, и то, что угол между высотами равен углу между сторонами…

Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести.

И тогда, если ты будешь точно знать, например, что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!

Примеры задач

Задача 1 Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Задача 2
 Найдите длину основания равнобедренного

Задача 2 Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Теги

Теги


Download Article


Download Article

To calculate the area of a triangle you need to know its height. To find the height follow these instructions. You must at least have a base to find the height.

  1. Image titled Find the Height of a Triangle Step 1

    1

    Recall the formula for the area of a triangle. The formula for the area of a triangle is

    A=1/2bh.

    [1]

    • A = Area of the triangle
    • b = Length of the base of the triangle
    • h = Height of the base of the triangle
  2. Image titled Find the Height of a Triangle Step 2

    2

    Look at your triangle and determine which variables you know. You already know the area, so assign that value to A. You should also know the value of one side length; assign that value to «‘b'».

    Any side of a triangle can be the base,

    regardless of how the triangle is drawn. To visualize this, just imagine rotating the triangle until the known side length is at the bottom.

    Example
    If you know that the area of a triangle is 20, and one side is 4, then:
    A = 20 and b = 4.

    Advertisement

  3. Image titled Find the Height of a Triangle Step 3

    3

    Plug your values into the equation A=1/2bh and do the math. First multiply the base (b) by 1/2, then divide the area (A) by the product. The resulting value will be the height of your triangle!

    Example
    20 = 1/2(4)h Plug the numbers into the equation.
    20 = 2h Multiply 4 by 1/2.
    10 = h Divide by 2 to find the value for height.

  4. Advertisement

  1. Image titled Find the Height of a Triangle Step 4

    1

    Recall the properties of an equilateral triangle. An equilateral triangle has three equal sides, and three equal angles that are each 60 degrees. If you

    cut an equilateral triangle in half, you will end up with two congruent right triangles.

    [2]

    • In this example, we will be using an equilateral triangle with side lengths of 8.
  2. Image titled Find the Height of a Triangle Step 5

    2

    Recall the Pythagorean Theorem. The Pythagorean Theorem states that for any right triangle with sides of length a and b, and hypotenuse of length c:

    a2 + b2 = c2.

    We can use this theorem to find the height of our equilateral triangle![3]

  3. Image titled Find the Height of a Triangle Step 6

    3

    Break the equilateral triangle in half, and assign values to variables a, b, and c. The hypotenuse c will be equal to the original side length. Side a will be equal to 1/2 the side length, and side b is the height of the triangle that we need to solve.

    • Using our example equilateral triangle with sides of 8, c = 8 and a = 4.
  4. Image titled Find the Height of a Triangle Step 7

    4

    Plug the values into the Pythagorean Theorem and solve for b2.[4]
    First square c and a by multiplying each number by itself. Then subtract a2 from c2.

    Example
    42 + b2 = 82 Plug in the values for a and c.
    16 + b2 = 64 Square a and c.
    b2 = 48 Subtract a2 from c2.

  5. Image titled Find the Height of a Triangle Step 8

    5

    Find the square root of b2 to get the height of your triangle! Use the square root function on your calculator to find Sqrt(2. The answer is the height of your equilateral triangle!

    • b = Sqrt (48) = 6.93
  6. Advertisement

  1. Image titled Find the Height of a Triangle Step 9

    1

    Determine what variables you know. The height of a triangle can be found if you have 2 sides and the angle in between them, or all three sides. We’ll call the sides of the triangle a, b, and c, and the angles, A, B, and C.

    • If you have all three sides, you’ll use

      Heron’s formula

      , and the formula for the area of a triangle.

    • If you have two sides and an angle, you’ll use the formula for the area given two angles and a side.

      A = 1/2ab(sin C).[5]

  2. Image titled Find the Height of a Triangle Step 10

    2

    Use Heron’s formula if you have all three sides. Heron’s formula has two parts. First, you must find the variable

    s, which is equal to half of the perimeter of the triangle.

    This is done with this formula:

    s = (a+b+c)/2.[6]

    Heron’s Formula Example
    For a triangle with sides a = 4, b = 3, and c = 5:
    s = (4+3+5)/2
    s = (12)/2
    s = 6

    Then use the second part of Heron’s formula, Area = sqr(s(s-a)(s-b)(s-c). Replace Area in the equation with its equivalent in the area formula: 1/2bh (or 1/2ah or 1/2ch).
    Solve for h. For our example triangle this looks like:
    1/2(3)h = sqr(6(6-4)(6-3)(6-5).
    3/2h = sqr(6(2)(3)(1)
    3/2h = sqr(36)

    Use a calculator to calculate the square root, which in this case makes it 3/2h = 6.
    Therefore, height is equal to 4, using side b as the base.

  3. Image titled Find the Height of a Triangle Step 11

    3

    Use the area given two sides and an angle formula if you have a side and an angle. Replace area in the formula with its equivalent in the area of a triangle formula: 1/2bh. This gives you a formula that looks like 1/2bh = 1/2ab(sin C). This can be simplified to

    h = a(sin C)

    , thereby eliminating one of the side variables.[7]
    Note that angle C and side a are both positioned across from the height that you need to find (both on the right side from it, or both on the left side).

    Finding Height with 1 Side and 1 Angle Example
    For example, with a = 3, and C = 40 degrees, the equation looks like this:
    h = 3(sin 40)
    Use your calculator to finish the equation, which makes h roughly 1.928.

  4. Advertisement

Practice Problems and Answers

Add New Question

  • Question

    How do I find the area of an equilateral triangle when only the height is given?

    Community Answer

    H = height, S = side, A = area, B = base. You know that each angle is 60 degrees because it is an equilateral triangle. If you look at one of the triangle halves, H/S = sin 60 degrees because S is the longest side (the hypotenuse) and H is across from the 60 degree angle, so now you can find S. The base of the triangle is S because all the sides are the same, so B = S. Using A = (1/2)*BH, you get A = (1/2)*SH, which you can now find.

  • Question

    How do I calculate the height of a right triangle, given only the length of the base and the interior angle at the base?

    Donagan

    Look up the tangent of the angle in a trigonometry table. Multiply the tangent by the length of the base.

  • Question

    How do I determine the height of a triangle when I know the length of all three sides?

    Community Answer

    You already know the base, so calculate the area by Heron’s formula. Then, substitute the values you know in the formula. Area=1/2 * base * height or height=2 * Area/base and find your answer.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

References

About This Article

Article SummaryX

If you know the base and area of the triangle, you can divide the base by 2, then divide that by the area to find the height. To find the height of an equilateral triangle, use the Pythagorean Theorem, a^2 + b^2 = c^2. Cut the triangle in half down the middle, so that c is equal to the original side length, a equals half of the original side length, and b is the height. Plug a and c into the equation, squaring both of them. Then subtract a^2 from c^2 and take the square root of the difference to find the height. If you want to learn how to calculate the area if you only know the angles and sides, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 2,409,174 times.

Reader Success Stories

  • Kai Parker

    «My Geometry teacher is not the best teacher, and I usually have to look up terms and lessons so I can teach myself…» more

Did this article help you?

Понравилась статья? Поделить с друзьями:
  • Как составить код шеннона фано
  • Как исправить ошибку 339
  • Как составить план курсовой работы по псо
  • Не пробили чек на безналичную оплату как исправить
  • Как найти сумму массива пайтон