Как найти закон движения математика

Содержание:

  1. Динамика материальной точки
  2. Прямая задача динамики точки
  3. Основные законы динамики
  4. Уравнения движения материальной точки в декартовых и естественных системах отсчета
  5. Две основные задачи динамики материальной точки
  6. Порядок решения прямой задачи динамики невольной материальной точки
  7. Примеры решения задач на тему: Динамика материальной точки
  8. Решение задач на тему: Движение материальной точки по криволинейной траектории

Динамика − раздел механики, в котором изучается движение тел под действием приложенных сил. Основной задачей динамики является определение кинематического уравнения движения материальной точки, если известны, приложенные силы к ней со стороны окружающих тел и начальные условия, положение и скорость тела в начальный момент времени.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Динамика материальной точки

Динамикой называется раздел теоретической механики, в котором изучается механическое движение материальных объектов в зависимости от физических факторов, то есть от причин, вызывающих это движение.

Напомним, что в классической механике движение материальных объектов рассматривается с помощью абстрактных моделей: материальной точки, механической системы и абсолютно твердого тела.

Материальная точка — это материальное тело, размерами и разницей в движении его частей которого можно пренебречь.

Механической системой (системой материальных точек) называется совокупность материальных точек, которые между собой взаимодействуют, то есть, положение и движение которых взаимосвязаны.

Абсолютно твердым телом называется совокупность материальных точек, расстояния между которыми во время движения не меняются.

Движение механической системы определяется движением всех его точек. Поэтому изучение динамики начинается с изучения движения одной материальной точки.

В динамике точки рассматриваются две основные задачи:

— движение точки задается, а необходимо найти силы, которые это движение реализуют (первая, или прямая задача);
— силы задаются, а необходимо определить закон движения, который является результатом действия этих сил.

Для решения этих задач используются базовые сведения из статики и кинематики, а также законы динамики, то есть, общие законы движения тел и механических систем под действием приложенных к ним сил. Эти законы впервые в наиболее полном виде сформулированы Исааком Ньютоном в конце XVII века.

Прямая задача динамики точки

Первая (прямая) задача динамики содержит условие: По заданному движению, совершаемому точкой данной массы, требуется найти неизвестную действующую силу.

Основные законы динамики

В динамике изучается движение материальных систем в связи с действующими на них силами. Самым простым объектом механики является материальная точка.

Материальная точка — тело, размерами которого при решении данной задачи можно пренебречь.

Если на положение материальной точки и на ее движение не наложены никакие ограничения, точка называется свободной, в противном случае имеем дело с движением несвободной точки.

Движение механической системы определяется движением всех ее материальных точек. Поэтому изучение динамики начинается с изучения движения одной материальной точки.

В основе динамики лежат три закона И. Ньютона, которые впервые в наиболее полном и законченном виде были сформулированы в книге «Математические начала натуральной философии» (1686 г.).

1. Первый закон (закон инерции):
изолированная
от внешних действий материальная точка сохраняет свое состояние покоя или равномерного прямолинейного движения до тех пор, пока действие других тел не изменит этого состояния.

2. Второй закон (основной закон динамики):
cила, которая действует на материальную точку, равна произведению массы точки на ее ускорение, а направление силы совпадает с направлением ускорения:

Динамика материальной точки

Если на точку действует несколько сил, то их можно заменить равнодействующей:

Динамика материальной точки

Если точка движется по какой-то поверхности, то на нее, кроме активных сил действует и реакция связи Динамика материальной точки.

Таким образом в общем случае в уравнении (1.1):

Динамика материальной точки

3. Третий закон (закон равенства действия и противодействия):
Силы взаимодействия двух материальных точек равны между собой по модулю и направлены вдоль одной прямой, которая соединяет эти точки, в противоположные стороны.

Уравнения движения материальной точки в декартовых и естественных системах отсчета

Вместо уравнения движения (1.1) в векторной форме можно получить уравнение в скалярной форме, если спроектировать (1.1) на оси декартовой или естественной систем координат.

Уравнение движения в декартовых координатах:

Динамика материальной точки

Здесь Динамика материальной точки — проекции силы Динамика материальной точкина соответствующие декартовые оси координат;

Динамика материальной точки — проекции ускорения Динамика материальной точки на те же оси.

Две основные задачи динамики материальной точки

Первая задача (прямая): зная массу точки Динамика материальной точки и законы ее движения, например, в декартовых координатах:

Динамика материальной точки

определить равнодействующую приложенных к точке сил.

Сначала нужно определить проекции ускорения точки на оси координат:

Динамика материальной точки

Используя уравнение движения точки в декартовых координатах (1.3), определяем значения проекций равнодействующей приложенных к точке сил, а также ее модуль:

Динамика материальной точки

Направление вектора силы относительно осей координат определяется с помощью направляющих косинусов:

Динамика материальной точки

Вторая задача (обратная): зная силы, которые действуют на материальную точку, ее массу, а также первоначальные условия (положение точки и ее скорость в некоторые моменты времени, не обязательно в начальный), получить уравнение движения точки.

Порядок решения прямой задачи динамики невольной материальной точки

1. Изобразить на рисунке материальную точку в промежуточном положении.
2. Показать активные силы и реакции связей, которые на нее действуют.
3. Выбрать систему отсчета.
4. Записать векторное уравнение движения точки в форме второго закона динамики (1.1).
5. Спроектировать векторное уравнение движения точки на выделенные оси координат.
6. Из полученных уравнений определить необходимые величины.

Примеры решения задач на тему: Динамика материальной точки

Задача № 1

В шахту начинает опускаться равноускорено лифт, масса которого Динамика материальной точки В первые 10 с он проходит 35 м.

Определить натяжение Динамика материальной точки каната, на котором висит лифт.

Решение. Изобразим кабину лифта в произвольном положении (рис.1.1). На лифт действует сила тяжести Динамика материальной точки, которая направлена вниз, и натяжение каната Динамика материальной точки, который направлен вдоль троса вверх.

Динамика материальной точки

Движение происходит по вертикали, поэтому направим ось Динамика материальной точки вертикально вниз в соответствии с направлением скорости и ускорения.

Запишем уравнение движения кабины лифта в форме второго закона Ньютона:

Динамика материальной точки

где Динамика материальной точки — ускорение кабины лифта.

С учетом сил, действующих на кабину лифта, уравнение будет иметь вид:

Динамика материальной точки

Спроектируем это уравнение на ось Динамика материальной точки:

Динамика материальной точки

С учетом того, что Динамика материальной точки, находим

Динамика материальной точки

Мы получили зависимость натяжения каната от ускорения, с которым движется кабина лифта.

Проанализируем эту зависимость. Может быть три случая:

В первом случае

Динамика материальной точки

То есть, если кабина лифта движется без ускорения в любом направлении, натяжение троса будет равняться силе тяжести кабины лифта.

Во втором случае натяжение троса меньше силы тяжести кабины лифта, потому что Динамика материальной точки, а если Динамика материальной точки, то Динамика материальной точки

В третьем случае натяжение троса всегда больше силы тяжести кабины лифта, потому что Динамика материальной точки и Динамика материальной точки

Например, когда Динамика материальной точки то есть натяжение троса вдвое превышает силу тяжести кабины лифта.

В нашей задаче ускорение определится с выражения для пути при равнопеременном движении с учетом того, что начальная скорость Динамика материальной точки:

Динамика материальной точки

Тогда:

Динамика материальной точки

Ответ: натяжение троса Динамика материальной точки

Задача № 2

К телу весом Динамика материальной точки которое лежит на столе, привязали нить, второй конец которой (рис.1.2) держат в руке.

Динамика материальной точки

Определить, с каким ускорением Динамика материальной точки надо поднимать тело вверх вертикально, чтобы нить оборвалась, если она рвется когда натяжение достигает величины Динамика материальной точки

Решение: Изобразим тело с привязанной к нему нитью (рис.1.2). Покажем силы, которые действуют на тело: сила тяжести Динамика материальной точки и натяжение нити Динамика материальной точки. Ось Динамика материальной точки направляется по вертикали вверх в положительном направлении скорости и ускорения.

Запишем уравнение движения тела в векторной форме:

Динамика материальной точки

Спроектируем это уравнение на ось Динамика материальной точки:

Динамика материальной точки

Откуда:

Динамика материальной точки

Если учесть числовые данные, то

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 3

Пуля весом Динамика материальной точки падает вертикально вниз под действием силы тяжести и испытывает опору среды (рис.1.3). Закон движения шара соответствует уравнению Динамика материальной точки, причем Динамика материальной точки выражается в сантиметрах, Динамика материальной точки — в секундах.

Динамика материальной точки

Определить силу сопротивления среды Динамика материальной точки в виде функции скорости, то есть Динамика материальной точки

Решение. Изобразим шар в произвольном положении на траектории и покажем силы, которые на него действуют (рис.1.3):

Динамика материальной точки — сила тяжести;

Динамика материальной точки — сила сопротивления среды.

Движение шара происходит вдоль вертикали, поэтому направим ось Динамика материальной точки вертикально вниз по направлению скорости. Тогда положение шара будет определяться координатой Динамика материальной точки.

Запишем уравнение движения шара в векторной форме:

Динамика материальной точки

и спроектируем его на ось Динамика материальной точки:

Динамика материальной точки

откуда 

Динамика материальной точки

Таким образом, чтобы определить силу сопротивления Динамика материальной точки, необходимо знать ускорение шара Динамика материальной точки.

Поскольку закон изменения координаты Динамика материальной точки известен, то

Динамика материальной точки

Находим первую и вторую производные от закона движения пули:

Динамика материальной точки

Таким образом,

Динамика материальной точки

Из выражения Динамика материальной точки (с учетом того, что Динамика материальной точки) вытекает

Динамика материальной точки

то есть 

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 4

Движение тела массой Динамика материальной точки выражается уравнениями:

Динамика материальной точки

где Динамика материальной точки и Динамика материальной точки — в метрах, а Динамика материальной точки — в секундах.

Определить силу Динамика материальной точки, которая действует на тело, принимая его за материальную точку (рис.1.4).

Динамика материальной точки

Решение. Проекции на оси координат силы Динамика материальной точки, которая приложена к телу, определяются по формулам:

Динамика материальной точки

где Динамика материальной точки и Динамика материальной точки — проекции ускорения тела на оси координат.

В данном случае

Динамика материальной точки

Итак

Динамика материальной точки

Модуль силы Динамика материальной точки равен:

Динамика материальной точки

Сила Динамика материальной точки направлена вертикально вниз, поскольку Динамика материальной точки Таким образом, искомая сила, модуль которой равен Динамика материальной точки, является силой тяжести.

Ответ: Динамика материальной точки

Задача № 5

Прямолинейное движение ножа Динамика материальной точки резального аппарата жатки зерноуборочного комбайна (рис.1.5) приближено выражается уравнением Динамика материальной точки (Динамика материальной точки — в метрах; Динамика материальной точки — в секундах).

Динамика материальной точки

Определить силу Динамика материальной точки, которая приводит нож к движению, в зависимости от расстояния Динамика материальной точки. Вес ножа Динамика материальной точки

Объяснение: Для привода ножа резального аппарата жатки используются плоские и пространственные механизмы. Среди плоских механизмов нашли применение кривошипно-шатунные, которые состоят из кривошипа 1, шатуна 2 и ножа жатки 3. Механизм преобразует вращательное движение кривошипа 1 в обратно поступательное движение ножа 3.

В уборочных машинах ось кривошипного пальца Динамика материальной точки находится выше линии движения ножа Динамика материальной точки.

Решение. Изобразим нож резного аппарата в среднем положении на перемещении Динамика материальной точки и покажем силы, которые действуют на него.

На нож Динамика материальной точки действует сила веса Динамика материальной точки, нормальная реакция опорной поверхности направляющих ножа Динамика материальной точки и сила Динамика материальной точки со стороны шатуна Динамика материальной точки, которая вызывает движение ножа.

Запишем уравнение движения ножа в векторной форме:

Динамика материальной точки

Проектируем это уравнение на направление движения ножа (ось Динамика материальной точки):

Динамика материальной точки или Динамика материальной точки

Из последнего уравнения следует, что для определения силы Динамика материальной точки необходимо знать ускорение Динамика материальной точки.

Поскольку задан закон движения ножа Динамика материальной точки: Динамика материальной точки то ускорение Динамика материальной точки определяется как вторая производная от закона движения по времени:

Динамика материальной точки

Итак, 

Динамика материальной точки

Учтем, что Динамика материальной точки и получим:

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 6

Нагруженная вагонетка массой Динамика материальной точки опускается по канатной железной дороге с наклоном Динамика материальной точки и имеет скорость Динамика материальной точки (рис.1.6).

Динамика материальной точки

Определить натяжение каната при равномерном опускании и при торможении вагонетки, если время торможения Динамика материальной точки, общий коэффициент сопротивления движению Динамика материальной точки. При торможении вагонетка движется равнозамедленно.

Решение. Изобразим вагонетку в произвольном положении. Покажем силы, которые действуют на нее: силу тяжести Динамика материальной точки, нормальную реакцию железной дороги Динамика материальной точки, натяжение каната Динамика материальной точки и силу сопротивления Динамика материальной точки.

Выбираем декартовую систему координат: ось Динамика материальной точки направим параллельно дороге в сторону движения; ось Динамика материальной точки — вверх перпендикулярно дороге. Запишем векторное уравнение движения вагонетки в форме второго закона Ньютона:

Динамика материальной точки

Проектируем векторное уравнение движения на оси координат:

Динамика материальной точки

Поскольку Динамика материальной точки все время движения вагонетки, то Динамика материальной точки, и из уравнение (2) легко находим величину нормальной реакции:

Динамика материальной точки

Тогда общая сила сопротивления движению составляет:

Динамика материальной точки

Для определения натяжения Динамика материальной точки используем уравнение (1)

Динамика материальной точки

При равномерном опусканье Динамика материальной точки и Динамика материальной точки составит:

Динамика материальной точки

При равнозамедленном торможении 

Динамика материальной точки

где Динамика материальной точки — начальная скорость;

Динамика материальной точки — конечная скорость.

Таким образом 

Динамика материальной точки

Тогда

Динамика материальной точки

Ответ: Динамика материальной точки

Из полученных результатов следует, что при торможении нагрузка на канат увеличивается по сравнению с нагрузкой при равномерном движении.

Задача № 7

Вагон весом Динамика материальной точки скатывается по колее, которая наклонена к горизонту под углом Динамика материальной точки.

Определить силу торможения вагона Динамика материальной точки, которая вызывается трением колес по рельсам, предполагая, что движение вагона происходит с постоянным ускорением, а также то значение угла Динамика материальной точки, при котором вагон будет скатываться равномерно.

Решение. Изображаем вагон в виде материальной точки в произвольном положении на наклонной плоскости и показываем силы, которые на него действуют (рис.1.7): Динамика материальной точки — сила тяжести вагона; Динамика материальной точки — нормальная реакция рельсов; Динамика материальной точки — сила трения.

Динамика материальной точки

Выбираем декартовую систему координат, причем ось Динамика материальной точки направим параллельно рельсам в сторону движения вагона; а ось Динамика материальной точки — перпендикулярно рельсам.

Запишем уравнение движения вагона в векторной форме:

Динамика материальной точки

и спроектируем его на оси выбранной системы координат:

Динамика материальной точки

По уравнению (2) определим силу торможения вагона:

Динамика материальной точки

По условиям задачи вагон движется с ускорением Динамика материальной точки которое направлено вдоль оси Динамика материальной точки, то есть Динамика материальной точки.

Если подставим в уравнение (3) Динамика материальной точки, то получим:

Динамика материальной точки

Определим значение угла Динамика материальной точки, при котором вагон будет скатываться равномерно. Поскольку

Динамика материальной точки

то

Динамика материальной точки

где Динамика материальной точки — коэффициент трения.

Откуда получим

Динамика материальной точки

Из этого уравнения вытекает, что при изменении угла Динамика материальной точки, можно найти значение угла, при котором Динамика материальной точки. Если в уравнении (4) присвоить Динамика материальной точки, то

Динамика материальной точки

Поскольку известно, что коэффициент трения равен тангенсу угла трения Динамика материальной точки, то

Динамика материальной точки

Таким образом, при углу наклона рельсов к горизонту, что равен углу трения Динамика материальной точки, вагон будет скатываться равномерно.

Ответ: Динамика материальной точки

Задачи, которые рекомендуются для самостоятельной работы: 26.2, 26.8, 26.10, 26.20, 26.24 [2].

Решение задач на тему: Движение материальной точки по криволинейной траектории

При решении задач, связанных с движением точки по криволинейной траектории, если траектория известна, удобно рассматривать движение точки в естественной системе координат Динамика материальной точки (рис.1.8):

Динамика материальной точки

где Динамика материальной точки — модуль скорости точки,

Динамика материальной точки — радиус кривизны траектории в заданном положении точки.

Динамика материальной точки

В уравнениях (1.6) и (1.8) Динамика материальной точки суммы проекций сил, действующих на точку, на направления осей: касательной (Динамика материальной точки), нормальной (Динамика материальной точки) и бинормальной (Динамика материальной точки) к  траектории в заданном положении точки.

Порядок решения прямой задачи динамики точки в случае использования уравнений (1.6) и (1.8) совпадает с рекомендациями пунктов 1 и 6 занятия № 1.

Если задано уравнение движения материальной точки по траектории в виде Динамика материальной точки, то для нахождения равнодействующей приложенных к этой точке сил, необходимо сначала найти проекции Динамика материальной точки и Динамика материальной точки полного ускорения Динамика материальной точки точки:

Динамика материальной точки

Далее, с уравнений (1.6), (1.7) находим значения касательной и нормальной проекции силы Динамика материальной точки:

Динамика материальной точки

Модуль приложенной к материальной точке силы, при естественном способе обозначения движения, будет равен

Динамика материальной точки

Задача № 1

Материальная точка массой Динамика материальной точки движется по окружности с радиусом Динамика материальной точки согласно закону Динамика материальной точки

Определить модуль Динамика материальной точки равнодействующей сил, приложенных к материальной точке.

Решение. В задаче движение материальной точки задано естественным способом, поэтому для определения равнодействующей сил воспользуемся зависимостями (1.6) и (1.7):

Динамика материальной точки

Определим касательное и нормальное ускорение материальной точки:

Динамика материальной точки

Поскольку Динамика материальной точки, то проекция Динамика материальной точки равнодействующей на касательную ось равняется нулю.

Находим нормальную составляющую равнодействующей сил:

Динамика материальной точки

Модуль равнодействующей определим из выражения (1.11):

Динамика материальной точки

Таким образом, заданное движение материальной точки происходит под действием силы, постоянной по модулю и направленной вдоль радиуса к центру окружности.

Ответ: Динамика материальной точки

Задача № 2

Материальная точка массой Динамика материальной точки движется по окружности с радиусом Динамика материальной точки согласно закону Динамика материальной точки

Определить проекцию Динамика материальной точки равнодействующей сил, приложенных к материальной точке, на касательную к траектории в момент времени Динамика материальной точки

Решение. Для определения проекции Динамика материальной точки воспользуемся уравнением (1.6):

Динамика материальной точки

Сначала найдем значение скорости материальной точки:

Динамика материальной точки

При Динамика материальной точки

Определяем величину касательного ускорения

Динамика материальной точки

при Динамика материальной точки

Подставив в уравнение (1) значения Динамика материальной точки и Динамика материальной точки, получим:

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 3

Материальная точка массой Динамика материальной точки движется по окружности с радиусом Динамика материальной точки согласно закону Динамика материальной точки

Определить модуль Динамика материальной точки равнодействующей сил, действующих на точку, в момент времени Динамика материальной точки

Решение. Поскольку движение материальной точки задано естественным способом, то модуль равнодействующей сил, приложенных к точке, определяется по зависимостям (1.10) и (1.11):

Динамика материальной точки

Величины касательного и нормального ускорения материальной точки определяются по уравнениям (1.9):

Динамика материальной точки

Учитывая, что скорость точки 

Динамика материальной точки

то касательное ускорение точки равно:

Динамика материальной точки

Поскольку в момент времени Динамика материальной точки скорость точки:

Динамика материальной точки

то нормальное ускорение точки составит:

Динамика материальной точки

Определяем Динамика материальной точки и Динамика материальной точки по уравнениям (1.10):

Динамика материальной точки

Тогда модуль равнодействующей сил, действующих на материальную точку, равен:

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 4

На криволинейных участках железнодорожного пути наружный рельс поднимают выше над внутренним (рис.1.9). При движении поезда на этом участке его скорость Динамика материальной точки поддерживают такой, чтобы давление вагона на рельсы было направлено перпендикулярно железнодорожному полотну.

Динамика материальной точки

Определить величину Динамика материальной точки повышения внешнего рельса над внутренним при следующих данных: радиус закругления железнодорожного пути Динамика материальной точки, скорость поезда Динамика материальной точки, расстояние между рельсами Динамика материальной точки

Решение. На вагон действуют: сила тяжести Динамика материальной точки, которая направлена вертикально вниз, и реакции рельсов на колеса Динамика материальной точки и Динамика материальной точки, которые направлены перпендикулярно железнодорожному полотну.

Запишем уравнение движения вагона в векторной форме:

Динамика материальной точки

где Динамика материальной точки — ускорение вагона.

Поскольку движение происходит по криволинейной траектории, то выбираем естественную систему координат: ось Динамика материальной точки направим по нормали к центру кривизны траектории, а ось Динамика материальной точки — по касательной в сторону движения вагона. Бинормаль, ось Динамика материальной точки, на рис. 1.9 не показано.

Проектируем уравнение движения (1) на ось Динамика материальной точки:

Динамика материальной точки или Динамика материальной точки

Из рис. 1.8 видно, что Динамика материальной точки

Итак, 

Динамика материальной точки

Подставив числовые значения известных величин, получаем:

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 5

Груз Динамика материальной точки весом Динамика материальной точки который подвешен к нитке длиной Динамика материальной точки в неподвижной точке Динамика материальной точки, представляет собой конический маятник (рис.1.10), то есть движется по окружности в горизонтальной плоскости, при этом нитка с вертикалью образует угол ­ Динамика материальной точки.

Динамика материальной точки

Определить величину скорости груза Динамика материальной точки и модуль силы натяжения нити Динамика материальной точки.

Решение. Изобразим груз Динамика материальной точки в любом положении и покажем силы, которые на него действуют: силу тяжести Динамика материальной точки, которая направлена вертикально вниз, и натяжение нити Динамика материальной точки, которое направлено к точке подвеса Динамика материальной точки.

Для решения задачи выбираем естественную систему координат: ось Динамика материальной точки направлена по касательной к окружности в сторону движения груза, ось Динамика материальной точки — по нормали к центру кривизны и ось Динамика материальной точки — вертикально вверх.

Запишем уравнение движения груза в векторной форме:

Динамика материальной точки

Проектируем это векторное уравнение на оси координат:

Динамика материальной точки

Модуль силы натяжения нити Динамика материальной точки найдем из третьего из уравнений (1), учитывая, что Динамика материальной точки:

Динамика материальной точки

Из второго из уравнений (1) найдем Динамика материальной точки, если учесть, что 

Динамика материальной точки

Тогда

Динамика материальной точки

Откуда

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 6

Материальная точка весом Динамика материальной точки движется по горизонтальной поверхности под действием силы Динамика материальной точки. В период разгона точки путь, который она проходит, меняется по закону Динамика материальной точки (Динамика материальной точки — в секундах, Динамика материальной точки — в метрах). Траекторией движения точки на плоскости (рис.1.11) является окружность с радиусом Динамика материальной точки

Определить модуль силы Динамика материальной точки, которая действует, в момент, когда модуль скорости точки равен Динамика материальной точки

Решение. Изобразим точку Динамика материальной точки в любом положении на окружности (рис.1.11). Покажем силы, действующие на материальную точку: силу тяжести Динамика материальной точки; реакцию поверхности Динамика материальной точки, которая перпендикулярна поверхности, и заданную силу Динамика материальной точки, которая лежит в плоскости движения точки и направлена в сторону центра кривизны траектории.

Динамика материальной точки

С точкой Динамика материальной точки повяжем естественную систему координат. Ось Динамика материальной точки направим по касательной к окружности в сторону движения, а ось Динамика материальной точки — перпендикулярно ей в сторону центра кривизны окружности.

Запишем уравнение движения точки в виде второго закона Ньютона:

Динамика материальной точки

Спроектируем это векторное уравнение на оси выбранной системы координат:

Динамика материальной точки

Поскольку закон движения известен, то: 

Динамика материальной точки

По условиям Динамика материальной точки Найдем момент времени, когда это условие выполняется:

Динамика материальной точки

Тогда:

Динамика материальной точки

Учитывая, что масса точки равна Динамика материальной точки, находим:

Динамика материальной точки

Определяем модуль искомой силы:

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 7

Радиус закругления моста в точке Динамика материальной точки равен Динамика материальной точки (рис.1.12).

Динамика материальной точки

Определить, с какой силой автомобиль давит на мост в точке Динамика материальной точки, если его масса Динамика материальной точки, а модуль скорости движения Динамика материальной точки

Решение. Рассмотрим автомобиль как материальную точку, поскольку его размерами по сравнению с размерами моста можно пренебречь. Изобразим автомобиль в точке Динамика материальной точки моста (рис.1.12) и покажем силы, которые действуют на него: Динамика материальной точки — силу тяжести автомобиля и Динамика материальной точки — реакцию моста.

Поскольку автомобиль движется по криволинейной траектории, то для решения задачи воспользуемся естественной системой координат Динамика материальной точки.

Запишем уравнение движения автомобиля в векторной форме:

Динамика материальной точки

и спроектируем его на оси выбранной системы координат:

Динамика материальной точки (поскольку Динамика материальной точки то Динамика материальной точки),                           (1)

Динамика материальной точки

Из уравнения (2) определяем реакцию моста Динамика материальной точки по модулю:

Динамика материальной точки

Сила давления Динамика материальной точки автомобиля на мост равна по модулю реакции моста, но направлена вниз.

Поскольку вес автомобиля Динамика материальной точки равен

Динамика материальной точки

то, если мост выпуклый, сила давления автомобиля на него уменьшается по сравнению с тем случаем, когда автомобиль движется по горизонтальному мосту.

Зададим дополнительный вопрос: с какой скоростью Динамика материальной точки должен двигаться автомобиль, чтобы сила давления автомобиля на мост Динамика материальной точки равнялась нулю?

Поскольку Динамика материальной точки, то 

Динамика материальной точки илиДинамика материальной точки

Отсюда

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 8

Камень весом Динамика материальной точки который привязан к нитке длиной Динамика материальной точки, описывает окружность в вертикальной плоскости (рис.1.13).

Динамика материальной точки

Определить наименьшее значение угловой скорости вращения, при которой нить разорвется, если ее сопротивление разрыву составляет Динамика материальной точки

Решение. Представим камень Динамика материальной точки в любом положении на дуге окружности. Положение точки Динамика материальной точки определяется углом Динамика материальной точки, который отсчитывается от вертикали Динамика материальной точки в направлении угловой скорости.

На камень (точку Динамика материальной точки) действуют сила тяжести Динамика материальной точки и сила натяжения нити Динамика материальной точки.

С точкой Динамика материальной точки свяжем естественную систему координат Динамика материальной точки и запишем уравнение движения точки Динамика материальной точки в векторной форме:

Динамика материальной точки

Спроектируем это уравнение на оси выбранной системы координат:

Динамика материальной точки

Заметим, что Динамика материальной точки, а Динамика материальной точки. То есть уравнение (2) преобразуется в вид:

Динамика материальной точки

Отсюда

Динамика материальной точки

Из уравнения (3) вытекает, что при Динамика материальной точки угловая скорость Динамика материальной точки является только функцией угла Динамика материальной точки. Наименьшее значение Динамика материальной точки, когда нить разрывается, будет при Динамика материальной точки, то есть, когда Динамика материальной точки, что соответствует положению камня в точке Динамика материальной точки. Таким образом:

Динамика материальной точки

Ответ: Динамика материальной точки

Задача № 9

Трек для испытания автомобилей на кривых отрезках пути имеет виражи, профиль которых (рис.1.14) в поперечном пересечении является прямой, которая наклонена к горизонту так, что внешний край трека выше внутреннего.

Динамика материальной точки

Определить, с какой наименьшей и самой большой скоростью можно ехать по виражу, имеющему радиус кривизны Динамика материальной точки и угол наклона к горизонту ­Динамика материальной точки? Коэффициент трения шин Динамика материальной точки о поверхность трека считать известным.

Решение. На автомобиль, который движется по виражу, действуют: сила тяжести Динамика материальной точки, сила нормального давления со стороны поверхности виража Динамика материальной точки и сила трения Динамика материальной точки, которая направлена вдоль поверхности виража в плоскости, которая перпендикулярна направлению скорости. Возникновение силы трения обуславливается трением колес автомобиля о поверхность виража.

Рассмотрим движение центра тяжести автомобиля (точка Динамика материальной точки), считая, что все силы приложены к этой точке. Первым рассмотрим случай движения автомобиля, когда сила трения Динамика материальной точки (рис.1.14, а). С точки Динамика материальной точки повяжем естественную систему координат Динамика материальной точки: нормаль Динамика материальной точки направим в центр кривизны, Динамика материальной точки — перпендикулярно Динамика материальной точки.

Запишем уравнение движения автомобиля в векторной форме:

Динамика материальной точки

и спроектируем это уравнение на оси координат Динамика материальной точки и Динамика материальной точки:

Динамика материальной точки

Из уравнения (1) найдем величину нормальной реакции Динамика материальной точки:

Динамика материальной точки

Подставим найденное значение Динамика материальной точки в уравнение (2) и определим скорость автомобиля, когда сила трения о поверхность трека равна нулю:

Динамика материальной точки

При максимальной скорости автомобиля Динамика материальной точки сила трения Динамика материальной точки направлена к нижнему краю виража (рис.1.14, б) и равняется Динамика материальной точки

Векторное уравнение движения автомобиля в этом случае будет иметь вид:

Динамика материальной точки

Проектируем уравнение (4) на оси Динамика материальной точки:

Динамика материальной точки

Уравнение (5) перепишем в виде:

Динамика материальной точки

откуда

Динамика материальной точки

Подставим значение Динамика материальной точки в уравнение (6) и определим максимальное значение скорости Динамика материальной точки:

Динамика материальной точки

Отсюда:

Динамика материальной точки

Если скорость автомобиля минимальная Динамика материальной точки (рис.1.14, в), то трение направлено к верхнему краю трека и проекции уравнения (4) на оси Динамика материальной точки будут иметь вид:

Динамика материальной точки

Из уравнений (8) и (9) получаем:

Динамика материальной точки

Ответ: Динамика материальной точки

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет ферм
  9. Расчет усилий в стержнях фермы
  10. Пространственная система сил
  11. Произвольная пространственная система сил
  12. Плоская система сходящихся сил
  13. Пространственная система сходящихся сил
  14. Равновесие тела под действием пространственной системы сил
  15. Естественный способ задания движения точки
  16. Центр параллельных сил
  17. Параллельные силы
  18. Система произвольно расположенных сил
  19. Сосредоточенные силы и распределенные нагрузки
  20. Кинематика
  21. Кинематика твердого тела
  22. Движения твердого тела
  23. Динамика механической системы
  24. Динамика плоского движения твердого тела
  25. Динамика относительного движения материальной точки
  26. Динамика твердого тела
  27. Кинематика простейших движений твердого тела
  28. Общее уравнение динамики
  29. Работа и мощность силы
  30. Обратная задача динамики
  31. Поступательное и вращательное движение твердого тела
  32. Плоскопараллельное (плоское) движение твёрдого тела
  33. Сферическое движение твёрдого тела
  34. Движение свободного твердого тела
  35. Сложное движение твердого тела
  36. Сложное движение точки
  37. Плоское движение тела
  38. Статика твердого тела
  39. Равновесие составной конструкции
  40. Равновесие с учетом сил трения
  41. Центр масс
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки

Пример решения задачи по определению закона движения точки твердого тела массой m, начинающего скользить из состояния покоя по наклонной плоскости с заданным углом и коэффициентом трения скольжения f.

Задача

По наклонной плоскости из состояния покоя начинает скользить тело массой m = 1 кг (рисунок 5.1). Коэффициент трения скольжения f = 0,1.

Твердое тело на наклонной плоскости

Рисунок 5.1

Определить закон движения точки, если угол α = 30°.

Другие примеры решений >
Помощь с решением задач >

Решение

В данном случае тело движется поступательно, следовательно, его можно рассматривать как материальную точку. Направим ось x вдоль движения. Начало оси возьмем в начальном положении точки. Тогда x0= 0.

Поскольку движение начинается из состояния покоя, начальная скорость V0 тоже равна нулю.

Расположим тело в произвольный момент времени и покажем все силы, действующие на него, включая реакции связей. На тело действуют сила тяжести G, сила трения Fтр и нормальная реакция наклонной плоскости N (рисунок 5.2).

Действие на тело силы тяжести, силы трения и нормальной реакции наклонной плоскости

Рисунок 5.2

Запишем уравнение второго закона динамики в векторном виде

Уравнение второго закона динамики в векторном виде

и в проекциях на оси координат

Из второго уравнения системы (3) можно определить величину нормальной реакции поверхности:

Первое уравнение системы (3) разделим слева и справа на m:

С точки зрения математики полученное уравнение является простейшим дифференциальным уравнением с разделяющимися переменными. Уравнение связывает две переменные величины – скорость точки и время.

Смысл разделения переменных заключается в том, чтобы все слагаемые уравнения, куда входит скорость, были с одной стороны от знака равенства, а слагаемые, куда входит время – с другой стороны знака равенства.

Умножив уравнение (4) на dt слева и справа, получим

Сокращая слева на dt, получим:

Величина

постоянная и ее можно внести под знак дифференциала. Тогда уравнение (5) перепишется в виде равенства двух дифференциалов:

Если дифференциалы равны, то интегралы равны с точностью до постоянной величины:

или

где


это ускорение точки.

Полученный результат дает зависимость проекции скорости на ось x от времени и от постоянной интегрирования C1.

Для определения постоянной C1 воспользуемся начальным значением скорости. Зная значение скорости точки в начальный момент времени V0, и подставляя его в (6), получим

или C1 = V0.

Таким образом, зависимость скорости от времени примет вид

Учитывая, что


снова получим дифференциальное уравнение первого порядка относительно координаты x

Снова разделим переменные

и после интегрирования получим

где C2 – вторая постоянная интегрирования. Для определения C2 воспользуемся значением координаты x в начальный момент. Получим C2 =  x0.

Тогда (8) запишется в виде

Подставляя начальные значения и исходные данные, получим

Ответ: Таким образом, тело движется вниз по наклонной плоскости по закону x = 0,207∙t2.

Другие примеры решения задач >

    Физический смысл производной. В состав ЕГЭ по математике входит группа задач для решения которых необходимо знание и понимание физического смысла производной. В частности, есть задачи, где дан закон движения определённой точки (объекта), выраженный уравнением и требуется найти его скорость в определённый момент времени движения, либо время, через которое объект приобретёт определённую заданную скорость. Задачи очень простые, решаются  они  в одно действие. Итак:

Пусть задан закон движения материальной точки x (t) вдоль координатной оси, где x координата движущейся точки, t – время.

Скорость в определённый момент времени – это производная координаты по времени. В этом и состоит механический смысл производной.

Аналогично, ускорение – это производная скорости по времени: 

Физический смысл производной

Таким образом, физический смысл производной это скорость. Это может быть скорость движения, скорость изменения какого-либо процесса (например роста бактерий), скорость совершения работы (и так далее, прикладных задач множество).

Кроме того, необходимо знать таблицу производных (знать её нужно также, как таблицу умножения) и правила дифференцирования. Если конкретно, то для решения оговоренных задач необходимо знание первых шести производных (см. таблицу):

Таблица производных

Рассмотрим задачи:

Материальная точка движется прямолинейно по закону  

x (t) = t2 – 7t – 20

где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 5 c.

Физический смысл производной это скорость (скорость движения, скорость изменения процесса, скорость работы и т.д.)

Найдем закон изменения скорости:  v (t) = x′(t) = 2t – 7 м/с.

При t = 5 имеем:

Ответ: 3

Решить самостоятельно:

Материальная точка движется прямолинейно по закону x (t) = 6t2 – 48t + 17, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 9 c.

Посмотреть решение

Материальная точка движется прямолинейно по закону  x (t) = 0,5t3 – 3t2 + 2t, где x — расстояние от точки отсчета в метрах,  t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 6 с.

Посмотреть решение

Материальная точка движется прямолинейно по закону

x (t) = –t4 + 6t3 + 5t + 23

где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 3 с.

Посмотреть решение

Материальная точка движется прямолинейно по закону

x (t) = (1/6) t2 + 5t + 28

где x — расстояние от точки отсчета в метрах,  t — время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 6 м/с?

Найдем закон изменения скорости:

Для того, чтобы найти, в какой момент времени t скорость была равна 3 м/с,  необходимо решить уравнение:

Ответ: 3

Решите самостоятельно:

Материальная точка движется прямолинейно по закону  x (t) = t2 – 13t + 23, где x — расстояние от точки отсчета в метрах,  t — время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 3 м/с?

Посмотреть решение

Материальная точка движется прямолинейно по закону

x (t) = (1/3) t3 – 3t2 – 5t + 3 

где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 2 м/с?

Посмотреть решение

Отмечу, что ориентироваться только на такой тип задач на ЕГЭ не стоит. Могут совершенно неожиданно ввести задачи обратные представленным. Когда дан закон изменения скорости и будет стоять вопрос о нахождении закона движения.

Подсказка: в этом случае необходимо найти интеграл от функции скорости (это так же задачи в одно действие). Если потребуется найти пройденное расстояние за определённый момент времени, то необходимо подставить время в полученное уравнение и вычислить расстояние. Впрочем, мы такие задачи тоже будем разбирать, не пропустите! Успехов вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

7. Взаимосвязь функции и ее производной


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Связь производной со скоростью и ускорением тела

Если (x=x(t)) – уравнение, задающее движение точки, зависящее от времени, то:

(blacktriangleright) производная (x'(t)) задает скорость в момент времени (t);

(blacktriangleright) вторая производная (производная от производной) (x»(t)) задает ускорение в момент времени (t).


Задание
1

#740

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = 7t^2 — 12t), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. Найдите ее скорость в момент времени (t = 1) с. Ответ дайте в метрах в секунду.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 14t — 12), тогда в момент (t = 1) с:

(x'(1) = 14cdot 1 — 12 = 2) м/с.

Ответ: 2


Задание
2

#741

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = 2t^2 — 8t), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. Найдите ее скорость в момент времени (t = 2) с. Ответ дайте в метрах в секунду.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 4t — 8) , тогда в момент (t = 2) с:

(x'(2) = 4cdot 2 — 8 = 0) м/с.

Ответ: 0


Задание
3

#742

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = t^2 + 2t + 3), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. Найдите ее скорость в момент времени (t = 1) с. Ответ дайте в метрах в секунду.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 2t + 2), тогда в момент (t = 1) с:

(x'(1) = 2cdot 1 + 2 = 4) м/с.

Ответ: 4


Задание
4

#743

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = 2t^3 — t^2 + 2t + 3), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. Найдите ее скорость в момент времени (t = 2) с. Ответ дайте в метрах в секунду.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 6t^2 — 2t + 2), тогда в момент (t = 2) с:

(x'(2) = 6cdot 2^2 — 2cdot 2 + 2 = 22) м/с.

Ответ: 22


Задание
5

#744

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = 7t^4 + 6t^3 + 5t^2 + 4t + 2016), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. Найдите ее скорость в момент времени (t = 0,5) с. Ответ дайте в метрах в секунду.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 28t^3 + 18t^2 + 10t + 4), тогда в момент (t = 0,5) с:

(x'(0,5) = 28cdot dfrac{1}{8} + 18cdot dfrac{1}{4} + 10cdot dfrac{1}{2} + 4 = 3,5 + 4,5 + 5 + 4 = 17) м/с.

Ответ: 17


Задание
6

#745

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = 3t^2 + 6t + 2), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. В какой момент времени её скорость составляла (15) м/с? Ответ дайте в секундах.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 6t + 6), тогда для момента (t), когда скорость материальной точки была равна (15) м/с, выполнено (6t + 6 = 15), откуда (t = 1,5) с.

Ответ: 1,5


Задание
7

#746

Уровень задания: Равен ЕГЭ

Материальная точка движется прямолинейно по закону (x(t) = t^2 + 3t — 1), где (x) – расстояние от точки (x = 0) в метрах, (t) – время в секундах, измеренное с начала движения. В какой момент времени её скорость составляла (11) м/с? Ответ дайте в секундах.

Скорость материальной точки, прямолинейно движущейся по закону (x(t)), в момент времени (t_0) равна (x'(t_0)).

(x'(t) = 2t + 3), тогда для момента (t), когда скорость материальной точки была равна (11) м/с, выполнено (2t + 3 = 11), откуда (t = 4) с.

Ответ: 4

УСТАЛ? Просто отдохни

План урока:

Закон сложения скоростей

Мгновенная скорость, направление мгновенной скорости

Ускорение. Касательное ускорение. Центростремительное ускорение

Равноускоренное движение

Свободное падение

Равномерное движение точки по окружности

Закон сложения скоростей

Как уже упоминалось в предыдущем уроке, скорость тела зависит от выбранной наблюдателем системы отсчета. Разберем следующий пример: в безветренную погоду пчела летит со скоростью  1 vektor 1  относительно земли. Это будет собственная скорость пчелы. Затем погода меняется и начинает дуть ветер, перпендикулярный скорости пчелы. Скорость ветра обозначена 2 vektor 2 (см. рисунок 1).

3 pervonachalnaya skorost pchely i vetra
Рисунок 1 – Первоначальная скорость пчелы и ветра

Естественно, что ветер начнет сдувать пчелу с первоначального курса. Собственная скорость не изменяется, так как это характеристика самой пчелы, но ее скорость относительно земли (по модулю и направлению) изменится и станет (см. рисунок 2):

4 izmenivshayasya skorost pchely
Рисунок 2 – Изменившаяся скорость пчелы

Систему отсчета, связанную с землей, можно считать неподвижной. Если же рассматривать движение пчелы относительно воздуха, можно говорить о движущейся со скоростью v2 системе отсчета.

5 zadacha skorost pchely

6 vektory skorosti i peremeshcenii pri dvizhenii pchely
Рисунок 3 – Векторы скорости и перемещений при движении пчелы при ветре

Мгновенная скорость, направление мгновенной скорости

Средняя скорость. Средняя путевая скорость

Так как в реальной жизни тела редко движутся с постоянной скорость, но необходимо как-то описывать их движение и скорость, ввели понятие мгновенной скорости.

Мгновенная скорость – это скорость тела в выбранный конкретный момент времени.

7 telo dvizhetsya neravnomerno

Если по определению скорости разделить перемещение на суммарное время пути, можно получить средняя скорость:

8 srednyaya skorost

Фактически, это та же формула, которая используется при расчетах для прямолинейного равномерного движения.

То есть средняя скорость движения – это такая скорость, с которой тело должно было бы двигаться, если бы оно перемещалось из начальной точки в конечную равномерно и прямолинейно. Из выражения для вычисления средней скорости можно увидеть, что средняя скорость сонаправлена вектору перемещения.

Касательно же мгновенной скорости, чтобы ее найти, необходимо разделить общее время Δt на одинаковые отрезки Δt1, Δt2,…Δtn,  и найти средние скорости за эти отрезки времени:

9 delim obshcee vremya

10 proizvolnyi otrezok vremeni

А куда направлена мгновенная скорость? Из рисунка 5 видно, что при уменьшении отрезков времени Δtb направление вектора перемещения ему соответствующее постепенно приближается к направлению касательной к траектории. Значит, мгновенная скорость направлена по касательной к линии траектории.

Еще одна важная характеристика, использующаяся в кинематике – средняя путевая скорость. Из названия вытекает, что средняя путевая скорость – это отношение пути (S), пройденного телом, к отрезку времени (t), за которое оно этот путь прошло:

11 formula srednei skorosti

Именно о путевой скорости идет речь, когда говорят, что автомобиль ехал из одного города в другой со скоростью 70 км/ч, например.

Ускорение. Касательное ускорение. Центростремительное ускорение

Продолжая речь о телах, движущихся неравномерно, необходимо сказать о такой физической величине, как ускорение.

12 uskorenie tela

Единицы измерения ускорения:

13 edinicy izmerenia uskorenia
Рисунок 6 – Тело перемещается из точки 1 в точку 2 (в верхнем правом углу дана иллюстрация к разности векторов)

Если скорость тела меняется не равномерно на выбранном участке пути, нужно поступить так же, как и в случае с поиском мгновенной скорости: разделить  на маленькие отрезки времени и рассматривать ускорение на каждом из них.

Поскольку ускорение получается из разности векторов скорости (конечной и начальной), в общем случае оно будет направлено под некоторым углом к мгновенной скорости (а, следовательно, и к вектору перемещения, и к касательной к траектории).

14 polnoe uskorenie tela
Рисунок 7 – Полное, касательно и центростремительное ускорение тела, движущегося из точки 1 в точку 2

Равноускоренное движение

Прямолинейное равноускоренное движение. Определение скорости при равноускоренном движении. Уравнения движения при равноускоренном движении

Когда движение тела происходит с постоянным по модулю и направлению ускорением, такой тип движения называют равноускоренным. Для него справедливо выражение:

15 konechnaya skorost

Частный случай равноускоренного движения – прямолинейное равноускоренное движение. Как следует из названия, это движение вдоль прямой линии с постоянным ускорением.

При условии, что ускорение сонаправлено начальной скорости, формула для вычисления скорости при прямолинейном равноускоренном движении записывается в скалярном виде:

v = v0 + a * t

Если же ускорение противонаправлено начальной скорости, это выражение станет таким:

v = v0 — a * t

Рассмотрим график зависимости скорости от времени при равноускоренном движении (см. рисунок 8). Считаем, что тело совершает движение вдоль оси ОХ, а все величины – начальная скорость (vox) , ускорение (ax)  – взяты в проекции на эту ось.

16 grafik zavisimosti skorosti ot vremeni
Рисунок 8 – График зависимости скорости от времени при прямолинейном равноускоренном движении

Как известно из предыдущего курса физики, путь, который прошло тело, можно найти как площадь фигуры под графиком зависимости скорости движения от времени. Общую площадь под графиком можно найти как сумму площадей прямоугольника ABCD и треугольника ADE.

17 raschety pri ravnouskorennom dvizhenii

Свободное падение

Движение тела, брошенного вертикально вверх. Движение тела, брошенного под углом к горизонту. Криволинейное равноускоренное движение

Примерами движения с постоянным ускорением может служить свободное падение, движение брошенного вертикально вверх тела, движение тела, брошенного под углом к горизонту. Поговорим об этих видах движения подробнее.

  • Свободное падение

Представим, что какое-то небольшое, но тяжелое тело подняли на высоту h, а затем отпустили (см. рисунок 9).

18 svobodnoe padenie tela
Рисунок 9 – Свободное падение тела

Тело начнет падать. Принимаем допущение, что на это тело воздействует одна только сила тяжести (силой сопротивления воздуха и силой ветра пренебрегаем). Тогда тело будет двигаться вертикально вниз, а его ускорение будет равняться ускорению свободного падения:

19 skorost svobodnog padenia

  • Движение тела, брошенного вертикально вверх

Представим, что тело подкинули вертикально наверх с начальной скоростью v0 (см. рисунок 10).

20 telo brosili verikalno vverh
Рисунок 10 – Тело бросили вертикально вверх

Очевидно, что тело сначала будет лететь вверх, постепенно замедляясь, пока его скорость не уменьшится до нуля. Затем тело полетит вниз, постепенно ускоряясь. Получается, что максимальной своей скорости тело будет достигать два раза – у земли, и эта скорость будет равно начальной скорости v0 (вообще нужно было бы писать voy, но так как рассматривается движение вдоль только одной оси OY, опустим индекс y).

Отсюда можно найти полное время полета:

21 uravnenie dvizhenia tela

  • Движение тела, брошенного под углом к горизонту

Данный тип движения чуть сложнее, чем предыдущие два, так как придется рассматривать движение сразу вдоль двух осей OX и OY (см. рисунок 11). Этот тип движения относится к криволинейному равноускоренному движению. Будем считать, что тело подбросили с начальной скоростью  под углом α к горизонту.

22 telo brosheno pod uglom k gorizontu
Рисунок 11 – Тело брошено под углом к горизонту

Уравнения движения в общем виде по двум осям выглядят так:

23 uravnenie v obshcem vide

Еще время полета можно посчитать, учитывая что  в двух моментах – в начале полета и в конце. Значит можно посчитать:

24 vremya poleta mozhno raschitat

Равномерное движение точки по окружности

Центростремительное ускорение

Представим себе равномерное движение по окружности: во время этого типа движения скорость не меняется по модулю, однако меняется по направлению (см. рисунок 12).

25 okruzhnost
Рисунок 12 – Изменение направления скорости при равномерном движении по окружности

За изменение направления скорости отвечает центростремительное ускорение (  Оно, так же как и скорость, постоянно по модулю, но меняется по направлению – в любой точке окружности оно направлено к ее центру. Центростремительное ускорение можно найти по формуле:

26 centrostremitelnoe uskorenie

где R – радиус окружности, по которой циклически движется тело.

Понравилась статья? Поделить с друзьями:
  • Росянка как найти на болоте
  • Если нашла крестик как быть
  • Как верить что найдешь работу
  • Код ошибки 0xc000021a windows 10 как исправить
  • Как составить спецификацию на изделие