Как найти заряд конденсатора по схеме

Главная

Примеры решения задач ТОЭ

Расчет электрической цепи постоянного тока с конденсаторами

Расчет электрической цепи постоянного тока с конденсаторами


Расчет электрической цепи постоянного тока с конденсаторами

Основные положения и соотношения

1. Общее выражение емкости конденсатора

C= Q U .

2. Емкость плоского конденсатора

C= ε a ⋅S d = ε r ⋅ ε 0 ⋅S d ,

здесь

S — поверхность каждой пластины конденсатора;

d — расстояние между ними;

εa = εr·ε0 — абсолютная диэлектрическая проницаемость среды;

εr — диэлектрическая проницаемость среды (относительная диэлектрическая проницаемость);

ε 0 = 1 4π⋅ с 2 ⋅ 10 −7 ≈8,85418782⋅ 10 −12    Ф м  – электрическая постоянная.

3. При параллельном соединении конденсаторов С1, С2, …, Сn эквивалентная емкость равна

C= C 1 + C 2 +…+ C n = ∑ k=1 n C k .

4. При последовательном соединении конденсаторов эквивалентная емкость определяется из формулы

1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .

Для двух последовательно соединенных конденсаторов эквивалентная емкость составляет:

C= C 1 ⋅ C 2 C 1 + C 2 ,

а напряжения между отдельными конденсаторами распределяются обратно пропорционально их емкостям:

U 1 =U⋅ C 2 C 1 + C 2 ;    U 2 =U⋅ C 1 C 1 + C 2 .

5. Преобразование звезды емкостей в эквивалентный треугольник емкостей или обратно (рис. а и б)

Преобразование звезды емкостей в эквивалентный треугольник емкостей

Рис. 0

осуществляется по формулам:

Y→Δ { C 12 = C 1 ⋅ C 2 ΣC ;   C 13 = C 1 ⋅ C 3 ΣC ;   C 23 = C 2 ⋅ C 3 ΣC , где          ΣC= C 1 + C 2 + C 3 , Δ→Y { C 1 = C 12 + C 13 + C 12 ⋅ C 13 C 23 ; C 2 = C 12 + C 23 + C 12 ⋅ C 23 C 13 ; C 3 = C 13 + C 23 + C 13 ⋅ C 23 C 12 .

6. Энергия электростатического поля конденсатора:

W= C⋅ U 2 2 = Q⋅U 2 = Q 2 2C .

7. Расчет распределения зарядов в сложных цепях, содержащих источники э.д.с. и конденсаторы, производится путем составления уравнений по двум законам:

1) По закону сохранения электричества (закон сохранения электрического заряда): алгебраическая сумма зарядов на обкладках конденсаторов, соединенных в узел и не подключенных к источнику энергии, равна алгебраической сумме зарядов, имевшихся на этих обкладках до их соединения:

ΣQ=Σ Q ′ .

2) По второму закону Кирхгофа: алгебраическая сумма э. д. с. в замкнутом контуре равна алгебраической сумме напряжений на участках контура, в том числе на входящих в него конденсаторах:

∑ k=1 n E k = ∑ k=1 n U C k = ∑ k=1 n Q k C k .

Приступая к решению задачи, надо задаться полярностью зарядов на обкладках конденсаторов.

Решение задач на расчет электрической цепи постоянного тока с конденсаторами

Задача. Доказать формулу эквивалентной емкости при последовательном соединении конденсаторов (рис. 1).

эквивалентная емкость при последовательном соединении конденсаторов

Рис. 1

Решение

На рис. 1 представлено последовательное соединение трех конденсаторов. Если батарею конденсаторов подключить к источнику напряжения U12, то на левую пластину конденсатора С1 перейдет заряд +q, на правую пластину конденсатора С3 заряд –q.

Вследствие электризации через влияние правая пластина конденсатора С1 будет иметь заряд –q, а так как пластины конденсаторов С1 и С2 соединены и были электронейтральны, то вследствие закона сохранения заряда заряд левой пластины конденсатора C2 будет равен +q, и т. д. На всех пластинах конденсаторов при таком соединении будет одинаковый по величине заряд.

Найти эквивалентную емкость — это значит найти конденсатор такой емкости, который при той же разности потенциалов будет накапливать тот же заряд q, что и батарея конденсаторов.

Разность потенциалов U12 = φ1 — φ2 складывается из суммы разностей потенциалов между пластинами каждого из конденсаторов

U 12 = φ 1 − φ 2 =( φ 1 − φ A )+( φ A − φ B )+( φ B − φ 2 )= U 1A + U AB + U B2 .

Воспользовавшись формулой напряжения на конденсаторе

U= q C ,

запишем

q C = q C 1 + q C 2 + q C 3 .

Откуда эквивалентная емкость батареи из трех последовательно включенных конденсаторов

1 C = 1 C 1 + 1 C 2 + 1 C 3 .

В общем случае эквивалентная емкость при последовательном соединении конденсаторов

1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .

Задача 1. Определить заряд и энергию каждого конденсатора на рис. 2, если система подключена в сеть с напряжением U = 240 В.

Определить заряд и энергию каждого конденсатора, если система подключена в сеть

Рис. 2

Емкости конденсаторов: C1 =50 мкФ; C2 =150 мкФ; C3 =300 мкФ.

Решение

Эквивалентная емкость конденсаторов C1 и C2, соединенных параллельно

C12 = C1 + C2 = 200 мкФ,

эквивалентная емкость всей цепи равна

C= C 12 ⋅ C 3 C 12 + C 3 = 200⋅300 500 =120  мкФ.

Заряд на эквивалентной емкости

Q = C·U = 120·10–6·240 = 288·10–4 Кл.

Той же величине равен заряд Q3 на конденсаторе C3, т.е. Q3 = Q = 288·10–4 Кл; напряжение на этом конденсаторе

U 3 = Q 3 C 3 = 288⋅ 10 −4 300⋅ 10 −6 =96  В.

Напряжение на конденсаторах C1 и C2 равно

U1 = U2 = U — U3 = 240 — 96 = 144 В.

их заряды имеют следующие значения

Q1 = C1·U1 = 50·10–6·144 = 72·10–4 Кл;

Q2 = C2·U2 = 150·10–6·144 = 216·10–4 Кл.

Энергии электростатического поля конденсаторов равны

W 1 = Q 1 ⋅ U 1 2 = 72⋅ 10 −4 ⋅144 2 ≈0,52  Дж; W 2 = Q 2 ⋅ U 2 2 = 216⋅ 10 −4 ⋅144 2 ≈1,56  Дж; W 3 = Q 3 ⋅ U 3 2 = 288⋅ 10 −4 ⋅96 2 ≈1,38  Дж.

Задача 2. Плоский слоистый конденсатор (рис. 3), поверхность каждой пластины которого S = 12 см2, имеет диэлектрик, состоящий из слюды (εr1 = 6) толщиною d1 = 0,3 мм и стекла (εr2 = 7) толщиною d2 =0,4 мм.

Пробивные напряженности слюды и стекла соответственно равны E1 = 77 кВ/мм, E2 = 36 кВ/мм.

Емкость плоского двухслойного конденсатора

Рис. 3

Вычислить емкость конденсатора и предельное напряжение, на которое его можно включать, принимая для более слабого слоя двойной запас электрической прочности.

Решение

Эквивалентная емкость слоистого конденсатора определится как емкость двух последовательно соединенных конденсаторов

C= C 1 ⋅ C 2 C 1 + C 2 = ε a1 ⋅S d 1 ⋅ ε a2 ⋅S d 2 ε a1 ⋅S d 1 + ε a2 ⋅S d 2 = ε a1 ⋅ ε a2 ⋅S ε a1 ⋅ d 2 + ε a2 ⋅ d 1 .

Подставляя сюда числовые значения, предварительно заменив εa1 = εr1·ε0 и εa2 = εr2·ε0, получим

C= ε 0 ⋅ ε r1 ⋅ ε r2 ⋅S ε r1 ⋅ d 2 + ε r2 ⋅ d 1 =8,85⋅ 10 −12 ⋅ 6⋅7⋅12⋅ 10 −4 6⋅0,4⋅ 10 −3 +7⋅0,3⋅ 10 −3 =99⋅ 10 −12   Ф.

Обозначим общее напряжение, подключаемое к слоистому конденсатору, через Uпр, при этом заряд конденсатора будет равен

Q = C·Uпр.

Напряжения на каждом слое будут равны

U 1 = Q C 1 = C⋅ U пр ε a1 ⋅S d 1 = ε a2 ⋅ d 1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр ; U 2 = Q C 2 = C⋅ U пр ε a2 ⋅S d 2 = ε a1 ⋅ d 2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр .

Напряженности электростатического поля в каждом слое

E 1 = U 1 d 1 = ε a2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ′ пр ; E 2 = U 2 d 2 = ε a1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ″ пр .

Здесь U’np — общее напряжение, подключаемое к конденсатору, при котором пробивается первый слой, a np — общее напряжение, при котором происходит пробой второго слоя.

Из последнего выражения находим

U ′ пр = E 1 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a2 =49,5  кВ; U ″ пр = E 2 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a1 =27,0  кВ.

Таким образом, более слабым слоем является второй; согласно условию, принимая для него двойной запас прочности, находим, что конденсатор может быть включен на напряжение, равное

27,0 кВ / 2 = 13,5 кВ.

Задача 3. Обкладки плоского конденсатора с воздушным диэлектриком расположены на расстоянии d1 = 1 см друг от друга. Площадь обкладок S = 50 см2. Конденсатор заряжается до напряжения U = 120 В и затем отсоединяется от источника электрической энергии.

Определить, какую надо совершить работу, если увеличить расстояние между пластинами до d2 = 10 см. Краевым эффектом можно пренебречь; другими словами, емкость конденсатора можно считать обратно пропорциональной расстоянию между обкладками.

Решение

Энергия заряженного плоского конденсатора равна

W 1 = C 1 ⋅ U 2 2 = ε 0 ⋅S d 1 ⋅ U 2 2 ,

где С1 — емкость до раздвижения обкладок.

Так как конденсатор отключен от источника, то при изменении расстояния между обкладками его заряд остается постоянным. Поэтому из~ соотношения

Q = C2·U2,

где C2 — емкость конденсатора после раздвижения обкладок, следует, что, так как C2 = ε0·S/d2 стало меньше в 10 раз (d2 увеличилось в 10 раз), то напряжение на конденсаторе U2 увеличилось в 10 раз, т. е. U2 = 10U.

Таким образом, энергия конденсатора после отключения и раздвижения обкладок на расстояние d2 будет больше первоначальной

W 2 = ε 0 ⋅S d 2 ⋅ U 2 2 2 = ε 0 ⋅S 10 d 1 ⋅ ( 10U ) 2 2 =10⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =10⋅ W 1 .

Увеличение энергии произошло за счет работы внешних сил, затраченной на раздвижение обкладок.

Таким образом, надо совершить работу, равную

W 2 − W 1 =9⋅ W 1 =9⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =2,86⋅ 10 −7   Дж.

Задача 4. Для схемы (рис. 4) определить напряжение каждого конденсатора в двух случаях: при замкнутом и разомкнутом ключе К.

Даны: C1 = 30 мкФ; C2 = 20 мкФ; r1 = 100 Ом. r2 = 400 Ом. r3 = 600 Ом, U = 20 В.

Решение

Ключ К разомкнут. Конденсаторы соединены между собой последовательно; их ветвь находится под полным напряжением источника; напряжение распределяется между ними обратно пропорционально емкостям

U 1 = C 2 C 1 + C 2 ⋅U= 20⋅ 10 −6 30⋅ 10 −6 +20⋅ 10 −6 ⋅20=8  В; U 2 =U− U 1 =20−8=12  В.

Определить напряжение каждого конденсатора

Рис. 4

Ключ К замкнут. Через сопротивления r1 и r2 протекает ток

I= U r 1 + r 2 = 20 500 =0,04  А,

а через сопротивление r3 ток не протекает.

Поэтому точки c и d равнопотенциальны (φc = φd). Следовательно, напряжение между точками a и c (Uac = φa — φc) равно напряжению между точками a и d (Uad = φa — φd).

Таким образом, напряжение на первом конденсаторе равно падению напряжения на сопротивлении r1

UC1 = I·r1 = 0,04·100 = 4 В.

Аналогично напряжение на втором конденсаторе равно

UC2 = I·r2 = 0,04·400 = 16 В.

Задача 5. Определить напряжение на зажимах конденсаторов и их энергию после перевода рубильника из положения 1 в положение 2, показанное пунктиром на рис. 5, если U = 25 В; C1 = 5 мкФ; C2 = 120 мкФ. Конденсатор C2 предварительно не был заряжен.

Определить напряжение на зажимах конденсаторов и их энергию

Рис. 5

Решение

Когда рубильник находится в положении 1, то конденсатор C1 заряжен до напряжения U и его заряд равен

Q = C1·U = 5·10–6·25 = 125·10–6 Кл.

После перевода рубильника в положение 2, заряд Q распределяется между конденсаторами C1 и C2 (рис. 5). Обозначим эти заряды через Q’1 и Q’2.

На основании закона сохранения электричества имеем

Q = Q’1 + Q’2 = 125 10–6 Кл. (1)

По второму закону Кирхгофа имеем

0= U C1 − U C2 = Q ′ 1 C 1 − Q ′ 2 C 2 ,

или

Q ′ 1 5⋅ 10 −6 − Q ′ 2 120⋅ 10 −6 =0.   (2)

Решая уравнения (1) и (2), найдем

Q’1 = 5 10–6 Кл; Q’2 = 120 10–6 Кл.

Доставка свежих и аппетитных японских суши в Новороссийске — ям ям..

Напряжение на зажимах конденсаторов станет равным

U C1 = Q ′ 1 C 1 = U C2 = Q ′ 2 C 2 = 5⋅ 10 −6 5⋅ 10 −6 =1  В.

Энергия обоих конденсаторов будет равна

W= C 1 ⋅ U C1 2 2 + C 2 ⋅ U C2 2 2 =62,5⋅ 10 −6   Дж.

Подсчитаем энергию, которая была запасена в конденсаторе С1, при его подключении к источнику электрической энергии

W нач = C 1 ⋅U 2 = 5⋅ 10 −6 ⋅ 25 2 2 =1562,5⋅ 10 −6   Дж.

Как видим, имеет место большая разница в запасе энергии до и после переключения. Энергия, равная 1562,5·10–6 — 62,5·10–6 = 1500·10–6 Дж, израсходовалась на искру при переключении рубильника из положения 1 в положение 2 и на нагревание соединительных проводов при перетекании зарядов из конденсатора C1 в конденсатор C2 после перевода рубильника в положение 2.

Задача 6. Вычислить напряжение, которое окажется на каждом из конденсаторов схемы (рис. 6) после перевода рубильника К из положения 1 в положение 2.

Емкости конденсаторов равны: C1 = 10 мкФ; C2 = 30 мкФ; C3 = 60 мкФ; напряжение U = 30 В, а э. д. с. E = 50 В.

Вычислить напряжение, которое окажется на каждом из конденсаторов схемы (рис. 6) после перевода рубильника К из положения 1 в положение 2

Рис. 6

Решение

Рубильник находится в положении 1. Заряд конденсатора C1 равен

Q1 = C1·U = 10·10–6·30 = 0,3·10–3 Кл.

В указанном положении рубильника конденсаторы C2 и C3 соединены последовательно друг с другом, поэтому их заряды равны: Q2 = Q3. Знаки зарядов показаны на рис. 6 отметками без кружков. По второму закону Кирхгофа имеем

E= U C2 + U C3 = Q 2 C 2 + Q 3 C 3 = Q 2 ⋅ C 2 + C 3 C 2 ⋅ C 3 ,

откуда

Q 2 = Q 3 = C 2 ⋅ C 3 C 2 + C 3 ⋅E= 30⋅ 10 −6 ⋅60⋅ 10 −6 90⋅ 10 −6 ⋅50=1⋅ 10 −3   Кл.

При переводе рубильника в положение 2 произойдет перераспределение зарядов. Произвольно задаемся новой полярностью зарядов на электродах (показана в кружках; предположена совпадающей с ранее имевшей место полярностью); соответствующие положительные направления напряжений на конденсаторах обозначены стрелками. Обозначим эти заряды через Q’1, Q’2 и Q’3. Для их определения составим уравнения на основании закона сохранения электрических зарядов и второго закона Кирхгофа.

Для узла a

Q’1 + Q’2 — Q’3 = Q1 + Q2 — Q3. (1)

Для контура 2ebda2

0= U ′ C1 − U ′ C2 = Q ′ 1 C 1 − Q ′ 2 C 1 .

Для контура bcadb

E= U ′ C2 − U ′ C3 = Q ′ 2 C 2 + Q ′ 3 C 3 .

Уравнения (1) — (3), после подстановки числовых значений величин, примут вид

Q’1 + Q’2 — Q’3 = 0,3·10–3; (4)

3Q’1 — Q’2 = 0; (5)

2Q’2 + Q’3 = 3·10–3. (6)

Решая совместно уравнения (4) — (6), получим

Q’1 = 0,33·10–3 Кл; Q’2 = 0,99·10–3 Кл; Q’3 = 1,02·10–3 Кл.

Так как знаки всех зарядов оказались положительными, то фактическая полярность обкладок соответствует предварительно выбранной.

Напряжения на конденсаторах после перевода рубильника будут равны

U C1 = Q ′ 1 C 1 = 0,33⋅ 10 −3 10⋅ 10 6 =33  В; U C2 = Q ′ 2 C 2 = 0,99⋅ 10 −3 30⋅ 10 6 =33  В; U C3 = Q ′ 3 C 3 = 1,02⋅ 10 −3 60⋅ 10 6 =17  В.

Задача 7. Определить заряд и напряжение конденсаторов, соединенных по схеме рис. 7, если C1 = 5 мкФ; C2 = 4 мкФ; C3 = 3 мкФ; э. д. с. источников E1 = 20 В и E2 = 5 В.

Определить заряд и напряжение конденсаторов, соединенных по схеме

Рис. 7

Решение

Составим систему уравнений на основании закона сохранения электричества и второго закона Кирхгофа, предварительно задавшись полярностью обкладок конденсаторов, показанной в кружках

− Q 1 + Q 2 − Q 3 =0; E 1 = U C1 − U C3 = Q 1 C 1 − Q 3 C 3 ; E 2 =− U C2 − U C3 =− Q 2 C 2 − Q 3 C 3 .

Подставляя сюда числовые значения и решая эту систему уравнений, получим, что Q1 = 50 мкКл; Q2 = 20 мкКл; Q3 = –30 мкКл.

Таким образом, истинная полярность зарядов на обкладках конденсаторов C1 и C2 соответствует выбранной, а у конденсатора C3 — противоположна выбранной.

Задача 8. Пять конденсаторов соединены по схеме рис. 3-22, а, емкости которых C1 = 2 мкФ; C2 = 3 мкФ; C3 = 5 мкФ; C4 = 1 мкФ; C5 = 2,4 мкФ.

Определить эквивалентную емкость системы и напряжение на каждом из конденсаторов

Рис. 8

Индивидуалка Дана (34 лет) т.8 926 650-82-63 Москва, метро Сокол.

Определить эквивалентную емкость системы и напряжение на каждом из конденсаторов, если приложенное напряжение U = 10 В.

Решение

1-й способ. Звезду емкостей C1, C2 и C3 (рис. 8, а) преобразуем в эквивалентный треугольник емкостей (рис. 8, б)

C 12 = C 1 ⋅ C 2 C 1 + C 2 + C 3 =0,6  мкФ; C 13 = C 1 ⋅ C 3 C 1 + C 2 + C 3 =1,0  мкФ; C 23 = C 2 ⋅ C 3 C 1 + C 2 + C 3 =1,5  мкФ.

Емкости C12 и C5 оказываются соединенными параллельно друг другу и подключенными к точкам 1 и 2; их эквивалентная емкость

C6 = C12 + C5 = 3 мкФ.

Аналогично

C7 = C13 + C4 = 2 мкФ.

Схема принимает вид изображенный на рис. 8, в. Емкость схемы между точками а и b равняется

C ab = C 23 + C 6 ⋅ C 7 C 6 + C 7 =2,7  мкФ.

Вычислим напряжение на каждом из конденсаторов.

На конденсаторе C7 напряжение равно

U 7 = C 6 C 6 + C 7 ⋅U=6  В.

Таково же напряжение и на конденсаторах C4 и C13

U4 = U31 = 6 В.

Напряжение на конденсаторе C6 равно

U6 = U — U7 = 4 В;

U5 = U12 = 4 В.

Вычислим заряды

Q4 = C4·U4 = 6·10–6 Кл;

Q5 = C5·U5 = 9,6·10–6 Кл;

Q12 = C12·U12 = 6·10–6 Кл;

Q13 = C13·U31 = 2,4·10–6 Кл.

По закону сохранения электричества для узла 1 схем 8, а и б имеем

Q4 — Q1 + Q5 = –Q4 — Q13 + Q12 + Q5,

отсюда

Q1 = Q13 — Q12 = 3,6·10–6 Кл,

а напряжение на конденсаторе, емкостью C1 составляет

U 1 = Q 1 C 1 =1,8  В.

Далее находим напряжения и заряды на остальных конденсаторах

U31 = U1 + U3,

отсюда

U3 = U31 — U1 = 4,2 В;

Q3 = C3·U3 = 21·10–6 Кл,

также

U12 = U2 — U1 = 4,2 В,

откуда

U2 = U12 + U1 = 5,8 В;

Q2 = C2·U2 = 17,4·10–6 Кл.

Так как знаки всех зарядов оказались положительными, то фактическая полярность зарядов на обкладках совпадает с предварительно выбранной.

2-й способ. Выбрав положительные направления напряжений на конденсаторах (а тем самым и знаки зарядов на каждом из них) по формуле закона сохранения электричества (закона сохранения заряда) составляем два уравнения и по второму закону Кирхгофа три уравнения (рис. 8, а)

для узла 1

Q5 — Q1 — Q4 = 0; (1)

для узла О

Q1 + Q2 — Q3 = 0; (2)

для контура О13О

Q 1 C 1 − Q 4 C 4 + Q 3 C 3 =0;  (3)

для контура О12О

Q 1 C 1 + Q 5 C 5 − Q 2 C 2 =0;  (4)

для контура a3О2b

Q 3 C 3 + Q 2 C 2 =U.  (5)

Система уравнений (1) — (5) — содержит пять неизвестных: Q1, Q2, Q3, Q4 и Q5. Решив уравнения, найдем искомые заряды, а затем и напряжения на конденсаторах. При втором способе решения эквивалентную емкость схемы Сab можно найти из отношения

C ab = Q U ,

где Q = Q3 + Q4, или Q = Q2 + Q5.

Задача 9. В схеме рис. 9 найти распределение зарядов, если E1 = 20 В; E2 = 7 В; C1 = 7 мкФ; C2 = 1 мкФ; C3 = 3 мкФ; C4 = 4 мкФ; C5 = C6 = 5 мкФ.

В схеме найти распределение зарядов

Рис. 9

Решение

При выбранном распределении зарядов (в кружках), как показано на схеме, система уравнений будет иметь вид:

для узла а

Q1 + Q2 + Q3 = 0;

для узла b

Q3 — Q4 — Q5 = 0;

для узла c

Q1 + Q4 + Q6 = 0;

для контура afcba

E 1 = U C1 + U C4 − U C3 = Q 1 C 1 + Q 4 C 4 − Q 3 C 3 ;

ля контура gdbag

E 2 = U C5 − U C3 + U C2 = Q 5 C 5 − Q 3 C 3 + Q 2 C 2 ;

для контура cbdc

0= U C4 − U C5 − U C6 = Q 4 C 4 − Q 5 C 5 − Q 6 C 6 .

Подставляя сюда числовые значения и решая полученную систему шести уравнений, найдем искомые заряды

Q1 = 35 мкКл; Q2 = –5 мкКл; Q3 = –30 мкКл;

Q4 = 20 мкКл; Q5 = 10 мкКл; Q6 = 15 мкКл.

Таким образом, истинные знаки зарядов Q1, Q4, Q5 и Q6 соответствуют выбранным, а знаки Q2 и Q3 противоположны выбранным.

Фактическое расположение знаков зарядов на конденсаторах дано не в кружках.

Задача 10. Определить заряд и энергию каждого конденсатора в схеме (рис. 10). Данные схемы: C1 = 6 мкФ; C2 = 2 мкФ; C3 = 3 мкФ; r1 = 500 Ом; r2 = 400 Ом; U = 45 В.

Определить заряд и энергию каждого конденсатора в схеме

Рис. 10

Решение

Через сопротивления протекает ток

I= U r 1 + r 2 =0,05  А.

Задавшись полярностью зарядов на обкладках конденсаторов, составим систему уравнений:

− Q 1 + Q 2 + Q 3 =0; U= U C1 + U C2 = Q 1 C 1 + Q 2 C 2 ; I⋅ r 1 = U C1 + U C3 = Q 1 C 1 + Q 3 C 3 ,

или

Q 1 = Q 2 + Q 3 ; 45= Q 1 6⋅ 10 −6 + Q 2 2⋅ 10 −6 ; 25= Q 1 6⋅ 10 −6 + Q 3 3⋅ 10 −6 .

Решив эту систему уравнений, найдем, что

Q1 = 90 мкКл; Q2 = 60 мкКл; Q3 = 30 мкКл.


последовательное соединение конденсаторов,
параллельное соединение конденсаторов,
Расчет цепи конденсаторов,
Конденсатор в цепи постоянного тока,
Цепи с конденсаторами

Комментарии

Конденсатором называется система, состоящая из двух проводников, расположенных достаточно близко друг от друга. Проводники называют обкладками конденсатора. Если на обкладки конденсатора поместить равные по модулю и противоположные по знаку заряды, то разность потенциалов (напряжение) между обкладками будет пропорциональна заряду обкладок, т. е. отношение заряда к напряжению не будет зависеть от заряда. На основании этого утверждения, которое приводим без доказательства, вводится понятие электроёмкости (ёмкости конденсатора).

Ёмкостью конденсатора называется отношение заряда $$ Q$$ одной из обкладок к разности потенциалов $$ U$$ между этой обкладкой и соседней:

$$ C={displaystyle frac{Q}{U}}$$. (10.1)

Если взят заряд на положительно заряженной обкладке, то $$ Q>0, U>0$$ и получится $$ C>0$$. Если заряд взят на отрицательной обкладке, то Q<0, U<0Q<0,;U<0 и опять будет $$ C>0$$. Итак, из определения ёмкости следует, что ёмкость величина положительная. В системе СИ ёмкость измеряется в фарадах: `1″Ф»=1` Кл/В.

Требование близости обкладок друг к другу связано с тем, что для независимости $$ C$$ от $$ Q$$ в (10.1) нужно, чтобы поле от зарядов на обкладках было сосредоточено практически полностью между обкладками, т. е. все силовые линии, начинающиеся на одной обкладке, заканчивались только на другой и не уходили на окружающие тела. В этом случае окружающие тела не будут влиять на ёмкость конденсатора.
Можно вывести, что ёмкость плоского конденсатора

$$ C={displaystyle frac{varepsilon {varepsilon }_{0}S}{d}}$$. (10.2)

Здесь $$ S$$ — площадь обкладок, $$ d$$ — расстояние между ними, $$ varepsilon $$ — диэлектрическая проницаемость диэлектрика между обкладками.
При последовательном соединении изначально не заряженных конденсаторов с ёмкостями $$ {C}_{1}, {C}_{2}, …$$, общий заряд равен заряду каждого конденсатора, общее напряжение равно сумме напряжений на отдельных конденсаторах, общая ёмкость определяется из формулы: $$ {displaystyle frac{1}{C}}={displaystyle frac{1}{{C}_{1}}}+{displaystyle frac{1}{{C}_{2}}}+…$$

Полезно помнить формулу для частного случая последовательного соединения двух конденсаторов: $$ C={displaystyle frac{{C}_{1}{C}_{2}}{{C}_{1}+{C}_{2}}}$$.

Для последовательно соединённых n одинаковых конденсаторов ёмкостью $$ {C}_{1}$$ каждый $$ C={C}_{1}/n.$$

Если последовательно соединены предварительно заряженные конденсаторы, то применение перечисленных выше свойств и формул может привести к неправильному результату!
При параллельном соединении конденсаторов с емкостями $$ {C}_{1,} {C}_{2}, …$$ общий заряд равен сумме зарядов отдельных конденсаторов, общее напряжение равно напряжению на каждом, общая ёмкость равна сумме ёмкостей:

$$ C={C}_{1}+{C}_{2}+…$$

Рис. 10.1

В плоский конденсатор параллельно его обкладкам вставлена пластина из диэлектрика с диэлектрической проницаемостью $$ varepsilon $$ (рис. 10.1). Площадь обкладок конденсатора и пластины $$ S$$, толщина пластины $$ d$$, расстояние между обкладками $$ 3d$$. Найти ёмкость такого конденсатора.

Пусть расстояние от пластины до левой обкладки конденсатора $$ x$$. Наклеим мысленно на обе стороны пластины тонкую проводящую и незаряженную фольгу. От этого ничего не изменится. Обе фольги можно рассматривать как своеобразные провода, соединяющие три последовательно соединённых конденсатора с расстояниями $$ x$$, $$ d$$ и $$ 2d-x$$. Для общей ёмкости $$ C$$:

$$ {displaystyle frac{1}{C}}={displaystyle frac{x}{{varepsilon }_{0}S}}+{displaystyle frac{d}{varepsilon {varepsilon }_{0}S}}+{displaystyle frac{2d-x}{{varepsilon }_{0}S}}$$.

Окончательно $$ C={displaystyle frac{varepsilon {varepsilon }_{0}S}{d(2varepsilon +1)}}.$$ Заметим, что не заданная в условии величина $$ x$$ «исчезла» в процессе решения.

Рис. 10.2

В плоский конденсатор ёмкостью $$ C$$ вставлена параллельно обкладкам плоская проводящая пластина с зарядом $$ Q$$ (рис. 10.2). Конденсатор подсоединён к источнику с ЭДС $$ mathcal{E}$$. Площади пластины и обкладок конденсатора равны. Толщина пластины равна расстоянию от неё до правой обкладки и составляет четверть от расстояния между обкладками. Найти заряд конденсатора.

Пусть $$ d$$ – расстояние между обкладками, $$ S$$ – их площадь. Пусть $$ q$$ заряд правой обкладки. Тогда заряд левой будет $$ -q$$, т. к. заряд в значительных количествах не может накапливаться на соединительных проводах и в источнике. Направим ось $$ x$$ влево (рис. 10.3).

Рис. 10.3

Заметим, что поле внутри пластины отсутствует и разность потенциалов $$ {varphi }_{N}-{varphi }_{F}$$ между точками $$ N$$ и $$ F$$ равна нулю. Кроме того, заряды на поверхностях пластины создают вне пластины такое же поле, как и заряд $$ Q$$, если бы его расположить на любой из двух поверхностей пластины. Это легко показать отдельно.

Разность потенциалов $$ {varphi }_{M}-{varphi }_{P}$$ между точками $$ M$$ и $$ P$$ равна $$ mathcal{E}$$. Поэтому

$$ ({varphi }_{M}-{varphi }_{N})+({varphi }_{N}-{varphi }_{F})+({varphi }_{F}-{varphi }_{P})=mathcal{E}$$.

У нас $$ {varphi }_{M}-{varphi }_{N}={E}_{A}{displaystyle frac{d}{4}}, {varphi }_{N}-{varphi }_{F}=0, {varphi }_{F}-{varphi }_{P}={E}_{K}{displaystyle frac{d}{2}}$$.

Здесь — $$ {E}_{A}$$ и $$ {E}_{K}$$ — проекции напряжённости результирующего поля на ось `x`. По принципу суперпозиции полей

$$ {E}_{A}={displaystyle frac{q}{2{varepsilon }_{0}S}}-{displaystyle frac{Q}{2{varepsilon }_{0}S}}-{displaystyle frac{-q}{2{varepsilon }_{0}S}}={displaystyle frac{1}{2{varepsilon }_{0}S}}left(2q-Qright)$$,

$$ {E}_{K}={displaystyle frac{q}{2{varepsilon }_{0}S}}+{displaystyle frac{Q}{2{varepsilon }_{0}S}}-{displaystyle frac{-q}{2{varepsilon }_{0}S}}={displaystyle frac{1}{2{varepsilon }_{0}S}}left(2q+Qright)$$.

Подставляя выражения для $$ {E}_{A}$$, $$ {E}_{K}$$ и разностей потенциалов в первое
уравнение, получим после упрощений $$ 6q+Q=8mathcal{E}{displaystyle frac{{varepsilon }_{0}S}{d}}$$.

Так как $$ {displaystyle frac{{varepsilon }_{0}S}{d}}=C$$, то $$ q=(8Cmathcal{E}-Q)/6$$.

Следует заметить, что знак найденного заряда правой обкладки зависит от соотношения заданных в условии задачи величин.

Рис. 10.4

На схему (рис. 10.4) подано напряжение `U=24` В. Ёмкости конденсаторов `C_1=1` мкФ, $$ {C}_{2}=2$$ мкФ, $$ {C}_{3}=3$$ мкФ. Найти напряжения на конденсаторах.

В задачах, где есть схемы с конденсаторами, обычно предполагается, что схемы собраны из первоначально незаряженных конденсаторов.

Ёмкость между точками $$ B$$ и $$ K$$: 

$$ {C}_{BK}={C}_{2}+{C}_{3}=5$$ мкФ.

Общая емкость: $$ {C}_{AK}={displaystyle frac{{C}_{1}{C}_{BK}}{{C}_{1}+{C}_{BK}}}={displaystyle frac{5}{6}}$$ мкФ.

Общий заряд всей батареи конденсаторов $$ {q}_{AK}={C}_{AK}U=20·{10}^{-6 }mathrm{Кл}.$$

Так как заряд $$ {q}_{1}$$ конденсатора $$ {C}_{1}$$ равен заряду батареи, то напряжение на этом конденсаторе $$ {U}_{1}={q}_{1}/{C}_{1}={q}_{AK}/{C}_{1}=20$$ В. Напряжения на конденсаторах $$ {C}_{2}$$ и $$ {C}_{3}$$ равны напряжению между точками $$ B$$ и $$ K$$ и в сумме с $$ {U}_{1}$$ дают $$ U$$.
Поэтому $$ {U}_{2}={U}_{3}={U}_{BK}=U-{U}_{1}=4$$ В.

Приведённая в задаче схема негромоздкая, и ответ легко получить в общем виде:

$$ {U}_{1}={displaystyle frac{{C}_{2}+{C}_{3}}{{C}_{1}+{C}_{2}+{C}_{3}}}U=20$$ B,

$$ U2=U3={displaystyle frac{{C}_{1}}{{C}_{1}+{C}_{2}+{C}_{3}}}U=4$$ B.

Емкость кондераЕмкость конденсатора определяется как способность конденсатора накапливать максимальный электрический заряд (Q) в своем теле. Заряд хранится в виде электростатической энергии. Емкость конденсаторов измеряется в  единицах СИ- фарадах. Эти единицы могут быть обозначены в микрофарадах, нанофарадах, пикофарадах или фарадах. Формула для определения емкости конденсатора следующая:

C = Q/V = ​​εA/d = ε0 εr A/d

Где,

C — емкость,

Q — заряд,

V — разность потенциалов между пластинами,

А — площадь между пластинами,

d — расстояние между пластинами.

ε — диэлектрическая проницаемость диэлектрика

ε0 — диэлектрическая проницаемость свободного пространства

εr — относительная диэлектрическая проницаемость свободного пространства

Собственная емкость

Свойство собственной емкости относится к конденсаторам с изолированным проводником. Как видно из названия, емкость — это свойство изолированного проводника повышать разность потенциалов до одного В. Обычно нормальные проводники имеют взаимную емкость. Это также измеряется в единицах СИ, то есть в фарадах.

Собственная емкость проводящей сферы радиусом R определяется выражением:

C = 4 π ɛ o R

Ниже приведены некоторые примеры значения собственной емкости:

  • Для верхней пластины генератора Ван де Графа, имеющей радиус 20 см, собственная емкость составляет 22,24 пФ.
  • Для планеты Земля собственная емкость составляет 710 мкФ.

Паразитная емкость

Паразитная емкость — это нежелательная емкость, т.е. шум. Даже такие компоненты, как резисторы, катушки индуктивности и провод, имеют свою некоторую емкость. Обычно на высоких частотах это приводит к появлению шума в цепи.

Паразитную емкость нельзя полностью устранить, но ее можно уменьшить. Разработчики схем должны позаботиться о паразитной емкости при проектировании схемы. Разделение и расстояние между компонентами и дорожками платы должно строго соблюдаться для уменьшения нежелательной емкости.

Она также измеряется в единицах СИ, то есть в фарадах.

Примерами являются: емкость между витками катушки, емкость между двумя соседними проводниками.

Емкость простых схем

Расчет емкости не что иное , как решение теоремы Лапласа  ∇ 2 φ = 0 с постоянным потенциалом на поверхности конденсатора. Ниже приведены значения емкости для некоторых простых схем:

Таблица значений емкости

Заряд конденсатора

Способность конденсатора накапливать максимальный заряд (Q) на своих металлических пластинах называется его значением емкости (C). Полярность накопленного заряда может быть отрицательной или положительной, например, положительный заряд (+ ve) на одной пластине и отрицательный заряд (-ve) на другой пластине конденсатора. Выражения для заряда, емкости и напряжения приведены ниже.

C = Q/V, Q = CV, V = Q/C

Таким образом, заряд конденсатора прямо пропорционален его емкости и разности потенциалов между пластинами конденсатора. Заряд измеряется в кулонах. Один кулон заряда конденсатора можно определить как емкость в одну фараду между двумя проводниками, которые работают с напряжением в один вольт.

Заряд Q, накопленный в конденсаторе, имеющем емкость C, разность потенциалов V и воздух в качестве его диэлектрика, определяется выражением:

Q = CV = (ε × (A × V))/d

Где,

ε0 — диэлектрическая проницаемость свободного пространства,

εr — относительная диэлектрическая проницаемость диэлектрического материала,

ε — диэлектрическая проницаемость диэлектрического материала.

Из двух вышеупомянутых случаев мы можем наблюдать:

Заряд конденсатора прямо пропорционален площади пластин, диэлектрической проницаемости диэлектрического материала между пластинами и обратно пропорционален расстоянию между пластинами. Таким образом, чем больше площадь пластин, тем больше заряд конденсатора, а чем больше расстояние между пластинами, тем меньше заряд конденсатора.

Параллельный пластинчатый конденсатор

Схема параллельного пластинчатого конденсатора

На приведенном выше рисунке показана схема конденсатора с параллельными пластинами. Как мы знаем, емкость прямо пропорциональна площади пластин (A) и обратно пропорциональна расстоянию (d) между двумя металлическими пластинами. Значение емкости конденсатора с параллельными пластинами определяется выражением:

C = k ε0A/d

Где, k — диэлектрическая проницаемость, а ε0 — диэлектрическая проницаемость свободного пространства, равная 8,854 · 10 -12 Ф/м. Диэлектрическая постоянная (k) — это параметр, связанный с диэлектрическим материалом, который увеличивает емкость по сравнению с воздухом. Чем больше площадь поверхности пластин, тем больше значение емкости, и наоборот. Еще один пример схемы конденсатора с параллельными пластинами показан на рисунке ниже.

Конденсатор с параллельными пластинами

Пример емкости №1

Теперь мы рассчитаем емкость конденсатора с параллельными пластинами в пикофарадах, у которого площадь поверхности пластин составляет 200 см2, и они разделены воздухом в качестве его диэлектрического материала с расстоянием 0,4 см.

Уравнение емкости конденсатора с параллельными пластинами выглядит следующим образом:

C = A/d

ε = 8,854 X 10-12Ф / м.

A = 200 см2 = 0,02 м2

D = 0,4 см = 0,004 м

Теперь мы подставляем эти значения в приведенное выше уравнение:

C = 8,854 X 10-12 * (0,02 м2 / 0,004 м) = 44,27 пФ

И получаем, емкость конденсатора с параллельными пластинами составляет 44,27 пФ.

Зарядка и разрядка конденсатора

Схема ниже используется для объяснения заряда и разряда конденсатора. Предположим, что конденсатор, который показан на схеме, полностью разряжен. В этой схеме емкость конденсатора составляет 100 мкФ, а напряжение питания, подаваемое на эту схему, составляет 12 В.

Теперь переключатель, который подключен к конденсатору в цепи, перемещается в точку A. Затем конденсатор начинает заряжаться зарядным током (i). Напряжение зарядки на конденсаторе равно напряжению питания, когда конденсатор полностью заряжен, то есть VS = VC = 12 В. Когда конденсатор полностью заряжен, это означает, что конденсатор поддерживает заряд с постоянным напряжением, даже если напряжение питания отключено от цепи.

В случае идеальных конденсаторов, заряд на конденсаторе остается постоянным, но в случае обычных конденсаторов полностью заряженный конденсатор медленно разряжается из-за его тока утечки.Зарядка и разрядка конденсатора

Когда переключатель перемещается в положение B, конденсатор медленно разряжается за счет включения лампы, которая помещена в цепь. Наконец-то он полностью разряжен до нуля. Сначала лампа ярко светится, когда конденсатор полностью заряжен, но яркость лампы уменьшается по мере уменьшения заряда конденсатора.

Пример заряда конденсатора №2

Теперь давайте вычислим заряд конденсатора в приведенной выше схеме. Уравнение заряда конденсатора имеет следующий вид:

Q = CV

C = 100 мкФ

V = 12V

Теперь мы подставляем эти значения в приведенное выше уравнение:

Q = 100 мкФ * 12 В = 1,2 мкФ

Следовательно, заряд конденсатора в приведенной выше схеме составляет 1,2 мКл.

Ток протекающий через конденсатор

Ток (i), протекающий через любую электрическую цепь, — это скорость заряда (Q), протекающего через нее, относительно времени. Но заряд конденсатора прямо пропорционален приложенному через него напряжению. Соотношение между зарядом, током и напряжением конденсатора приведено в уравнении ниже:

I (t) = d Q (t) / dt = C dV (t) / dt

Мы знаем, что:

Q = CV

V = Q / C

V (t) = Q (t) / C

Q (t) = CV (t)

Отношение тока к напряжению определяется выражением:

I (t) = C dV (t) / dt

Из этого соотношения мы можем заметить, что ток, протекающий через конденсатор в цепи, является произведением емкости и скорости изменения напряжения, приложенного к цепи. Ток, протекающий через конденсатор, прямо пропорционален емкости конденсатора и величине напряжения.

Чем больше ток, тем выше емкость цепи и чем выше приложенное напряжение, тем больше ток, протекающий по цепи. Если напряжение постоянное, то и заряд постоянен, поэтому заряд не протекает. Следовательно, ток, протекающий по цепи, станет нулевым.

Единица емкости (Фарад)

Джозия Латимер Кларк в 1861 году впервые использовал термин Фарад. Фарад — стандартная единица измерения емкости. Это очень большая единица измерения емкости.

Емкость одна фарада определяется как емкость с одним кулоном заряда, работающая при напряжении в один вольт.

C = Q / V

1Фарад = 1Кулон / 1В

Сейчас доступны конденсаторы с большой емкостью в сотни фарад. Эти конденсаторы с высокими значениями емкости называются «суперконденсаторами». В этих конденсаторах используется большая площадь поверхности для передачи высокой энергии, поскольку они имеют высокие значения емкости.

При низком напряжении суперконденсаторы обладают способностью накапливать большую энергию с высокими значениями емкости. Эти высокоэнергетические суперконденсаторы используются в переносных портативных устройствах для замены больших, тяжелых и дорогих конденсаторов литиевого типа, поскольку они хранят большую энергию, как батареи. Эти конденсаторы также используются в аудио- и видеосистемах в транспортных средствах для замены высоковольтных батарей.

Разделение Фарада

Стандартная единица измерения емкости — фарады. Но это очень большая единица измерения емкости. В этом фараде есть несколько дополнительных единиц; это микрофарады (мкФ), нанофарады (нФ) и пикофарады (пФ).

1 мкФ (мкФ) = (1/1000000) Ф = 10-6 Ф

1нано-Фарад (мкФ) = (1/1000000000) Ф = 10-9 Ф

1 пико-Фарад (мкФ) = (1/1000000000000) Ф = 10-12 Ф

Теперь мы увидим некоторые преобразования между единицами измерения емкости,

(i) преобразование 33 пФ в нФ => 33 пФ = 0,033 нФ

(ii) преобразование 22 нФ в мкФ => 22 нФ = 0,022 мкФ

(iii) преобразование 11 мкФ в Ф => 11 мкФ = 0,11 Ф

Энергия в конденсаторе

Энергия — это количество некоторой работы против электростатического поля для полной зарядки конденсатора. В конденсаторе на начальной стадии зарядки заряд Q передается между пластинами с одной пластины на другую. Этот заряд либо + Q, либо –Q меняется местами между двумя пластинами конденсатора. После преобразования некоторого заряда между пластинами образуется электрическое поле, в этом случае нам потребуется дополнительная работа, чтобы зарядить конденсатор полностью. Эта дополнительная работа называется энергией, запасенной в конденсаторе. Энергия измеряется в джоулях (Дж). Теперь мы приведем уравнения для этой энергии и работы:

dW = V dQ

dW = (Q / C) dQ

После интегрирования приведенного выше уравнения:

W = Q 2 / 2C

W = (CV) 2 / 2C

W = CV 2 /2 Джоулей

Наконец, мы получаем, что энергия, хранящаяся в конденсаторе, равна:

Энергия (W) = CV 2 /2 Джоулей

Теперь посчитаем энергию, запасенную в конденсаторе емкостью 200 мкФ, работающего с напряжением 12 В.

W = CV 2 /2

W = (200 × 10-6 × 12 2 ) / 2 = 14,4 м Дж

Вот и все, что вам нужно было знать о емкости и заряде конденсатора. Если вам нравятся наши статьи, то оставляйте свои комментарии.

С Уважением, МониторБанк

Конденсатор .

Конденсатор это устройство, способное накапливать электрический заряд.

Конденсатор также называют электрической емкостью.

Конденсатор имеет два электрических контакта.


На этой схеме конденсатор подключен к источнику питания(батарейке):
конденсатор на схеме

Сверху источник питания, снизу конденсатор.

Конденсатор на схеме обозначается буквой (C )


Любой конденсатор обладает емкостью ( C )

Емкость конденсатора измеряется в фарадах [Ф]

1 фарад это довольно большая величина, обычно емкость конденсаторов намного меньше
одного фарада.

Обычно емкости конденсаторов даны в:

Микрофарадах ( ( 1 мкФ= 10^{-6} Ф ) )

Нанофарадах ( ( 1 нФ =10^{-9} Ф ) )

Пикофарадах ( (1 пФ= 10^{-12} Ф ) )

Чем больше емкость конденсатора , тем больший заряд он может накопить.

( q=CU )

(q)- заряд конденсатора

(U) — напряжение на конденсаторе



Задача 1.

Найти заряд

конденсатора, если напряжение на нем составляет (U=100 Вольт ), а его

емкость (C=0,0001 Ф . )


Показать ответ
Показать решение
Видеорешение


Задача 2.

Конденсатор емкостью ( C=4 мкФ ) подключен к источнику питания с напряжением (U=25 Вольт . )
Какой заряд образуется на обкладках конденсатора?

Дать ответ в микрокулонах.

конденсатор на схеме


Показать ответ
Показать решение
Видеорешение


Задача 3.

Конденсатор емкостью ( C=500 нФ ) подключен к аккумулятору с напряжением (U=20 Вольт . )
Какой заряд образуется на пластинах конденсатора?

Дать ответ в микрокулонах.

конденсатор на схеме


Показать ответ
Показать решение
Видеорешение


Задача 4.

Заряд на обкладках конденсатора, изображенного на схеме (q=150 мкКл ),

а напряжение источника

тока

(U= 12 В . )

Какова емкость конденсатора?

Дать ответ в микрофарадах.

конденсатор на схеме


Показать ответ
Показать решение
Видеорешение


Задача 5.

К аккумуляторной батарее, с напряжением на контактах (U=100 В ),

подключен конденсатор.

Заряд конденсатора (q= 2 нКл . )

Вычислить емкость этого конденсатора.

Дать ответ в пикофарадах.

конденсатор на схеме


Показать ответ
Показать решение
Видеорешение


Задача 6.

Конденсатор заряжается до заряда (q=225 нКл ) от пальчиковой батарейки.
Напряжение на полюсах этой батарейки (U= 1,5 В . )

Вычислить емкость этого конденсатора.

Дать ответ в нанофарадах.

конденсатор на схеме


Показать ответ
Показать решение
Видеорешение


Задача 7.

Вычислите напряжение на контактах конденсатора, емкостью (C=60 мкФ ), если его заряд

составляет (q=30 мкКл . )


Показать ответ
Показать решение
Видеорешение


Задача 8.

Конденсатор, емкостью (C=120 нФ ) подключен к источнику тока.
Заряд конденсатора (q=30 мкКл . )

Каково напряжение на клеммах источника?

конденсатор на схеме


Показать ответ
Показать решение
Видеорешение


Задача 9.

Конденсатор, емкостью (C=2 мкФ ) подключен к элементу питания, как показано на рисунке.
Заряд конденсатора (q=800 нКл . )

Каково напряжение цепи?

конденсатор на схеме


Показать ответ
Показать решение
Видеорешение


Задача 10.

Конденсаторы (C_1=4 мкФ и C_2=50 нФ ) имеют одинаковый заряд,
Напряжение на первом конденсаторе (U_1= 0,05 Вольт . )

Найдите напряжение на втором конденсаторе.


Показать ответ
Показать решение
Видеорешение


Если тело обладает некоторым электрическим зарядом, то вокруг него обязательно присутствует электрическое поле. Это поле обладает некоторой энергией — может совершить какую-то работу.

Можно ли как-то накопить эту энергию? Да, такая возможность существует. Для этого используют специальный прибор — конденсатор.

Конденсатор — это устройство, позволяющее накапливать электрические заряды и, соответственно, энергию электрического поля.

На данном уроке вы познакомитесь с устройством этого прибора, его характеристиками и свойствами.

Простейший конденсатор и его устройство

Устройство простейшего конденсатора представлено на рисунке 1. Он состоит из двух одинаковых металлический пластин. Эти пластины называются обкладками конденсатора.

Рисунок 1. Устройство простейшего конденсатора

Обкладки расположены на небольшом расстоянии друг от друга. Этот промежуток между ними обязательно должен быть заполнен слоем диэлектрика. В нашем случае таким диэлектриком является обычный воздух.

Такой конденсатор называется плоским (по форме обкладок).

Конденсатор имеет свой условный знак для обозначения на схеме электрической цепи (рисунок 2).

Рисунок 2. Условный знак для обозначения конденсатора на схеме электрической цепи

Зарядка конденсатора и его способность накапливать заряды

Теперь разберемся, каким же образом мы можем накапливать заряды с помощью конденсатора.

Рассмотрим простой опыт. Возьмем конденсатор, состоящий из двух металлических пластин, расположенных параллельно друг другу, и заряженный аккумулятор.

Две обкладки конденсатора подключим к разным полюсам аккумулятора. На обкладках начнут образовываться электрические заряды (рисунок 3). Они будут равны друг другу, но иметь противоположные знаки.

Рисунок 3. Зарядка конденсатора от аккумулятора

Эти заряды образуют электрическое поле конденсатора. Оно будет сосредоточено между обкладками.

Отключим аккумулятор от конденсатора. Что мы увидим? Заряды, образованные на обкладках, никуда не деваются. Они сохраняются, как и электрическое поле между пластин. Конденсатор заряжен.

Если мы соединим проводником обкладки конденсатора, то увидим, что по нему некоторое время будет течь ток. Значит, заряженный конденсатор является источником тока в электрической цепи.

Электроемкость конденсатора

Логично предположить, что разные конденсаторы по-разному будут накапливать заряд. Как охарактеризовать эту способность прибора? Для этого существует специальная величина — электроемкость (или просто емкость) конденсатора.

Чтобы понять смысл этой величины, рассмотрим опыт. Возьмем две металлические пластины и установим их на изолированных подставках друг напротив друга.

Подключим к пластинам электрометр. Этот прибор (рисунок 4) по своему устройству и принципу действия схож с электроскопом. Он позволит нам зафиксировать значения напряжения, которое возникнет между пластинами.

Рисунок 4. Электрометр

Итак, одну из пластин (A) мы соединим проводом со стержнем электрометра, а другую (B) соединим с корпусом прибора (заземлим). Коснемся положительно наэлектризованной стеклянной палочкой внешней стороны пластины A (рисунок 5).

Рисунок 5. Электризация одной пластины конденсатора

Мы сообщили пластине A положительный заряд $+q$. Вокруг этого заряда (пластины A) теперь существует электрическое поле. Под его действием произойдет перераспределение зарядов в пластине B. Отрицательные заряды перейдут на внутреннюю сторону пластины, а положительные — на внешнюю.

Помните, что мы заземлили пластину B? За счет этого на пластину пойдут свободные электроны с земли. Они нейтрализуют положительный заряд на внешней стороне пластины. Таким образом, мы получили на пластине B отрицательный заряд $-q$ (рисунок 6). По величине он равен заряду на другой пластине.

Рисунок 6. Результат электризации пластины конденсатора

Стрелка электрометра отклонилась. Зафиксируем это значение напряжения между пластинами. Далее мы снова сообщим заряд пластине B, равный по величине первому сообщаемому заряду. Потом сообщим третий и четвертый такие же заряды, наблюдая за стрелкой электрометра.

Вы увидите, что при увеличении заряда в 2, 3, 4 раза, соответственно, в 2, 3, 4 раза увеличиваются показания электрометра — напряжение между пластинами. Важно отметить, что отношение заряда к напряжению при этом будет постоянно:
$frac{q}{U} = frac{2q}{2U} = frac{3q}{3U} = frac{4q}{4U} = const$.

Теперь мы можем дать определение электроемкости конденсатора.

Электроемкость конденсатора — это величина, измеряемая отношением заряда на одной из пластин конденсатора к напряжению между пластинами:
$C = frac{q}{U}$.

Единицы измерения электроемкости

В СИ электроемкость измеряется в фарадах ($Ф$).

Электроемкость конденсатора равна единице, если при сообщении ему заряда в $1 space Кл$ возникает напряжение, равное $1 space В$ (рисунок 7):
$1 space Ф = frac{1 space Кл}{1 space В}$.

Рисунок 7. Определение $1 space Ф$

Эта единица измерения названа в честь английского физика Майкла Фарадея (рисунок 8).

Рисунок 8. Майкл Фарадей (1791-1867) — английский физик-экспериментатор

Емкость в $1 space Ф$ является очень большой, поэтому на практике часто используют дольные единицы: микрофарад ($мкФ$) и пикофарад ($пФ$).

$1 space мкФ = 10^{-6} space Ф$,
$1 space пФ = 10^{-12} space Ф$.

Зависимость электроемкости от площади пластин конденсатора

От чего зависит электроемкость? Начнем с размера пластин.

Зафиксируем полученное в первом опыте с электрометром и конденсатором значение напряжения $U_1$. Теперь возьмем пластины, имеющие большую площадь. Сообщим им точно такой же заряд $q$ (рисунок 9).

Рисунок 9. Зависимость емкости конденсатора от площади его пластин

Мы увидим, что стрелка электрометра отклоняется меньше. Это означает, что напряжение между этими пластинами меньше напряжения между пластинами меньшей площади ($U_1 > U_2$).

Из определения электроемкости:
$C_1 = frac{q}{U_1}$,
$C_2 = frac{q}{U_2}$,
$C_2 > C_1$.

Чем больше площадь пластин, тем больше электроемкость конденсатора.

Зависимость электроемкости от расстояния между пластинами конденсатора

Снова обратимся к опыту. Теперь изменим расстояние между пластинами — уменьшим его (рисунок 10).

Рисунок 10. Зависимость емкости конденсатора от расстояния между пластинами

Мы увидим, что напряжение между пластинами уменьшилось: $U_2 < U_1$. Значит,
$C_1 = frac{q}{U_1}$,
$C_2 = frac{q}{U_2}$,
$C_2 > C_1$.

При уменьшении расстояния между пластинами конденсатора и при неизменном заряде электроемкость конденсатора увеличивается.

Зависимость электроемкости от диэлектрика

Проведем еще один опыт. Зафиксируем значение напряжения между пластинами конденсатора. Затем внесем между ними лист из оргстекла (рисунок 11). Он является диэлектриком.

Рисунок 11. Зависимость емкости конденсатора от диэлектрика

Если раньше диэлектриком между пластинами являлся только воздух, то теперь это и воздух, и лист оргстекла. Напряжение между пластинами уменьшилось: $U_1 > U_2$. Значит,
$C_1 = frac{q}{U_1}$,
$C_2 = frac{q}{U_2}$,
$C_2 > C_1$.

При внесении диэлектрика электроемкость конденсатора увеличивается.

Виды конденсаторов

Между обкладками конденсатора могут быть помещены разнообразные диэлектрики. В зависимости от природы этого диэлектрика конденсаторы разделяют на несколько видов: с твердым, жидким и газообразным диэлектриком.

Также существует классификация и по форме обкладок. Конденсаторы бывают плоские, цилиндрические, сферические (рисунок 12) и др.

Рисунок 12. Виды конденсаторов по форме обкладок

Конденсаторы бывают с постоянной емкостью и с переменной емкостью. В последних можно регулировать параметры, от которых зависит емкость — ширину пластин и расстояние между ними.

На данный момент существует огромное разнообразие конденсаторов (рисунок 13). Многие из них носят названия, происходящие от названий материалов, составляющих их: слюдяные, керамические, алюминиевые электролитические, танталовые электролитические, конденсаторы на полимерной пленке.

Рисунок 13. Современные конденсаторы

Энергия конденсатора и работа его электрического поля

Заряженный конденсатор обладает некоторой энергией. Это легко проверить на опыте. Если мы подключим к конденсатору электрическую лампочку, то она она ярко вспыхнет (рисунок 14). Энергия конденсатора превратилась во внутреннюю энергию нити накаливания лампы и соединительных проводов.

Рисунок 14. Наличие энергии у заряженного конденсатора

Откуда взялась эта энергия? Конденсатор получает ее при зарядке.

Для того, чтобы зарядить конденсатор, нужно совершить работу по разделению отрицательных и положительных зарядов. По закону сохранения энергии совершенная работа A и будет равна энергии конденсатора E:
$A = E$.

Для расчета такой работы электрического поля конденсатора существует  специальная формула.

$A = qU_{ср}$,
где $U_{ср}$ — среднее значение напряжения.

В процессе разрядки напряжение постоянно падает, поэтому нам и необходимо знать для расчетов его среднее значение:
$U_{ср} = frac{U}{2}$.

Тогда,
$A = qU_{ср} = frac{qU}{2}$.

Из формулы для электроемкости:
$C = frac{q}{U}$,
$q = CU$.

Подставим в формулу для работы:
$A = frac{qU}{2} = frac{CU cdot U}{2} = frac{CU^2}{2}$.

По закону сохранения энергия эта работа и будет равна энергии конденсатора $W$.

$W = frac{CU^2}{2}$

Накапливание конденсатором энергии часто происходит достаточно длительное время. При разрядке эта энергия отдается почти мгновенно.

Это свойство (накопление энергии и ее быстрая отдача) широко применяется в различных электронных устройствах, в медицинской технике (рентген, устройства для электротерапии), при изготовлении дозиметров, фотосъемке.

Последовательное соединение конденсаторов

В электрической цепи может быть не один, а сразу несколько конденсаторов. Они могут быть соединены как последовательно, так и параллельно.

Рассмотрим первый тип соединения — последовательный (рисунок 15).

Рисунок 15. Последовательное соединение конденсаторов

Обкладки 2 и 3, принадлежащие разным конденсаторам, будут являться отдельной деталью. По закону сохранения заряда, заряды на обкладках 2 и 3 будут равны друг другу по модулю, но противоположны по знаку. Из этого следует, что общий заряд конденсаторов численно будет равен заряду на любой из обкладок конденсаторов.

$q = q_1 = q_2 = … = q_n$

Напряжение на концах участка цепи с последовательно соединенными конденсаторами будет складываться из значения напряжений на каждом конденсаторе.

$U = U_1 + U_2 + … + U_n$

Чтобы получить формулу для общей емкости конденсаторов, последнее равенство нужно разделить на заряд q (любой, так как они равны).

$frac{1}{C} = frac{1}{C_1} + frac{1}{C_2} + … frac{1}{C_n}$.

Параллельное соединение конденсаторов

Параллельное соединение конденсаторов показано на рисунке 16.

Рисунок 16. Параллельное соединение конденсаторов

В этом случае выходы от источника питания будут соединены с каждой обкладкой конденсаторов. Поэтому напряжение на концах такого участка цепи будет равно напряжению между обкладками любого из конденсаторов.

$U = U_1 = U_2 = … = U_n$

Заряды на обкладках будут суммироваться.

$q = q_1 + q_2 + … + q_n$

Разделим это равенство на значение напряжения и получим формулу для электроемкости параллельно соединенных конденсаторов.

$C = C_1 + C_2 + … + C_n$

Первый конденсатор — лейденская банка

Лейденская банка официально является первым конденсатором. Изобретение ее относится к 1745 году. Существует множество версий о том, кто же именно должен считаться изобретателем этого прибора, но официально авторство принадлежит Питеру ван Мушенбруку и его студенту Андреасу Кунэусу.

В ранней версии лейденская банка была на часть заполнена водой, которая выступала в роли обкладки (рисунок 17). Второй обкладкой являлась рука, держащая банку. После зарядки этого приспособления Андреас Кунэус испытал сильный удар током, коснувшись до верха металлического стержня.

Рисунок 17. Ранняя версия лейденской банки

Более поздняя и более распространенная версия этого незамысловатого прибора представляет собой сосуд из стекла с широким горлом, снаружи покрытый листом из фольги (рисунок 18). Фольга также находится и внутри банки. Через пробку в этот сосуд вставляется металлический стержень. Он должен касаться фольги внутри банки.

Рисунок 18. Лейденская банка с обкладками из фольги

Таким образом, фольга внутри и фольга снаружи становятся своеобразными обкладками. При подключении к источнику тока на них накапливается электрический заряд.

Внимание! Лейденская банка не является безопасным инструментом в электротехнике! Разряд такого конденсатора может оказаться смертельным  или привести к серьезным физическим повреждениям. Будьте аккуратны при использовании данного прибора: не следует пытаться разрядить лейденскую банку, взявшись за нее голыми руками.

Как изготовить лейденскую банку своими руками? Возьмите пластиковую банку с крышкой (из-под кофе, витаминов). Внешнюю сторону банки на $frac{2}{3}$ обклейте фольгой. Далее или налейте в банку соленую воду, или обклейте изнутри фольгой. Затем закройте крышку и проткните ее достаточно длинным гвоздем, чтобы он касался внутренней обкладки (воды или фольги). После зарядки такая банка представляет собой заряженный конденсатор.

Упражнения

Упражнение №1

Пластины плоского конденсатора подсоединяют к источнику напряжения в $220 space В$. Емкость конденсатора равна $1.5 cdot 10^{-4} space мкФ$. Чему будет равен заряд конденсатора?

Дано:
$C = 1.5 cdot 10^{-4} space мкФ$
$U = 220 space В$

СИ:
$С = 1.5 cdot 10^{-10} space Ф$

$q — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Формула для расчета электроемкости конденсатора:
$C = frac{q}{U}$.

Выразим отсюда заряд конденсатора и рассчитаем его:
$q = CU$,
$q = 1.5 cdot 10^{-10} space Ф cdot 220 space В = 33 cdot 10^{-9} space Кл$.

Ответ: $q = 33 cdot 10^{-9} space Кл$.

Упражнение №2

Заряд плоского конденсатора равен $2.7 cdot 10^{-2} space Кл$, его емкость составляет $0.01 space мкФ$. Найдите напряжение между обкладками конденсатора.

Дано:
$C = 0.01 space мкФ$
$q = 2.7 cdot 10^{-2} space Кл$

СИ:
$C = 10^{-8} space Ф$

$U — ?$

Показать решение и ответ

Скрыть

Решение:

Формула для расчета электроемкости конденсатора:
$C = frac{q}{U}$.

Выразим отсюда напряжение между обкладками конденсатора и рассчитаем его:
$U = frac{q}{C}$,
$U = frac{2.7 cdot 10^{-2} space Кл}{10^{-8} space Ф} = 2.7 cdot 10^6 space В$.

Ответ: $U = 2.7 cdot 10^6 space В$.

Понравилась статья? Поделить с друзьями:
  • Как составить местный бюджет схема
  • Как исправить мягкие соленые огурцы
  • Приложение как составить схему сложного предложения
  • Грудной сколиоз как его исправить упражнения
  • Как исправит оргазм мужчине