Как найти заряд вольт

ads

Любой физический объект в окружающем нас мире состоит из огромного количества элементарных частиц, обладающих зарядами. Элементарная частица протон имеет элементарный электрический заряд, которому приписывают (условно) положительный знак, элементарная частица электрон имеет элементарный отрицательный заряд.


Содержание:

    • Электрический заряд
    • Напряженность
    • Потенциал, напряжение
  •  

Электрический заряд

Под электрическим зарядом понимают физическую величину, которая характеризует способность тел (объектов) вступать в электрическое взаимодействие. Электрический заряд обозначается через q (иногда для обозначения используют заглавную букву Q) и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

Электрический заряд – дискретная величина, кратная элементарному электрическому заряду одного электрона (по модулю) e = 1,60217*10-9 Кл.

Формула Электрического заряда

где N – целое число.

С физической точки зрения 1 кулон [Кл] соответствует электрическому заряду, проходящему через поперечное сечение проводника при силе тока 1 Ампер  за 1 секунду.

Заряды существуют в двух видах: положительные (+) и отрицательные (-). Одноименные заряды отталкиваются, а разноименные – притягиваются.

Сила взаимодействия зарядов направлена вдоль прямой, соединяющей их, пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними (рисунок 1).

Формула кулоновская сила

Сила взаимодействия зарядов

Рис. 1. Сила взаимодействия зарядов

где k – коэффициент пропорциональности, зависящий от выбора системы единиц; 

– единичный вектор, направленный вдоль прямой, соединяющей заряды q1 и q2.

Силу взаимодействия двух зарядов принято называть кулоновской силой в честь ученого-физика Шарля Кулона, обнаружевшего ее существование.

Если объект (система) не обменивается зарядами с окружающей средой, его называют электрически изолированным. В такой системе сумма электрических зарядов (положительных и отрицательных) не меняется со временем, то есть наблюдается закон сохранения заряда.

Большинство тел в природе электрически нейтральны, так как содержат заряды обоих типов в одинаковом количестве. Положительные и отрицательные заряды попарно нейтрализуют действие друг друга. Для перехода тела в заряженное состояние необходимо пространственно перераспределить в нем заряды, сконцентрировав одноименные заряды в одной  области тела. Это возможно сделать, например, при помощи трения или взаимодействия с другим заряженным объектом (рисунок 2).

Переход незаряженного объекта в заряженное состояние

Рис. 2. Переход незаряженного объекта в заряженное состояние

Электрический заряд порождает в окружающем его пространстве непрерывную материю, называемую электрическим полем. Благодаря электрическому полю заряды имеют возможность  взаимодействовать между собой. В электротехнике электрическое поле характеризуется двумя величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика).

Напряженность электрического поля

Напряженность электрического поляэто векторная физическая количественная характеристика электрического поля. Ее величина показывает силу, которая действует на пробный точечный единичный положительный заряд, помещенный в некоторую точку электрического поля.

Формула Напряженности электрического поля

Под точечным зарядом понимают упрощенную модель положительного заряда, в которой его формой и размером можно пренебречь.

Вектор напряженности по направлению совпадает с вектором силы , с которой электрическое поле действует на положительный точечный заряд, помещенный в заданную точку поля (рисунок 3).

Вектор напряженности E, созданной зарядом q, в точке А

Рис. 3. Вектор напряженности E , созданной зарядом q, в точке А

Величина напряженности поля в точке А определяется согласно формуле

напряженности поля в точке А

где r – расстояние от заряда q до точки А, k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Электрическое поле графически изображается линиями напряженности электрического поля, которые условно принято обозначать исходящими из положительно заряженных элементов и входящими в отрицательно заряженные заряды (рисунок 4).

изолированные заряды

а) изолированные заряды
Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов
б) взаимодействующие заряды

Рис. 4. Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов

Потенциал, напряжение

Физическую величину, равную отношению потенциальной энергии W электрического заряда в электростатическом поле к величине самого заряда q, называют потенциалом φ электрического поля

Формула потенциала электрического поля

Потенциал – это скалярная величина, которая показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку. Единицей измерения электрического потенциала является вольт, [В].

При этом важно отметить, что работа сил электростатического поля при перемещении заряда из одной точки электрического поля в другую не зависит от формы траектории перемещения, а зависит только от начального и конечного положения заряда, а также от его величины.

Если имеется некоторая система, состоящая из N точечных зарядов, то потенциал ее электрического поля φ будет равен алгебраической сумме потенциалов полей каждого входящего в него заряда, то есть

Напряжение электрического поля – это разность потенциалов между двумя точками этого поля (рисунок 5).
Напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

U = A/q  [Дж/Кл] или [В]

Графическая интерпретация напряжения электрического поля

Рис. 5. Графическая интерпретация напряжения электрического поля

Напряжение является относительной величиной, то есть всегда определяется относительно некоторого уровня. Нулевой уровень выбирается произвольно и не влияет на итоговое значение напряжения, так как соответствует разности потенциалов в двух точках (то есть изменению потенциальной энергии). Для простоты расчетов в качестве нулевого уровня в большинстве случаев принимают потенциал заземленного проводника или земли.
Как уже было отмечено ранее электрическое напряжение – это разность потенциалов двух точек, следовательно его значение определяется по формуле
Напряжение формула

В системе СИ за единицу измерения напряжения принимается вольт, [В]. Физически величина напряжения, равная 1 вольту, соответствует работе 1 джоуль при перемещении заряда в 1 кулон.

#1. Физическая величина измеряемая в кулонах?

Потенциал

Электрический заряд

Напряжение

Электрический заряд обозначается через q и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

#2. Какие пары электрических зарядов будут притягиваться к друг другу?

Два положительных заряда

Два отрицательных заряда

Один отрицательный заряд, а другой положительный

Одноименные заряды отталкиваются, а разноименные – притягиваются.

#3. … — это работа совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

Потенциал

Сопротивление

Напряжение

Результат

Отлично!

Попытайтесь снова(

Особенности формулы заряда q

Электрический заряд – это основа работы любого электронного прибора и та величина, без которой невозможно посчитать ни один важный показатель в электродинамике и электростатике. Подробная расшифровка термина, описание формулы нахождения электрического заряда и образец решения типовой задачи приведены в данной статье.

Что такое электрический заряд q

Электрический заряд, обозначаемый в международной системе единиц буквами q и Q, считается скалярной физической величиной, которая определяет свойство частицы или тела выступать в качестве источника электромагнитного поля и вступать в прямое взаимодействие с ним. В физике существует несколько видов электромагнитных заряженных частиц, и они называются положительными или отрицательными. Обе единицы измеряются в Кулонах, а найти их можно путём вычисления произведения одного Ампера с одной секундой.

Понятие из учебного пособия

Формула нахождения заряда

Определить искомую величину можно из физико-математической формулы силы тока. В соответствии с ней, нужно перемножить силу тока на время его прохождения по проводнику. Количество заряда можно узнать через формулу +-ne, где n служит целым числом, а е равно значению = -1,6*10^-19 Кулон.

Обратите внимание! Формула заряда является следствием прямой зависимости напряженности электромагнитного поля от потенциала его частицы, что является основным правилом нахождения емкости заряженного конденсатора и величины энергии, накопленной в нём. Кроме того, вычислить количество заряда можно через силу Лоренца.

Как вычислять с помощью законов

Поскольку q и Q являются скалярными единицами, вычислить их с помощью законов можно через точные формулы, выведенные известными учеными-физиками. К примеру, в соответствии с законом Кулона, можно найти величину и силовое направление взаимодействия заряженных частиц между несколькими неподвижными телами.

Закон сохранения

Все элементарные частицы подразделяются на нейтральные или заряженные. Они вступают во взаимодействие друг с другом внутри электромагнитного поля. Частицы, которые имеют одноименный электрон, отталкиваются, а разноименный – притягиваются. В первом случае наблюдается избыток электронов, а во втором – их недостаток. Оба типа частиц заряжаются посредством электризации. На практике, при возникновении данного явления, заряженные частицы равны по модулю, несмотря на противоположность знаков. Когда разные частицы притягиваются, то между ними происходит электризация и сохранение электрона. При этом, сумма всех изолированных системных частиц не изменяется, то есть, q + q + q…= const.

Закон Кулона

Выше было сказано, что электрические заряженные микрочастицы бывают как положительными, так и отрицательными, а их наличие подтверждается силовым взаимодействием, которое с помощью экспериментов на весах описал в 1785 году О. Кулон, создав свой физико-математический закон.

Закон Кулона представляет собой физическую закономерность, которая описывает взаимодействие наэлектризованных частиц между не электризованными, в зависимости от промежутка между ними. В соответствии с этой формулировкой, чем больше электронов имеет частица, тем ближе она расположена к другой элементарной единице заряда, и, соответственно, сила возрастает.

Обратите внимание! При увеличении расстояния между частицами, сал их взаимодействия неизменно убывает. В математической формуле это выглядит так: F1 = F2 = K*(q1*q2/r2), где q1 и q2 считаются модулями заряженных микрочастиц, k является коэффициентом пропорциональности, который зависит от системного выбора единицы, а r — расстоянием.

Образец решения задач по теме «Электрический заряд»

Ниже приведены образцы решения простых задач по электростатике, в частности, на закон Кулона.

Задача 1. Несколько одинаковых заряженных шаров имеют показатели q1 = 6 микрокулон и q2 = -18 микрокулон. Они располагаются друг от друга на 36 сантиметров (0,36 метров). Насколько будет меняться сила их взаимодействия при соприкосновении друг с другом и разведении в сторону?

Чтобы решить эту задачу, нужно воспользоваться эл заряд формулой F=K*(q1*q2/r2), подставив вместо букв известные величины. В результате, выйдет число 7,5.

Задача 2. Маленькие одинаковые шары находятся на промежутке в 0,15 метра и притягиваются с силой 1 микроньютон. Задача состоит в определении первоначальных зарядов шаров.

Чтобы решить вторую задачу, нужно использовать ту же формулу Кулона, но немного видоизмененную: F=kq2/r2. Затем вывести из правила показатель q2. Он будет равен Fr2/k. Подставив известные значения и выполнив несложные расчеты, получится цифры в 10^-7 или 10 микрокулон.

В целом, электрический заряд представляет собой физическую скалярную величину, которая определяет способность тел являться источником электромагнитного поля и участвовать во взаимодействии с ним. Отыскать величину, которая обозначается буквами q и Q, для решения задач или для выполнения другой работы, можно через закон сохранения, Кулона и представленные выше основные физические формулы.

Источник

Электрический заряд, напряжение, напряженность, потенциал

Любой физический объект в окружающем нас мире состоит из огромного количества элементарных частиц, обладающих зарядами. Элементарная частица протон имеет элементарный электрический заряд, которому приписывают (условно) положительный знак, элементарная частица электрон имеет элементарный отрицательный заряд.

Электрический заряд

Под электрическим зарядом понимают физическую величину, которая характеризует способность тел (объектов) вступать в электрическое взаимодействие. Электрический заряд обозначается через q (иногда для обозначения используют заглавную букву Q) и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

Электрический заряд – дискретная величина, кратная элементарному электрическому заряду одного электрона (по модулю) e = 1,60217*10 -9 Кл.

С физической точки зрения 1 кулон [Кл] соответствует электрическому заряду, проходящему через поперечное сечение проводника при силе тока 1 Ампер за 1 секунду.

Заряды существуют в двух видах: положительные (+) и отрицательные (-). Одноименные заряды отталкиваются, а разноименные – притягиваются.

Сила взаимодействия зарядов направлена вдоль прямой, соединяющей их, пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними (рисунок 1).

Рис. 1. Сила взаимодействия зарядов

где k – коэффициент пропорциональности, зависящий от выбора системы единиц;

– единичный вектор, направленный вдоль прямой, соединяющей заряды q1 и q2.

Силу взаимодействия двух зарядов принято называть кулоновской силой в честь ученого-физика Шарля Кулона, обнаружевшего ее существование.

Если объект (система) не обменивается зарядами с окружающей средой, его называют электрически изолированным. В такой системе сумма электрических зарядов (положительных и отрицательных) не меняется со временем, то есть наблюдается закон сохранения заряда.

Большинство тел в природе электрически нейтральны, так как содержат заряды обоих типов в одинаковом количестве. Положительные и отрицательные заряды попарно нейтрализуют действие друг друга. Для перехода тела в заряженное состояние необходимо пространственно перераспределить в нем заряды, сконцентрировав одноименные заряды в одной области тела. Это возможно сделать, например, при помощи трения или взаимодействия с другим заряженным объектом (рисунок 2).

Рис. 2. Переход незаряженного объекта в заряженное состояние

Электрический заряд порождает в окружающем его пространстве непрерывную материю, называемую электрическим полем. Благодаря электрическому полю заряды имеют возможность взаимодействовать между собой. В электротехнике электрическое поле характеризуется двумя величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика).

Напряженность электрического поля

Напряженность электрического поляэто векторная физическая количественная характеристика электрического поля. Ее величина показывает силу, которая действует на пробный точечный единичный положительный заряд, помещенный в некоторую точку электрического поля.

Под точечным зарядом понимают упрощенную модель положительного заряда, в которой его формой и размером можно пренебречь.

Вектор напряженности по направлению совпадает с вектором силы , с которой электрическое поле действует на положительный точечный заряд, помещенный в заданную точку поля (рисунок 3).

Рис. 3. Вектор напряженности E , созданной зарядом q, в точке А

Величина напряженности поля в точке А определяется согласно формуле

где r – расстояние от заряда q до точки А, k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Электрическое поле графически изображается линиями напряженности электрического поля, которые условно принято обозначать исходящими из положительно заряженных элементов и входящими в отрицательно заряженные заряды (рисунок 4).

а) изолированные заряды б) взаимодействующие заряды

Рис. 4. Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов

Потенциал, напряжение

Физическую величину, равную отношению потенциальной энергии W электрического заряда в электростатическом поле к величине самого заряда q, называют потенциалом φ электрического поля

Потенциал – это скалярная величина, которая показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку. Единицей измерения электрического потенциала является вольт, [В].

При этом важно отметить, что работа сил электростатического поля при перемещении заряда из одной точки электрического поля в другую не зависит от формы траектории перемещения, а зависит только от начального и конечного положения заряда, а также от его величины.

Если имеется некоторая система, состоящая из N точечных зарядов, то потенциал ее электрического поля φ будет равен алгебраической сумме потенциалов полей каждого входящего в него заряда, то есть

Напряжение электрического поля – это разность потенциалов между двумя точками этого поля (рисунок 5).
Напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

U = A/q [Дж/Кл] или [В]

Рис. 5. Графическая интерпретация напряжения электрического поля

Напряжение является относительной величиной, то есть всегда определяется относительно некоторого уровня. Нулевой уровень выбирается произвольно и не влияет на итоговое значение напряжения, так как соответствует разности потенциалов в двух точках (то есть изменению потенциальной энергии). Для простоты расчетов в качестве нулевого уровня в большинстве случаев принимают потенциал заземленного проводника или земли.
Как уже было отмечено ранее электрическое напряжение – это разность потенциалов двух точек, следовательно его значение определяется по формуле

В системе СИ за единицу измерения напряжения принимается вольт, [В]. Физически величина напряжения, равная 1 вольту, соответствует работе 1 джоуль при перемещении заряда в 1 кулон.

Источник

Закон Кулона, конденсатор, сила тока, закон Ома, закон Джоуля – Ленца

Теория к заданию 14 из ЕГЭ по физике

Закон Кулона

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряженных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов.

Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

где $|q_1|$ и $|q_2|$ — модули зарядов; $r$ — расстояние между ними; $k$ — коэффициент пропорциональности, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединяющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока $1$А за $1$с.

Заряд в $1$ Кл очень велик. Сила взаимодействия двух точечных зарядов по $1$ Кл каждый, расположенных на расстоянии $1$ км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой $1$ т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в $1$ А вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент $k$ в законе Кулона при его записи в СИ выражается в $Н · м^2$ / $Кл^2$. Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

Часто его записывают в виде $k=<1>/<4πε_0>$, где $ε_0=8.85×10^<-12>Кл^2$/$H·м^2$ — электрическая постоянная.

Электрическая емкость конденсатора

Электроемкость

Электроемкостью проводника $С$ называют численную величину заряда, которую нужно сообщить проводнику, чтобы изменить его потенциал на единицу:

Емкость характеризует способность проводника накапливать заряд. Она зависит от формы проводника, его линейных размеров и свойств среды, окружающей проводник.

Единицей емкости в СИ является фарада ($Ф$) — емкость проводника, в котором изменение заряда на $1$ кулон меняет его потенциал на $1$ вольт.

Электрический конденсатор

Электрический конденсатор (от лат. condensare, буквально сгущать, уплотнять) — устройство, предназначенное для получения электрической емкости заданной величины, способное накапливать и отдавать (перераспределять) электрические заряды.

Конденсатор — это система из двух или нескольких равномерно заряженных проводников с равными по величине зарядами, разделенных слоем диэлектрика. Проводники называются обкладками конденсатора. Как правило, расстояние между обкладками, равное толщине диэлектрика, намного меньше размеров самих обкладок, так что поле в конденсаторе практически все сосредоточено между его обкладками. Если обкладки являются плоскими пластинами, поле между ними однородно. Электроемкость плоского конденсатора определяется по формуле:

где $q$ — заряд конденсатора, $U$ — напряжение между его обкладками, $S$ — площадь пластины, $d$ — расстояние между пластинами, $ε_<0>$ — электрическая постоянная, $ε$ — диэлектрическая проницаемость среды.

Под зарядом конденсатора понимают абсолютное значение заряда одной из пластин.

Энергия поля конденсатора

Энергия заряженного конденсатора выражается формулами

которые выводятся с учетом выражений для связи работы и напряжения и для емкости плоского конденсатора.

Энергия электрического поля. Объемная плотность энергии электрического поля (энергия поля в единице объема) напряженностью $Е$ выражается формулой:

где $ε$ — диэлектрическая проницаемость среды, $ε_0$ — электрическая постоянная.

Сила тока

Электрическим током называется упорядоченное (направленное) движение заряженных частиц.

Сила электрического тока — это величина ($I$), характеризующая упорядоченное движение электрических зарядов и численно равная количеству заряда $∆q$, протекающего через определенную поверхность $S$ (поперечное сечение проводника) за единицу времени:

Итак, чтобы найти силу тока $I$, надо электрический заряд $∆q$, прошедший через поперечное сечение проводника за время $∆t$, разделить на это время.

Сила тока зависит от заряда, переносимого каждой частицей, скорости их направленного движения и площади поперечного сечения проводника.

Рассмотрим проводник с площадью поперечного сечения $S$. Заряд каждой частицы $q_0$. В объеме проводника, ограниченном сечениями $1$ и $2$, содержится $nS∆l$ частиц, где $n$ — концентрация частиц. Их общий заряд $q=q_<0>nS∆l$. Если частицы движутся со средней скоростью $υ$, то за время $∆t=<∆l>/<υ>$ все частицы, заключенные в рассматриваемом объеме, пройдут через поперечное сечение $2$. Сила тока, следовательно, равна:

В СИ единица силы тока является основной и носит название ампер (А) в честь французского ученого А. М. Ампера (1755-1836).

Силу тока измеряют амперметром. Принцип устройства амперметра основан на магнитном действии тока.

Оценка скорости упорядоченного движения электронов в проводнике, проведенная по формуле для медного проводника с площадью поперечного сечения $1мм^2$, дает весьма незначительную величину — $∼0.1$ мм/с.

Закон Ома для участка цепи

Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.

Закон Ома выражает связь между тремя величинами, характеризующими протекание электрического тока в цепи: силой тока $I$, напряжением $U$ и сопротивлением $R$.

Закон этот был установлен в 1827 г. немецким ученым Г. Омом и поэтому носит его имя. В приведенной формулировке он называется также законом Ома для участка цепи. Математически закон Ома записывается в виде следующей формулы:

Зависимость силы тока от приложенной разности потенциалов на концах проводника называется вольт-амперной характеристикой (ВАХ) проводника.

Для любого проводника (твердого, жидкого или газообразного) существует своя ВАХ. Наиболее простой вид имеет вольт-амперная характеристика металлических проводников, заданная законом Ома $I=/$, и растворов электролитов. Знание ВАХ играет большую роль при изучении тока.

Закон Ома — это основа всей электротехники. Из закона Ома $I=/$ следует:

  1. сила тока на участке цепи с постоянным сопротивлением пропорциональна напряжению на концах участка;
  2. сила тока на участке цепи с неизменным напряжением обратно пропорциональна сопротивлению.

Эти зависимости легко проверить экспериментально. Полученные с использованием схемы, графики зависимости силы тока от напряжения при постоянном сопротивлении и силы тока от сопротивления представлены на рисунке. В первом случае использован источник тока с регулируемым выходным напряжением и постоянное сопротивление $R$, во втором — аккумулятор и переменное сопротивление (магазин сопротивлений).

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности $R$ между напряжением $U$ и силой постоянного тока $I$ в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом ($1$ Ом) — это сопротивление такого проводника, в котором при напряжении $1$ В сила тока равна $1$ А.

Удельное сопротивление

Сопротивление однородного проводника постоянного сечения зависит от материла проводника, его длины $l$ и поперечного сечения $S$ и может быть определено по формуле:

где $ρ$ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы $R=ρ/$ следует, что

Величина, обратная $ρ$, называется удельной проводимостью $σ$:

Так как в СИ единицей сопротивления является $1$ Ом, единицей площади $1м^2$, а единицей длины $1$ м, то единицей удельного сопротивления в СИ будет $1$ Ом$·м^2$/м, или $1$ Ом$·$м. Единица удельной проводимости в СИ — $Ом^<-1>м^<-1>$.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (м$м^2$). В этом случае более удобной единицей удельного сопротивления является Ом$·$м$м^2$/м. Так как $1 мм^2 = 0.000001 м^2$, то $1$ Ом$·$м $м^2$/м$ = 10^<-6>$ Ом$·$м. Металлы обладают очень малым удельным сопротивлением — порядка ($1 ·10^<-2>$) Ом$·$м$м^2$/м, диэлектрики — в $10^<15>-10^<20>$ раз большим.

Зависимость сопротивления от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на $1°$С к величине его сопротивления при $0°$С:

Зависимость удельного сопротивления проводников от температуры выражается формулой:

В общем случае $α$ зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов $α=(<1>/<273>)K^<-1>$. Для растворов электролитов $α

Источник

Как найти I в физике?

Найти напряжение U = I ⋅ R {U= I cdot R} U=I⋅R, где U — напряжение, I — сила тока, R — сопротивление.

Как найти напряжение в вольтах?

Звучит эта формула следующим образом — электрическое напряжение равно отношению мощности к силе тока (чтобы найти напряжение нужно мощность разделить на ток).

Как найти напряжение формулы?

Через мощность и напряжение Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U. Данное выражение вытекает из формулы для расчета мощности: P = IU.

Как в расчетах обозначается напряжение?

Единицей измерения напряжения в СИ является вольт (русское обозначение: В; международное: V).

Что означает буква А в физике?

a — ускорение в физике.

Как найти I в электротехнике формула?

Если в цепь переменного однофазного тока включено только активное сопротивление (например, нагревательные элементы или электрические лампы), то значение силы тока и мощности в каждый момент времени определяют по закону Ома: I=U/R; Рa = IU = I²R=U²/R.

Сколько ватт в 220 вольт?

1. Стандартные розетки рассчитаны на силу тока в 16 Ампер. Поскольку напряжение в сети составляет 220 Вольт, то максимальная мощность составляет 16 Ампер * 220 Вольт = 3 520 Ватт или 3,5 Киловатт.

Сколько ватт в 1 вольт?

Вольт также равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт.

Как найти напряжение вольтметра?

U = A q , где U — напряжение, A — работа электрического поля, q — заряд. Единица измерения напряжения в системе СИ — [U] = 1 B (вольт). 1 вольт равен электрическому напряжению на участке цепи, где при протекании заряда, равного 1 Кл, совершается работа, равная 1 Дж: 1 В = 1 Дж/1 Кл.

Как найти силу тока 8 класс?

Сила тока I — скалярная величина, равная отношению заряда q, прошедшего через поперечное сечение проводника, к промежутку времени t, в течение которого шёл ток. I = q t , где I — сила тока, q — заряд, t — время.

Как отмечается напряжение В физике?

Электрическое напряжение обозначается буквой U, единицей напряжения является вольт (В). Напряжение измеряется вольтметром.

В чем измеряется напряжение сопромат?

Напряжение в механике — это мера интенсивности распределения внутренних сил R в окрестности точки в пределах данного сечения площадью A. Единица измерения напряжений — Паскаль (Н/м2=Па).

Чему равна а в физике?

A = Fs, где А — работа, F — сила и s — пройденный путь. За единицу работы принимается работа, совершаемая силой в 1Н, на пути, равном 1 м. Единица работы — джоуль (Дж) названа в честь английского ученого Джоуля.

Как раньше называли букву А?

«А, а» является первой буквой кириллических алфавитов. В старославянском алфавите называлась «аз», обозначая местоимение «я». Истоки восходят к древне-греческой букве «альфа» (α). А α, в свою очередь, произошла от финикийcкого «Алеф».

В чем измеряется I в электротехнике?

Основные электротехнические величины

Величина Единица измерения в СИ Название электрической величины
U В – вольт напряжение
I А – ампер Сила тока (электрический ток)
C Ф – фарад Емкость
L Гн — генри Индуктивность

•9 сент. 2017 г.

Что означает I в электротехнике?

1.6. Оперативные величины следует обозначать по типу: I( ) или I( ) — операторный ток.

Сколько ватт в 1 ампер 220 вольт?

В бытовой электросети 220 Вольт, сила тока в 1 ампер будет равна мощности потребителя на 220 Ватт, но если речь идет о промышленной сети 380 Вольт, то 657 Ватт в ампере.

Формула напряжения в физике — это представление электрической потенциальной энергии на единицу заряда. Если ток был размещен в определенном месте, напряжение указывает на ее потенциальную энергию в этой точке. Другими словами, это измерение силы, содержащейся в электрическом поле или цепи в данной точке. Он равен работе, которую нужно было бы выполнить за единицу заряда против электрического поля, чтобы переместить его из одной точки в другую.

Напряжение является скалярной величиной, у него нет направления. Закон Ома гласит, что интенсивность равна текущему временному сопротивлению.

Сопротивление

Формула механической мощности — средняя и мгновенная мощность

Любой проводник в цепи препятствует прохождению через себя тока. Данная характеристика определяет такую физическую величину, как сопротивление. Исходя из величины сопротивления, все вещества относят к проводникам или изоляторам. Точная граница весьма расплывчата, поэтому при некоторых условиях некоторые вещества можно отнести как к изоляторам, так и к проводникам. Участок электросхемы может иметь элемент с определенным значением величины, который именуется резистор.


Резисторы различных типов

Для переменного тока

Нужно понимать, что закон не применим напрямую к переменным цепям, например, с катушками индуктивности, конденсаторами или линиям передач. Закон может использоваться только для чисто резистивных цепей переменного тока без каких-либо изменений. В цепи RLC противодействие току является импедансом Z, который образует комбинацию двух ортогональных частей сопротивления.

Переменный ток

Im=Vm/Z

В этом случае Vm связано с Im с помощью константы пропорциональности Z (импеданса) и константы пропорциональности R. Для чисто резистивных линий, где (Z = R).

Vm = ImZ и Vm = ImR

Z — это общее сопротивление участка к переменному току, состоящее из реальной части — сопротивления и мнимой — реактивности.

Формула ее определяется теоремой Пифагора, поскольку угол Ф зависит от реактивной составляющей.

Интегральная форма

Взаимосвязь параметров электрической цепи

Все параметры любой электрической цепи строго взаимосвязаны, поэтому в любой момент времени можно точно определить величину любого из них, зная остальные.

К сведению. Основополагающий закон, по которому производится большинство расчетов, – закон Ома, согласно которому сила тока обратно пропорциональна его сопротивлению и прямо пропорциональна приложенной разности потенциалов.

Формула напряжения тока закона Ома выглядит следующим образом:

I=U/R.

Так, цепь с большим напряжением пропускает больший ток, а при одинаковом напряжении ампераж будет больше там, где меньше сопротивление.

Принятые обозначения в формуле расчета напряжения и тока понятны во всем мире:

  • I – сила тока;
  • U – напряжение;
  • R – сопротивление.

Путем простейшего математического преобразования находится формула расчета сопротивления через силу тока и напряжение.

Кроме закона Ома, используется формула расчета мощности:

P=U∙I.

Символом P здесь обозначена мощность тока.

Любая схема может содержать участки, где имеется последовательное соединение, или есть элемент, подключенный параллельно. Расчеты при этом усложняются, но базовые формулы остаются одинаковыми.

Закон Ома для неоднородного участка цепи

Физическая величина, равная отношению работы сторонних сил Aст при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой (ЭДС) источника Eэдс:

$ E_{эдс} = {A_{cт}over q} $ (1).

Таким образом, ЭДС равна работе, совершаемой сторонними силами при перемещении единичного положительного заряда. При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа электростатического поля равна нулю, а работа сторонних сил равна сумме всех ЭДС, действующих в этой цепи.

Работа электростатических сил по перемещению единичного заряда равна разности потенциалов $ Δφ = φ_1 – φ_2 $ между начальной и конечной точками 1 и 2 неоднородного участка. Работа сторонних сил равна, по определению, электродвижущей силе Eэдс, действующей на данном участке. Поэтому полная работа равна:

$ U_п = φ_1 – φ_2 + E_{эдc} $ (2).

Величина Uп называется напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

$ U_п = φ_1 – φ_2 $ (3).

Немецкий исследователь Георг Симон Ом в начале XIX века установил, что сила тока I, текущего по однородному проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

$ I = {U over R} $ (4).

Рис. 2. Портрет Георга Ома.

Величина R — это электрическое сопротивление. Уравнение (4) выражает закон Ома для однородного участка цепи. Для участка цепи, содержащего ЭДС, закон Ома записывается в следующем виде:

$ U_п = I * R = φ_1 – φ_2 + E_{эдс} = Δ φ_{12} + E_{эдс}$ (5).

Данное уравнение называется обобщенным законом Ома для неоднородного участка цепи.

Как работает закон в реальной жизни

Используя совместно формулу расчета мощности и закон Ома, можно производить вычисления, не зная одной из величин. Самый простой пример – для лампы накаливания известны только ее мощность и напряжение. Применяя приведенные выше формулы, можно легко определить параметры нити накаливания и ток через нее.

Сила тока формула через мощность:

I=P/U;

Сопротивление:

R=U/I.

Такой же результат можно найти из мощности, не прибегая к промежуточным расчетам:

R=U2/P.

Аналогично можно вычислить любую величину, зная только две из них. Для упрощения преобразований имеется мнемоническое отображение формул, позволяющее находить любые величины.

Внимательно посмотрев на формулы, можно заметить, что, если уменьшить напряжение на лампе в два раза, ожидаемая мощность не снизится аналогично в два раза, а в четыре, согласно формуле:

P=U2/R.

Это довольно распространенная ошибка среди далеких от электротехники людей, которые неправильно соотносят мощность и напряжение, а также их действие на остальные параметры.

Кстати. Сила тока, найденная через сопротивление и напряжение, справедлива как для постоянного, так и для переменного тока, если в ней не используются такие элементы, как конденсатор или индуктивность.

Облегчить расчеты можно, используя онлайн калькулятор.

Определение через разложение электрического поля

Используя приведенное выше понятие, потенциал не находится на одном месте, когда магнитные поля меняются со временем. В физике иногда полезно обобщать электрическое значение, рассматривая только консервативную часть поля. Это делается с помощью следующего разложения, используемого в электродинамике.

формула для вычисления напряжения

В показанной выше формуле Е — индуцированный — вращательное электрическое поле, обусловленное изменяющимися во времени магнитными фонами. В этом случае сила между точками всегда определяется однозначно.

Пример с обычной водой

Существуют вещества, которые можно отнести одновременно к проводникам и изоляторам. Самый простой пример – обыкновенная вода. Дистиллированная вода является хорошим изолятором, но наличие в ней практически любых примесей делает ее проводником. Особенно это относится к солям различных металлов. При растворении в воде соли диссоциируются на ионы, их наличие – прямой повод для возникновения тока. Чем больше концентрация солей, тем меньшим сопротивлением будет обладать вода.

Для наглядности можно взять дистиллированную воду для приготовления электролита для автомобильных аккумуляторных батарей. Опустив щупы омметра в воду, можно увидеть, что его показания велики. Добавление всего нескольких кристаллов поваренной соли через некоторое время вызывает резкое уменьшение сопротивления, которое будет тем меньше, чем больше соли перейдет в раствор.

Различные используемые величины

Кроме основных величин: вольт, ампер, ом, ватт, используют кратные, большие или меньшие. Для обозначений применяют соответствующие приставки:

  • Кило – 1000;
  • Мега – 1000000;
  • Гига – 1000000000;
  • Милли – 0.001.

Таким образом, получается:

  • Киловольт (кВ) – тысяча вольт;
  • Мегаватт (Мвт) – миллион ватт;
  • Миллиом (мОм) – одна тысячная Ом;
  • Гигаватт (ГВт) – тысяча мегаватт или миллиард ватт.

Как найти напряжение

Формула нахождения напряжения как разности потенциалов в электрическом поле:

U=ϕA-ϕB, где ϕAи ϕB – потенциалы в точках А и В, соответственно.

Также можно записать напряжение как работу по переносу единицы заряда из точки А в точку В в электрическом поле:

U=A/q, где q – величина заряда.

Работа тем больше, чем выше напряженность электрического поля Е, то есть сила, действующая на неподвижный заряд.

Потенциальную энергию заряда в электростатическом поле называют электростатический потенциал.

Единицы измерения в формуле

Вам будет интересно:Антиклиналь + синклиналь – это складчатые горы

формула напряжения физика

В формуле, определяющей напряжение, значением СИ является вольт. Таким образом, что 1В = 1 джоуль/кулон. Вольт назван в честь итальянского физика Алессандро Вольта, который изобрел химическую батарею.

Это означает, что в формуле напряжения в физике один кулон заряда получит один джоуль потенциальной энергии, когда он будет перемещен между двумя точками, где разность электрических потенциалов составляет один вольт. При напряжении 12, один кулон заряда получит 12 джоулей потенциальной энергии.

Батарея на шесть вольт имеет потенциал для одного кулона заряда, чтобы получить шесть джоулей потенциальной энергии между двумя местоположениями. Батарея на девять вольт имеет потенциал для одного кулона заряда, чтобы получить девять джоулей потенциальной энергии.

Гидравлическая аналогия

Чтобы легче усвоить законы электрических цепей, можно представить себе аналогию с гидравлической системой, в которой соединение насоса и трубопроводов образует замкнутую систему. Для этого нужны следующие соответствия:

  • Источник питания – насос;
  • Проводники – трубы;
  • Электроток – движение воды.

Без особых усилий становится понятнее, что чем меньше диаметр труб, тем медленнее по ним движется вода. Чем мощнее насос, тем большее количество воды он способен перекачать. При одинаковой мощности насоса уменьшение диаметра труб приведет к снижению потока воды.

Измерительные приборы

Для измерения параметров электрических цепей служат измерительные приборы:

  • Вольтметр;
  • Амперметр;
  • Омметр.

Наиболее часто используется класс комбинированных устройств, в которых переключателем выбирается измеряемая величина – ампервольтомметры или авометры.

Различия по напряжению у Li-ion-аккумуляторов, максимальное напряжение Li-ion при зарядке.

Какое значение лучше выбирать по напряжению Li-ion-аккумулятора в смартфоне? Ведь вариантов немало: 3,6В, 3,7В, 3,75В, 3,8В или 3,85В.

Напряжение на аккумуляторе указывается двух типов:

  • номинальное (то есть основное рабочее, указывается всегда);
  • максимальное (снижается ток, работает защита от перезаряда, иногда не указано — ниже объясним, почему).

Цифра в значении напряжения зависит от конструкции и типа электрохимической системы литиевого элемента. Узнайте, есть ли разница, и какие элементы лучше для надёжности, срока службы, быстрой зарядки и так далее.

Различия по напряжению у Li-ion-аккумуляторов, максимальное напряжение Li-ion при зарядке.

Что означает напряжение Li-ion-аккумулятора смартфона «3,7В / 4,2В»?

Типовой вариант литий-ионных (и литий-полимерных) аккумуляторов с кобальтовым катодом (LCO) имеет напряжение на элемент:

  • 3,6В номинальное;
  • 4,2В максимальное.

Вот, как это напряжение влияет на работу литий-ионного аккумулятора:

  • • Аккумулятор заряжается до 4,2В (индикация 100%);
  • • Постепенно разряжаясь, он удерживает номинальное напряжение на уровне 3,6В (+/- 0,1В при токе разряда 0,2C-0,5C);
  • • При остатке около 20% заряда от ёмкости напряжение падает до 3,0В;
  • • Срабатывают алгоритмы контроля аккумулятора (например, управляющая плата BMS и аппаратно-программные средства смартфона — он выключается).
  • • Срабатывает защита, когда напряжение падает до критического у Li-ion значения 3,0-2,75В (точная цифра зависит от материалов, задумки инженеров и сборки).

Сильно разряженный Li-ion-аккумулятор выключается после срабатывания защиты по нижнему порогу напряжения — размыкается цепь. Восстановить можно. Правда, понадобится специальное оборудование. И результат получится со значительной потерей ёмкости (глубокий разряд).

Исконно-номинальное значение напряжения Li-ion-аккумулятора 3,6В — до 3,7В его увеличили в маркетинговых целях за счёт понижения внутреннего сопротивления.

Диапазон напряжений 3,7-4,2В (рабочий ещё шире: 2,75В-4,2В) используется в литий-ионной технологии повсеместно (в элементах 18650, аккумуляторы в смартфонах, смарт-часах, планшетах, ноутбуках, электроинструменте, электротранспорте). Но встречаются и другие варианты.

Различия по напряжению у Li-ion-аккумуляторов, максимальное напряжение Li-ion при зарядке.

Какое напряжение литий-ионного аккумулятора лучше?

Увеличение напряжения от штатных 3,6В добавляет мощности аккумулятору и увеличивает максимальную ёмкость при заряде выше 4,2В.

Однако перезаряд плохо сказывается на сроке службы и безопасности ячейки. Требуются другие материалы, более дорогое производство, чтобы снизить негативный эффект. Новые модели смартфонов могут предложить такие технологии, но стоят ли они усилий и переплаты?

Отличия, которые скрывают цифры по напряжению Li-ion-аккумулятора

Первое значение соответствует номинальному и указывается обязательно на всех ячейках. Второе значение указывается либо рядом, либо где-нибудь в описании характеристик на стикере с информацией. Притом найти его удаётся не всегда на корпусе ячейки (в таком случае считается, что оно штатное для технологии — 4,2В).

3,6В / 4,2В

Традиционные аккумуляторы (обычно с кобальтовым катодом). Исконные значения технологии Li-ion и Li-ion Polymer.

3,7В / 4,2В

Современный и наиболее распространённый вариант достигнут в маркетинговых целях («3,7В больше 3,6В») с небольшой доработкой материалов катода и анода (снижено внутреннее сопротивление).

3,75В / 4,2 или 4,25В

Компромисс между долговечностью, ёмкостью и мощностью, которым пользуются производители во флагманских и популярных моделях. Чтобы достичь большего максимального напряжения при заряде 4,25В поверхность катода покрывается специальными материалами (от грубого нанесения до структурного перекрытия оболочкой), разрабатываются добавки к электролиту.

3,8-3,85В / 4,35-4,4В

Новейшие разработки материалов (тонкоплёночные покрытия катода и добавки в электролит) позволяют заряжать аккумуляторы до 4,35 (+/-0,05В). Это увеличивает мощность (например, полезно для электромотора) и ёмкость (время автономной работы).

Они называются высоковольтовые элементы (LiHV или High Voltage Li-ion, например, HV-LIPO). Из особых требований — поддержка 4,4В со стороны зарядного устройства (должно быть правильно настроено по напряжению полной зарядки для дополнительной ёмкости).

Заряд до такого высокого напряжения, как 4,4В плохо влияет на долговечность. Даже с использованием новейших технологий защиты электродов от чрезмерного износа производитель получает ячейки, в которых уменьшается максимальное число циклов заряд-разряд. Для их работы требуются более ответственные меры, чтобы изделие соответствовало стандартам безопасности.

Интересно, что в Datasheet литий-ионных аккумуляторов 3,85В / 4,4В тестирование демонстрирует более экстремальный заряд до 4,6В. Это ещё сильнее увеличивает ёмкость и мощность.

Однако инженеры отмечают, что для безопасности заряда до такого высокого напряжения следует строго следить за повреждениями и вздутием. Если они есть, то так сильно заряжать нельзя, опасно.

Различия по напряжению у Li-ion-аккумуляторов, максимальное напряжение Li-ion при зарядке.

Ответы на частые вопросы по напряжению Li-ion-аккумулятора

Срок службы батареи Li-ion согласован с моральным устареванием модели смартфона. В связи с этим фактом, короткий цикл жизни элемента питания с точки зрения производителей вполне приемлем. Почему бы и не увеличить циферку в ёмкости пусть и немного за счёт срока службы?

На практике мы сталкиваемся с определёнными эффектами при использовании разных напряжений аккумуляторов в одном и том же смартфоне. Возникают популярные вопросы, на которых хотелось бы дать краткие ответы.

Вопрос 1: Напряжение 4,35В или 4,4В действительно лучше, чем 4,2В?

Ответ: Да, это даст больше ёмкости на первые 50-100 полных циклов заряд-разряд (и мощности, например, для мотора в электроинструменте). Далее у двух аккумуляторов 4,35В и 4,2В ёмкость фактически сравняется — «карета превратится в тыкву». В теории срок службы аккумулятора, который продолжают перезаряжать выше 4,2В, будет меньше. Но если не заряжать его выше 80%, то, вероятно, он прослужит даже больше [тезис аргументирован, но требует практических испытаний].

Вопрос 2: Стоит ли искать только аккумуляторы с напряжением 4,2В?

Ответ: Нет, основывать свой выбор только на этой характеристике не стоит. Вы получите аккумулятор со сроком службы 500 полных циклов (на 100-150 циклов больше в сравнении с 4,4В), но с учётом быстрого морального устаревания смартфонов это преимущество может быть совершенно неважно (составит всего несколько месяцев от двух-трёх лет).

Вопрос 3: Есть ли разница между аккумуляторами 3,6В и 3,7В?

Ответ: Есть, но она фактически незаметна. Отличается внутреннее сопротивление, которое критично при определённых экстремальных обстоятельствах.

Вопрос 4: Есть ли разница между аккумуляторами 3,85В и 3,75В?

Ответ: Есть, и довольно большая. Отличаются технологии производства и применения материалов для катода, анода и электролита. Они влияют на максимальный заряд, в том числе дают возможность безопасно заряжать до 4,4В (требуется соответствующая поддержка на заряднике). Это в свою очередь увеличивает максимальную ёмкость (Wh = Ah * V или Вт·ч = А·ч * В).

Вопрос 5: Есть ли разница между аккумуляторами 3,7В и 3,75В?

Ответ: Есть, и она практически незаметна, если производитель не указал максимальное напряжение 4,35В (тогда отличия будут, как в вопросе 4). Обычно на аккумуляторе 3,75В это значение не указывают (тогда считается 4,2В), реже вписывают «измеренное» максимальное напряжение 4,25В — является по сути маркетинговым ходом.

Вопрос 6: Есть ли ещё информация? Я не нашёл напряжение, которое указано на моём аккумуляторе.

Ответ: Могут встречаться промежуточные значения, вроде «3,82В». Это некие «измеренные» («rated voltage») цифры по номинальному напряжению после увеличения максимального напряжения заряда до 4,4В. Достаточно придерживаться указанной выше вилки, чтобы понимать разницу. Кратные напряжения, например, 11,1В говорят о составе батарейного блока из трёх подключённых между собой аккумуляторов 3,7В (3шт x 3,7В = 11,1В).

Различия по напряжению у Li-ion-аккумуляторов, максимальное напряжение Li-ion при зарядке.

***

Напряжение Li-ion аккумулятора — это важная для инженеров характеристика, которую учитывают при концептуальное разработке коммерческого продукта (например, смартфона, планшета, электродрели). Параметры применения литий-ионной ячейки зависят от её максимального напряжения при зарядке, что достигается разными технологическими решениями.

Сейчас актуальны две разновидности максимального напряжения Li-ion:

  • 4,2В (исконное, штатное значение, иногда даже не указывается — и так понятно, аккумуляторы с отсечкой на 4,2В «живут» немного дольше);
  • 4,35В или 4,4В (элементы высокого напряжения или High Voltage Li-ion/LiPo, их срок службы уменьшен взамен на указанные выше преимущества).

Номинальное напряжение 3,6В, 3,7В, 3,75В, 3,8В или 3,85В, указанное на корпусе аккумулятора по сути не влияет на срок службы, если максимальное напряжение одинаковое (4,2В). Но может говорить о разных материалах, применяющихся для катода, анода и электролита.

Различия по напряжению у Li-ion-аккумуляторов, максимальное напряжение Li-ion при зарядке.

Все утверждения, которые мы привели в этой статье, основаны на расчётах, исследованиях и тезисах Battery University. В ходе своей работы мы опирались на собственный опыт производства аккумуляторов литий-ионного типа в компании Neovolt.

Для дальнейшего самостоятельного изучения рекомендуем обратиться к научному исследованию: «Практическая оценка литий-ионных аккумуляторов» [опубликовано в ScienceDirect] — эта работа входит в национальную программу ключевых исследований и разработок Китая (грант №2016YFB0100100 )

Логотип компании «Неовольт»

Пишите вопросы в комментарии. Мы ждём ваши сообщения и ВКонтакте @NeovoltRu.

Подпишитесь на нашу группу, чтобы узнавать новости из мира автономности гаджетов, об их улучшении и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.

Понравилась статья? Поделить с друзьями:
  • Видео как найти нок 5 класс
  • Как найти капитал на бизнес
  • Как найти вероятность брака
  • Как составить тз для дизайнера инфографики
  • Как найти имя для вов