Как найти зависимость на графике физика

I. Механика

Тестирование онлайн

Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций. Обозначают

Графики равномерного движения

Зависимость ускорения от времени. Так как при равномерном движении ускорение равно нулю, то зависимость a(t) — прямая линия, которая лежит на оси времени.

Зависимость скорости от времени. Скорость со временем не изменяется, график v(t) — прямая линия, параллельная оси времени.

Правило определения пути по графику v(t): Численное значение перемещения (пути) — это площадь прямоугольника под графиком скорости.

Зависимость пути от времени. График s(t) — наклонная линия.

Правило определения скорости по графику s(t): Тангенс угла наклона графика к оси времени равен скорости движения.

Графики равноускоренного движения

Зависимость ускорения от времени. Ускорение со временем не изменяется, имеет постоянное значение, график a(t) — прямая линия, параллельная оси времени.

Зависимость скорости от времени. При равномерном движении путь изменяется, согласно линейной зависимости . В координатах . Графиком является наклонная линия.

Правило определения пути по графику v(t): Путь тела — это площадь треугольника (или трапеции) под графиком скорости.

Правило определения ускорения по графику v(t): Ускорение тела — это тангенс угла наклона графика к оси времени. Если тело замедляет движение, ускорение отрицательное, угол графика тупой, поэтому находим тангенс смежного угла.

Зависимость пути от времени. При равноускоренном движении путь изменяется, согласно квадратной зависимости . В координатах зависимость имеет вид . Графиком является ветка параболы.

График движения при . График движения при

График движения при . График движения при

Сравнительная таблица графиков

Графический метод, основа которого —
математика, используется в курсе физики на
различных этапах ее изучения. Это естественно,
так как график позволяет показать специфику
происходящего, прогнозировать ожидаемый
результат, наглядно пояснить ответ.

Он используется в физике для формирования и
анализа изучаемых физических понятий путем
раскрытия их связей с другими понятиями, для
решения задач обобщения, систематизации знаний.

Графические задачи делятся на две большие
группы:

  • Задачи на построение графиков
  • Задачи на получение информации из графиков

В свою очередь задачи на построение графиков
делятся (по способу задания) на два вида:

  • Табличный способ задания зависимости
  • Функциональный способ задания зависимости
  • Задачи на получение информации из графика
    делятся (по характеру информации) на три вида:
  • Словесное описание процессов
  • Аналитическое выражение функциональной
    зависимости, представленной графиком
  • Определение по графику неизвестных величин

 Чаще всего при построении графиков на
зависимость одних величин от других учащиеся
запоминают вид графика, не вдаваясь в
подробности, почему он проходит именно так, а не
иначе. Когда зависимостей накапливается
достаточно много, начинаются ошибки в построении
графиков. В своей работе при построении графиков
на различные зависимости физических величин я
использую функциональный подход. В школьном
курсе физики для построения графиков
используются всего семь функций. Почти все
физические величины положительные, поэтому
графики функций будем рассматривать только в
первой четверти.

Графики этих функций учащиеся изучают в курсе
математики. Они знают эти графики либо умеют их
строить по точкам. Моя задача сводится к тому,
чтобы научить учащихся в физической формуле
увидеть зависимость, определить ее вид, а затем
установить соответствующий график.

Покажу это на примере:

Пример № 1. Необходимо построить
график зависимости силы тока от напряжения,
которая выражена зависимостью I = . Учащиеся должны понимать,
если необходимо построить зависимость силы тока
от напряжения, то изменяться будет только
напряжение и в зависимости от него сила тока, а
остальные величины будут постоянными в
частности сопротивление. Тогда нашу функцию
(формулу) можно представить в виде . Если R -сопротивление
постоянная величина, то и единица, деленная на
сопротивление величина постоянная. Заменим эту
величину на k, получим I = k U. Определяем вид
функции, это прямая пропорциональность. Графиком
будет прямая проходящая через начало координат.

Пример № 2. Необходимо построить
график зависимости силы тока от сопротивления,
которая выражена зависимостью I = . В донном примере
изменяться будет сопротивление и в зависимости
от него сила тока, а напряжение будет величиной
постоянной. Сделаем следующие замены I = y; U = k; R = x;
Получим функцию y = k x, графиком которой является
ветвь гиперболы

Пример № 3. Постройте зависимость
периода математического маятника от его длины.
Запишем данную зависимость. . Изменяться будет только длина
маятника и в зависимости от нее период. Все
остальные величины постоянные, сделаем замену. 2 -число; = k; T = y; l = x; . Получим функцию y = 2 и строим ее график

План действий при построении графика
физической зависимости:

Записываем аналитическое выражение данной
зависимости (Формулу)

Устанавливаем, какие величины являются
постоянными, и представляем их в виде
коэффициента.

Если необходимо делаем замены: переменную
величину обозначаем через x, зависящую через y.

  • Определяем вид функции
  • Определяем график

Приложение.

Цели урока:

обучающая: рассмотреть и сформировать навыки построения графиков зависимости кинематических величин от времени при равномерном и равноускоренном движении; научить учащихся анализировать эти графики; путем решения за­дач закрепить полученные знания на практике;

развивающая: развитие умения наблюдать, анализировать конкретные ситуации; выделять определенные признаки;

воспитывающая: воспитание дисциплины и норм поведения, творческого от­ношения к изучаемому предмету; стимулировать активность учащихся.

Методы:

словесный — беседа;

наглядный — видеоурок, записи на доске;

контролирующий — тестирование или устный (письменный) опрос, решение задач).

Связи:

межпредметные: математика — линейная зависимость, график линейной функции; квадратичная функция и ее график;

внутрипредметные: равномерное и равноускоренное движение.

Ход урока:

1. Организационный этап.

Добрый день. Прежде чем мы приступим к уроку, хотелось бы, чтобы каждый из вас настроился на рабочий лад.

2. Актуализация знаний.

3. Объяснение нового материала.

Мы с вами знаем, что механическое движение — это изменение положения тела (или частей тела) в пространстве относительного других тел с течением времени.

В свою очередь механическое движение бывает двух видов — равномерное, при котором тело за любые равные промежутки времени совершает одинаковые перемещения, и неравномерным, при котором тело за любые равные промежутки времени совершает разные перемещения.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении

Давайте вспомним основные формулы, которые мы выучили для равномерного и неравномерного движения.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении

Если движение равномерное, то:

1. Скорость тела не меняется с течением времени;

2. Что бы найти скорость тела, необходимо путь, который прошло тело за некоторый промежуток времени, разделить на этот промежуток времени;

3. Уравнение перемещения имеет вид:

4. И  — кинематическое уравнение равномерного движения.

Для равноускоренного:

1. Ускорение тела не изменяется с течением времени;

2. Ускорение есть величина, равная отношению изменения скорости тела, к промежутку времени, в течении которого это изменение произошло

3. Уравнение скорости для равноускоренного движения имеет вид:

4.  — уравнение перемещения для равноускоренного движения;

5. — кинематическое уравнение равноускоренного движения.

Для большей наглядности движение можно описывать с помощью графиков.

Рассмотрим зависимость ускорения, которым может обладать тело вследствие своего движения, от времени.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении

Если по горизонтальной оси (оси абсцисс) откладывать в определенном масштабе время, прошедшее с начала отсчета времени, а по вертикальной оси (оси ординат) — тоже в соответствующем масштабе — значения ускорения тела, полученный график будет выражать зависимость ускорения тела от времени.

Для равномерного прямолинейного движения график зависимости ускорения от времени имеет вид прямой, которая совпадает с осью времени, т.к. ускорение при равномерном движении равно нулю.

Для равноускоренного движения график ускорения также имеет вид прямой, параллельной оси времени. При этом график располагается над осью времени, если тело движется ускоренно, и под осью времени, если тело движется замедленно.

Если по горизонтальной оси (оси абсцисс) откладывать в определенном масштабе время, а по вертикальной оси ординат — тоже в соответствующем масштабе — значения скорости тела, то мы получим график скорости.

Для равномерного движения график скорости имеет вид прямой, параллельной оси времени. При этом график скорости располагается над осью времени, если тело движется по оси Х, и под осью времени, если тело движется против оси Х.

Такие графики показывают, как изменяется скорость с течением времени, т. е. как скорость зависит от времени. В случае прямолинейного равномерного движения эта «зависимость» состоит в том, что скорость с течением времени не меняется. Поэтому график скорости представляет собой прямую, параллельную оси времени.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении

По графику скорости тоже можно узнать абсолютное значение перемещения тела за данный промежуток времени. Оно численно равно площади заштрихованного прямоугольника: верхнего, если тело движется в сторону положительного направления, и нижнего — в случае движения тела в отрицательном направлении.

Действительно, площадь прямоугольника равна произведению его сторон: S=ab, где a и b стороны прямоугольника.

Но одна из сторон в определенном масштабе равна времени, а другая — скорости. А их произведение как раз и равно абсолютному значению перемещения тела. При этом перемещение будет положительным, если проекция вектора скорости положительна, и отрицательным, если проекция вектора скорости отрицательна.

При равноускоренном движении тела, происходящем вдоль координатной оси X, скорость с течением времени не остается постоянной, а меняется со временем согласно формуле v = v0 + at, т. е. скорость является линейной функцией, и поэтому графики скорости имеют вид прямой, наклоненную к оси времени. Причем, чем больше угол наклона, те большую скорость имеет тело. На нашем графике прямая 1 соответствует движению с положительным ускорением (скорость увеличивается) и некоторой начальной скоростью, прямая 2 — движению с отрицательным ускорением (скорость убывает) и начальной скоростью равной нулю.

По графику скорости при равноускоренном движении также можно узнать абсолютное значение перемещения тела за данный промежуток времени. Оно численно равно площади заштрихованной трапеции для тела 1, и прямоугольного треугольника — в противоположном случае. Действительно, например, площадь трапеции равна произведению полу суммы её оснований на высоту. В нашем случае, в определенном масштабе, высота трапеции равна времени, а основания — начальной и конечной скорости.

При этом проекция перемещения для первого тела будет положительной.

Для второго тела, прямоугольного треугольника — половине произведения его катетов. В нашем случае, катеты — это время и конечная скорость тела.

Проекция перемещения — отрицательна.

Теперь рассмотрим зависимость пройденного пути от времени.

Как и в предыдущих случаях, по оси абсцисс мы будем откладывать время, с момента начала движения, а по оси ординат — путь.

Для равномерного движения график зависимости пути от времени представляет собой прямую линию, т.к. зависимость — линейная.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении

При этом наклон графика к оси времени зависит от модуля скорости: чем больше скорость, тем больший угол наклона и тем больше скорость движения тела.

При равноускоренном движении графиком будет являться ветка параболы, т.к. зависимость, в этом случае, будет квадратичной. И чем больше ускорение, с которым движется тело, тем сильнее график будет прижиматься к оси ординат.

Теперь перейдем к рассмотрению зависимости перемещения от времени.

Рассмотрим равномерное движение.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении

Т.к. при равномерном движении перемещение линейно зависит от времени (sx = υxt), то графиком будет являться прямая линия. Направление и угол наклона графика к оси времени будет зависеть от проекции вектора скорости на координатную ось.

Так, в нашем случае, тела 2 и 3 движутся в положительном направлении оси Х, при этом скорость третьего тела больше скорости второго.

А тело 1 — в направлении, противоположном направлению оси Х, поэтому график располагается под осью времени.

Для равноускоренного движения графиком перемещения является парабола, положение вершины которой зависит от направлений начальной скорости и ускорения.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении

Для 1-го тела ускорение меньше нуля, начальная скорость равна нулю.

Для 2-го тела ускорение и начальная скорость тела больше нуля.

Для 3-го тела ускорение больше нуля, начальная скорость меньше нуля.

У 4-го тела начальная скорость и ускорение меньше нуля.

Для 5-го тела ускорение больше нуля, а начальная скорость равна нулю.

И, наконец, 6-ое тело двигается замедленно, но с некоторой начальной скоростью.

И последнее, что мы с вами рассмотрим — это зависимость координаты тела от времени.

Если по горизонтальной оси (оси абсцисс) откладывать в определенном масштабе время, прошедшее с начала отсчета времени, а по вертикальной оси (оси ординат) — тоже в соответствующем масштабе — значения координаты тела, полученный график будет выражать зависимость координаты тела от времени (его также называют графиком движения).

Для равноускоренного движения графиком движения, как и в случае перемещения, является парабола, положение вершины которой также зависит от направлений начальной скорости и ускорения.

График равномерного движения представляет собой прямую линию. Это значит, что координата линейно зависит от времени.

В случае прямолинейного движения тела графики дви­жения дают полное решение за­дачи механики, так как они позволяют найти поло­жение тела в любой момент времени, в том числе и в моменты времени, предшество­вавшие начальному моменту (если предполо­жить, что тело двигалось с такой же ско­ростью и до начала отсчета времени).

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении

С помощью графика движения можно определить:

1. координаты тела в любой момент времени;

2. путь, пройденный телом за некоторый промежуток времени;

3. время, за которое пройден какой-то путь;

4. кратчайшее расстояние м/у телами в любой момент времени;

5. момент и место встречи и т. д.

По виду графиков зависи­мости координаты от времени можно судить и о скорости дви­жения. Ясно, что скорость тем больше, чем круче график, т. е. чем больше угол между ним и осью времени (чем больше этот угол, тем больше изме­нение координаты за одно и то же время).

При этом надо помнить, что график зависимости координаты тела от времени не следует путать с траекторией движения тела — прямой, во всех точках которой тело побывало при своем движении.

4. Этап обобщения и закрепления нового материала

И так, сделаем главный вывод.

Механическое движение для большей наглядности можно описывать с помощью графиков:

1) Зависимости скорости от времени;

2) Зависимости ускорения от времени;

3) Зависимость координаты тела от времени;

4) И зависимости перемещения тела от времени, в течении которого это перемещение произошло.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении

5. Рефлексия

Хотелось бы услышать ваши отзывы о сегодняшнем уроке: что вам понравилось, что не понравилось, чем бы хотелось узнать еще.

6. Домашнее задание.

Рассмотрим поступательное движение. Когда тело движется поступательно, его координаты изменяются.

Прямолинейное движение – это когда тело движется по прямой. Прямую, вдоль которой движется тело, назовем осью Ox.

Будем отдельно рассматривать:

  • движение без ускорения (равномерное), и
  • движение с ускорением (неравномерное).

1). Равномерное движение — скорость тела остается одной и той же (т. е. не изменяется). При таком движении ускорения нет: (vec{a} =0).

2). Неравномерное движение — скорость меняется и появляется ускорение.

Пусть ускорение есть и, оно не изменяется: (vec{a} =const). Такое неравномерное движение называют равнопеременным. Чтобы уточнить, увеличивается ли скорость, или уменьшается, вместо слова «равнопеременное» говорят:

  • Равноускоренное движение — скорость тела увеличивается.
  • Равнозамедленное движение — скорость уменьшается.

Примечание: Когда изменяется скорость, всегда появляется ускорение!

Движение будем изображать графически, используя две перпендикулярные оси.

На графиках будем откладывать:

  • по горизонтали — время в секундах.
  • по вертикали — координаты тела, или проекции скорости и ускорения.

Для каждого вида движения получим три графика. Графики будем называть так:

  1. x(t) – зависимость координаты от времени;
  2. v(t) – зависимость проекции скорости от времени;
  3. a(t) – зависимость проекции ускорения от времени.

Прочитайте вначале, что такое проекция вектора на ось, это поможет лучше усвоить материал.

Тело покоится, его координата не меняется, а скорость и ускорение отсутствуют

Пусть тело покоится на оси Ox – (рис 1а).
Точкой (x_{0}) обозначена координата этого тела. Когда тело неподвижно, его координата не меняется. На графике неизменную координату обозначают горизонтальной линией, расположенной параллельно оси времени (рис. 1б).
[x=x_{0}]

Случаю, когда тело покоится – рис. а), соответствует горизонтальный график координаты x(t) – рис. б), скорость «v» – рис. в) и ускорение «a» – рис. г) лежат на оси времени

Рис.1. Тело покоится, график координаты x(t) — горизонтальная прямая рис. б).
Скорость «v» и ускорение «a» — это прямые, лежащие на оси Ox. График скорости – рис. в). График ускорения – рис. г)

Скорость и ускорение неподвижного тела равны нулю:

[vec{v}=0]

[vec{a}=0]

Из-за этого, графики скорости (рис. 1в) и ускорения (рис. 1г) – это горизонтальные линии, лежащие на оси t времени.

Скорость не меняется — движение равномерное

Разберём равномерное движение в направлении оси (рис. 2а).

Начальная координата тела – это точка (x_{0}), а конечная координата — точка (x) на  оси Ox. В точку «x» тело переместится к конечному времени «t».

Красной стрелкой обозначено направление, в котором тело движется.

 Примечание: Тело движется туда, куда направлен вектор его скорости.

Движению с постоянной скоростью вдоль оси Ox соответствует возрастающая прямая x(t) – рис а). Скорость не изменяется, поэтому график v(t) – горизонтальная прямая, а ускорение нулевое, его график г) лежит на оси времени

Рис.2. Тело движется равномерно в направлении оси Ox – рис а). Зависимость координаты от времени – это возрастающая прямая x(t) – рис. б). График скорости в) – это горизонтальная прямая, а график ускорения г) лежит на оси времени, так как ускорение равно нулю

Координата возрастает со временем, так как тело движется туда же, куда указывает ось. Поэтому график координаты от времени — это возрастающая прямая x(t) – рис. б).

Уравнение, описывающее изменение координаты выглядят так:

[ x  = x_{0} + v cdot t ]

Скорость на графике рис. в) изображена горизонтальной прямой линией, потому, что скорость остается одной и той же (не изменяется). Уравнение скорости записывается так:

[ v  = v_{0} = const ]

Ускорение рис. г) изображается прямой, лежащей на оси времени, так как ускорения нет. Математики посмотрят на такой график и скажут: «Ускорение равно нулю и не изменяется». Эту фразу они запишут формулой:

[ a = 0 ]

Равномерное движение в направлении противоположном оси

Пусть теперь тело движется с одной и той же скоростью в направлении, противоположном оси (рис. 3а).

Случаю, когда тело движется равномерно против оси Ox – рис. а), соответствуют убывающая зависимость координаты от времени – рис б), отрицательная проекция скорости на ось – рис. в) и, нулевое ускорение – рис. г)

Рис.3. Тело движется равномерно противоположно направлению оси Ox – рис. а). Такому движению соответствуют: убывающая зависимость координаты от времени – рис б), отрицательная проекция скорости на ось – рис. в) и, нулевое ускорение – рис. г)

Так как тело теперь движется против направления оси, то координата тела будет уменьшаться. График (рис 3б) координаты x(t) выглядит, как убывающая прямая линия.

Так как скорость не изменяется, то график v(t) – это горизонтальная прямая.

Тело движется против оси, его вектор скорости направлен противоположно оси Ox. Поэтому проекция скорости будет отрицательной (рис 3в) и на графике v(t) скорость — это горизонтальная прямая, лежащая ниже оси времени.

А график ускорения (рис 3г) лежит на оси времени, так как ускорение нулевое.

Равноускоренное движение в направлении оси, скорость увеличивается

Следующий набор графиков – это случай, когда тело движется вдоль оси Ox с возрастающей скоростью (рис. 4). То есть, мы рассматриваем равноускоренное движение.

Когда тело движется равноускорено по направлению оси Ox – рис. а), его координата изменяется параболически – рис. б), график скорости изображается возрастающей наклонной прямой – рис. в), проекция ускорения на ось Ox – это горизонтальный график рис. г)

Рис.4. Тело движется равноускорено – рис. а) по направлению оси Ox. Изменение координаты от времени x(t) описывается правой ветвью параболы – рис. б), график v(t) скорости изображен наклонной возрастающей прямой – рис. в), а график неизменного ускорения a(t) – рис. г) изображается горизонтальной прямой, лежащей выше оси времени

Координата «x» теперь изменяется не по линейному, а по квадратичному закону. На графике квадратичное изменение выглядит, как ветвь параболы (рис. 4б). Тело движется по оси и скорость его растет. Такое движение описывается правой ветвью параболы, направленной вверх.

Уравнение, которое описывает квадратичное изменение координаты, выглядит так:

[ x = frac{a}{2}cdot t^{2} + v_{0} cdot t + x_{0} ]

Скорость, так же, растет (рис. 4в). Рост скорости описан наклонной прямой линией – то есть, линейной зависимостью:

[ v  = v_{0} + a cdot t ]

Ускорение есть (рис. 4г) и оно не меняется:

[ a = const ]

Скорость и ускорение сонаправлены с осью Ox, поэтому их проекции на ось положительны, а их графики лежат выше оси времени.

Примечания:

1). Координата «x» будет изменяться:

  • по линейному закону, когда скорость не меняется — остается одной и той же.
  • по квадратичному закону, когда скорость будет изменяться (расти, или убывать).

2). Линейный закон – это уравнение первой степени, на графике – наклонная прямая линия.

3). Квадратичный закон – это уравнение второй степени, на графике — парабола.

4). Когда скорость увеличивается, для графика координаты x(t) выбираем правую ветвь параболы, а когда скорость уменьшается – то левую ветвь.

Равноускоренное движение против оси

Если тело будет увеличивать свою скорость, двигаясь в направлении, противоположном оси (рис. 5а), то ветвь параболы, описывающая изменение координаты тела, будет направлена вниз (рис. 5б).

Скорость направлена против оси и увеличивается в отрицательную область. Такое изменение скорости изображаем прямой, направленной вниз (рис. 5в).

Когда тело движется равноускорено против оси Ox – рис. а), его координата изменяется по правой ветви параболы – рис. б), график скорости - возрастающая в отрицательную область наклонная прямая – рис. в), горизонтальный график ускорения - рис. г) лежит ниже оси Ox

Рис.5. Тело движется равноускорено противоположно оси Ox – рис. а). Координата меняется параболически – рис. б), ветвь правая, так как скорость растет. Скорость — рис. в), и ускорение — рис. г), направлены против оси Ox, их графики лежат ниже оси времени

Примечание: Чтобы скорость увеличивалась (по модулю), нужно, чтобы векторы скорости и ускорения были сонаправленными (ссылка).

Так как скорость увеличивается, то векторы скорости и ускорения сонаправлены. Но при этом, они направлены против оси, поэтому проекции векторов (vec{v}) и (vec{a}) на ось Ox будут отрицательными. Значит, графики скорости и ускорения будут лежать ниже горизонтальной оси времени.

Ускорение (рис. 5г) не изменяется, поэтому изображается горизонтальной прямой. Но эта прямая будет лежать ниже горизонтальной оси времени, так как ускорение имеет отрицательную проекцию на ось Ox.

Скорость уменьшается — движение равнозамедленное

Когда скорость тела уменьшается с постоянным ускорением, движение называют равнозамедленным. Координата в этом случае изменяется по квадратичному закону. График координаты – это ветвь параболы. Когда скорость уменьшается, координату описываем с помощью левой ветви параболы, с вершиной вверху (рис. 6б).

Равнозамедленное движение по оси Ox – рис. а), координата тела изменяется по левой ветви параболы – рис. б), график скорости - убывающая наклонная прямая – рис. в), ускорение направлено против оси Ox, горизонтальный график ускорения - рис. г) лежит ниже оси времени

Рис.6. Тело движется равнозамедленно по оси Ox – рис. а), его координата растет по левой ветви параболы – рис. б), график скорости — убывающая наклонная прямая – рис. в), ускорение направлено против оси Ox, горизонтальный график ускорения — рис. г) лежит ниже оси времени

Примечание: Чтобы скорость уменьшалась по модулю, нужно, чтобы векторы скорости и ускорения были направлены в противоположные стороны (ссылка).

Скорость уменьшается, при этом, скорость направлена по оси. Поэтому, график скорости – это убывающая прямая линия, лежащая выше оси времени (рис. 6в).

А ускорение есть, оно не изменяется и направлено против оси. Поэтому, ускорение отрицательное, его график – это горизонтальная прямая, лежащая ниже оси времени (рис. 6г).

Равнозамедленное движение против оси

Если тело будет двигаться против оси, замедляясь, то график координаты — это левая ветвь параболы, вершиной вниз (рис. 7б).

Скорость вначале была большой, но так как тело замедляется, она падает до нуля. Но тело двигается против оси Ox, поэтому график скорости лежит ниже оси времени (рис. 7в).

Равнозамедленное движение против оси. Координата убывает по левой ветви параболы – рис. б), отрицательная скорость падает к нулю, график скорости - наклонная прямая – рис. в), ускорение направлено по оси Ox, горизонтальный график ускорения - рис. г) лежит выше оси времени

Рис.7. Тело движется равнозамедлено против оси Ox – рис. а), его координата убывает по левой ветви параболы – рис. б), скорость отрицательная и уменьшается к нулю, график скорости — наклонная прямая – рис. в), ускорение направлено по оси Ox, горизонтальный график ускорения — рис. г) лежит выше оси времени

Скорость отрицательная. А чтобы она уменьшалась, нужно, чтобы ускорение было направлено противоположно скорости. Поэтому ускорение будет положительным. Значит, график ускорения будет лежать выше оси времени. Так как ускорение не меняется, то его график изображен горизонтальной прямой линией (рис. 7г).

Примечание: Можно вычислить перемещение тела по графику скорости v(t), не пользуясь для этого графиком функции x(t) для координат тела.

Выводы

1). Все, что лежит:

  • выше оси t – положительное;
  • ниже оси t – отрицательное;
  • на горизонтальной оси t – равно нулю.

2). Когда ускорение, или скорость направлены против оси, они будут отрицательными, т. е. будут лежать ниже горизонтальной оси t. Если график ускорения лежит на горизонтальной оси, то ускорение отсутствует (т. е. равно нулю, нулевое).

3). Если скорость не меняется, ускорения нет.

  • График x(t) координаты – это прямая линия.
  • График v(t) скорости – горизонтальная прямая.
  • График a(t) ускорения лежит на оси t.

4). Если скорость растет, ускорение и скорость направлены в одну и ту же сторону.

  • График x(t) координаты – это правая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

5). Если скорость уменьшается, ускорение и скорость направлены в противоположные стороны.

  • График x(t) координаты – это левая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

Физическую задачу в кинематике можно решить несколькими способами:

  •  аналитический — решение задачи основано на формулах (физических законах), которые связывают искомую величину и данные в условии задачи;
  •  графический — решение задачи осуществляется с помощью графика.

Основные закономерности графического способа решения задач по кинематике

1.1. График зависимости модуля скорости (v(t)) равномерного движения от времени — прямая линия, параллельная оси (OX) (рис. (1)).

geogebra-export (15).png

Рис. (1). График модуля скорости равномерного движения

Если изображается зависимость проекции скорости от времени (v_x(t)), то возможны следующие варианты интерпретации:

а) график расположен над осью времени — тело движется в положительном направлении оси (OX);

б) график расположен под осью времени — тело движется в отрицательном направлении оси (OX).

1.2. Модуль перемещения (или пройденный путь при одномерном прямолинейном движении) на графике (v(t)) в момент времени (t_1) будет равен площади фигуры (прямоугольника) под графиком модуля скорости (рис. (2)).

график2.PNG

Рис. (2). Определение модуля перемещения по графику скорости

2.1. График модуля перемещения (s(t)) для равномерного движения (рис. (3)) — прямая под углом ({alpha}) к оси времени: 

график_перемещения.PNG

Рис. (3). График модуля перемещения

Если изображается зависимость проекции перемещения от времени (s_x(t)), то возможны следующие варианты интерпретации:

а) график расположен над осью времени — тело движется в положительном направлении оси (OX);

б) график расположен под осью времени — тело движется в отрицательном направлении оси (OX).

2.2. Модуль скорости равномерного движения на графике модуля перемещения (s(t)) равен тангенсу угла (tgalpha) наклона прямой на графике (рис. (4)).

График_перемещения2.PNG

Рис. (4). Определение модуля скорости по графику модуля перемещения

Решение задачи аналитическим и графическим способами

Два катера, между которыми расстояние (30) м, равномерно движутся навстречу друг другу со значениями модулей скоростей υ1 (=) (2) м/с и υ2 (=) (4) м/c. Определи время встречи катеров. Какой путь успеет пройти первый катер до встречи?

Дано:

начальная координата первого катера —

x01

 (=) (0) м, а второго —

x02

 (=) (30) м.  

Вектор скорости первого катера (vec{v_1}) сонаправлен оси (OX), его проекция будет положительна ({v_1}_x > 0), а вектор скорости второго катера (vec{v_2}) направлен противоположно оси (OX), поэтому его проекция будет отрицательна: ({v_2}_x < 0) (рис. (5)).

задание.PNG

Рис. (5). Задача

Аналитический способ решения

1. Запишем уравнения движения тел, исходя из формулы (x(t) = x_0 + v_x(t — t_0)).

2. В момент встречи (t_{встр}) тела будут иметь одинаковую координату (x_1 = x_2):

2tвстр=30−4tвстр;6tвстр=30;[tвстр]=мм/с=c;tвстр=306=5c.

 — расчёт времени встречи катеров.

3. Для ответа на второй вопрос воспользуемся следующей формулой:  

L=υ1⋅tвстр;[L]=мc⋅c=м;L=2⋅5=10м.

 — расчёт пути, пройденного первым катером до момента встречи (t_{встр}).

Графический способ решения

1. Запишем для первого катера уравнение движения:

x1=0+2t=2t

.

2. Заполним таблицу значений (x(t)) для построения графика движения первого катера.

(x), м (0) (2) (4)
(t), с (0) (1) (2)

3. Запишем для второго катера уравнение движения:

x2=30−4t

.

4. Заполним таблицу значений (x(t)) для построения графика движения второго катера.

(x), м (30) (26) (22)
(t), с (0) (1) (2)

5. Построим графики движений двух катеров.

анал играф.png

Рис. (6). График движения катеров

6. Находим по графику (рис. (6)):

а) время встречи (точка пересечения)

tвстр

 (=) (5) c;

б) путь, пройденный первым катером, равен изменению координаты (L) (=) (x(t_{встр})) 

x01

(=) (10) м.

Ответ: (5) с; (10) м.

Источники:

Рис. 1. График модуля скорости равномерного движения. © ЯКласс.

Рис. 2. Определение модуля перемещения по графику скорости. © ЯКласс.

Рис. 3. График модуля перемещения. © ЯКласс.

Рис. 4. Определение модуля скорости по графику модуля перемещения. © ЯКласс.

Рис. 5. Задача. © ЯКласс.

Рис. 6. График движения катеров. © ЯКласс.

Понравилась статья? Поделить с друзьями:
  • Как найти человека через телефонный номер
  • Саморегулируемая организация как найти
  • Как составить идеальное коммерческое предложение
  • Как найти корень линейной функции
  • Как найти родственника в колонии