Как найти жизнь на других планетах

Вопросом о возможности существования внеземной жизни ученые и обычные люди задаются уже не один десяток лет. Буквально во всем, начиная от художественных произведений уровня Спилберга в его «E.T» и заканчивая официальными пресс-релизами американского аэрокосмического агентства NASA, четко отражается, насколько велика и значима эта проблема для современного человека.

10 мест во Вселенной, где мы, вероятнее всего, обнаружим жизнь. Фото.

Земля не единственная, где возможна жизнь

Одним из важнейших источников для существования той жизни, которая нам известна, является вода. Поэтому неудивительно, что при открытии новой экзопланеты или спутника мы стараемся отыскать в первую очередь именно ее наличие. Может, в конечном итоге инопланетяне и не будут выглядеть так, как мы представляем их в кино и на вполне серьезных научных конференциях, но их обнаружение не станет от этого менее значимым для истории всего человечества. И сегодня мы поговорим о 10 местах во Вселенной, где мы имеем больше всего шансов обнаружить то, что мы уже так долго ищем.

Содержание

  • 1 Планетарная система TRAPPIST-1
  • 2 Спутник Титан
  • 3 Спутник Европа
  • 4 Жизнь на Марсе
  • 5 Спутник Энцелад
  • 6 Кеплер-186f
  • 7 Кеплер-452b
  • 8 LHS 1140b
  • 9 Звезда Табби
  • 10 Спутник Ганимед

Планетарная система TRAPPIST-1

10 мест во Вселенной, где мы, вероятнее всего, обнаружим жизнь. Планетарная система TRAPPIST-1. Фото.

Добраться до туда пока не получится

Об открытии планетарной системы, находящейся в нескольких десятках световых лет от нас, было объявлено в начале этого года. Система состоит из 7 земплеподобных планет, оборачивающихся вокруг «ультрахолодной» звезды, и представляет собой идеальную на данный момент цель для поиска жизни за пределами Солнечной системы.

Изучение этих экзопланет в будущем будет относительно простым – все благодаря тому, как они вращаются вокруг своей звезды. Открыты эти планеты были благодаря транзитному методу наблюдения. Используя мощный телескоп, ученые выследили, когда планеты проходили перед своим светилом, частично сокращая его яркость в наших наблюдательных приборах.

Астрономы предполагают наличие относительно комфортной температуры на этих планетах, вполне подходящей для того, чтобы на их поверхности могла образоваться вода.

И все же, несмотря на то что все экзопланеты этой системы рассматриваются в качестве потенциальных кандидатов в обитаемые миры, конкретно три планеты TRAPPIST-1 могут подходить на эту роль лучше всего, так как находятся в обитаемой зоне звезды. Эта область вокруг звезды, где на поверхности имеющихся землеподобных планет вода могла бы содержаться в жидкой форме.

Спутник Титан

10 мест во Вселенной, где мы, вероятнее всего, обнаружим жизнь. Спутник Титан. Фото.

На Титане давно ищут жизнь

Крупнейший спутник Сатурна, шестой планеты от Солнца. Эта луна рассматривается в качестве потенциального кандидата на роль обитаемого мира, но, возможно, не в том смысле, в котором мы могли подумать. Спутник не совсем подходит под описание мира, находящегося в обитаемой зоне. Но на нем есть вода и другие жидкости. Просто на нем нет жидкой воды. Вода на этом планетарном объекте представлена в виде льда – температуры там очень низкие.

Тем не менее находящиеся там жидкости состоят из углеводородов. Углеводород – это химическое соединение водорода и углерода в различных пропорциях. На Земле наиболее распространенными видами углеводорода являются газы метан и пропан. Это и может являться ключевым фактором, позволяющим представить жизнь на Титане совершенно с другой стороны. Вполне возможно, что потенциально имеющиеся там формы жизни не выживут в условиях жидкой воды, но будут вполне комфортно себя чувствовать в среде углеводородов.

Несмотря на то, что перед наукой все еще остались некоторые вопросы (например, о том, способна ли жизнь существовать не только в воде), отбрасывать возможность наличия жизни на Титане ученые пока точно не собираются.

Если вам интересны новости науки и технологий, подпишитесь на нас в Google Новостях и Яндекс.Дзен, чтобы не пропускать новые материалы!

Спутник Европа

10 мест во Вселенной, где мы, вероятнее всего, обнаружим жизнь. Спутник Европа. Фото.

На Юпитере нет жизни, а вот на его спутнике — возможно

Один из спутников газового гиганта Солнечной системы, Юпитера. Еще один кандидат на роль обитаемого мира, потому что там есть вода, которая, по крайней мере согласно нашим теориям, может содержаться в жидком состоянии. Астрономы уверены, что Европа обладает всеми необходимыми компонентами для жизни: там есть вода, источники энергии и правильный химический состав среды. Вода, согласно нашим лучшим предположениям, скрывается под толстой ледяной коркой, составляющей поверхность Европы.

О возможности прямого исследования Европы ученые стали говорить относительно недавно. В начале этого года было объявлено, что в течение ближайших лет должна стартовать миссия Europa Clipper. В ее рамках к спутнику Юпитера будет отправлен космический аппарат, который будет исследовать и фотографировать поверхность Европы. Это будет происходить многократно. Ученые таким образом хотят получить возможность провести анализ особенностей спутника со всех сторон, а заодно и поискать на нем признаки жизни.

Жизнь на Марсе

10 мест во Вселенной, где мы, вероятнее всего, обнаружим жизнь. Жизнь на Марсе. Фото.

На Марсе уже нашли воду

Наш красный сосед. Четвертая планета от Солнца. Пожалуй, один из самых обсуждаемых вероятных кандидатов в обитаемые миры и потенциально первая цель человеческой колонизации. Несмотря на скепсис, эта планета является наиболее вероятным местом, где мы найдем жизнь.

Понятно, что она не будет представлена в виде зеленых человечков или любых других разумных форм. Однако аэрокосмическое агентство NASA, исследующее поверхность планеты своими марсоходами, нашло-таки доказательство, что здесь когда-то могла и может по-прежнему существовать по крайней мере микроскопическая жизнь.

Полученные данные указывают на то, что в прошлом у ныне полностью сухой планеты имелись настоящие потоки и реки из воды. Полагаясь на это, мы можем хотя бы предположить, что жизнь на ней могла каким-то образом выжить. Возможно, в рамках дальнейших исследований Марса ученые найдут-таки воду в жидкой форме, а не только в виде ледяных шапок на полюсах планеты.

Спутник Энцелад

10 мест во Вселенной, где мы, вероятнее всего, обнаружим жизнь. Спутник Энцелад. Фото.

Этот спутник весь покрыт льдом

Еще один из многих спутников Сатурна, который рассматривается астрономами как потенциально обитаемый мир, который, в отличие от углеводородного брата Титана, вероятнее всего, богат водой. Это вода, так же как на Европе, спрятана под толстой ледяной коркой поверхности. Опять же, это могло бы означать вероятность существования как минимум микробов.

Ранее присутствие воды на Энцеладе рассматривалось лишь как предположение. По крайней мере такую надежду давали полученные в 2015 данные с помощью космического аппарата «Кассини». В начале этого года эта надежда серьезно возросла, когда аппарат нашел у спутника молекулы водорода, указывающие на присутствие химических реакций, происходящих под его поверхностью. Предположительно в рамках этих реакций океанская вода Энцелада взаимодействует с глубинной породой, в результате чего производится энергия, которая могла бы быть полезной для живых организмов.

Кеплер-186f

10 мест во Вселенной, где мы, вероятнее всего, обнаружим жизнь. Кеплер-186f. Фото.

Эта планета может стать копией Земли

Кеплер-186f – это экзопланета, вращающаяся вокруг звезды Кеплер-186, находящейся примерно в 500 световых годах от Земли. Обнаруженная в 2014 году, она стала первой из известных планет земного типа за пределами Солнечной системы, обладающей орбитой, пролегающей внутри обитаемой зоны своей звезды.

Она менее чем на 10 процентов больше Земли, поэтому эта планета является еще и наиболее схожей по размерам с нашим домом среди всех обнаруженных экзопланет. Другие ее характеристики, такие как плотность, пока остаются для нас неизвестными. Но, учитывая ее размер, можно смело предположить, что это каменистый мир.

Пока единственными особенностями, которые позволяют занести планету Кеплер-186f в список потенциальных кандидатов в обитаемые миры, являются ее размер и расположение в обитаемой зоне звезды. О наличии воды на ней нам также ничего не известно, как и неизвестно о том, какова температура на ее поверхности.

Кеплер-452b

10 мест во Вселенной, где мы, вероятнее всего, обнаружим жизнь. Кеплер-452b. Фото.

Добраться до этих планет не получится еще долго

Как сообщает само NASA, планета Кеплер-452b «могла бы стать одной из лучших целей для поиска внеземной жизни». Однако исследовать эту планету будет довольно трудно. Хотя бы потому, что находится она на расстоянии более 1000 световых лет от Земли. Но, несмотря на это, ученые почти уверены, что Кеплер-452b находится внутри обитаемой зоны своей звезды, как и несколько других экзопланет этой системы.

Некоторое время Кеплер-452b рассматривалась астрономами как планета, наиболее близкая по размеру с Землей. Позже эта честь отошла Кеплер-186f.

Однако сама звезда системы, где находится Кеплер-452b, больше похожа на наше Солнце. Вероятно, именно поэтому Кеплер-452b является сейчас одним из объектов исследования Института SETI, занимающегося поиском внеземной жизни.

LHS 1140b

10 мест во Вселенной, где мы, вероятнее всего, обнаружим жизнь. LHS 1140b. Фото.

Ученые убеждены, что планета относится к каменистому типу, имеет железное ядро… и, возможно, живых инопланетян на своей поверхности

Открыли эту «супер-Землю» совсем недавно. Ученые выяснили, что она находится в обитаемой зоне звезды, и рассматривают ее в качестве одного из самых вероятных кандидатов на открытие внеземной жизни.

Данная супер-Земля примерно в 10 раз массивнее нашего дома. Астрономы считают, что класс планет, относящихся к супер-Землям, представлен планетами каменистого типа, однако подтвердить это без точных наблюдений пока не представляется возможным. Даже если так, то LHS 1140b – настоящая мать всех супер-Земель. Ученые убеждены, что планета относится к каменистому типу, имеет железное ядро… и, возможно, живых инопланетян на своей поверхности.

Она находится всего в 40 световых годах и поэтому представляет собой отличную цель для отправки сообщений, которые могут привлечь внимание разумной жизни, если она там, конечно, есть. Кроме того, расположение LHS 1140b относительно Земли и ее более замедленная скорость вращения упрощают задачу по наблюдению за ней.

Звезда Табби

10 мест во Вселенной, где мы, вероятнее всего, обнаружим жизнь. Звезда Табби. Фото.

Когда звезда теряет энергию, она мерцает. Поэтому идея о внеземной космической мегаструктуре инопланетян имеет под собой определенную долю смысла

Вокруг звезды Табби, или KIC 8462852, разгорелось множество споров на тему вероятности наличия возле нее некой «инопланетной мегаструктуры». Находящаяся на расстоянии почти 1500 световых лет до Земли эта звезда впервые была открыта астрономом из Йельского университета Табетой Бояджян и сразу привлекла к себе внимание ученых своим необычным поведением. Яркость звезды время от времени изменяется настолько сильно, что это явление нельзя объяснить обычным присутствием в регионе экзопланеты. Поэтому среди прочих предположений, пытающихся объяснить подобный феномен, конечно же, есть и вариант с пришельцами.

Якобы сверхразвитая внеземная цивилизация могла построить вокруг звезды Таби специальное устройство, собирающее ее энергию и конвертирующее ее в нечто более полезное. Когда звезда теряет энергию, она мерцает. Поэтому идея о внеземной космической мегаструктуре инопланетян имеет под собой определенную долю смысла.

Однако все же наиболее свежей и вероятной теорией, пытающейся объяснить крайне необычное поведение звезды Таби, является предположение о том, что она поедает одну из своих экзопланет. Звучит не менее интересно, следует признать. Тем не менее идея о пришельцах окончательно пока не отброшена.

Спутник Ганимед

10 мест во Вселенной, где мы, вероятнее всего, обнаружим жизнь. Спутник Ганимед. Фото.

Может хоть здесь жизнь найдут?

Еще один из спутников Юпитера, на котором может быть жизнь. Как и у других лун, у Ганимеда подозревается наличие подповерхностного океана. Причем в таком объеме, что воды в нем может содержаться даже больше, чем на Земле. Что интересно, наблюдение за поверхностью Ганимеда показало наличие признаков того, что когда-то по ней текла жидкая вода, просочившаяся через трещины в ледяной корке спутника.

Исследование этого спутника даже привело к разработке нового научного метода исследования. Например, при анализе магнитных полей ученые обнаружили, что из этой информации можно вывести некоторое представление о внутреннем строении спутника, включая данные о наличии под его поверхностью жидкой воды.

На данный момент Ганимед не исследует ни один космический аппарат. Однако в 2022 году планируется отправить к нему Jupiter Icy Moon Explorer, или просто JUICE, – межпланетную автономную станцию, которая, добравшись Юпитера где-то к 2030 году, займется изучением его системы.

Наша Галактика состоит из огромного количества звезд — не менее 100 млрд, включая Солнце. Если представить, что вокруг каждой звезды вращается минимум одна планета, то количество неоткрытых экзопланет представляется астрономическим. При этом ученые предполагают, что у каждой звезды есть своя система, в которую входит сразу несколько планет. В таком случае количество экзопланет внутри одного Млечного Пути может составлять триллионы.

Тысячи лет до нашего поколения люди догадывались о существовании планет за пределами Солнечной системы. Сейчас мы точно знаем, что экзопланеты существуют и их много, но все еще не можем добраться ни до одной из них. У ближайшей к Земле звезды — Проксима Центавры — есть минимум одна планета. Вероятно, это планета земного типа, и на ней может находиться вода. Но лететь до нее придется более четырех световых лет, при этом ученые пока не могут с точностью описать свойства планеты и сказать, подходит ли она для жизни. Остальные экзопланеты находятся на расстоянии сотен или тысяч световых лет от нас, и посетить их пока нет никакой возможности.

С момента открытия первой экзопланеты прошло почти 30 лет, но мы до сих пор не знаем о всем разнообразии существующих планет. Поэтому их деление скорее условно.

Газовые гиганты

В космосе встречаются газовые гиганты, наподобие Юпитера и Сатурна. Сейчас известно о 1367 экзопланетах такого типа. Самые известные из них:

51 Pegasi b — газовый гигант с атмосферной температурой более 1000 °C. Первая открытая планета из тех, что вращаются вокруг звезд солнечного типа.

Экзопланета 51 Pegasi b

Экзопланета 51 Pegasi b

(Фото: NASA)

KELT-9 b — cамая горячая известная экзопланета. Температура на дневной стороне может подниматься до 4600 °C. Находится на расстоянии 667 световых лет от Земли.

Экзопланета KELT-9 b (справа)

Экзопланета KELT-9 b (справа)

(Фото: NASA)

Нептунианские экзопланеты

Маленькие планеты с атмосферой, на которых преобладают водород и гелий. Открыто 1484 планеты, самые известные:

Kepler-1655 b — экзопланета, похожая на Нептун. Полный оборот вокруг звезды (то есть, один год) на Кеплере, проходит за 11,9 дней. Экзопланету открыли в 2018 году.

Экзопланета Kepler-1655 b

Экзопланета Kepler-1655 b

(Фото: NASA)

GJ 436 b — экзопланета, которая находится относительно близко к Земле: лететь до нее придется 32 года.

Экзопланета GJ 436 b

Экзопланета GJ 436 b

(Фото: NASA)

Суперземли

Экзопланеты из газа, горных пород и их комбинаций, которые в несколько раз больше Земли. Открыто 1346 планет, самые известные:

Barnard’s Star b — вторая самая близкая к Земле экзопланета, лететь до нее шесть лет. Планету открыли в 2018 году. Она в 3,2 раза больше нашей планеты. Звезда, вокруг которой вращается экзопланета, дает ей только 2% энергии, которую получает Земля от Солнца.

Экзопланета Barnard’s Star b

Экзопланета Barnard’s Star b

(Фото: NASA)

GJ 15 A b — экзопланета, которая вращается вокруг звезды красного карлика в 11 световых годах от Земли. В ее системе есть еще одна планета, что делает ее ближайшей к нам суперземлей со своей системой.

Экзопланета GJ 15 A b

Экзопланета GJ 15 A b

(Фото: NASA)

Планеты земного типа

Скалистые тела, похожие на Землю, Марс или Венеру. Открыто 164 планеты, самые известные:

TRAPPIST-1 e — ее масса составляет 60% массы Земли, а год на планете длится 6,1 дня. Планету открыли в 2017 году.

Экзопланета TRAPPIST-1 e

Экзопланета TRAPPIST-1 e

(Фото: NASA)

TRAPPIST-1 d — как и Земля — третья планета от своей звезды. Скалистая планета с температурой поверхности около 2290 °C.

Экзопланета TRAPPIST-1 d

Экзопланета TRAPPIST-1 d

(Фото: NASA)

Поиск жизни в космосе: как, зачем и к чему может привести

Время на прочтение
16 мин

Количество просмотров 7.7K

4 октября 1957 года в 22:28 по московскому времени мир изменился навсегда. В ту ночь многие жители Земли могли видеть в ясном небе необычный след, а миллионы радиолюбителей в СССР прильнули к радиоприёмникам, с замиранием сердца слушая сигналы «БИП, БИП, БИП» на частоте 40 МГц.

То был запуск первого в истории искусственного спутника ПС-1. Событие стало эпохальным: СССР получал единодушные поздравления из всех стран мира. Словно бы человечество на миг объединилось, и не было социализма и капитализма, дипломатических конфликтов и военных альянсов.

Дальше американцы, разумеется, осознали, что начинается новая гонка — на этот раз космическая. И в 1958 году правительство США создало National Aeronautics and Space Administration — сокращённо NASA. Но пока человечество соревновалось, кто первым выйдет в открытый космос (Леонов) или высадится на Луне (Армстронг), почти у всех возникал вопрос: если мы мечтаем о космических путешествиях и колонизации неизвестных планет, то может быть, мы всё-таки не одиноки во Вселенной? И где-то в сотнях световых лет есть и другие цивилизации, которые уже научились путешествовать и ищут нас?

Давайте посмотрим в статье, что человечество уже предпринимало для обнаружения внеземных форм жизни, что из этого получилось и пофантазируем, что будет, если мы всё-таки найдём инопланетян.


Начать хочется со слов великого фантаста Рэя Бредбери, которые он написал после запуска искусственного спутника ПС-1:

В ту ночь, когда Спутник впервые прочертил небо, я глядел вверх и думал о предопределённости будущего. Ведь тот маленький огонёк, стремительно двигающийся от края и до края неба, был будущим всего человечества. Я знал, что хотя русские и прекрасны в своих начинаниях, мы скоро последуем за ними и займём надлежащее место в небе. 

Тот огонёк в небе сделал человечество бессмертным. Земля всё равно, не могла бы оставаться нашим пристанищем вечно, потому что однажды её может ожидать смерть от холода или перегрева. Человечеству было предписано стать бессмертным, и тот огонёк в небе надо мной был первым бликом бессмертия.

Дежурные радисты Свердловского областного радиоклуба принимают сигналы спутника и записывают их на магнитофон

Дежурные радисты Свердловского областного радиоклуба принимают сигналы спутника и записывают их на магнитофон

Как люди искали пришельцев

В 1959 году появилась общая программа SETI (Search for Extraterrestrial Intelligence), которая пыталась найти следы инопланетной формы жизни. А вслед за ней — METI (Messaging to Extraterrestrial Intelligence). Это другой параллельный подход, в котором человечество не ищет, а пытается передавать послания пришельцам. Посмотрим, как развивались события и к чему человечеству пришло за 60 с лишним лет. 

SETI — Поиск внеземного разума

Конечно, есть так называемая теория палеоконтакта, согласно которой пришельцы уже много раз вступали с человечеством в контакт. В качестве аргументов приводятся некоторые наскальные изображения, каменные таблички и фрески, на которых наши праотцы якобы изображали пришельцев. Например, рисунки в долине Валь-Камоники (Италия), которые начали рисовать ещё с неолита (5500-3300 гг. до н.э.) и продолжали вплоть до Железного века (примерно 1-е тысячелетие до н.э). Получились довольно симпатичные комиксы.

Ну чем не космонавты? 

Ну чем не космонавты? 

Другой пример — это знаменитые Абидосские иероглифы, обнаруженные в одном из залов поминального храма фараона Сети I. Некоторые «уфологи» поспешили принять их за изображения вертолёта, подводной лодки, дирижабля и планера. Однако экспертиза показала, что это совсем не изображения. Просто сначала Сети I повелел написать одно, а когда он умер — его сын Рамсес II повелел заштукатурить старую писанину про отца и написать уже про себя любимого. Со временем штукатурка обвалилась, и появились такие странные рисунки. 

Вертолёт пришельцев гонится за планером и дирижаблем. Внизу плывёт подлодка

Вертолёт пришельцев гонится за планером и дирижаблем. Внизу плывёт подлодка

Подобных исторических примеров очень много. Чаще всего объяснения им вполне прозаичное, но многие конспирологи успешно используют их для объяснения своих псевдонаучных теорий. Не будем уподобляться им и поговорим о более задокументированном подходе.

Всё началось в 1959 году, когда в старейшем научно-популярном журнале Nature вышла статья астрофизиков Джузеппе Коккони и Филиппа Морриса Searching for Interstellar Communications. Авторы предположили, что радиотехнологии дают человечеству возможность и принимать, и передавать сообщения, которые может расшифровать достаточно развитая цивилизация. При этом радиоволны распространяются с максимально возможной скоростью света, что позволяет компенсировать огромные расстояния. Но на какой частоте должна вестись передача мощными радиотелескопами? 

Ф. Моррисон и Д. Коккони — настоящие родоначальники программы SETI

Ф. Моррисон и Д. Коккони — настоящие родоначальники программы SETI

Была предложена частота 1420 МГц, потому что она эквивалентна длине волны света 21 см, которую излучает атом водорода при переходе из возбуждённого в стабильное состояние. А так как водород — самый распространённый элемент во Вселенной (более половины массы межзвёздного вещества), то и шансы на успех несколько повышаются, за счёт снижения уровня помех радиоспектра. Астрономы даже называют частоту 1420 МГц радиолинией нейтрального водорода, и выбрали ее как универсальную величину для поиска внеземных цивилизаций. 

В 1960 году на сцене появляется один из главных вдохновителей и участников SETI — астроном Фрэнк Дональд Дрейк. Он инициировал проект «Озма», названный в честь принцессы, из книг Фрэнка Баума про страну Оз. Цель: использовать радиотелескоп «Тател», построенный в 1959 году в лаборатории «Грин Бэнк» в Западной Вирджинии, и получить сигналы от планет Тау Кита и Эпсилон Эридана. 

Обе звезды находятся на относительно небольших расстояниях 12 и 10,5 световых лет соответственно, и наиболее приближены по конфигурации к нашему Солнцу. Логично, что если в их районе есть жизнь, то обнаружить ее будет проще, чем в более отдалённых системах. За четыре месяца записали 150 часов радиосигналов, однако никаких следов внеземных сигналов не обнаружили. Были и курьёзы: 8 апреля 1960 года на записи появился неожиданный сигнал, который на поверку оказался пролетающим самолётом. 

Ф.Д Дрейк и телескоп Tatel диаметром 26 метров в лаборатории Грин Бэнк, Западная Вирджиния

Ф.Д Дрейк и телескоп Tatel диаметром 26 метров в лаборатории Грин Бэнк, Западная Вирджиния

К слову, был проведён ещё второй эксперимент, названный «Озма II», в той же обсерватории Грин Бэнк под руководством учёных Бенджамина Цукермана и Патрика Палмера. В ходе работ, продолжавшихся с 1973 по 1976 год, было исследовано уже более 650 ближайших звёзд, однако тоже ничего не обнаружили.

Большая часть финансирования шла из частных средств, чего было явно недостаточно. В 1971 году НАСА решило взяться за дело всерьёз и запустило проект «Циклоп». В научно-исследовательском центре НАСА в Маунтин Вью, группа учёных, возглавляемая Бернардом Оливером, разрабатывала идею интегрированной сети из 1500 радиотелескопов, которые бы были плотно установлены на участке диаметром 16 км и непрерывно сканировали космическое пространство в радиусе 1000 световых лет. Это позволило бы охватить не менее миллиона солнцеподобных звезд, в системах которых могла быть жизнь.

Предполагаемый вид с высоты птичьего полёта на 1500 телескопов проекта «Циклоп» 

Предполагаемый вид с высоты птичьего полёта на 1500 телескопов проекта «Циклоп» 

Проект «Циклоп» оценивали в 10 млрд долларов, а реализовать его должны были в течение 20 лет. Однако он так и остался на бумаге — слишком уж велики были затраты, которые лучше было пустить на изучение Луны или Марса. Однако были и интересные выводы: например, учёные предположили, что не стоит зацикливаться на частоте 1420 МГц, а рассмотреть еще частоту 1,662 МГц, соответствующая излучению рассеянных в космосе гидроксилов OH.

Параллельно к исследованию подключился университет Огайо, который в 1970-х годах тоже искал признаки внеземной жизни. И неожиданно 15 августа 1977 местный радиотелескоп «Большое ухо» зафиксировал сильный радиосигнал на рабочей частоте 1420 МГц, зарезервированной в радиодиапазоне США. То есть это не мог быть какой-то земной объект. 

Ширина сигнала составляла не более 10 кГц и длилась порядка 72 секунд. Дело в том, что телескоп был статичным, и сканировал пространство за счёт вращения Земли. С учётом угловой скорости этого вращения и ограниченной ширины зоны приёма антенны определённая точка небосвода могла наблюдаться в течение как раз 72 секунд. Предполагаемое направление —  созвездие Стрельца.

Радиотелескоп «Большое ухо», который зафиксировал, возможно, первый внеземной сигнал 

Радиотелескоп «Большое ухо», который зафиксировал, возможно, первый внеземной сигнал 

Однако дальнейшие попытки обнаружить ещё раз этот сигнал, который вся мировая пресса назвала «Wow!», не увенчались успехом. Ни на следующий день, ни на протяжении ещё 2-х десятилетий. Что это было, до сих пор остаётся загадкой. Предполагают, что это след кометы 266P/Christensen. Однако тогда бы сигнал всё равно пеленговали бы на следующий день, с небольшим смещением. Так что вопрос остаётся открытым.   

Обведённый код 6EQUJ5 описывает изменение интенсивности принятого сигнала во времени. Рядом приписка оператора «Wow!», которая послужила названием для исторического события

Обведённый код 6EQUJ5 описывает изменение интенсивности принятого сигнала во времени. Рядом приписка оператора «Wow!», которая послужила названием для исторического события

В 80-е годы SETI столкнулась с недостатком финансирования государства (что ни удивительно — результатов не было), и астрономы-энтузиасты решили сосредоточиться на частном финансировании. В 1984 году появился SETI Institute — некоммерческая организация, полностью свободная от налогов, на базе исследовательского центра в Маунтин Вью. В 1995 году институт запустил масштабный проект «Феникс», целью которого было масштабное исследование звёзд, похожих на Солнце. Возглавила проект астроном Джилл Картер. Работы начались в феврале 1995 года и изначально задействовали два мощных радиотелескопа:

  • В лаборатории Паркса (Австралия), крупнейший в южном полушарии, с диаметром антенны 64 метра. Запущен в работу в 1961 году и стал одним из трех радиотелескопов, которые приняли сигнал с Луны от команды Нила Армстронга в 1969 году и транслировали телевизионную картинку;

  • Уже известный нам радиотелескоп Грин Бэнк, который астроном-первопроходец Дрейк использовал в первом SETI проекте «Озма». Правда, его диаметр значительно увеличили с 26 до 100 метров — он исследовал северное полушарие. 

Позже к участию также привлекли телескоп Аресибо (Пуэрто-Рико), про который мы ещё поговорим ниже. 

Телескопы лабораторий Паркса (слева) и Грин Бэнк (справа)

Телескопы лабораторий Паркса (слева) и Грин Бэнк (справа)

К 2004 году было просканировано более 800 звёзд в радиусе 200 световых лет. Причём исследования не ограничивались частотой 1420 МГц, а велись в диапазоне от 1000 до 3000 МГц. Но к сожалению, никаких результатов также получить не удалось. 

Тогда SETI-Institute понял, что нужно расширяться ещё больше. Для этого он совместно с Калифорнийским университетом в Беркли построил на частные средства радиотелескоп Allen Telescope Array. Он представляет собой 42 спутниковых антенны по 6 метров в диаметре каждая, расположенных в горах к северо-востоку от Сан-Франциско. И дополнительно к исследованиям привлекались мощные орбитальные телескопы, такие как «Кеплер», «Хаббл», «Спитцер» и «Гершель».

Но чтобы обрабатывать такой огромный массив данных, нужны были серьёзные вычислительные мощности. И чтобы решить проблему дополнительно финансирования, родилась идея проекта SETI@home. Суть в том, что есть добровольцы, домашние компьютеры которых не всегда задействуются на 100%. Они устанавливают специальную программу, получают часть данных из Интернета, обрабатывают их и передают результаты обратно по сети. 

Внешний вид программы — проект закрыли в 2020 году

Внешний вид программы — проект закрыли в 2020 году

Проект запустили в 2000-м году, и он успешно просуществовал вплоть до 2020 года. За это время в нём приняли участие порядка 1,8 млн пользователей и помогли обработать колоссальный объём данных, с чем не справился бы ни один суперкомпьютер того времени. За это время было найдено несколько «интересных» сигналов: например, в 2003 году SHGb02+14a, а в 2012 году — сигнал от экзопланеты KOI-817. Однако всё это больше напоминало случайные космические шумы, и за 60 лет SETI не зафиксировал осмысленных сообщений из серии: «Мы вас видим — скоро увидимся!». Как сказал астроном Питер Бэкус: «Судя по всему, если у нас и есть соседи, то они очень тихие».

Кстати, в СССР тоже старались не отставать от западных коллег. И в 1966 году появилась «Специальная астрофизическая обсерватория», которая должна была заниматься фундаментальными исследованиями космоса. В частности, поиском сигналов от внеземных цивилизаций. Для этого в 1974 году завершили строительство самого большого радиотелескопа в мире — РАТАН-600, с диаметром кольцевой антенны 576 метров. Однако даже на этом уникальном аппарате зафиксировать инопланетных сигналов не удалось.

Крупнейший в мире радиотелескоп РАТАН-600, расположенный возле станицы Зеленчукской, в Карачаево-Черкесии

Крупнейший в мире радиотелескоп РАТАН-600, расположенный возле станицы Зеленчукской, в Карачаево-Черкесии

METI — Послания внеземному разуму

Но, кроме активного поиска радиосигналов, люди логично полагали, что для того, чтобы дверь открыли, в неё нужно для начала постучаться. Поэтому предпринимались многочисленные попытки отправить послания братьям по разуму.

Первое официальное сообщение внеземным цивилизациям было отправлено 19 ноября 1962 году из Центра Дальней Космической Связи неподалёку от Евпатории. Сама станция представляла собой две площадки: первая — в районе села Витино (приёмная), вторая — в районе пос. Заозёрное (передающая). Между площадками было около 10 км, чтобы мощное передающее оборудование не влияло на чувствительный приёмник. Для передачи и приёма использовались антенны АДУ-1000.

Современный внешний вид АДУ-1000

Современный внешний вид АДУ-1000

Послание состояло из трёх слов: «Мир, Ленин, СССР», отправленных азбукой Морзе в сторону поверхности Венеры, чтобы проверить возможности установки (но понятно, что сообщение могут увидеть и внеземные формы жизни). Длина волны составляла 39 см. С момента отправки сообщения до момента приёма отражённого сигнала прошло 4 минуты 32,7 секунды.  Сейчас это самое старое сообщение, по расчётам учёных, движется в сторону звезды HD 131336 в созвездии Весов, и достигнет его примерно через 750 лет. 

Следующее межгалактическое послание было отправлено спустя 12 лет, 16 ноября 1974 года из обсерватории Аресибо (Пуэрто-Рико), про которую мы уже говорили выше. Сообщение с длиной волны 12,6 см было направлено в сторону звёздного скопления в созвездии Геркулеса, находящегося на расстоянии около 25 000 световых лет от Земли. Оно длилось 169 секунд и содержало следующую информацию в матричном представлении:

  • Числа от одного до десяти в двоичной системе.

  • Атомные числа водорода, углерода, азота, кислорода и фосфора.

  • Молекулярные формулы дезоксирибозы, фосфата и азотистых оснований — нуклеотидов ДНК.

  • Количество пар нуклеотидов в геноме человека  — число 4 294 441 822.

  • Информация о среднем росте человека (176,4 см) и популяции (4,2 млрд. на момент отправки).

  • Информация о количестве планет в Солнечной системе (Солнце и 9 планет), а также адресе отправки — 3-я планета, Земля.

  • Диаметр передающей антенны.

 Радиотелескоп в Аресибо, диаметром 305 метров (ныне выведен из эксплуатации)

 Радиотелескоп в Аресибо, диаметром 305 метров (ныне выведен из эксплуатации)

Авторы сообщения: хорошо уже знакомый нам Франк Дрейк и его коллега — Карл Саган, популяризатор SETI и METI, астрофизик и писатель. Многие учёные подвергли критике сложность и форму передачи сообщений, однако вряд ли кто-то воспринимал его всерьёз — 25 000 лет человечество вряд ли будет ждать. Скорее это сообщение, как и в случае советских учёных, проверяло технические возможности станции. 

 Радиотелескоп РТ-70, с которого передавались сообщения

Радиотелескоп РТ-70, с которого передавались сообщения

Следующие осознанные радиосообщения были отправлены спустя 25 лет, в 1999 году, из уже знакомого нам Центра Дальней Космической Связи в Евпатории. Это были целые серии сообщений (т.н. Cosmic Call), направленные к разным звёздам, на которых потенциально могла быть жизнь по тем или иным признакам. Структура сообщений было подобна сообщения из Аресибо, но содержала намного больше информации: например, по астрономии, биологии и географии, а также короткие приветственные послания разных жителей. Расчётное время доставки сообщений — от 30 до 70 лет, в зависимости от расстояния до звёзд. Остаётся только ждать.

Но помимо радиосообщений, человечество решило передать что-то более вещественное. Поэтому когда в 1972 году НАСА запустил аппарат «Пионер-10», а в 1974 году — «Пионер-11», для изучения Юпитера и Сатурна, к ним решили прикрепить специальные пластинки из анодированного алюминия с посланиями. Выглядело это примерно так:

Пластинки с информацией для инопланетных существ

Пластинки с информацией для инопланетных существ

Кроме очевидных изображений мужчины и женщины на фоне аппарата, на ней также были показаны:

  • состояния атома водорода — причём расстояние между ядрами равнялось 21 см (длина волны универсального радиосигнала для общения). И это же число является масштабной линейкой для нахождения других линейных величин на пластинке.

  • расположение планет Солнечной системы с маршрутом «Пионера»;

  • хитрая карта, которая позволяет вычислить расположение Земли и время запуска. Правда, большая часть обычных ученых, которая критиковала послание, не смогла этого сделать :)

Сейчас аппарат «Пионер-10» продолжает двигаться в сторону Альдебарана, и если с ним ничего не случится, то эти послания попадут к звезде примерно через 2 млн лет. 

В целом, проблема пластинок «Пионера» заключалась в том, что на минимально возможной площади пытались уместить очень много информации. Из-за этого их читаемость терялась, что прекрасно понимали их авторы — все те же Карл Саган и Фрэнк Дрейк. Поэтому когда в 1977 году НАСА запустило знаменитые «Вояджеры», то снова обратилось к ним, и те вышли из ситуации более оригинально.

Карл Саган со своим творением в руках

Карл Саган со своим творением в руках

Для послания изготовили граммофонную пластинку, которую покрыли золотом, чтобы предотвратить эрозию под воздействием космической пыли. По сути, альтернативы на тот момент не было — никакая магнитная лента не выдержит воздействия космической радиации, равно как и микрофильм. На пластинку записали: 

  • приветствия на 55 языках, в том числе на древних шумерском, хеттском и арамейском; 

  • 27 музыкальных произведений, включая этническую музыку разных народов, классику (Бетховен, Моцарт, Бах, Стравинский), джаз в исполнении Луи Армстронга и зажигательный рок-н-ролл Чака Берри;

  • набор разных звуков, таких как человеческие голоса, шаги, журчание воды, смех ребёнка и так далее;

  • 116 изображений, которые закодированы на звуковых дорожках. По сути, создатели превратили пластинку в своеобразную дискету с аудио и фотоматериалами. Подробнее как это делалось, можете прочитать тут.  

А чтобы всё это можно было расшифровать, её поместили в алюминиевый футляр и внутрь вложили ещё одну пластину с инструкцией, как воспроизвести пластинку, и граммофонную иглу. Вот как это выглядело:

Инструкция и пластинка, покрытые золотом

Инструкция и пластинка, покрытые золотом
Пластину крепят к корпусу аппарата «Вояджер-1»
Пластину крепят к корпусу аппарата «Вояджер-1»

На текущий момент «Вояджеры» уже давно покинули пределы Солнечной системы. Но, как ни странно, с ними до сих пор есть связь — например, в ноябре 2017 года двигатели «Вояджера-1» были успешно запущены после 37 лет простоя. Это нужно было сделать для корректировки ориентации антенны на Землю. Ожидается, что связь с ним пропадёт только к 2030 году, когда распад радиоизотопного элемента станет слишком значительным, и мощности не хватит для поддержания модуля связи.

На самом деле «Вояджеры» стали идеальными почтальонами, потому что изначально предназначались для исследования отдалённых планет Солнечной системы. Спустя 45 лет они продолжают свой полёт и, возможно, всё-таки найдут своего адресата. На сайте НАСА можно посмотреть местоположение аппаратов в реальном времени.

Парадокс Ферми и уравнение Дрейка

Шёл 1950 год, и жарким летом в кафетерии Лос-Аламосской лаборатории, в которой до этого разработали атомную бомбу, собрались трое учёных: Эдвард Теллер, Эмиль Конопински и Герберт Йорк. В какой-то момент к ним подсел один странноватого вида человек, по совместительству Нобелевский лауреат по имени Энрико Ферми. За столом начался спор по поводу того, есть ли жизнь во Вселенной, кроме нашей. Поначалу шутливый разговор стал более серьёзным.

Энрико Ферми — неоспоримый гений своего поколения, не верил во внеземной разум

Энрико Ферми — неоспоримый гений своего поколения, не верил во внеземной разум

И в этот момент Ферми сформулировал простой и ясный вопрос — передадим суть разговора: «В радиусе 100 световых лет есть множество планет, пригодных для жизни в нашем понимании. А нашей Вселенной уже 14 млрд лет, и за это время в ближайшем пространстве должна была появиться хотя бы одна высокоразвитая цивилизация, которая как-то проявила бы себя. Например, радиосигналами, которые мы можем улавливать, или отправила бы зонды или корабли, видимые нами в телескопы. Но если инопланетяне существуют, чего же мы их не видим?». Этот вопрос вошёл в историю как парадокс Ферми, и до сих пор многими воспринимается весомым аргументом в спорах о поиске внеземной жизни.

Но с этим были согласны не все. Самыми ярыми противниками этого утверждения стали наши старые знакомые-астрономы: Карл Саган и Фрэнк Дрейк. Последний в 1960 году даже вывел специальное уравнение, которое позволяет оценить количество внеземных цивилизаций, готовых по уровню развития вступить с нами в контакт прямо сейчас. Вот как оно выглядит:

Уравнение Дрейка

Уравнение Дрейка

Хотя на самом деле уравнение имеет пока достаточно малое практическое применение — по сути современный уровень развития науки позволяет более-менее точно знать только величины R (количество звёзд, образующихся в Галактике) и fp (доля звёзд, которые обладают планетами). Все остальные параметры стали предметом ожесточённых споров как сторонников SETI и METI, так и их противников. Вот какие цифры подставлялись, чтобы обосновать, что есть N=1 цивилизация, готовая к контакту:

R=1

Допустим, что в год образуется одна новая звезда. В принципе, возможно.

fp = 0,5

Половина звёзд имеет планеты. С учётом размеров Вселенной и данных многолетних наблюдений — тоже возможно.

ne = 2

Якобы в среднем две планеты в системе пригодны для жизни. Вопрос очень неоднозначный, и даже сейчас (а не 60 лет назад) сказать сложно: ведь огромная часть планет представляет собой газовые гиганты с такими условиями, что жизнь на них невозможна. 

fl = 1

Если жизнь возможна, она обязательно возникнет — изначально важный камень преткновения в спорах. Кажется, что пример одной Земли — это очень слабая выборка, не находите?

fi = 0,01

1% вероятности, что жизнь разовьётся до разумной. Замечательно, но это лишь умозрительное предположение, на которое влияет огромное количество факторов.

fc = 0,01

Снова появляется 1% вероятности, что цивилизация развилась и хочет с кем-то контактировать. Откуда взяли эту цифру, непонятно.

L = 10 000 лет

Технически развитая цивилизация существует 10 000 лет, по данным Земли — ну это удобно, чтобы наше существование совпало ещё и по времени.

Например, Карл Саган считал, что эти цифры занижены, и что N значительно больше 1. Когда с этими математическими выкладками согласились сотни энтузиастов, поиск внеземного разума стал делом решённым — SETI и METI стартовали. И как мы уже видели выше, поиск «успешно» продолжается уже 60 с лишним лет — на него тратятся десятки миллиардов долларов, и многие свято верят, что мы всё-таки неизбежно найдём братьев по разуму. 

Фрэнк Дрейк со своим уравнением на доске 

Фрэнк Дрейк со своим уравнением на доске 

Так что же будет дальше

Но несмотря ни на что, человечество не сдаётся: возможно, инопланетяне могут общаться с нами посредством лазерных сигналов (так называемое FSO — free-space optics), на совсем других частотах радиосигналов или ещё другими, малоизученными современной наукой способами. Поэтому мы продолжаем изучать и собирать данные.

Например, 25 декабря 2021 году был успешно запущен очередной супер телескоп «Джеймс Уэбб» — самый современный на сегодняшний день. Он способен обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что соответствует средней температуре на Земле) в радиусе 15 световых лет, наблюдать за планетами-карликами с массой менее 0,3 от массы Юпитера, изучать водные миры на спутниках планет-гигантов и многое другое. Стоимость проекта — 10 млрд долларов, которые выделили космические агентства 17 стран мира.

А 18 апреля 2018 года на орбиту был выведен телескоп TESS, при помощи ракетоносителя Falcon 9 компании SpaceX. За 4 года исследований телескоп уже нашёл около сотни подтверждённых экзопланет, на которых возможно зарождение жизни. Другими словами, массив данных о космическом пространстве с каждым годом все возрастает, и все верят в успех программы SETI. Пожелаем человечеству удачи.

Новейшие телескопы, которые ищут подходящие для жизни экзопланеты — TESS и «Джеймс Уэбб»

Новейшие телескопы, которые ищут подходящие для жизни экзопланеты — TESS и «Джеймс Уэбб»

Но давайте посмотрим на это ещё с другой, более фантастической стороны: а что же будет, если мы всё-таки найдём инопланетян и установим с ними контакт? И тут уместно замечание Стивена Хокинга, который допускал внеземную форму жизни, однако предостерегал от встречи с ней.

Допустим, что нас обнаружили и прилетели «на огонёк». Очевидно, что эта цивилизация сможет преодолевать огромные космические расстояния и по уровню развития будет сильно опережать человечество. Но кто сказал, что они такие уж миролюбивые? Обратимся к истории, когда Колумб высадился в Америке и нашёл там аборигенов. Продвинутые конкистадоры за какие-нибудь пару сотен лет активного мародёрства сумели поживиться ценными ресурсами, заодно убив тысячи местных жителей. А защититься копьями и стрелами против армии с мушкетами и пушками было невозможно. Так может, нас ожидает такая же участь? И успех программ SETI и METI просто выпустит джинна, которого мы не сможем остановить?

Может быть, он действительно что-то знал и правильно всех предупреждал?

Может быть, он действительно что-то знал и правильно всех предупреждал?

На тему контакта с пришельцами есть огромное множество научно-фантастических произведений. Например, такие романы, как «Война миров» Герберта Уэллса (как раз про агрессивный контакт, которого боялся Хокинг) и «Глас Господа» Станислава Лема (потрясающая книга, сюжет которой построен на программе SETI). Или фильмы, среди которых особенно выделим «Контакт» Роберта Земекиса — снятого, кстати, по одноимённому произведению Карла Сагана. 

Но сколько бы хитроумных сюжетов не придумали фантасты, есть ещё и другая мысль, более прозаичная, на которой книгу не построить. А может быть, инопланетяне уже давно нас заметили? Но посмотрев на то, как мы столетиями истребляем друг друга ради ресурсов, а не выживания, решили игнорировать таких соседей. И возможно, отсутствие контактов с инопланетянами — это лучшее доказательство того, что внеземной разум всё-таки существует?

Делитесь в комментариях, что вы думаете по поводу внеземного разума: стоит ли человечеству стараться дальше или пора остановиться, от греха подальше?


НЛО прилетело и оставило здесь промокод для читателей нашего блога:

— 15% на все тарифы VDS (кроме тарифа Прогрев) — HABRFIRSTVDS.

планета в космосе
Есть ли жизнь на других планетах: Pixabay

Человечество смогло высадиться на Луну, активно исследует Солнце, отправляет зонды в разные уголки Солнечной системы. Но вопрос, есть ли жизнь на других планетах, остается открытым. Почему до сих пор не найдены организмы на небесных телах, расположенных по соседству с Землей, и где искать внеземных обитателей? Узнайте из статьи.

Есть ли жизнь на других планетах?

В конце ХІХ века человечество всерьез заинтересовал вопрос: возможна ли жизнь на других планетах? Средства для изучения космоса тогда были крайне ограничены, и оставалось лишь предполагать. Наиболее вероятно обитаемыми небесными телами считали Луну, Марс и Венеру. Что говорит об этом современная наука, рассмотрим ниже:

Есть ли жизнь на других планетах Солнечной системы

Где может быть жизнь в Солнечной системе за пределами Земли? Вокруг нас действительно не так много планет, которые можно рассматривать как потенциальное место обитания. Как минимум, небесное тело должно соответствовать таким критериям:

  • оптимальная удаленность от Солнца — так называемая зона жизни;
  • наличие атмосферы;
  • наличие воды или другой пригодной для жизни жидкости.

Луна, Венера и Марс расположены в самой благоприятной зоне Солнечной системы, так как находятся недалеко от Земли. Но соответствуют ли они другим критериям, выясним далее:

Луна

Как только ученые стали ближе знакомиться со спутником Земли, то сразу поняли: на Луне жизнь невозможна. Этому есть несколько причин:

  1. Атмосфера земного спутника слишком разреженная и никак на него не воздействует. Это значит, что и жидкость там задерживаться не сможет.
  2. Луна слишком медленно вращается вокруг своей оси, день и ночь на ней длятся по четырнадцать суток. При этом днем температура может достигать 120 °C, ночью — падать до –150 °C.

Поверхность Луны

Есть ли жизнь на Луне: Unsplash

И хотя на спутнике нет воды в жидком виде, науке известно, что на Луне есть лед. Он сохраняется на полюсах спутника и теоретически может стать ресурсом для развития живых организмов на Луне в будущем.

Венера

Венера, в отличие от Луны, имеет более густую атмосферу, даже более плотную, чем у Земли. Однако ее состав, а также другие особенности планеты делают жизнь на Венере практически невозможной:

  1. В атмосфере много серной кислоты, которая пагубно влияет на живые организмы.
  2. Для Венеры характерен мощный парниковые эффект, а температура на ее поверхности в среднем составляет +470 °C.
  3. Атмосферное давление на планете выше земного более чем в 90 раз.

Однако существуют микроорганизмы, способные выжить и в таких условиях. Поэтому ученые не исключают, что жизнь на Венере может теплиться либо на ее полюсах, либо на облаках, где условия куда благоприятнее. Тем не менее к высадке человека на Венеру наука пока не готова.

Марс

Все свое внимание человечество направило, чтобы отыскать жизнь на другой планете Солнечной системы — Марсе. Однако подтверждений тому, что на Красной планете живут хотя бы простейшие микроорганизмы, у науки нет.

Ученые предполагают, что миллиарды лет назад условия Марса были благоприятными, жизнь на нем была. Более того, на планете были реки, океаны и озера.

планета Марс

Есть ли жизнь на Марсе: Pixabay

В 2018 году на Марсе нашли воду в жидком состоянии: на Южном полюсе планеты оказалось четыре больших озера, спрятанных под шапкой льда. Правда, вода в них настолько соленая, что, по мнению исследователей, и там жизнь невозможна.

И все же дискуссии продолжаются: многие ученые считают, что самые стойкие микроорганизмы могли приспособиться к новым условиям и выжить. Но удостовериться в этом можно будет, лишь когда человек найдет способ высадиться на Красной планете.

Жизнь вне Земли: экзопланеты

Долгое время считалось, что Солнечная система уникальна в своем роде, ведь вокруг нашей звезды вращается восемь планет (а то и девять, поскольку до 2006 года Плутон тоже считался планетой).

Однако в конце 1980-х ученые заметили планету за пределами Солнечной системы — возле оранжевого гиганта Гамма Цефея A. С тех пор все планеты, открытые вне нашей системы, стали называть экзопланетами.

В 2016–2017 годах астрономы открыли целую планетарную систему под названием TRAPPIST-1. Она находится на расстоянии сорока световых лет от нас. Вокруг карликовой звезды вращаются сразу семь землеподобных планет, и три из них находятся в «зоне жизни».

К сожалению, пока у науки нет средств, чтобы изучить условия и выяснить, на каких планетах есть жизнь. Зондов, способных преодолеть такое расстояние, еще не существует, поэтому за экзопланетами наблюдают лишь через телескоп. Что уж говорить о том, чтобы искать жизнь в других галактиках.

Жизнь на других планетах: интересные факты

Есть ли жизнь на других планетах, разумна она или нет, как может выглядеть? Эти вопросы остаются настоящими загадками для современной науки. О том, как и где человечество будет искать ответы, есть множество любопытных теорий:

Энцелад — обитаемый спутник?

Энцелад — это маленький спутник Сатурна, полностью покрытый льдом. В среднем температура на его поверхности составляет –198 °С. Однако подо льдом астрономам удалось обнаружить настоящий океан и гейзеры.

Несмотря на удаленность Сатурна от Солнца, ученые допускают: в таких условиях может возникнуть жизнь. Так что в ближайшее время Энцелад будет находиться в поле зрения человечества.

Сатурн

Есть ли жизнь на других планетах: Pixabay

Об обитаемости Сатурна и его спутника, к слову, давно ходили легенды и теории. Развивает эту тему и научно-фантастическая видеоигра «Выживший с Сатурна».

Жизнь на Европе — спутнике Юпитера

Еще один спутник, который, возможно, обитаем, вращается вокруг Юпитера. В 2020-х годах планируется его тщательное исследование, ведь ученые уверены: на Европе под коркой льда также есть океан. Целью миссии в том числе будет и обнаружение жизни на спутнике.

Внеземную жизнь во Вселенной можно найти по загрязнениям

Наука пытается отыскать живые организмы за пределами Земли. Но что если ей удастся найти вымершую культуру? Так, ученые предполагают, что по следам загрязнений можно выявить исчезнувшую продвинутую цивилизацию.

Загрязнители делятся на долго- и короткоживущие. Первые остаются в атмосфере тысячи лет, вторые — десятки. Если телескопу удастся обнаружить оба вида, это будет значить, что человечество нашло разумную цивилизацию. Если же только первый вид загрязнений, то, скорее всего, она была, но исчезла.

Жизнь вне «зоны жизни»

Под прицелом астронавтов оказались те экзопланеты, которые находятся в области обитания. Однако есть и те, что находятся в этой области не постоянно. Так, условия на них могут меняться от благоприятных до экстремальных (например, очень высокие или низкие температуры).

Но, вероятно, даже в таком случае экзопланеты способны поддерживать жизнь. Это значит, что круг для поиска внеземных существ будет только расширяться.

NASA прогнозирует, что уже в этом столетии внеземная жизнь будет открыта. Как изменится при этом жизнь человечества — остается лишь гадать.

Источники:

  1. Анашкин Е.В., Малашенков Е.А. Наследие освоения космоса: проблемы и перспективы // Актуальные проблемы авиации и космонавтики. — 2017. — №13. — С. 974–976.
  2. Ахметзянова Л.Г., Мисик И.И., Снежко А.А., Жирнова Е.А. Проблема поиска жизни на планетах Солнечной системы // Актуальные проблемы авиации и космонавтики. — 2010. — №6. — С. 361–362.
  3. Котларж Д., Зеленкевич У., Залевска Н.Е., Кубяк К.А. Обнаружение микробных компонентов в выпадающих осадках Энцелада // Астрофизический бюллетень. — 2020. — №2. — С. 188–199.

Оригинал статьи: https://www.nur.kz/leisure/interesting-facts/1886232-est-li-zizn-na-drugih-planetah-naucnye-obosnovania/

В научно-фантастическом фильме 1958 года «Капля» на Землю прилетает инопланетянин, выглядящий как аморфный кусок протоплазмы. Едва оказавшись на нашей планете, он начинает пожирать людей и увеличиваться в размерах. Так авторам фильма удалось выразить новую для научной фантастики идею: не факт, что инопланетяне будут похожи на известные нам формы жизни.

Ученые и философы на протяжении веков пытались определить, что такое жизнь. На уроке биологии нас учили определять жизнь с помощью набора признаков, присущих всем видам на планете — живое способно двигаться, дышать, расти и размножаться. Всё живое состоит из клеток, и у него есть ДНК. Но можно ли определить жизнь с помощью одной лишь биохимии? Еще в 1970 году Карл Саган утверждал, что нельзя.

По его мнению, наши попытки определить жизнь с помощью известных нам признаков неизбежно будут ограничены пределами нашей планеты. Один-единственный пример внеземной жизни мог бы полностью изменить наши представления.

Используя элегантную музыкальную метафору, Саган писал:

«Неизвестно, сколько во Вселенной может быть биологических тем и контрапунктов; может быть, в ней звучат фуги, по сравнению с которыми наша собственная мелодия покажется простоватой. Впрочем, вполне возможно, что наша мелодия — единственная во Вселенной. Так или иначе, возможность существования жизни на других планетах должна учитываться всякий раз, когда ученые будут обсуждать, что такое жизнь».

Замечание Сагана было услышано новым поколением астробиологов. Если на других планетах действительно существует жизнь, она может выглядеть совсем иначе, чем разновидности жизни, встречающиеся на Земле. Таким образом, нужно подобрать достаточно широкое определение жизни, чтобы учесть гипотетическое существование внеземных ее форм.

В официальном документе, опубликованном Национальной академией планетологии и астробиологии, группа ученых, связанных с NASA и SETI, попыталась наметить траекторию будущего развития астробиологических исследований. Ученые писали:

«Вероятность того, что жизнь на других планетах появилась в результате тех же биохимических процессов, что и жизнь на Земле, уменьшается по мере того, как мы удаляемся от Земли. Крайне важно разработать стратегии поиска внеземной жизни, которые были бы нацелены на универсальные следы жизни».

Аарон Голдман, биолог из Оберлинского колледжа, изучающий происхождение жизни на Земле, утверждает, что важно уточнять, что мы имеем в виду, когда говорим о живых и неживых существах, особенно в контексте астробиологии.

«Наиболее удачные определения жизни делятся на две категории: определения через энтропию, которые описывают жизнь через способность увеличивать внутренний порядок за счет увеличения беспорядка в окружающей среде, и определения через эволюцию, которые описывают жизнь через способность эволюционировать путем естественного отбора», — говорит Голдман.

Определения через энтропию описывают способность жизни использовать свободные источники энергии, наподобие Солнца, с помощью которых она поддерживает процессы метаболизма. Согласно этой точке зрения, набор объектов, которые мы называем «жизнью», упорядочен и изо всех сил сопротивляется энтропии.

Но у определения жизни через энтропию есть свои недостатки. Например, из него вытекает, что звезды тоже являются живыми.

Ядерный синтез поддерживает процессы, необходимые для стабильного существования звезды — тип звездного метаболизма, который отражает метаболические процессы биологических организмов. Однако очевидно, что звезды не являются живыми, или, по крайней мере, они не относятся к тому классу объектов, которые мы могли бы считать живыми. С другой стороны, определение жизни через эволюцию, то есть как системы, способной поддерживать собственную структуру и развиваться, также весьма привлекательно. Эволюция путем естественного отбора способствовала разнообразию и адаптации всех живых существ на Земле со времен последнего общего предка.

Как у определения жизни через энтропию, так и у определения жизни через эволюцию есть слабые стороны. Оба определения предполагают ряд особенностей, которые служат своего рода лакмусовой бумажкой для определения того, квалифицируется ли тот или иной набор явлений как жизнь или нет. Живы ли вирусы? Они неспособны к размножению без заражения хозяина и не нуждаются в энергии, поэтому выпадают из классификации. А как насчет цифровых или синтетических форм жизни? Они не имеют общих биологических особенностей с живыми существами, известными нам, и состоят из совершенно другого субстрата. При одном наборе критериев наши ответы на вопрос, живы ли они, могут быть отрицательными, при другом наборе критериев — утвердительными, в то время как наша интуиция подсказывает нам совершенно другое.

Признавая проблемы, которые могут возникнуть при попытке применить эти универсальные качественные определения жизни, астробиологи задались вопросом: существуют ли поддающиеся количественной оценке особенности химического состава, с помощью которых можно было бы определить характеристики жизни таким образом, чтобы затем использовать их для поиска внеземных форм жизни? Возможно ли создать «физику жизни» с нуля?

Одна из первых попыток установить поддающуюся количественной оценке основу для идентификации внеземных биологических процессов была предпринята в 2004 году Крисом Маккеем, ученым-планетологом из NASA. Маккей ввел «принцип Lego», который описывает блоки молекул, образующих устойчивые биологические структуры, такие как белки. Маккей заметил, что жизнь не использует весь спектр доступных органических молекул при создании устойчивых структур. Так, аминокислоты, которые, вероятно, являются наиболее важным набором органических молекул, используемых в живых системах на Земле, обладают свойством хиральности, то есть имеют левостороннюю и правостороннюю версию. Из двадцати аминокислот, присутствующих в белках, земная жизнь использует только левосторонние аминокислоты, в то время как абиотические процессы используют и те, и другие.

Принцип Lego применим для поиска внеземной жизни в Солнечной системе. Органический материал, взятый из мест, где гипотетически можно было бы обнаружить жизнь, таких как Марс или Европа, можно протестировать на хиральность.

Анализ органических молекул может выявить закономерности, свидетельствующие о присутствии или следе внеземной формы жизни, даже если эти закономерности не связаны с конкретными органическими молекулами, свойственными жизни на Земле.

У астробиолога Сары Уокер из Университета штата Аризона и химика Ли Кронина из Университета Глазго есть свой собственный взгляд на жизнь. Их «теория сборки» предполагает, что существует поддающаяся количественной оценке разница в сложности молекул, которые могут быть созданы жизнью, по сравнению со всеми остальными молекулами.

«По сути, идея заключается в том, что в основе жизни лежит физика, которая создает во Вселенной сложность», — говорит Уокер.

Всё элементарно: чтобы между атомами возникла связь и появилась молекула, необходимо преодолеть энергетический барьер, поэтому по мере усложнения связей между атомами всё менее вероятным становится случайное возникновение молекул; или, как выразился Уокер, «Вселенная не создает сложные вещи бесплатно». Жизнь, однако, способна обходить эти энергетические барьеры, открывая чрезвычайно широкое пространство возможного, где может быть реализовано ошеломляющее количество сложных молекулярных структур. По словам Уокера, цель теории сборки состоит в том, чтобы «понять обстоятельства, при которых появляется сложность».

Для описания сложных молекул теория сборки использует специальный индекс молекулярной сборки, который определяется в зависимости от числа шагов, необходимых для создания конкретной молекулы из ее элементарных строительных блоков (атомов и связей), и это число может быть получено с помощью анализа в масс-спектрометрах.

Если ученые обнаружат в космосе скопления молекул выше определенного порога МС, это может указывать на наличие процессов, которые мы могли бы назвать живыми. Согласно теории сборки, именно сложность объекта определяет, был ли он продуктом жизненных процессов.

Представьте, что космонавты исследуют поверхность далеких планет в поисках признаков жизни. Они натыкаются на объект, который, несомненно, является частью инопланетной технологии. Это высокоупорядоченная и сложная структура, и мы не можем предположить, что она появилась здесь случайно. Чтобы должным образом объяснить происхождение объекта, нам придется рассказать историю длиной в несколько миллиардов лет, объясняющую, как геохимические циклы на планете эволюционировали в жизнь, которая затем эволюционировала в разумную жизнь, которая в конечном итоге разработала технологию, способную создавать оборудование.

«Сотовые телефоны не возникают случайным образом из вакуума», — язвительно замечает Уокер.

Иными словами, чем сложнее становится структура чего бы то ни было, будь то элемент сложной технологии или даже молекула, тем менее вероятно, что структура появилась случайно. Для возникновения сложности нужен некий процесс, который может использовать информацию для построения сложных структур, и Уокер и Кронин называют этот процесс жизнью. То есть человеческая технология, равно как и любая потенциальная инопланетная технология, являются частью и следствием живых процессов.

Разница между тем, что теория сборки называет живыми процессами, и тем, что она называет неживыми процессами, заключается в том, что живыми процессами управляет информация, сохраняемая в ходе истории взаимодействий между объектом и его средой, в то время как неживые процессы в значительной степени определяются случайностью. Механизмом для записи истории взаимодействий в случае известных нам живых существ является ДНК, но этот механизм может выглядеть иначе для других разновидностей жизни.

Тем не менее широко использовать теорию сборки просто негде — измерения должны проводиться непосредственно на месте исследования. В ближайшее время NASA планирует отправить масс-спектрометры на Титан и Европу в надежде найти химический состав, свойственный живым организмам, однако Уокер считает, что у исследователей, работающих над этим проектом, не будет возможности проводить высокоточные измерения, которых требует теория сборки. Сейчас мы ограничены тем, насколько далеко мы можем посылать наши приборы, в то время как кругом — огромная Вселенная с множеством возможных мест для жизни. Однако Уокер отмечает, что исследователи, работающие над теорией сборки, разрабатывают способы ее применения при спектрографическом анализе атмосфер экзопланет.

Один из наиболее обсуждаемых методов, который ученые могут начать использовать для обнаружения жизни, — это поиск следов жизни в атмосфере.

Жизнь на Земле очень сильно повлияла на атмосферу нашей планеты, поэтому, анализируя атмосферы планет за пределами Солнечной системы, ученые надеются обнаружить признаки, указывающие на присутствие жизни на этих планетах.

В 2020 году ученые сообщили об обнаружении фосфина (возможного следа жизни) в атмосфере Венеры. В венерианских облаках когда-то была жизнь? Дальнейшие измерения не смогли обнаружить газ, в то время как в другом исследовании ученые предположили, что в первый раз их коллеги, возможно, ошибочно приняли за фосфин диоксид серы, обычный газ, который не является признаком жизни. Исследование, проведенное в 2021 году, выявило возможность того, что количество фосфора, которое астрономы первоначально наблюдали, можно объяснить вулканическими процессами, не связанными с жизнью.

Неопределенность вокруг фосфина подчеркивает проблемы, связанные с методом обнаружения жизни по следам в атмосфере. Более того, ясно, что этот метод опирается на наше понимание биохимии Земли. Интересный способ обойти это противоречие был представлен в статье 2022 года, написанной философом Дэвидом Кинни и главным исследователем SETI Крисом Кемпсом, где они советуют обратить внимание на планеты с самой странной атмосферой.

Кинни и Кемпес считают, что мы должны собрать как можно больше атмосферных данных с как можно большего числа экзопланет, чтобы понять их химический состав. После этого наши усилия по обнаружению жизни должны быть сосредоточены на мирах, которые являются статистическими исключениями. Подход Кинни и Кемпеса не зациклен на определении жизни, центральное место в их аргументации занимает предположение о том, что живые организмы влияют на химический состав атмосферы своих планет, что жизнь на множестве наблюдаемых экзопланет встречается редко и что не существует неких специфических химических процессов, имитирующих проявления жизни.

Конечно, у нас пока нет неопровержимых доказательств существования внеземной жизни. Но Саган был бы рад, узнав, как сегодняшние астробиологи расширили взгляды на то, какой могла бы быть эта жизнь. Подобно переходу в нашем понимании гравитации от Ньютона к Эйнштейну, более убедительное объяснение того, что такое жизнь как система, и условий, из которых она могла возникнуть, лучше подготовит нас к ответу на вопрос, одиноки ли мы во Вселенной?

Понравилась статья? Поделить с друзьями:
  • Как найти свое делопроизводство у судебных приставов
  • Как составить характеристику человека вопросы
  • Как мне найти папку в андроиде
  • Как составить cmr
  • Как найти амперы задача по физике