Как найти значение аргумента в обратной пропорциональности

Обратная пропорциональность — коротко о главном

Определение:

Функция, описывающая обратную пропорциональность, – это функция вида ( displaystyle y=frac{k}{x-a}+b ), где ( kne 0), ( xne 0) и ( xne а)

По-другому эту функцию называют обратной зависимостью.

Область определения и область значений функции:

( Dleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или, что то же самое, ( Dleft( y right)=mathbb{R}backslash left{ 0 right})

( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или ( Eleft( y right)=mathbb{R}backslash left{ 0 right}).

График обратной пропорциональности (зависимости) – гипербола.

Коэффициент ( displaystyle k)

( displaystyle k) – отвечает за «пологость» и направление графика. Чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок).

Знак коэффициента ( displaystyle k) влияет на то, в каких четвертях расположен график:

если ( displaystyle k>0), то ветви гиперболы расположены в ( displaystyle I) и ( displaystyle III) четвертях;

если ( displaystyle k<0), то во ( displaystyle II) и ( displaystyle IV).

Коэффициент ( displaystyle a)

Если внимательно посмотреть на знаменатель, видим, что ( displaystyle a) – это такое число, которому не может равняться ( displaystyle x).

То есть ( x=a) – это вертикальная асимптота, то есть вертикаль, к которой стремится график функции

Коэффициент ( b) 

Число ( b) отвечает за смещение графика функции вверх на величину ( b), если ( b>0), и смещение вниз, если ( b<0).

Следовательно, ( y=b) – это горизонтальная асимптота.

Алгоритм построения графика функции ( displaystyle y=frac{k}{x-a}+b)

  1. Определяем коэффициенты ( displaystyle k), ( displaystyle a) и ( displaystyle b).
  2. Строим график функции ( displaystyle y=frac{k}{x}) (сначала по 3-4 точкам правую ветвь, потом симметрично рисуем левую ветвь).
  3. График должен быть сдвинут вправо на ( displaystyle a). Но проще двигать не график, а оси, так что ось ( displaystyle Oy) сдвигаем влево на ( displaystyle a).
  4. График должен быть сдвинут вверх на ( displaystyle b). Но проще двигать не график, а оси, так что ось ( displaystyle Ox) сдвигаем вниз на ( displaystyle b).
  5. Старые оси (прямые, которые служили нам осями в пункте 2) оставляем в виде пунктирных линий. Это теперь просто вертикальная и горизонтальная асимптоты.

Что такое функция

Ты помнишь, что функция – это определенного рода зависимость?

Если ты еще не читал тему «Функции», настоятельно рекомендую бросить все и прочитать, ведь нельзя изучать какую-либо конкретную функцию, не понимая, что это такое – функция.

Также очень полезно перед началом этой темы освоить две более простые функции: линейную и квадратичную.

Там ты закрепишь понятие функции и научишься работать с коэффициентами и графиками.

Ну и на всякий случай немного повторим…

Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).

То есть, если у тебя есть функция ( y=fleft( x right)), это значит что каждому допустимому значению переменной ( x) (которую называют «аргументом») соответствует одно значение переменной ( y) (называемой «функцией»).

Что значит «допустимому значению»?

Если не можешь ответить на этот вопрос, еще раз вернись к теме «Функции»!

Все дело в понятии «область определения»: для некоторых функций не все аргументы можно подставить в зависимость. Например, для функции ( y=sqrt{x}) отрицательные значения аргумента ( x) – недопустимы.

Функция, описывающая обратную зависимость

Это функция вида ( displaystyle y=frac{k}{x}), где ( kne 0).

По-другому ее называют обратной пропорциональностью: увеличение аргумента вызывает пропорциональное уменьшение функции.

Давай определим область определения. Чему может быть равен ( x)? Или, по-другому, чему он не может быть равен?

Единственное число, на которое нельзя делить – это ( 0), поэтому ( xne 0):

( Dleft( y right)=left( -infty ;0 right)cup left( 0;+infty right))

или, что то же самое,

( Dleft( y right)=mathbb{R}backslash left{ 0 right})

Такая запись означает, что ( x) может быть любым числом, кроме ( 0).

  • Знак «( mathbb{R})» обозначает множество действительных чисел, то есть всех возможных чисел.
  • Знаком «( backslash )» обозначается исключение чего-нибудь из этого множества (аналог знака «минус»).
  • Число ( 0) в фигурных скобках означает просто число ( 0).

Получается, что из всех возможных чисел мы исключаем ( 0)).

Множество значений функции, оказывается, точно такое же: ведь если ( kne 0), то на что бы мы его не делили, ( 0) не получится:

( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или ( Eleft( y right)=mathbb{R}backslash left{ 0 right}).

Также возможны некоторые вариации формулы ( y=frac{k}{x}). Например, ( y=frac{k}{x+a}) – это тоже функция, описывающая обратную зависимость.

Определи самостоятельно область определения и область значений этой функции. Должно получиться:

  • ( Dleft( y right)=left( -infty ;-a right)cup left( -a;+infty right))
  • ( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)).

Давай посмотрим на такую функцию: ( displaystyle y=frac{x-5}{{{x}^{2}}-25}). 

Является ли она обратной зависимостью?

На первый взгляд сложно сказать: ведь при увеличении ( x) увеличивается и знаменатель дроби, и числитель, так что непонятно, будет ли функция уменьшаться, и если да, то будет ли она уменьшаться пропорционально?

Чтобы понять это, нам необходимо преобразовать выражение таким образом, чтобы в числителе не было переменной:

( displaystyle y=frac{x-5}{{{x}^{2}}-25}=frac{x-5}{left( x-5 right)left( x+5 right)}=frac{1}{x+5},text{ }xne 5).

Действительно, мы получили обратную зависимость, но с оговоркой: ( xne 5).

Почему так? А потому, что выражение ( left( x-5 right)) было в исходном выражении в знаменателе, поэтому если мы возьмём значение ( x=5) и подставим его в исходную функцию (а ведь именно её нам нужно исследовать), то что мы получим?

Ноль, делённый на ноль. Но ведь на ноль нельзя делить ничего, даже другой ноль. Поэтому ( x) никак не может быть равен ( 5).

Но почему тогда мы также не пишем ( xne -5)? Оно ведь тоже в знаменателе!

А всё потому, что оно как было в знаменателе, так там и осталось, следовательно мы и так видим, что такое значение икса невозможно.

А поэтому — зачем лишний раз писать? Да-да, математики — народ ленивый, без надобности напрягаться не станут:)

Решения

Пример 1

( displaystyle y=1-frac{3}{x+2})

Пример 2

Здесь нужно вспомнить, как квадратный трехчлен раскладывается на множители (это подробно описано в теме «Разложение на множители»).

Напомню, что для этого надо найти корни соответствующего квадратного уравнения: ( displaystyle {{x}^{2}}+4{x}-5=0).

Я найду их устно с помощью теоремы Виета: ( displaystyle {{x}_{1}}=-5), ( displaystyle {{x}_{2}}=1). Как это делается? Ты можешь научиться этому, прочитав тему «Квадратные уравнения».

Итак, получаем: ( displaystyle {{x}^{2}}+4{x}-5=left( x+5 right)left( x-1 right)), следовательно:

( displaystyle y=frac{x+5}{left( x+5 right)left( x-1 right)}=frac{1}{x-1},text{ }xne -5)

Пример 3

Ты уже попробовал решить сам? В чем загвоздка?

Наверняка в том, что в числителе у нас ( displaystyle 2x), а в знаменателе – просто ( displaystyle x).

Это не беда. Нам нужно будет сократить на ( displaystyle left( x+2 right)), поэтому в числителе следует вынести ( displaystyle 2) за скобки (чтобы в скобках ( displaystyle x) получился уже без коэффициента):

( displaystyle y=frac{2{x}-3}{x+1}=frac{2left( x-frac{3}{2} right)}{x+1}=2cdot frac{x-1,5}{x+1}=2cdot frac{x+1-1-1,5}{x+1}=…) дальше сам.

Ответ: ( displaystyle y=2-frac{5}{x+1}).

График обратной пропорциональности

Как всегда, начнем с самого простого случая: ( displaystyle y=frac{1}{x}).

Составим таблицу.

Таблица обратной пропорциональности (зависимости)

( displaystyle mathbf{x}) ( displaystyle -3) ( displaystyle -2) ( displaystyle -1) ( displaystyle -0,5) ( displaystyle 0,5) ( displaystyle 1) ( displaystyle 2) ( displaystyle 3) ( displaystyle 4)
( displaystyle mathbf{y}) ( displaystyle -frac{1}{3}) ( displaystyle -frac{1}{2}) ( displaystyle -1) ( displaystyle -2) ( displaystyle 2) ( displaystyle ;1) ( displaystyle frac{1}{2}) ( displaystyle frac{1}{3}) ( displaystyle frac{1}{4})

Нарисуем точки на координатной плоскости:

Теперь их надо плавно соединить, но как?

Видно, что точки в правой и левой частях образуют будто бы несвязанные друг с другом кривые линии. Так оно и есть.

Это график гиперболы и выглядит он так:

Этот график называется «гипербола» (есть что-то похожее на «параболу» в этом названии, правда?). Как и у параболы, у гиперболы две ветки, только они не связаны друг с другом.

Каждая из них стремится своими концами приблизиться к осям ( displaystyle Ox) и ( displaystyle Oy), но никогда их не достигает. Если посмотреть на эту же гиперболу издалека, получится такая картина:

Оно и понятно: так как ( displaystyle xne 0), график не может пересекать ось ( displaystyle Oy). Но и ( displaystyle yne 0), так что график никогда не коснется и оси ( displaystyle Ox).

Ну что же, теперь посмотрим на что влияют коэффициенты.

На что влияют коэффициенты

Рассмотрим такие функции:

( displaystyle y=frac{1}{x};text{ }y=frac{2}{x};text{ }y=frac{4}{x};text{ }y=-frac{1}{x};text{ }y=-frac{3}{x}):

Ух ты, какая красота!

Все графики построены разными цветами, чтобы легче было их друг от друга отличать.

Итак, на что обратим внимание в первую очередь?

Например, на то, что если у функции перед дробью стоит минус, то график переворачивается, то есть симметрично отображается относительно оси ( displaystyle Ox).

Второе: чем больше число в знаменателе, тем дальше график «убегает» от начала координат.

А что, если функция выглядит сложнее, например, ( displaystyle y=frac{1}{x-1}+2)?

В этом случае гипербола будет точно такой же, как обычная ( displaystyle y=frac{1}{x}), только она немного сместится. Давай думать, куда?

Чему теперь не может быть равен ( x)? Правильно, ( xne 1). Значит, график никогда не достигнет прямой ( x=1).

А чему не может быть равен ( y)? Теперь ( yne 2). Значит, теперь график будет стремиться к прямой ( y=2), но никогда ее не пересечет.

Итак, теперь прямые ( x=1) и ( y=2) выполняют ту же роль, которую выполняют координатные оси для функции ( displaystyle y=frac{1}{x}).

Такие прямые называются асимптотами (линии, к которым график стремится, но не достигает их):

Более подробно о том, как строятся такие графики, мы выучим чуть позже.

А теперь попробуй решить несколько примеров для закрепления.

Обратная пропорциональность в жизни

Где же нам встречается такая функция на практике? Примеров множество. Самый распространенный – это движение: чем больше скорость, с которой мы движемся, тем меньшее время нам потребуется, чтобы преодолеть одно и то же расстояние.

И правда, вспомним формулу скорости: ( displaystyle v=frac{S}{t}), где ( v) – скорость, ( t) – время в пути, ( S) – расстояние (путь).

Отсюда можно выразить время: ( displaystyle t=frac{S}{v})

Пример:

Человек едет на работу со средней скоростью ( 40) км/ч, и доезжает за ( 1) час. Сколько минут он потратит на эту же дорогу, если будет ехать со скоростью ( 60) км/ч?

Решение:

Вообще, такие задачи ты уже решал в 5 и 6 классе. Ты составлял пропорцию:

( displaystyle 60) км/ч – ( 60) мин.

( displaystyle 60) км/ч – ( x) мин.

Далее ты определял, что это обратная пропорциональность, так как чем больше скорость, тем меньше время. Значит, чтобы решить эту пропорцию, нужно поделить числа «крест-накрест»:

( displaystyle frac{40}{x}=frac{60}{60}text{ }Rightarrow text{ }x=40)(мин).

То есть понятие обратной пропорциональности тебе уже точно знакомо. Вот и вспомнили. А теперь то же самое, только по-взрослому: через функцию.

Функция (то есть зависимость) времени в минутах от скорости:

( displaystyle tleft( v right)=frac{S}{v}).

Известно, что ( tleft( 40 right)=60), тогда:

( frac{S}{40}=60text{ }Rightarrow text{ }S=40cdot 60=2400).

Нужно найти ( tleft( 60 right)):

( displaystyle tleft( 60 right)=frac{2400}{60}=40) (мин).

Теперь придумай сам несколько примеров из жизни, в которых присутствует обратная пропорциональность.

Придумал? Молодец, если да. Удачи!

Принципы построения графика обратной пропорциональности (гиперболы)

Теперь давай научимся строить простейшую гиперболу – ( displaystyle y=frac{k}{x}).

Достаточно помнить, как она выглядит, и тогда нам хватит всего трех-четырех точек.

Например, построим гиперболу ( displaystyle y=frac{3}{x}).

Составим таблицу из ( 4) точек, которые принадлежат одной ветке (например, правой):

( x) ( frac{1}{2}) ( displaystyle 1) ( displaystyle 3) ( displaystyle 6)
( y) ( displaystyle 6) ( displaystyle 3) ( displaystyle 1) ( frac{1}{2})

Отмечаем точки на рисунке:

Проводим через них плавную линию, которая краями приближается к осям:

Это одна ветвь гиперболы

Проверить правильность построения этой кривой можно так: она должна быть симметрична относительно биссектрисы угла между осями координат:

Отлично, осталось вспомнить, что собой представляет вторая ветвь?

Это точно такая же кривая, расположенная симметрично относительно начала координат. То есть как будто оси теперь направлены не снизу вверх и слева направо, а наоборот: сверху вниз и справа налево, и мы рисуем ту же самую ветвь гиперболы.

Вот:

Еще один полезный факт.

Посмотри на красные точки на графике. Видно, что их абсцисса совпадает с ординатой. Так вот, эти абсцисса с ординатой равны ( sqrt{k}) для правой ветви гиперболы, и ( -sqrt{k}) для левой.

Для функций, у которых ( k) – точный квадрат (например, ( 1), ( 4) или ( displaystyle frac{1}{4})), эту точку, относительно которой ветвь гиперболы симметрична, будет очень легко поставить.

В этом случае достаточно даже трех точек, чтобы построить график.

Например, построим график функции ( displaystyle y=frac{4}{x})

Как и в прошлый раз, начнем с правой ветви.

Точка симметрии: ( displaystyle x=y=2). Выберем еще одну точку, например, ( displaystyle x=1), ( displaystyle y=4). У третьей точки координаты будут наоборот: ( displaystyle x=4), ( displaystyle y=1).

Рисуем:

И теперь симметрично отображаем эту ветвь в третью координатную четверть:

Теперь выясним, что будет, если ( displaystyle k<0)?

Очень просто: если есть график функции с таким же по величине, но положительным ( displaystyle k), то нужно просто отразить его относительно оси ( displaystyle Ox)

То есть правая ветвь теперь будет ниже оси ( displaystyle Ox) (в ( displaystyle IV) четверти), а левая – выше (в ( displaystyle III) четверти).

Принцип построения же останется прежним:

Ну что же, осталось объединить все то, что мы уже выяснили в один алгоритм:

Обратная пропорциональность и её график

Рассмотрим функцию, которая задается формулой 

.

Такая функция называется обратной пропорциональностью, причем x ≠ 0 (т.к. на 0 делить нельзя). Число k также отлично от 0 (в противном случае функция перестанет являться обратной пропорциональностью). Её графиком является гипербола, состоящая из двух ветвей. Ты сможешь увидеть ее ниже.

Перед разбором тренировочных экзаменационных заданий очень хочется вспомнить, что конкретно влияет на расположение и вид графика.

Напомню, что координатная плоскость делится на 4 координатных четверти. У каждой четверти есть свой порядковый номер (см. рисунок).

Так вот к чему я это?

Если k > 0, то ветви гиперболы располагаются в 1 и 3 четвертях.

Если k < 0, то ветви гиперболы располагаются во 2 и 4 четвертях.

Убедимся в этом) Построим два графика.

                 

Чем больше точек ты запишешь, тем точнее получится график.

В обоих случаях ветви гиперболы никогда не пересекут оси Ох и Оу, т.к. ни х, ни у нулю равняться не могут. Это значит, что оси являются для графика асимптотами — ветви гиперболы бесконечно стремятся к ним, но никогда их не пересекают.

Но не всегда оси будут асимптотами.

Например, в следующей функции асимптотами будут являться прямые х = 2 и у = 1.

Практикум по гиперболам.

Оказывается, что на сайте ФИПИ все задания чисто с гиперболами однотипные, поэтому разберу только два задания, похожих друг на друга (почему они оси не прорисовывают не пойму).

Задание 1. Установите соответствие между графиками и их функциями.

Из общей массы выделяется график Б, т.к. ветви этой гиперболы находятся очень близко к началу координат. А из формул выделяется формула 1, т.к. в ее знаменателе икс умножен на 3. Вывод: график Б и формула 1 созданы друг для друга!

Далее, ветви графика А расположены в 1 и 3 четвертях плоскости, значит коэффициент k положительный. К А подходит формула 2.

И остались график В и формула 3.

Всё)

Задание 2. Установите соответствие между функциями и их графиками.

Аналогично предыдущему заданию.

Б-2

А-1

В-3

Сегодня мы рассмотрим, какие величины называются обратно пропорциональными, как выглядит график обратной пропорциональности и как все это может вам пригодится не только на уроках математики, но и вне школьных стен.

Такие разные пропорциональности

Пропорциональностью называют две  величины, которые взаимно зависимы друг от друга.

Зависимость может быть прямой и обратной. Следовательно, отношения между величинами описывают прямая и обратная пропорциональность.

Прямая пропорциональность – это такая зависимость двух величин, при которой увеличение либо уменьшение одной из них ведет к увеличению либо уменьшению другой. Т.е. их отношение не изменяется.

Например, чем больше усилий вы прилагаете для подготовки к экзаменам, тем выше ваши оценки.  Или чем больше вещей вы берете с собой в поход, тем тяжелее нести ваш рюкзак. Т.е. количество затраченных на подготовку к экзаменам усилий прямо пропорционально полученным оценкам. И количество запакованных в рюкзак вещей прямо пропорционально его весу.

Обратная пропорциональность – это функциональная зависимость, при которой уменьшение либо увеличение в несколько раз независимой величины (ее называют аргументом) вызывает пропорциональное (т.е. во столько же раз) увеличение либо уменьшение зависимой величины (ее называют функцией).

Проиллюстрируем простым примером. Вы хотите купить на рынке яблок. Яблоки на прилавке и количество денег в вашем кошельке находятся в обратной пропорциональности. Т.е. чем больше вы купите яблок, тем меньше денег у вас останется.

Функция и ее график

Функцию обратной пропорциональности можно описать как y = k/x. В котором x ≠ 0 и k ≠ 0.

Эта функция обладает следующими свойствами:

  1. Областью ее определения является множество всех действительных чисел, кроме x = 0. D(y): (-∞; 0) U (0; +∞).
  2. Областью значений являются все действительные числа, кроме y = 0. Е(у): (-∞; 0) U (0; +∞).
  3. Не имеет наибольших и наименьших значений.
  4. Является нечетной и ее график симметричен относительно начала координат.
  5. Непериодическая.
  6. Ее график не пересекает оси координат.
  7. Не имеет нулей.
  8. Если k > 0 (т.е. аргумент возрастает), функция пропорционально убывает на каждом из своих промежутков. Если k < 0 (т.е. аргумент убывает), функция пропорционально возрастает на каждом из своих промежутков.
  9. При возрастании аргумента (k > 0) отрицательные значения функции находятся в промежутке (-∞; 0), а положительные – (0; +∞). При убывании аргумента (k < 0) отрицательные значения расположены на промежутке (0; +∞), положительные – (-∞; 0).

График функции обратной пропорциональности называется гиперболой. Изображается следующим образом:

График Функции Обратной Пропорциональности

Задачи на обратную пропорциональность

Чтобы стало понятнее, давайте разберем несколько задач. Они не слишком сложные, а их решение поможет вам наглядно представить, что такое обратная пропорциональность и как эти знания могут пригодиться в вашей обычной жизни.

Задача №1. Автомобиль движется со скоростью 60 км/ч. Чтобы доехать до места назначения, ему потребовалось 6 часов. Сколько времени ему потребуется, чтобы преодолеть такое же расстояние, если он будет двигаться со скоростью в 2 раза выше?

Можем начать с того, что запишем формулу, которая описывает отношения времени, расстояния и скорости: t = S/V. Согласитесь, она очень напоминает нам функцию обратной пропорциональности. И свидетельствует о том, что время, которое автомобиль проводит в пути, и скорость, с которой он движется, находятся в обратной пропорциональности.

Чтобы убедиться в этом, давайте найдем V2, которая по условию выше в 2 раза: V2 = 60 * 2 = 120 км/ч. Затем рассчитаем расстояние по формуле S = V * t = 60 * 6 = 360 км. Теперь совсем несложно узнать время t2, которое требуется от нас по условию задачи: t2 = 360/120 = 3 ч.

Как видите время в пути и скорость движения действительно обратно пропорциональны: со скоростью в 2 раза выше изначальной автомобиль потратит в 2 раза меньше времени на дорогу.

Решение этой задачи можно записать и в виде пропорции. Для чего сначала составим такую схему:

↓ 60 км/ч – 6 ч ↑

↓120 км/ч – х ч ↑

Стрелки обозначают обратно пропорциональную зависимость. А также подсказывают, что при составлении пропорции правую часть записи надо перевернуть: 60/120 = х/6. Откуда получаем х = 60 * 6/120 = 3 ч.

Задача №2. В мастерской трудятся 6 рабочих, которые с заданным объемом работы справляются за 4 часа. Если количество рабочих сократить в 2 раза, сколько времени потребуется оставшимся, чтобы выполнить тот же объем работы?

Запишем условия задачи в виде наглядной схемы:

↓ 6 рабочих – 4 ч ↑

↓ 3 рабочих – х ч ↑

Запишем это в виде пропорции: 6/3 = х/4. И получим х = 6 * 4/3 = 8 ч. Если рабочих станет в 2 раза меньше, оставшиеся затратят на выполнение всей работы в 2 раза больше времени.

Задача №3. В бассейн ведут две трубы. Через одну трубу вода поступает со скоростью 2 л/с и наполняет бассейн за 45 минут. Через другую трубу бассейн наполнится за 75 минут. С какой скоростью вода поступает в бассейн через эту трубу?

Для начала приведем все данные нам по условию задачи величины к одинаковым единицам измерения. Для этого выразим скорость наполнения бассейна в литрах в минуту: 2 л/с = 2 * 60 = 120 л/мин.

Поскольку из условия следует, что через вторую трубу бассейн заполняется медленнее, значит, и скорость поступления воды ниже. На лицо обратная пропорциональность. Неизвестную нам скорость выразим через х и составим такую схему:

↓ 120 л/мин – 45 мин ↑

↓ х л/мин – 75 мин ↑

А затем составим пропорцию: 120/х = 75/45, откуда х = 120 * 45/75 = 72 л/мин.

В задаче скорость наполнения бассейна выражена в литрах в секунду, приведем полученный нами ответ к такому же виду: 72/60 = 1,2 л/с.

Задача №4. В небольшой частной типографии печатают визитки. Сотрудник типографии работает со скоростью 42 визитки в час и трудится полный рабочий день – 8 часов. Если бы он работал быстрее и печатал 48 визиток за час, насколько раньше он смог бы уйти домой?

Идем проверенным путем и составляем по условию задачи схему, обозначив искомую величину как х:

↓ 42 визитки/ч – 8 ч ↑

↓ 48 визитки/ч – х ч ↑

Перед нами обратно пропорциональная зависимость: во сколько раз больше визиток в час напечатает сотрудник типографии, во столько же раз меньше времени ему потребуется на выполнение одной и той же работы. Зная это, составим пропорцию:

42/48 = х/8, х = 42 * 8/48 = 7ч.

Таким образом, справившись с работой за 7 часов, сотрудник типографии смогу бы уйти домой на час раньше.

Заключение

Нам кажется, что эти задачи на обратную пропорциональность действительно несложные. Надеемся, что теперь вы тоже считаете их такими. А главное, что знание об обратно пропорциональной зависимости величин действительно может оказаться для вас полезным еще не раз.

Не только на уроках математики и экзаменах. Но и тогда, когда вы соберетесь отправиться в путешествие, пойдете за покупками, решите немного подработать в каникулы и т.п.

Расскажите нам в комментариях, какие примеры обратной и прямой пропорциональной зависимости вы замечаете вокруг себя. Пускай это будет такая игра. Вот увидите, как это увлекательно. Не забудьте «расшарить» эту статью в социальных сетях, чтобы ваши друзья и одноклассники тоже смогли поиграть.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Функция обратной пропорциональности




Определение

Функция обратной пропорциональности — это функция, заданная формулой

    [y = frac{k}{x},]

где x — независимая переменная, k — число, отличное от нуля.

Графиком обратной пропорциональности является гипербола. Гипербола состоит из двух ветвей. (так называют две части графика).

Для построения гиперболы нужно знать несколько точек (больше точек — точнее график). Лучше выбирать те значения x, на которые удобно делить k.

Свойства функции обратной пропорциональности

1) Область определения обратной пропорциональности состоит из всех значений x, кроме нуля:

D: x∈(-∞;0) U (0;∞).

2) Область значений обратной пропорциональности — все значения y, кроме нуля:

E: y∈(-∞;0) U (0;∞).

3) Функция обратной пропорциональности не имеет нулей.

4) При k>0

ветви гиперболы расположены в I и III координатных четвертях:

funkciya-obratnoj-proporcionalnosti

Обратная пропорциональность убывает на каждом из промежутков области определения, то есть при x∈(-∞;0) U (0;∞).

Функция принимает положительные значения при x>0, или

y>0 при x∈ (0;∞).

Функция принимает отрицательные значения при x<0, или

y<0 при x∈(-∞;0).

При k<0

ветви гиперболы расположены вo II и IV координатных четвертях:

funkciya-obratnaya-proporcionalnost

Обратная пропорциональность возрастает на каждом из промежутков области определения, то есть при x∈(-∞;0) U (0;∞).

Функция принимает положительные значения при x<0, или

y<0 при x∈(-∞;0).

Функция принимает отрицательные значения при x>0, или

y>0 при x∈ (0;∞).

Оси Ox и Oy для обратной пропорциональности являются асимптотами — прямыми, к которым ветви гиперболы неограниченно приближаются  (но никогда их не достигнут).

В следующий раз на конкретных примерах рассмотрим, как строить график обратной пропорциональности.

Обратная пропорциональность


Обратная пропорциональность

4.7

Средняя оценка: 4.7

Всего получено оценок: 162.

Обновлено 27 Октября, 2021

4.7

Средняя оценка: 4.7

Всего получено оценок: 162.

Обновлено 27 Октября, 2021

Обратная пропорциональность занимает куда больше времени при изучении, чем прямая. Поэтому ученикам стоит быть готовыми к тому, что обратная пропорциональность потребует времени и усилий для решения задач. Главное — помнить основные определения и быть внимательным при решении задач.

Пропорциональность.

Пропорциональностью называется зависимость одного числа от другого. Например, если в кошельке у человека определённое количество денег, а он покупает конфеты, то при увеличении цены на конфеты уменьшится число конфет, которые человек сможет купить.

Можно выделить две разновидности пропорциональностей:

  • Прямая пропорциональность. Это зависимость, при которой увеличение одного числа ведет к увеличению другого во столько же раз. А уменьшение одно числа ведёт к уменьшению другого во столько же раз.
  • Обратная пропорциональность. Это зависимость, при которой уменьшение одного числа ведет к увеличению другого во столько же раз. А увеличение числа, наоборот, ведёт к уменьшению другого во столько же раз.

Несколько раз в определении повторялась фраза «в столько же раз». Бывают ситуации, в особенности в физике, когда величины пропорциональны, но не имеют ярко выраженного коэффициента пропорциональности. Например, температура ведёт к увеличению внутренней энергии тела, но не прямо пропорционально. В таких ситуациях говорят, что числа пропорциональны.

Обратная пропорциональность.

И прямую, и обратную пропорциональность проще рассматривать на задачах движения. Представим себе автомобиль, который едет со скоростью 90 км/ч. Если примем расстояние между двумя городами за 180 км, то такой путь машина должна проехать за 2 часа. Пока всё понятно.

Но что будет, если водитель поспешит и увеличит скорость до 180 км/ч? Требуемый отрезок пути он проедет быстрее. То есть на то же расстояние водитель потратит не 2 часа, а 1 — увеличение скорости привело к уменьшению времени в дороге.

А что будет, если водитель уменьшит скорость в два раза, со 120 км/ч до 60 км/ч? Значит, время в пути тоже увеличится в два раза и будет составлять не 2 часа, а 4. Так уменьшение скорости привело к увеличению времени в пути.

График обратно пропорциональной зависимости

Для любой зависимости можно построить график функции.

Что такое функция? Это зависимость двух чисел. Одно из них, как правило, у, называется функцией и зависит от х, то есть аргумента.

Если представить обратную пропорциональность в виде формулы, то это будет выглядеть так:

у=к:х, где у – зависимое число или функция

х – независимое число или аргумент

к – постоянная величина, которая называется коэффициентом обратной пропорциональности.

Кстати, для приведённого нами примера коэффициентом обратной пропорциональности является величина пути между двумя городами, которую мы сделали постоянной. Если бы величина пройденного пути была плавающей, то обратной пропорциональности не получилось бы.

Пример

В качестве примера проверим, насколько верно работает приведённая формула и действительно ли она отображает обратную пропорцию. Выберем коэффициент пропорциональности, например, число 3. Тогда функция примет вид:

у=3:х. В качестве первого значения х выберем число 6, тогда у=0,5. Если мы уменьшим число х в 2 раза, то получится число 3, которому соответствует у=1. То есть в результате уменьшения х в два раза у в два раза увеличился, что полностью соответствует определению обратной пропорциональности. Для построения графика требуется несколько точек, поэтому, если по условиям задачи нужны построения, лучше записывать все значения в таблицу.

Особенно отметим, что коэффициент пропорциональности не может равняться нулю или быть отрицательным числом. А аргумент не может быть равным нулю, но отрицательным числом быть может.

Заключение

Что мы узнали?

Мы поговорили о том, что такое пропорциональность. Разделили определение обратной пропорциональности и прямой пропорциональности. Привели пример обратной пропорциональной зависимости, а также записали формулу обратной пропорциональности.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Дарья Кубрин

    10/10

  • Анна Ножеева

    8/10

  • София Крючкова

    9/10

  • Никита Новосёлов

    10/10

  • Артур Севастьянов

    8/10

Оценка статьи

4.7

Средняя оценка: 4.7

Всего получено оценок: 162.


А какая ваша оценка?

Понравилась статья? Поделить с друзьями:
  • Как составить доверенность пример
  • Как найти адрес бита
  • Как составить план работы отдела персонала
  • Как найти учредителей для компании
  • Как найти площадь поверхности усеченного конуса формула