Как найти значение гаусса по таблице

k-tree

Электронный учебник

Нормальное распределение

Нормальное распределение

 КАЛЬКУЛЯТОР
ТАБЛИЦА |

Вероятность

Вероятность, что подброшенная монета упадёт орлом вверх 50%, что при броске шестигранного кубика выпадет 4 — 16,7%,
что завтра на кого-нибудь упадёт метеорит — 0.00000000294%. Это простые примеры, достаточно разделить количество
желаемых событий на общее количество случаев и мы получаем вероятность события, но когда результаты эксперимента могут
быть не только орлом или решкой (что эквивалентно да/нет), а большим набором данных.
Например, вес батона хлеба, если мы возьмём в магазине 1000 буханок хлеба и взвесим каждую, то мы узнаем, что
на самом деле батон не весит 400 грамм, результаты будут варьироваться в диапазоне 384-416 грамм (допуск разброса веса предусмотрен ГОСТом).
Если Вы построите график «Количество буханок — Вес», то график будет иметь форму напоминающую колокол, что-то похожее на следующий график:

Плотность вероятности нормального распределения

вероятность нормального распределения (график)

Такую форму график получит потому, что большинство значений близко к 400. Это — пример нормального распределения, множество событий имеют закон
нормального распределения, например, вес или рост для определённого возраста, или среднее время Вашего похода до магазина и многие
другие события также подчиняются закону нормального распределения.

Вот так работают маркетологи: проводят опрос 1000 человек и получают представление о всём населении

В случае таблицы Вы имеете дело с дискретными данными, т.е. для каждого веса есть определённая вероятность, но в случае графика дело немного меняется,
теперь мы говорим не о 1000 буханок, которые мы взвесили, а обо всех буханках в мире сразу! Зачем? Что бы не взвешивать все буханки.
Имея закон распределения, который мы получили взвесив 1000 буханок (мы могли взвесить 100, 200, 500, сколько угодно), мы можем предположить,
что сколько бы мы буханок не взяли, замерив их, мы получим ту же форму колокола. Используя термины статистики, все буханки хлеба — это
генеральная совокупность, 1000 замеренных буханок — выборка.

Теперь, возьмём одну буханку хлеба, какова вероятность, что её вес будет между 390г и 400г?

Вероятность события между a и b:

P(a ≤ X ≤ b) = P(X ≤ b) — P(X ≤ a)

Распределение вероятности — это функция, в которой для каждого события Х присваивается вероятность p, что событие произойдёт

Распределение Гаусса

Нормальное распределение получило своё название абсолютно справедливо: по статистике, большинство событий
происходят именно с вероятностью нормального распределения, но что это значит? Это означает,
например, что когда Вы видите на упаковке хлеба обозначение «Вес: 400±16г» — вес батона
имеет нормальное распределение со средним значением 400г и стандартным отклонением 16г.

Таблица нормального распределения

Таблица нормального распределения — это затабулированные значения функции нормального распределения.

Для нахождения вероятности события Z0 можно воспользоваться таблицей нормального распределения ниже.
На пересечении строк (n) и столбцов (m) находится значение вероятности n+m.

Z0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.500 0.504 0.508 0.512 0.516 0.520 0.524 0.528 0.532 0.536
0.1 0.540 0.544 0.548 0.552 0.556 0.560 0.564 0.568 0.571 0.575
0.2 0.579 0.583 0.587 0.591 0.595 0.599 0.603 0.606 0.610 0.614
0.3 0.618 0.622 0.625 0.629 0.633 0.637 0.641 0.644 0.648 0.652
0.4 0.655 0.659 0.663 0.666 0.670 0.674 0.677 0.681 0.684 0.688
0.5 0.692 0.695 0.699 0.702 0.705 0.709 0.712 0.716 0.719 0.722
0.6 0.726 0.729 0.732 0.736 0.739 0.742 0.745 0.749 0.752 0.755
0.7 0.758 0.761 0.764 0.767 0.770 0.773 0.776 0.779 0.782 0.785
0.8 0.788 0.791 0.794 0.797 0.799 0.802 0.805 0.808 0.811 0.813
0.9 0.816 0.819 0.821 0.824 0.826 0.829 0.832 0.834 0.837 0.839
1 0.841 0.844 0.846 0.849 0.851 0.853 0.855 0.858 0.860 0.862
1.1 0.864 0.867 0.869 0.871 0.873 0.875 0.877 0.879 0.881 0.883
1.2 0.885 0.887 0.889 0.891 0.892 0.894 0.896 0.898 0.900 0.901
1.3 0.903 0.905 0.907 0.908 0.910 0.911 0.913 0.915 0.916 0.918
1.4 0.919 0.921 0.922 0.924 0.925 0.926 0.928 0.929 0.931 0.932
1.5 0.933 0.934 0.936 0.937 0.938 0.939 0.941 0.942 0.943 0.944
1.6 0.945 0.946 0.947 0.948 0.950 0.951 0.952 0.953 0.954 0.955
1.7 0.955 0.956 0.957 0.958 0.959 0.960 0.961 0.962 0.963 0.963
1.8 0.964 0.965 0.966 0.966 0.967 0.968 0.969 0.969 0.970 0.971
1.9 0.971 0.972 0.973 0.973 0.974 0.974 0.975 0.976 0.976 0.977
2 0.977 0.978 0.978 0.979 0.979 0.980 0.980 0.981 0.981 0.982
2.1 0.982 0.983 0.983 0.983 0.984 0.984 0.985 0.985 0.985 0.986
2.2 0.986 0.986 0.987 0.987 0.988 0.988 0.988 0.988 0.989 0.989
2.3 0.989 0.990 0.990 0.990 0.990 0.991 0.991 0.991 0.991 0.992
2.4 0.992 0.992 0.992 0.993 0.993 0.993 0.993 0.993 0.993 0.994
2.5 0.994 0.994 0.994 0.994 0.995 0.995 0.995 0.995 0.995 0.995
2.6 0.995 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996
2.7 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997
2.8 0.997 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
2.9 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999
3 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
3.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
3.2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000
Таблица 1. Таблица нормального распределения. Красным выделены часто используемые значения при выборе критической области

Нормальное распределение — среднее 0 и отклонение 1?

Не только. График нормального распределения построен для среднего значения ноль и стандартного отклонения единица, т.е. 0±1.
Но если Ваши среднее и отклонение отличаются от нуля и единицы, то к Вашим услугам следующая формула:

Z = (X — μ) / σ

Где μ и σ — среднее значение и стандартное отклонение для Вашего распределения соответственно, а X — величина, для которой Вы хотите
узнать вероятность. Возвращаясь к примеру с батоном хлеба — для того, что бы узнать, какова вероятность, что батон
будет весить меньше 396 грамм — необходимо подставить в формулу значения X=396, μ = 400, σ = 16:

Z = (396 — 400) / 16 = -0.25

Далее, по таблице необходимо найти значение для Z. Как для Z = -0.25, так и для Z = 0.25 это будет 0,5987 (нормальное распределение симметрично,
поэтому значение вероятности определяется для абсолютного значения Z: график симметричен относительно оси Y, поэтому значение вероятности
не зависит от знака X)

Найти вероятность

Найти Z

P ()

Za

Zb

a

b

μ (среднее)

σ (отклонение)

Свойства функции распределения

  • Симметрична относительно центра (среднее значение — математическое ожидание μ)
  • Мода и медиана равны математическому ожиданию μ

Функция распределения

Функция распределения предназначена для того, что бы определить, какова вероятность, что величина X меньше или равна некоторого числа x.

На примере батона из первого абзаца: если мы хотим узнать, какова вероятность, что батон будет весить меньше 410 грамм, то, воспользовавшись
формулой приведения, получим Z=0.63 и значение P(X<0.63) = 0,7357, т.е. вероятность того, что батон будет весить 410 грамм
или меньше — 73,57%

функция нормального распределения (график)

Среднее значение нормального распределения (μ)

Математическое ожидание (среднее значение) для стандартного нормального распределения равно нулю: μ = 0

Нормальное распределение в excel

Что бы получить значение нормального распределения в эксель, существует формула «НОРМ.РАСП» (в старых версиях НОРМРАСП), в которую передаётся
значение события X, например, какова вероятность попасть в интервал [-0.5;0.5]?

=НОРМРАСП(0,5;0;1;1) = 0,35
=НОРМ.РАСП(0,5;0;1;1) = 0,35

Синтаксис команды следующий: НОРМРАСП(событие Х, среднее, отклонение, интегральная). Так, Вы можете найти значение
нормального распределения без приведения значений:

=НОРМ.РАСП(396;400;16;1) = 0.4

Для поиска значения Z, при наличии вероятности, например, для 95%, можно воспользоваться формулой «НОРМОБР»:

=НОРМОБР(0,95;0;1) = 1,64

Тесты

  1. Нормальное распределение

Скачать статью в формате PDF.

Автор статьи:

Дата редакции статьи: 17.10.2022

Вам понравилась статья?
/

Просмотров: 38 706


Консультация и поддержка студентов в учёбе

Главная » Бесплатные рефераты » Бесплатные рефераты по математическому анализу и линейной алгебре »

Таблица значений функции Гаусса

Таблица значений функции Гаусса [28.09.11]

Тема: Таблица значений функции Гаусса

Раздел: Бесплатные рефераты по математическому анализу и линейной алгебре

Тип: Другое | Размер: 10.20K | Скачано: 252 | Добавлен 28.09.11 в 21:08 | Рейтинг: +2 | Еще Другое

Вуз: не указан

Значения функции Гаусса
Значения функции Гаусса
Таблица значений функции Гаусса

Целые и

десятичные доли x

Сотые доли x

0

1

2

3

4

5

6

7

8

9

0,0

0,3989

0,3989

0,3989

0,3988

0,3986

0,3984

0,3982

0,3980

0,3977

0,3973

0,1

3970

3965

3961

3956

3951

3945

3939

3932

3925

3918

0,2

3910

3902

3894

3885

3876

3867

3857

3847

3836

3825

0,3

3814

3802

3790

3778

3765

3752

3739

3726

3712

3697

0,4

3683

3668

3653

3637

3621

3605

3589

3572

3555

3538

0,5

3521

3503

3485

3467

3448

3429

3410

3391

3372

3352

0,6

3332

3312

3292

3271

3251

3230

3209

3187

3166

3144

0,7

3123

3101

3079

3056

3034

3011

2989

2966

2943

2920

0,8

2897

2874

2850

2827

2803

2780

2756

2732

2709

2685

0,9

2661

2637

2613

2589

2565

2541

2516

2492

2468

2444

1,0

0,2420

0,2396

0,2371

0,2347

0,2323

0,2299

0,2275

0,2251

0,2227

0,2203

1,1

2179

2155

2131

2107

2083

2059

2036

2012

1989

1965

1,2

1942

1919

1895

1872

1849

1826

1804

1781

1758

1736

1,3

1714

1691

1669

1647

1626

1604

1582

1561

1539

1518

1,4

1497

1476

1456

1435

1415

1394

1374

1354

1334

1315

1,5

1295

1276

1257

1238

1219

1200

1182

1163

1145

1127

1,6

1109

1092

1074

1057

1040

1023

1006

0989

0973

0957

1,7

0940

0925

0909

0893

0878

0863

0848

0833

0818

0804

1,8

0790

0775

0761

0748

0734

0721

0707

0694

0681

0669

1,9

0656

0644

0632

0620

0608

0596

0584

0573

0562

0551

2,0

0,0540

0,0529

0,0519

0,0508

0,0498

0,0488

0,0478

0,0468

0,0459

0,0449

2,1

0440

0431

0422

0413

0404

0396

0387

0379

0371

0363

2,2

0355

0347

0339

0332

0325

0317

0310

0303

0297

0290

2,3

0283

0277

0270

0264

0258

0252

0246

0241

0235

0229

2,4

0224

0219

0213

0208

0203

0198

0194

0189

0184

0180

2,5

0175

0171

0167

0163

0158

0154

0151

0147

0143

0139

2,6

0136

0132

0129

0126

0122

0119

0116

0113

0110

0107

2,7

0104

0101

0099

0096

0093

0091

0088

0086

0084

0081

2,8

0079

0077

0075

0073

0071

0069

0067

0065

0063

0061

2,9

0060

0058

0056

0055

0053

0051

0050

0048

0047

0046

3,0

0,0044

0,0043

0,0042

0,0041

0,0039

0,0038

0,0037

0,0036

0,0035

0,0034

3,1

0033

0032

0031

0030

0029

0028

0027

0026

0025

0025

3,2

0024

0023

0022

0022

0021

0020

0020

0019

0018

0018

3,3

0017

0017

0016

0016

0015

0015

0014

0014

0013

0013

3,4

0012

0012

0012

0011

0011

0010

0010

0010

0009

0009

3,5

0009

0008

0008

0008

0008

0007

0007

0007

0007

0006

3,6

0006

0006

0006

0005

0005

0005

0005

0005

0005

0004

3,7

0004

0004

0004

0004

0004

0004

0003

0003

0003

0003

3,8

0003

0003

0003

0003

0003

0002

0002

0002

0002

0002

3,9

0002

0002

0002

0002

0002

0002

0002

0002

0001

0001

4,0

0,0001

0,0001

0,0001

0,0001

0,0001

0,0001

0,0001

0,0001

0,0001

0,0001

4,1

0,0001338

4,5

0,0000160

5,0

0,0000015

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы

Бесплатная оценка

+2


Понравилось? Нажмите на кнопочку ниже. Вам не сложно, а нам приятно).


Чтобы скачать бесплатно Другое на максимальной скорости, зарегистрируйтесь или авторизуйтесь на сайте.

Важно! Все представленные Другое для бесплатного скачивания предназначены для составления плана или основы собственных научных трудов.


Друзья! У вас есть уникальная возможность помочь таким же студентам как и вы! Если наш сайт помог вам найти нужную работу, то вы, безусловно, понимаете как добавленная вами работа может облегчить труд другим.

Добавить работу


Если Другое, по Вашему мнению, плохого качества, или эту работу Вы уже встречали, сообщите об этом нам.


Добавление отзыва к работе

Добавить отзыв могут только зарегистрированные пользователи.


Похожие работы

  • Таблица значений функции Лапласа
  • Таблица значений функции Пуассона

Консультация и поддержка студентов в учёбе

В статье подробно показано, что такое нормальный закон распределения случайной величины и как им пользоваться при решении практически задач.

Нормальное распределение в статистике

История закона насчитывает 300 лет. Первым открывателем стал Абрахам де Муавр, который придумал аппроксимацию биномиального распределения еще 1733 году. Через много лет Карл Фридрих Гаусс (1809 г.) и Пьер-Симон Лаплас (1812 г.) вывели математические функции.

Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение.

Нормальный закон не является фиксированным уравнением зависимости одной переменной от другой. Фиксируется только характер этой зависимости. Конкретная форма распределения задается специальными параметрами. Например, у = аx + b – это уравнение прямой. Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b. Также и с нормальным распределением. Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами.

Кривая нормального распределения Гаусса имеет следующий вид.

График плотности нормального распределения

График нормального распределения напоминает колокол, поэтому можно встретить название колоколообразная кривая. У графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины.

Различные вероятности у нормально распределенных данных

На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно отличаются высоты. Синий участок удален от центра, и имеет существенно меньшую высоту, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и площади, то бишь вероятности попадания в обозначенные интервалы.

Формула нормального распределения (плотности) следующая.

Функция Гаусса

Формула состоит из двух математических констант:

π – число пи 3,142;

е – основание натурального логарифма 2,718;

двух изменяемых параметров, которые задают форму конкретной кривой:

m – математическое ожидание (в различных источниках могут использоваться другие обозначения, например, µ или a);

σ2 – дисперсия;

ну и сама переменная x, для которой высчитывается плотность вероятности.

Конкретная форма нормального распределения зависит от 2-х параметров: математического ожидания (m) и дисперсии (σ2). Кратко обозначается N(m, σ2) или N(m, σ). Параметр m (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ2 характеризует размах вариации, то есть «размазанность» данных.

Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности.

Влияние матожидания на нормальное распределение

А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса концентрируется у центра. Если же у данных большой разброс, то они «размазываются» по широкому диапазону.

Влияние сигмы на нормальное распределение

Плотность распределения не имеет прямого практического применения. Для расчета вероятностей нужно проинтегрировать функцию плотности.

Вероятность того, что случайная величина окажется меньше некоторого значения x, определяется функцией нормального распределения:

Функция нормального распределения
Используя математические свойства любого непрерывного распределения, несложно рассчитать и любые другие вероятности, так как

P(a ≤ X < b) = Ф(b) – Ф(a)

Стандартное нормальное распределение

Нормальное распределение зависит от параметров средней и дисперсии, из-за чего плохо видны его свойства. Хорошо бы иметь некоторый эталон распределения, не зависящий от масштаба данных. И он существует. Называется стандартным нормальным распределением. На самом деле это обычное нормальное нормальное распределение, только с параметрами математического ожидания 0, а дисперсией – 1, кратко записывается N(0, 1).

Любое нормальное распределение легко превращается в стандартное путем нормирования:

Нормирование

где z – новая переменная, которая используется вместо x;
m – математическое ожидание;
σ – стандартное отклонение.

Для выборочных данных берутся оценки:

Нормирование по оценкам параметров

Среднее арифметическое и дисперсия новой переменной z теперь также равны 0 и 1 соответственно. В этом легко убедиться с помощью элементарных алгебраических преобразований.

В литературе встречается название z-оценка. Это оно самое – нормированные данные. Z-оценку можно напрямую сравнивать с теоретическими вероятностями, т.к. ее масштаб совпадает с эталоном.

Посмотрим теперь, как выглядит плотность стандартного нормального распределения (для z-оценок). Напомню, что функция Гаусса имеет вид:

Функция Гаусса

Подставим вместо (x-m)/σ букву z, а вместо σ – единицу, получим функцию плотности стандартного нормального распределения:

Плотность стандартного нормального распределения

График плотности:

График плотности стандартного нормального распределения

Центр, как и ожидалось, находится в точке 0. В этой же точке функция Гаусса достигает своего максимума, что соответствует принятию случайной величиной своего среднего значения (т.е. x-m=0). Плотность в этой точке равна 0,3989, что можно посчитать даже в уме, т.к. e0=1 и остается рассчитать только соотношение 1 на корень из 2 пи.

Таким образом, по графику хорошо видно, что значения, имеющие маленькие отклонения от средней, выпадают чаще других, а те, которые сильно отдалены от центра, встречаются значительно реже. Шкала оси абсцисс измеряется в стандартных отклонениях, что позволяет отвязаться от единиц измерения и получить универсальную структуру нормального распределения. Кривая Гаусса для нормированных данных отлично демонстрирует и другие свойства нормального распределения. Например, что оно является симметричным относительно оси ординат. В пределах ±1σ от средней арифметической сконцентрирована большая часть всех значений (прикидываем пока на глазок). В пределах ±2σ находятся большинство данных. В пределах ±3σ находятся почти все данные. Последнее свойство широко известно под названием правило трех сигм для нормального распределения.

Функция стандартного нормального распределения позволяет рассчитывать вероятности.

Функция стандартного нормального распределения

Понятное дело, вручную никто не считает. Все подсчитано и размещено в специальных таблицах, которые есть в конце любого учебника по статистике.

Таблица нормального распределения

Таблицы нормального распределения встречаются двух типов:

— таблица плотности;

— таблица функции (интеграла от плотности).

Таблица плотности используется редко. Тем не менее, посмотрим, как она выглядит. Допустим, нужно получить плотность для z = 1, т.е. плотность значения, отстоящего от матожидания на 1 сигму. Ниже показан кусок таблицы. 

Таблица плотности стандартного нормального распределения

В зависимости от организации данных ищем нужное значение по названию столбца и строки. В нашем примере берем строку 1,0 и столбец 0, т.к. сотых долей нет. Искомое значение равно 0,2420 (0 перед 2420 опущен). 

Функция Гаусса симметрична относительно оси ординат. Поэтому φ(z)= φ(-z), т.е. плотность для 1 тождественна плотности для -1, что отчетливо видно на рисунке.

График функции Гаусса

Чтобы не тратить зря бумагу, таблицы печатают только для положительных значений.

На практике чаще используют значения функции стандартного нормального распределения, то есть вероятности для различных z.

В таких таблицах также содержатся только положительные значения. Поэтому для понимания и нахождения любых нужных вероятностей следует знать свойства стандартного нормального распределения.

Функция Ф(z) симметрична относительно своего значения 0,5 (а не оси ординат, как плотность). Отсюда справедливо равенство:

Свойство 1

Это факт показан на картинке:

Свойство нормального распределения 1

Значения функции Ф(-z) и Ф(z) делят график на 3 части. Причем верхняя и нижняя части равны (обозначены галочками). Для того, чтобы дополнить вероятность Ф(z) до 1, достаточно добавить недостающую величину Ф(-z). Получится равенство, указанное чуть выше.

Если нужно отыскать вероятность попадания в интервал (0; z), то есть вероятность отклонения от нуля в положительную сторону до некоторого количества стандартных отклонений, достаточно от значения функции стандартного нормального распределения отнять 0,5:

Свойство 2

Для наглядности можно взглянуть на рисунок.

Свойство нормального распределения 2

На кривой Гаусса, эта же ситуация выглядит как площадь от центра вправо до z.

Свойство нормального распределения 2 на кривой Гаусса

Довольно часто аналитика интересует вероятность отклонения в обе стороны от нуля. А так как функция симметрична относительно центра, предыдущую формулу нужно умножить на 2:

Свойство 3

Рисунок ниже.

Свойство нормального распределения 3

Под кривой Гаусса это центральная часть, ограниченная выбранным значением –z слева и z справа.

Свойство нормального распределения 3 на кривой Гаусса

Указанные свойства следует принять во внимание, т.к. табличные значения редко соответствуют интересующему интервалу.

Для облегчения задачи в учебниках обычно публикуют таблицы для функции вида:

Функция стандартного нормального распределения

Если нужна вероятность отклонения в обе стороны от нуля, то, как мы только что убедились, табличное значение для данной функции просто умножается на 2.

Теперь посмотрим на конкретные примеры. Ниже показана таблица стандартного нормального распределения. Найдем табличные значения для трех z: 1,64, 1,96 и 3.

Таблица функции Лапласа

Как понять смысл этих чисел? Начнем с z=1,64, для которого табличное значение составляет 0,4495. Проще всего пояснить смысл на рисунке.

Значение функции Лапласа для z=1,64 в правую сторону

То есть вероятность того, что стандартизованная нормально распределенная случайная величина попадет в интервал от 0 до 1,64, равна 0,4495. При решении задач обычно нужно рассчитать вероятность отклонения в обе стороны, поэтому умножим величину 0,4495 на 2 и получим примерно 0,9. Занимаемая площадь под кривой Гаусса показана ниже.

Значение функции Лапласа для z=1,64 под кривой Гаусса

Таким образом, 90% всех нормально распределенных значений попадает в интервал ±1,64σ от средней арифметической. Я не случайно выбрал значение z=1,64, т.к. окрестность вокруг средней арифметической, занимающая 90% всей площади, иногда используется для проверки статистических гипотез и расчета доверительных интервалов. Если проверяемое значение не попадает в обозначенную область, то его наступление маловероятно (всего 10%).

Для проверки гипотез, однако, чаще используется интервал, накрывающий 95% всех значений. Половина вероятности от 0,95 – это 0,4750 (см. второе выделенное в таблице значение).

Значение функции Лапласа для z=1,96 в правую сторону

Для этой вероятности z=1,96. Т.е. в пределах почти ±2σ от средней находится 95% значений. Только 5% выпадают за эти пределы.

Значение функции Лапласа для z=1,96 под кривой Гаусса

Еще одно интересное и часто используемое табличное значение соответствует z=3, оно равно по нашей таблице 0,4986. Умножим на 2 и получим 0,997. Значит, в рамках ±3σ от средней арифметической заключены почти все значения.

Значение функции Лапласа для z=3 под кривой Гаусса

Так выглядит правило 3 сигм для нормального распределения на диаграмме.

С помощью статистических таблиц можно получить любую вероятность. Однако этот метод очень медленный, неудобный и сильно устарел. Сегодня все делается на компьютере. Далее переходим к практике расчетов в Excel.

В Excel есть несколько функций для подсчета вероятностей или обратных значений нормального распределения.

Функции нормального распределения в Excel

Функция НОРМ.СТ.РАСП

Функция НОРМ.СТ.РАСП предназначена для расчета плотности ϕ(z) или вероятности Φ(z) по нормированным данным (z).

=НОРМ.СТ.РАСП(z;интегральная)

z – значение стандартизованной переменной

интегральная – если 0, то рассчитывается плотность ϕ(z), если 1 – значение функции Ф(z), т.е. вероятность P(Z<z).

Рассчитаем плотность и значение функции для различных z: -3, -2, -1, 0, 1, 2, 3 (их укажем в ячейке А2).

Для расчета плотности потребуется формула =НОРМ.СТ.РАСП(A2;0). На диаграмме ниже – это красная точка.

Для расчета значения функции =НОРМ.СТ.РАСП(A2;1). На диаграмме – закрашенная площадь под нормальной кривой.

Расчет плотности и функции нормального распределения в Excel

В реальности чаще приходится рассчитывать вероятность того, что случайная величина не выйдет за некоторые пределы от средней (в среднеквадратичных отклонениях, соответствующих переменной z), т.е. P(|Z|<z).

Вероятность отклонения при заданном z

Определим, чему равна вероятность попадания случайной величины в пределы ±1z, ±2z и ±3z от нуля. Потребуется формула 2Ф(z)-1, в Excel =2*НОРМ.СТ.РАСП(A2;1)-1.

Расчет вероятности отклонения от средней

На диаграмме отлично видны основные основные свойства нормального распределения, включая правило трех сигм. Функция НОРМ.СТ.РАСП – это автоматическая таблица значений функции нормального распределения в Excel.

Может стоять и обратная задача: по имеющейся вероятности P(Z<z) найти стандартизованную величину z ,то есть квантиль стандартного нормального распределения.

Функция НОРМ.СТ.ОБР

НОРМ.СТ.ОБР рассчитывает обратное значение функции стандартного нормального распределения. Синтаксис состоит из одного параметра:

=НОРМ.СТ.ОБР(вероятность)

вероятность – это вероятность.

Данная формула используется так же часто, как и предыдущая, ведь по тем же таблицам искать приходится не только вероятности, но и квантили.

Обратная функция стандартного нормального распределения

Например, при расчете доверительных интервалов задается доверительная вероятность, по которой нужно рассчитать величину z.

Расчет предельного отклонения при нормальном распределении

Учитывая то, что доверительный интервал состоит из верхней и нижней границы и то, что нормальное распределение симметрично относительно нуля, достаточно получить верхнюю границу (положительное отклонение). Нижняя граница берется с отрицательным знаком. Обозначим доверительную вероятность как γ (гамма), тогда верхняя граница доверительного интервала рассчитывается по следующей формуле.

Формула расчета предельного отклонения с помощью обратной функции нормального стандартного распределения

Рассчитаем в Excel значения z (что соответствует отклонению от средней в сигмах) для нескольких вероятностей, включая те, которые наизусть знает любой статистик: 90%, 95% и 99%. В ячейке B2 укажем формулу: =НОРМ.СТ.ОБР((1+A2)/2). Меняя значение переменной (вероятности в ячейке А2) получим различные границы интервалов.

Расчет предельного отклонения при заданной вероятности

Доверительный интервал для 95% равен 1,96, то есть почти 2 среднеквадратичных отклонения. Отсюда легко даже в уме оценить возможный разброс нормальной случайной величины. В общем, доверительным вероятностям 90%, 95% и 99% соответствуют доверительные интервалы ±1,64, ±1,96 и ±2,58 σ.

В целом функции НОРМ.СТ.РАСП и НОРМ.СТ.ОБР позволяют произвести любой расчет, связанный с нормальным распределением. Но, чтобы облегчить и уменьшить количество действий, в Excel есть несколько других функций. Например, для расчета доверительных интервалов средней можно использовать ДОВЕРИТ.НОРМ. Для проверки статистической гипотезы о средней арифметической есть формула Z.ТЕСТ. 

Рассмотрим еще пару полезных формул с примерами.

Функция НОРМ.РАСП

Функция НОРМ.РАСП отличается от НОРМ.СТ.РАСП лишь тем, что ее используют для обработки данных любого масштаба, а не только нормированных. Параметры нормального распределения указываются в синтаксисе.

=НОРМ.РАСП(x;среднее;стандартное_откл;интегральная)

x – значение (или ссылка на ячейку), для которого рассчитывается плотность или значение функции нормального распределения

среднее – математическое ожидание, используемое в качестве первого параметра модели нормального распределения

стандартное_откл – среднеквадратичное отклонение – второй параметр модели

интегральная – если 0, то рассчитывается плотность, если 1 – то значение функции, т.е. P(X<x).

Например, плотность для значения 15, которое извлекли из нормальной выборки с матожиданием 10, стандартным отклонением 3, рассчитывается так:

Расчет плотности для нормальных данных

Если последний параметр поставить 1, то получим вероятность того, что нормальная случайная величина окажется меньше 15 при заданных параметрах распределения. Таким образом, вероятности можно рассчитывать напрямую по исходным данным.

Функция НОРМ.ОБР

Это квантиль нормального распределения, т.е. значение обратной функции. Синтаксис следующий.

=НОРМ.ОБР(вероятность;среднее;стандартное_откл)

вероятность – вероятность

среднее – матожидание

стандартное_откл – среднеквадратичное отклонение

Назначение то же, что и у НОРМ.СТ.ОБР, только функция работает с данными любого масштаба.

Пример показан в ролике в конце статьи.

Моделирование нормального распределения

Для некоторых задач требуется генерация нормальных случайных чисел. Готовой функции для этого нет. Однако В Excel есть две функции, которые возвращают случайные числа: СЛУЧМЕЖДУ и СЛЧИС. Первая выдает случайные равномерно распределенные целые числа в указанных пределах. Вторая функция генерирует равномерно распределенные случайные числа между 0 и 1. Чтобы сделать искусственную выборку с любым заданным распределением, нужна функция СЛЧИС

Допустим, для проведения эксперимента необходимо получить выборку из нормально распределенной генеральной совокупности с матожиданием 10 и стандартным отклонением 3. Для одного случайного значения напишем формулу в Excel.

=НОРМ.ОБР(СЛЧИС();10;3)

Протянем ее на необходимое количество ячеек и нормальная выборка готова.

Для моделирования стандартизованных данных следует воспользоваться НОРМ.СТ.ОБР.

Процесс преобразования равномерных чисел в нормальные можно показать на следующей диаграмме. От равномерных вероятностей, которые генерируются формулой СЛЧИС, проведены горизонтальные линии до графика функции нормального распределения. Затем от точек пересечения вероятностей с графиком опущены проекции на горизонтальную ось.

Преобразование равномерной случайной величины в нормальную

На выходе получаются значения с характерной концентрацией около центра. Вот так обратный прогон через функцию нормального распределения превращает равномерные числа в нормальные. Excel позволяет за несколько секунд воспроизвести любое количество выборок любого размера.

Как обычно, прилагаю ролик, где все вышеописанное показывается в действии.

Скачать файл с примером.

Поделиться в социальных сетях:

Добавил:

Upload

Опубликованный материал нарушает ваши авторские права? Сообщите нам.

Вуз:

Предмет:

Файл:

Скачиваний:

49

Добавлен:

29.03.2015

Размер:

502.38 Кб

Скачать

Таблица значений функции Гаусса

x

…0

…1

…2

…3

…4

…5

…6

…7

…8

…9

0,0…

0,3989

0,3989

0,3989

0,3988

0,3986

0,3984

0,3982

0,3980

0,3977

0,3973

0,1…

0,3970

0,3965

0,3961

0,3956

0,3951

0,3945

0,3939

0,3932

0,3925

0,3918

0,2…

0,3910

0,3902

0,3894

0,3885

0,3876

0,3867

0,3857

0,3847

0,3836

0,3825

0,3…

0,3814

0,3802

0,3790

0,3778

0,3765

0,3752

0,3739

0,3726

0,3712

0,3698

0,4…

0,3683

0,3668

0,3652

0,3637

0,3621

0,3605

0,3589

0,3572

0,3555

0,3538

0,5…

0,3521

0,3503

0,3485

0,3467

0,3448

0,3429

0,3410

0,3391

0,3372

0,3352

0,6…

0,3332

0,3312

0,3292

0,3271

0,3251

0,3230

0,3209

0,3187

0,3166

0,3144

0,7…

0,3123

0,3101

0,3079

0,3056

0,3034

0,3011

0,2989

0,2966

0,2943

0,2920

0,8…

0,2897

0,2874

0,2850

0,2827

0,2803

0,2780

0,2756

0,2732

0,2709

0,2685

0,9…

0,2661

0,2637

0,2613

0,2589

0,2565

0,2541

0,2516

0,2492

0,2468

0,2444

1,0…

0,2420

0,2396

0,2371

0,2347

0,2323

0,2299

0,2275

0,2251

0,2227

0,2203

1,1…

0,2179

0,2155

0,2131

0,2107

0,2083

0,2059

0,2036

0,2012

0,1989

0,1965

1,2…

0,1942

0,1919

0,1895

0,1872

0,1849

0,1826

0,1804

0,1781

0,1758

0,1736

1,3…

0,1714

0,1691

0,1669

0,1647

0,1626

0,1604

0,1582

0,1561

0,1539

0,1518

1,4…

0,1497

0,1476

0,1456

0,1435

0,1415

0,1394

0,1374

0,1354

0,1334

0,1315

1,5…

0,1295

0,1276

0,1257

0,1238

0,1219

0,1200

0,1182

0,1163

0,1145

0,1127

1,6…

0,1109

0,1092

0,1074

0,1057

0,1040

0,1023

0,1006

0,0989

0,0973

0,0957

1,7…

0,0940

0,0925

0,0909

0,0893

0,0878

0,0863

0,0848

0,0833

0,0818

0,0804

1,8…

0,0790

0,0775

0,0761

0,0748

0,0734

0,0721

0,0707

0,0694

0,0681

0,0669

1,9…

0,0656

0,0644

0,0632

0,0620

0,0608

0,0596

0,0584

0,0573

0,0562

0,0551

2,0…

0,0540

0,0529

0,0519

0,0508

0,0498

0,0488

0,0478

0,0468

0,0459

0,0449

2,1…

0,0440

0,0431

0,0422

0,0413

0,0404

0,0395

0,0387

0,0379

0,0371

0,0363

2,2…

0,0353

0,0347

0,0339

0,0332

0,0325

0,0317

0,0310

0,0303

0,0297

0,0290

2,3…

0,0283

0,0277

0,0270

0,0264

0,0258

0,0252

0,0246

0,0241

0,0235

0,0229

2,4…

0,0224

0,0219

0,0213

0,0208

0,0203

0,0198

0,0194

0,0189

0,0184

0,0180

2,5…

0,0175

0,0171

0,0167

0,0163

0,0158

0,0154

0,0151

0,0147

0,0143

0,0139

2,6…

0,0136

0,0132

0,0129

0,0126

0,0122

0,0119

0,0116

0,0113

0,0110

0,0107

2,7…

0,0104

0,0101

0,0099

0,0096

0,0093

0,0091

0,0088

0,0086

0,0084

0,0081

2,8…

0,0079

0,0077

0,0075

0,0073

0,0071

0,0069

0,0067

0,0065

0,0063

0,0061

2,9…

0,0060

0,0058

0,0056

0,0055

0,0053

0,0051

0,0050

0,0048

0,0047

0,0046

3,0…

0,0044

0,0043

0,0042

0,0040

0,0039

0,0038

0,0037

0,0036

0,0035

0,0034

3,1…

0,0033

0,0032

0,0031

0,0030

0,0029

0,0028

0,0027

0,0026

0,0025

0,0025

3,2…

0,0024

0,0023

0,0022

0,0022

0,0021

0,0020

0,0020

0,0019

0,0018

0,0018

3,3…

0,0017

0,0017

0,0016

0,0016

0,0015

0,0015

0,0014

0,0014

0,0013

0,0013

3,4…

0,0012

0,0012

0,0012

0,0011

0,0011

0,0010

0,0010

0,0010

0,0009

0,0009

3,5…

0,0009

0,0008

0,0008

0,0008

0,0008

0,0007

0,0007

0,0007

0,0007

0,0006

3,6…

0,0006

0,0006

0,0006

0,0005

0,0005

0,0005

0,0005

0,0005

0,0005

0,0004

3,7…

0,0004

0,0004

0,0004

0,0004

0,0004

0,0004

0,0003

0,0003

0,0003

0,0003

3,8…

0,0003

0,0003

0,0003

0,0003

0,0003

0,0002

0,0002

0,0002

0,0002

0,0002

3,9…

0,0002

0,0002

0,0002

0,0002

0,0002

0,0002

0,0002

0,0002

0,0002

0,0001

www.berdov.ru

Соседние файлы в папке pdf математика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Значения функции Гаусса для локальной теоремы Лапласа

плотности вероятности нормальной случайной величины

Таблица функции Гаусса для локальной теоремы Лапласа


0 1 2 3 4 5 6 7 8 9
0 0.3989 0.3989 0.3989 0.3988 0.3986 0.3984 0.3982 0.3980 0.3977 0.3973
0,1 0.3970 0.3965 0.3961 0.3956 0.3951 0.3945 0.3939 0.3932 0.3925 0.3918
0,2 0.3910 0.3902 0.3894 0.3885 0.3876 0.3867 0.3857 0.3847 0.3836 0.3825
0,3 0.3814 0.3802 0.3790 0.3778 0.3765 0.3752 0.3739 0.3726 0.3712 0.3698
0,4 0.3683 0.3668 0.3652 0.3637 0.3621 0.3605 0.3589 0.3572 0.3555 0.3538
0,5 0.3521 0.3503 0.3485 0.3467 0.3448 0.3429 0.3410 0.3391 0.3372 0.3352
0,6 0.3332 0.3312 0.3292 0.3271 0.3251 0.3230 0.3209 0.3187 0.3166 0.3144
0,7 0.3123 0.3101 0.3079 0.3056 0.3034 0.3011 0.2989 0.2966 0.2943 0.2920
0,8 0.2897 0.2874 0.2850 0.2827 0.2803 0.2780 0.2756 0.2732 0.2709 0.2685
0,9 0.2661 0.2637 0.2613 0.2589 0.2565 0.2541 0.2516 0.2492 0.2468 0.2444
1 0.2420 0.2396 0.2371 0.2347 0.2323 0.2299 0.2275 0.2251 0.2227 0.2203
1,1 0.2179 0.2155 0.2131 0.2107 0.2083 0.2059 0.2036 0.2012 0.1989 0.1965
1,2 0.1942 0.1919 0.1895 0.1872 0.1849 0.1826 0.1804 0.1781 0.1758 0.1736
1,3 0.1714 0.1691 0.1669 0.1647 0.1626 0.1604 0.1582 0.1561 0.1539 0.1518
1,4 0.1497 0.1476 0.1456 0.1435 0.1415 0.1394 0.1374 0.1354 0.1334 0.1315
1,5 0.1295 0.1276 0.1257 0.1238 0.1219 0.1200 0.1182 0.1163 0.1145 0.1127
1,6 0.1109 0.1092 0.1074 0.1057 0.1040 0.1023 0.1006 0.0989 0.0973 0.0957
1,7 0.0940 0.0925 0.0909 0.0893 0.0878 0.0863 0.0848 0.0833 0.0818 0.0804
1,8 0.0790 0.0775 0.0761 0.0748 0.0734 0.0721 0.0707 0.0694 0.0681 0.0669
1,9 0.0656 0.0644 0.0632 0.0620 0.0608 0.0596 0.0584 0.0573 0.0562 0.0551
2 0.0540 0.0529 0.0519 0.0508 0.0498 0.0488 0.0478 0.0468 0.0459 0.0449
2,1 0.0440 0.0431 0.0422 0.0413 0.0404 0.0395 0.0387 0.0379 0.0371 0.0363
2,2 0.0353 0.0347 0.0339 0.0332 0.0325 0.0317 0.0310 0.0303 0.0297 0.0290
2,3 0.0283 0.0277 0.0270 0.0264 0.0258 0.0252 0.0246 0.0241 0.0235 0.0229
2,4 0.0224 0.0219 0.0213 0.0208 0.0203 0.0198 0.0194 0.0189 0.0184 0.0180
2,5 0.0175 0.0171 0.0167 0.0163 0.0158 0.0154 0.0151 0.0147 0.0143 0.0139
2,6 0.0136 0.0132 0.0129 0.0126 0.0122 0.0119 0.0116 0.0113 0.0110 0.0107
2,7 0.0104 0.0101 0.0099 0.0096 0.0093 0.0091 0.0088 0.0086 0.0084 0.0081
2,8 0.0079 0.0077 0.0075 0.0073 0.0071 0.0069 0.0067 0.0065 0.0063 0.0061
2,9 0.0060 0.0058 0.0056 0.0055 0.0053 0.0051 0.0050 0.0048 0.0047 0.0046
3 0.0044 0.0043 0.0042 0.0040 0.0039 0.0038 0.0037 0.0036 0.0035 0.0034
3,1 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.0025 0.0025
3,2 0.0024 0.0023 0.0022 0.0022 0.0021 0.0020 0.0020 0.0019 0.0018 0.0018
3,3 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 0.0013 0.0013
3,4 0.0012 0.0012 0.0012 0.0011 0.0011 0.0010 0.0010 0.0010 0.0009 0.0009
3,5 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 0.0007 0.0007 0.0006
3,6 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0004
3,7 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003 0.0003
3,8 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002
3,9 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002

16369


Понравилась статья? Поделить с друзьями:
  • Как найти все уведомления в контакте
  • Как не просто нам сейчас найти слова
  • Как найти объем земельного участка
  • Как найти фильтр в инстаграм по названию
  • Как найти свой айпи адрес на компе