Как найти значение конуса

Элементы конуса

Определение. Вершина конуса — это точка (K), из которой исходят лучи.

Определение. Основание конуса — это плоскость, образованная в результате пересечения плоской поверхности и всех лучей, исходящих из вершины конуса. У конуса могут быть такие основы, как круг, эллипс, гипербола и парабола.

Определение. Образующей конуса (L) называется любой отрезок, который соединяет вершину конуса с границей основания конуса. Образующая есть отрезок луча, выходящего из вершины конуса.

Формула. Длина образующей (L) прямого кругового конуса через радиус R и высоту H (через теорему Пифагора):

L2 = R2 + H2

Определение. Направляющая конуса — это кривая, которая описывает контур основания конуса.

Определение. Боковая поверхность конуса — это совокупность всех образующих конуса. То есть, поверхность, которая образуется движением образующей по направляющей конуса.

Определение. Поверхность конуса состоит из боковой поверхности и основания конуса.

Определение. Высота конуса (H) — это отрезок, который выходит из вершины конуса и перпендикулярный к его основанию.

Определение. Ось конуса (a) — это прямая, проходящая через вершину конуса и центр основания конуса.

Определение. Конусность (С) конуса — это отношение диаметра основания конуса к его высоте. В случае усеченного конуса — это отношение разности диаметров поперечных сечений D и d усеченного конуса к расстоянию между ними:

где C — конусность, D — диаметр основания, d — диаметр меньшего основания и h — расстояние между основаниями.

Конусность характеризует остроту конуса, то есть, угол наклона образующей к основанию конуса. Чем больше конусность, тем острее угол наклона. угол конуса α будет:

где R — радиус основы, а H — высота конуса.

Осевое сечение конуса с обозначениями

Определение. Осевое сечение конуса — это сечение конуса плоскостью, проходящей через ось конуса. Такое сечение образует равнобедренный треугольник, у которого стороны образованы образующими, а основание треугольника — это диаметр основания конуса.

Осевое сечение конуса с обозначениями

Определение. Касательная плоскость к конусу — это плоскость, проходящая через образующую конуса и перпендикулярна к осевому сечению конуса.

Определение. Конус, что опирается на круг, эллипс, гиперболу или параболу называется соответственно круговым, эллиптическим, гиперболическим или параболическим конусом (последние два имеют бесконечный объем).

Прямой конус с обозначениями

Определение. Прямой конус — это конус у которого ось перпендикулярна основе. У такого конуса ось совпадает с высотой, а все образующие равны между собой.

Формула. Объём кругового конуса:

где R — радиус основы, а H — высота конуса.

Формула. Площадь боковой поверхности (Sb) прямого конуса через радиус R и длину образующей L:

Sb = πRL

Формула. Общая площадь поверхности (Sp) прямого кругового конуса через радиус R и длину образующей L:

Sp = πRL + πR2

Косой (наклонный) конус с обозначениями

Определение. Косой (наклонный) конус — это конус у которого ось не перпендикулярна основе. У такого конуса ось не совпадает с высотой.

Формула. Объём любого конуса:

где S — площадь основы, а H — высота конуса.

Усеченный конус с обозначениями

Определение. Усеченный конус — это часть конуса, которая находится между основанием конуса и плоскостью сечения, параллельная основе.

Формула. Объём усеченного конуса:

где S1 и S2 — площади меньшей и большей основы соответственно, а H и h — расстояние от вершины конуса до центра нижней и верхней основы соответственно.

Уравнение конуса

1. Уравнение прямого кругового конуса в декартовой системе координат с координатами (x, y, z):

x2  +  y2  —  z2  = 0
a2 a2 c2

2. Уравнение прямого эллиптического конуса в декартовой системе координат с координатами (x, y, z):

x2  +  y2  =  z2
a2 b2 c2

Основные свойства кругового конуса

1. Все образующие прямого кругового конуса равны между собой.

2. При вращении прямоугольного треугольника вокруг своего катета на 360 ° образуется прямой круговой конус.

3. При вращении равнобедренного треугольника вокруг своей оси на 180 ° образуется прямой круговой конус.

4. В месте пересечения конуса плоскостью, параллельной основанию конуса, образуется круг. (см. Срезанный конус)

5. Если при пересечении плоскость не параллельна основе конуса и не пересекается с основанием, то в месте пересечения образуется эллипс (рис. 3).

6. Если плоскость сечения проходит через основание, то в месте пересечения образуется парабола (рис. 4).

7. Если плоскость сечения проходит через вершину, то в месте пересечения образуется равнобедренный треугольник (см. Осевое сечение).

8. Центр тяжести любого конуса находится на одной четвертой высоты от центра основы.

Объем конуса

{V=dfrac {1}{3} pi r^2 h}

Конус — это трехмерная фигура, в основании которой лежит круг. Чтобы найти объем конуса достаточно знать два параметра — высоту (h) и радиус основания (r).

Содержание:
  1. калькулятор объема конуса
  2. формула объема конуса через высоту и радиус
  3. формула объема конуса через площадь основания и высоту
  4. формула объёма усеченного конуса
  5. примеры задач

Если мы сравним формулу объема конуса с формулой объема цилиндра, то мы увидим, что объем конуса в 3 раза меньше объема цилиндра с той же высотой и радиусом основания.

Наш калькулятор может рассчитать объем конуса через радиус основания и высоту, площадь основания и высоту, а также объем усеченного конуса через его высоту и радиусы нижнего и верхнего оснований.

Кроме того объем конуса можено найти, подставив значения в формулы, приведенные ниже.

Формула объёма конуса через радиус и высоту

Объем конуса через радиус основания и высоту

{V=frac {1}{3} pi r^2 h}

r — радиус основания конуса,

h — высота конуса

Формула объёма конуса через площадь основания и высоту

Объем конуса через площадь основания и высоту

{V=frac {1}{3} S h}

S — площадь основания конуса,

h — высота конуса

Формула объёма усеченного конуса

Объем усеченного конуса

{V=frac {1}{3} pi h(r^2 + r R + R^2)}

h — высота усеченного конуса,

r — радиус меньшего основания усеченного конуса,

R — радиус большего основания усеченного конуса.

Примеры задач на нахождение объема конуса

Задача 1

Найдем объем конуса, высота которого 30см, а радиус основания 20см.

Решение

Подставим эти значения в формулу и произведем расчет:

V=dfrac {1}{3} pi r^2 h = dfrac {1}{3} cdot pi cdot 20^2 cdot 30 = dfrac {1}{3} cdot pi cdot 12000 = 400 pi : см^3 approx 12 566,37 : см^3

Ответ: {400 pi : см^3 approx 12 566,37 : см^3}

Проверить результат можно с помощью калькулятора .

Задача 2

Найдем объем конуса с высотой 3 см и диаметром основания 8 см².

Решение

Подставим эти значения в формулу и произведем расчет:

V=dfrac {1}{3} S h = dfrac {1}{3} cdot 8 cdot 3 = dfrac {1}{3} cdot 24 = 8 : см^3

Ответ: 8 см³

Воспользуемся калькулятором для проверки результата.

Задача 3

Найдите объем усеченного конуса радиусы оснований которого равны 1 см и 2 см, а высота равна 3 см​.

Решение

Подставим высоту и радиусы оснований в формулу и произведем расчет:

V=dfrac {1}{3} pi h(r^2 + r R + R^2) = dfrac {1}{3} pi cdot 3 cdot (1^2 + 1 cdot 2 + 2^2) = dfrac {1}{3} pi cdot 3 cdot (1 + 2 + 4) = dfrac {1}{3} pi cdot 3 cdot 7 = dfrac {1}{3} pi cdot 21 = 7 pi : см^3 approx 21,99115 : см^3

Ответ: {7 pi : см^3 approx 21,99115 : см^3}

Проверим полученный ответ.

В данной публикации мы рассмотрим, каким образом можно посчитать объем прямого кругового конуса и разберем примеры решения задач.

  • Формула вычисления объема

    • 1. Через площадь основания и высоту

    • 2. Через радиус основания и высоту

  • Примеры задач

Формула вычисления объема

1. Через площадь основания и высоту

Объем (V) конуса равняется одной третьей произведения его высоты на площадь основания:

Формула объема конуса

Объем конуса

2. Через радиус основания и высоту

Как мы знаем, основанием конуса является круг, площадь которого вычисляется по формуле: S = πR2.

Следовательно, формулу для вычисления объема конуса можно представить в виде:

Формула объема конуса

Т.е. объем конуса равняется одной третьей произведения его высоты на число π и на радиус основания в квадрате.

Примечание: в расчетах значение числа π округляется до 3,14.

Формула для нахождения объема усеченного конуса представлена в отдельной публикации.

Примеры задач

Задание 1
Найдите объем конуса, если известна площадь его основания – 50,24 см2, а также, высота – 9 см.

Решение:
Применим первую формулу, подставив в нее заданные значения:

Расчет объема конуса

Задание 2
Высота конуса равна 7 см, а его радиус – 3 см. Найдите объем фигуры.

Решение:
Воспользовавшись второй, более расширенной, формулой получаем:
Расчет объема конуса

Прямой конус — это конус, у которого ось перпендикулярна основанию. У такого конуса ось совпадает с высотой, а все образующие равны между собой

Косой (наклонный) конус — это конус у которого ось не перпендикулярна основе. У такого конуса ось не совпадает с высотой

Образующая конуса – это отрезок, который соединяет вершину конуса с границей основания конуса.

Длина образующей, L

$$
L = sqrt{R^2 + h^2}
$$

Площадь основания, SО

$$
S_О = pi * R^2
$$

Площадь боковой поверхности, SБ

$$
S_Б = pi * R * L
$$

Общая площадь поверхности, S

$$
S = pi * R * L + pi * R^2 = S_О + S_Б
$$

Объём прямого конуса, V

$$
V = {1 over 3} * pi * h * R^2
$$

Объём любого конуса

$$
V = {1 over 3} * S_О * h
$$

Угол ∠ f для развертки

$$
∠ f = 360° * {R over L}
$$

Содержание

  1. Определение и элементы конуса
  2. Основные сведения
  3. Виды конусов
  4. Свойства кругового конуса
  5. Общая формула объёма фигуры
  6. Расчет объема
  7. Объём усечённого конуса
  8. Первый способ вычисления объема усеченного конуса
  9. Второй способ вычисления объема усеченного конуса
  10. Объем наклонного конуса
  11. Площадь поверхности фигуры
  12. Формула образующей конуса
  13. Формула площади боковой поверхности конуса
  14. Формула площади основания конуса
  15. Сечение конуса
  16. Площадь сечения
  17. Площадь усечённого конуса
  18. Уравнение конуса
  19. Составляющие конуса
  20. Длина образующих в прямом конусе
  21. Образующая в наклонном конусе
  22. Примеры задач

Определение и элементы конуса

Что такое конус

Под конусом понимают тело, состоящее из круга и точки, которая удалена от его поверхности на определённое расстояние.

При этом точка соединяется с основанием посредством проведения лучей, которые называются образующими. Линия, соединяющая центр круга с удалённой точкой, является высотой данной фигуры.

Конус

Обратите внимание! Также существует такое понятие, как ось конуса. Это линия, проходящая через его центр и совпадающая с высотой. Образующие строятся относительно оси.

Хотелось бы рассмотреть ещё несколько понятий по этой теме:

  • Под конусностью понимают отношение диаметра основания фигуры и её высоты:

601

Конусность отвечает за угол наклона образующих. Чем больше данный параметр, тем острее угол.

  • Осевое сечение предполагает наличие плоскости, которая будет рассекать фигуру, проходя через ось:

602

  • Касательная— это плоскость, которая соприкасается с образующей конуса. При этом важно, чтобы она была перпендикулярна осевому сечению.

603

Основные сведения

  • R – радиус круга, являющегося основанием конуса. Центр круга – точка D, диаметр – отрезок AB.
  • h (CD) – высота конуса, одновременно являющаяся осью фигуры и катетом прямоугольных треугольников ACD или BCD.
  • Точка C – вершина конуса.
  • l (CA, CB, CL и CM) – образующие конуса; это отрезки, соединяющие вершину конуса с точками на окружности его основания.
  • Осевое сечение конуса – это равнобедренный треугольник ABC, который образуется в результате пересечения конуса плоскостью проходящей через его ось.
  • Поверхность конуса – состоит из его боковой поверхности и основания. Формулы для расчета площади поверхности, а также объема прямого кругового конуса представлены в отдельных публикациях.

Между образующей конуса, его высотой и радиусом основания есть взаимосвязь (согласно теореме Пифагора):

l2 = h2 + R2

Развёртка конуса – боковая поверхность конуса, развернутая в плоскость; является круговым сектором.

  • длина дуги сектора равняется длине окружности основания конуса (т.е. 2πR);
  • α – угол развёртки (или центральный угол);
  • l – радиус сектора.

Виды конусов

  1. Прямой конус – имеет симметричное основание. Ортогональная проекция вершины данной фигуры на плоскость основания совпадает с центром этого основания.
  2. Косой (наклонный) конус – ортогональная проекция вершины фигуры на ее основание не совпадает с центром этого основания.
  3. Усеченный конус (конический слой) – часть конуса, которая остается между его основанием и секущей плоскостью, параллельной данному основанию.
  4. Круговой конус – основанием фигуры является круг. Также бывают: эллиптический, параболический и гиперболический конусы.
  5. Равносторонний конус – прямой конус, образующая которого равняется диаметру его основания.

Свойства кругового конуса

Свойства кругового конуса

Выделяют несколько особенностей, которыми обладает фигура данного типа:

  1. Образующие кругового конуса равны друг другу.
  2. Чтобы найти центр тяжести фигуры, нужно её высоту поделить на четыре части.
  3. Место пересечения плоскости сечения и основы образует параболу. Если через вершину тела провести плоскость сечения, то получится равнобедренный треугольник.

Интересный факт! Если вращать прямоугольный треугольник вокруг одного из катетов, то получится конус. При этом важно, чтобы угол вращения был не менее 360 градусов.

Общая формула объёма фигуры

Чтобы найти объём кругового конуса, необходимо умножить число Пи на его высоту, на радиус в квадрате и всё это произведение поделить на три:

Объем конуса

Дополнительная информация! Чтобы узнать объём фигуры, нужно умножить площадь её основы на высоту и поделить на три:

Объем конуса

Расчет объема

Формула объема любого конуса выглядит следующим образом:

V = 1/3 * π * h * r2

где

  • V – это объем конуса;
  • h – высота;
  • r – радиус;
  • π — константа, равная 3,14.

Для того чтобы рассчитать обьем конуса, необходимо иметь данные о высоте и радиусе основания тела.

объемы конусов

Для расчета высоты тела необходимо знать радиус основания и длину его образующей. Поскольку радиус, высота и образующая объединяются в прямоугольный треугольник, то высоту можно рассчитать по формуле из теоремы Пифагора (a2+ b2= c2 или в нашем случае h2+ r2= l2, где l – образующая). Высота при этом будет рассчитываться путем извлечения квадратного корня из разности квадратов гипотенузы и другого катета:

a = √c2- b2

То есть высота конуса будет равна величине, полученной после извлечения квадратного корня из разности квадрата длины образующей и квадрата радиуса основания:

h = √l2 — r2

Рассчитав таким методом высоту и зная радиус его основания, можно вычислить объем конуса. Образующая при этом играет важную роль, так как служит вспомогательным элементом в расчетах.

Аналогичным образом, если известна высота тела и длина его образующей, можно узнать радиус его основания, извлекая квадратный корень из разности квадрата образующей и квадрата высоты:

r = √l2 — h2

После чего по той же формуле, что указана выше, рассчитать объем конуса.

Объём усечённого конуса

Это часть прямого конуса, которая находится в пространстве между основой и плоскостью, параллельной этому основанию. В общем виде выглядит следующим образом:

Усеченный конус

Объём данного тела можно вычислить по формуле:

Объем усеченного конуса

Важно! S и S1 это площади соответствующих основ, которые равняются ПR2 и ПR12 При нахождении этих значений поможет онлайн калькулятор.

Первый способ вычисления объема усеченного конуса

Объем усеченного конуса вычисляется по формуле:

[ LARGE V = frac{1}{3} left( Hcdot S_2 + h cdot s_1 right) ]

где:

  • V – объем конуса
  • h – расстояния от плоскости верхнего основания до вершины
  • H – расстояния от плоскости нижнего основания до вершины
  • S1 – площадь верхнего (ближнего к вершине) основания
  • S2 – площадь нижнего основания

Второй способ вычисления объема усеченного конуса

Объем усеченного конуса вычисляется по формуле:

[ LARGE V = frac{1}{3} pi h left( R^2 + R cdot r + r^2 right) ]

где:

  • V – объем конуса
  • h – высота конуса
  • R – радиус нижнего основания
  • r – радиус верхнего основания

Объем наклонного конуса

Так как формула объема конуса одинакова для всех видов тела вращения, отличие в его расчете составляет поиск высоты.

Для того чтобы узнать высоту наклонного конуса, вводные данные должны включать длину образующей, радиус основания и расстояние между центром основания и местом пересечения высоты тела с плоскостью его основания. Зная это, можно с легкостью рассчитать ту часть диаметра основания, которая будет являться основанием прямоугольного треугольника (образованного высотой, образующей и плоскостью основания). После чего, снова используя теорему Пифагора, произвести расчет высоты конуса, а впоследствии и его объема.

Площадь поверхности фигуры

Для вычисления данного параметра потребуется знать площадь боковой поверхности. Она равняется произведению числа π, радиуса и длины образующей.

Площадь поверхности конуса

Чтобы рассчитать площадь всей поверхности, нужно сложить площади его основы и боковой поверхности.

Формула образующей конуса

Образующую конуса можно найти, зная ее высоту H и радиус R:

L = √H2 + R2

Формула площади боковой поверхности конуса

Площадь боковой поверхности конуса можно получить, зная его радиус R и образующую L:

Sбок.пов = πRL

Формула площади основания конуса

Площадь основания конуса можно вычислить по его радиусу R:

Sосн = πR2

Сечение конуса

Осевым сечением конуса называется плоскость, проходящая по его оси либо высоте. В прямом конусе такое сечение представляет собой равнобедренный треугольник, в котором высотой треугольника является высота тела, его сторонами выступают образующие, а основание – это диаметр основания. В равностороннем геометрическом теле осевое сечение является равносторонним треугольником, так как в этом конусе диаметр основания и образующие равны.

примеры сечений

Плоскость осевого сечения в прямом конусе является плоскостью его симметрии. Причиной этому служит то, что его вершина находится над центром его основания, то есть плоскость осевого сечения делит конус на две одинаковые части.

Так как в наклонном объемном теле высота и ось не совпадают, плоскость осевого сечения может не включать в себя высоту. Если осевых сечений в таком конусе можно построить множество, так как для этого необходимо соблюдать лишь одно условие — оно должно проходить только через ось, то осевое сечение плоскости, которому будет принадлежать высота этого конуса, можно провести лишь одно, потому что количество условий увеличивается, а, как известно, две прямые (вместе) могут принадлежать только одной плоскости.

Площадь сечения

Упомянутое ранее осевое сечение конуса представляет собой треугольник. Исходя из этого, его площадь можно рассчитать по формуле площади треугольника:

S = 1/2 * d * h или S = 1/2 * 2r * h

где

  • S – это площадь сечения;
  • d – диаметр основания;
  • r – радиус;
  • h – высота.

В косом, или наклонном конусе сечение по оси также является треугольником, поэтому в нем площадь сечения рассчитывается аналогично.

Площадь усечённого конуса

Для нахождения данного параметра нужно воспользоваться формулами:

  • площади боковой поверхности усечённого конуса Sбок;
  • полной площади усечённой фигуры Sпол, которая равна сумме площадей двух оснований и площади боковой поверхности:

Площадь усеченного конуса

Здесь l — длина образующей, а R и r — радиусы большего и меньшего оснований соответственно.

Уравнение конуса

Часто требуется при решении математических задач. Записывается в следующем виде:

Уравнение конуса

где x0, y0,z0- координаты по соответствующим осям.

Таким образом, в данной статье были представлены основные сведения, которые могут понадобиться при решении задач на тему «Конус».

Составляющие конуса

Различают следующие виды конусов: косой (или наклонный) и прямой. Косым называется тот, ось которого пересекается с центром его основания не под прямым углом. По этой причине высота в таком конусе не совпадает с осью, так как она является отрезком, который опущен из вершины тела на плоскость его основания под углом 90°.

Тот конус, ось которого расположена перпендикулярно к его основанию, называется прямым. Ось и высота в таком геометрическом теле совпадают по причине того, что вершина в нем расположена над центром диаметра основания.

Конус состоит из следующих элементов:

  1. Круга, являющегося его основанием.
  2. Боковой поверхности.
  3. Точки, не лежащей в плоскости основания, называющейся вершиной конуса.
  4. Отрезков, которые соединяют точки круга основания геометрического тела и его вершину.

элементы конуса

Все эти отрезки являются образующими конуса. Они наклонные к основанию геометрического тела, и в случае прямого конуса их проекции равны, так как вершина равноотдалена от точек круга основания. Таким образом, можно сделать вывод, что в правильном (прямом) конусе образующие равны, то есть имеют одинаковую длину и образуют одинаковые углы с осью (или высотой) и основанием.

Так как в косом (или наклонном) теле вращения вершина смещена по отношению к центру плоскости основания, образующие в таком теле имеют разную длину и проекцию, поскольку каждая из них находится на разном расстоянии от двух любых точек круга основания. Кроме того, углы между ними и высотой конуса также будут отличаться.

Длина образующих в прямом конусе

Как написано ранее, высота в прямом геометрическом теле вращения перпендикулярна плоскости основания. Таким образом, образующая, высота и радиус основания создают в конусе прямоугольный треугольник.

образующая конуса

То есть, зная радиус основания и высоту, при помощи формулы из теоремы Пифагора, можно вычислить длину образующей, которая будет равна сумме квадратов радиуса основания и высоты:

l2 = r2+ h2 или l = √r2 + h2

где

  • l – образующая;
  • r – радиус;
  • h – высота.

Образующая в наклонном конусе

Исходя из того, что в косом, или наклонном конусе образующие имеют не одинаковую длину, рассчитать их без дополнительных построений и вычислений не получится.

Прежде всего необходимо знать высоту, длину оси и радиус основания.

образующая в наклонном треугольнике

Имея эти данные, можно рассчитать часть радиуса, лежащую между осью и высотой, по формуле из теоремы Пифагора:

r1= √k2 — h2

где

  • r1 – это часть радиуса между осью и высотой;
  • k – длина оси;
  • h – высота.

В результате сложения радиуса (r) и его части, лежащей между осью и высотой (r1), можно узнать полную сторону прямоугольного треугольника, сформированного образующей конуса, его высотой и частью диаметра:

R = r + r1

где

  • R – катет треугольника, образованного высотой, образующей и частью диаметра основания;
  • r – радиус основания;
  • r1 – часть радиуса между осью и высотой.

Пользуясь все той же формулой из теоремы Пифагора, можно найти длину образующей конуса:

l = √h2+ R2

или, не производя отдельно расчет R, объединить две формулы в одну:

l = √h2 + (r + r1)2.

Несмотря на то, прямой или косой конус и какие вводные данные, все способы нахождения длины образующей всегда сводятся к одному итогу — использованию теоремы Пифагора.

Примеры задач

Задание 1
Найдите объем конуса, если известна площадь его основания – 50,24 см2, а также, высота – 9 см.

Решение:
Применим первую формулу, подставив в нее заданные значения:

Задание 2
Высота конуса равна 7 см, а его радиус – 4 см. Найдите объем фигуры.

Решение:
Воспользовавшись второй, более расширенной, формулой получаем:

Понравилась статья? Поделить с друзьями:
  • Как найти параметры post запроса
  • Как составить самое лучшее резюме
  • Как составить план профилактических работ
  • Как найти поломку на материнской плате
  • Как найти информацию по фото на андроид