В уроке «Степень числа»
мы проходили, что возвести в квадрат число означает умножить число на само себя.
Кратко запись числа в квадрате выглядит следующим образом:
3 · 3 = 32 = 9
Но как быть, если нам нужно получить обратный результат?
Например, узнать, какое число при возведении в квадрат дало бы число «9»?
Запомните!
Нахождение исходного числа, которое в квадрате дало бы требуемое, называется
извлечением квадратного корня.
Извлечение квадратного корня — это действие, обратное возведению в квадрат.
У квадратного корня есть специальный знак.
Исходя из вычислений выше, нетрудно догадаться, что число, которое в квадрате дает «9»,
это число «3». Запись извлечения квадратного корня из числа «9» выглядит так:
√9 = 3
Читаем запись: «Арифметический квадратный корень из девяти». Можно опустить слово «арифметический».
Словосочетания «арифметический квадратный корень» и «квадратный корень» полностью равнозначны.
Число под знаком корня называют подкоренным выражением.
Подкоренное выражение может быть представлено не только одним числом.
Всё, что находится под знаком корня, называют подкоренным выражением. Оно может сожержать как числа, так и буквы.
Запомните!
Извлекать квадратный корень можно только из положительного числа.
-
√−9
= … нельзя извлекать квадратный корень из отрицательного числа; -
√64 = 8
-
√−1,44
= … нельзя извлекать квадратный корень из отрицательного числа; -
√256 = 16
Квадратный корень из нуля
Запомните!
Квадратный корень из нуля равен нулю.
√0 = 0
Квадратный корень из единицы
Запомните!
Квадратный корень из единицы равен единице.
√1 = 1
Как найти квадратный корень из числа
Квадратные корни из целых чисел, чьи квадраты известны, вычислить довольно просто.
Для этого достаточно выучить таблицу квадратов.
Чаще всего в задачах школьного курса математики требуется найти квадратный корень из квадратов чисел от
1 до 20.
Решение примеров с квадратными корнями
Разбор примера
Вычислить арифметический квадратный корень из числа.
- √81 = 9
- √64 = 8
- √100 = 10
Как найти квадратный корень из десятичной дроби
Важно!
При нахождении квадратного корня из десятичной дроби нужно выполнить следующие действия:
- забыть про запятую в исходной десятичной дроби и представить её в виде целого числа;
- вычислить для целого числа квадратный корень;
- полученное целое число заменить на десятичную дробь (поставить запятую исходя из
правила умножения десятичных дробей).
Более подробно разберем на примере ниже.
Разбор примера
Вычислить квадратный корень из десятичной дроби «0,16».
√0,16 =
По первому пункту правила забудем про запятую в десятичной дроби и представим ее в виде целого числа «16».
Нетрудно вспомнить, какое число в квадрате дает «16». Это число
«4».
√16 = 4
√0,16 = …
Вспомним правило умножения десятичных дробей.
Количество знаков после запятой в результате умножения десятичных дробей равняется сумме количества знаков после запятой каждой
дроби.
Т.е., например, при умножении «0,15» на
«0,3» в полученном произведении будет десятичная дробь с тремя знаками после запятой.
0,15 · 0,3 = 0,045
Значит, при вычислении квадратного корня
√0,16
нам нужно найти десятичную дробь, у которой был бы только один знак после запятой.
Мы исходим из того, что в результате умножения десятичной дроби на саму себя в результате должно было получиться
два знака после запятой, как у десятичной дроби «0,16».
Получается, что ответ — десятичная дробь «0,4».
√0,16 = 0,4
Убедимся, что квадрат десятичной дроби
«0,42» дает
«0,16».
Умножим в столбик «0,4» на
«0,4».
Рассмотрим другой пример вычисления квадратного корня из десятичной дроби. Вычислить:
√1,44 =
Представим вместо десятичной дроби «1,44» целое число
«144». Какое число в квадрате даст «144»?
Ответ — число «12».
122 = 144
√144 = 12
√1,44 = …
Так как в десятичной дроби «1,44» — два знака после запятой, значит в десятичной дроби,
которая дала в квадрате «1,44» должен быть один знак после запятой.
√1,44 = 1,2
Убедимся, что «1,22» дает в квадрате «1,44».
1,22 = 1,2 · 1,2 = 1,44
Квадратные корни из чисел
√2,
√3,
√5,
√6,
и т.п.
Не из всех чисел удается легко извлечь квадратный корень. Например, совершенно неочевидно, чему равен
√2
или
√3
и т.п.
В самом деле, какое число в квадрате даст «2»? Или число «3»?
Такое число не будет целым. Более того, оно представляет из себя
непериодическую десятичную дробь
и входит в
множество иррациональных чисел.
Что делать, когда в ответе остаются подобные квадратные корни? Как, например, в примере ниже:
√15 − 2 · 4 =
√15 − 8 =
√7
Нет такого целого числа, которое бы дало в квадрате число «7».
Поэтому, перед завершением задачи внимательно читайте её условие.
Если в задаче дополнительно ничего не сказано об обязательном вычислении всех квадратных корней, тогда ответ можно
оставить с корнем.
√15 − 2 · 4 =
√15 − 8 =
√7
Если в задании сказано, что необходимо вычислить все квадратные корни с помощью микрокалькулятора,
то после вычисления квадратного корня на калькуляторе
округлите результат до необходимого количества знаков.
Текст задания в таком случае может быть написан следующим образом:
«Вычислить. Квадратные корни найти с помощью калькулятора и округлить с точностью до
«0,001».
√15 − 2 · 4 =
√15 − 8 =
√7 ≈ 2,646
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
14 июля 2016 в 18:32
Temur Uldashev
Профиль
Благодарили: 0
Сообщений: 2
Temur Uldashev
Профиль
Благодарили: 0
Сообщений: 2
Всем доброго времени суток! Прошу помочь с примером который я не могу решить, по теме «Квадратные корни. Задачи на вычесление» пример выглядит так:
??28-16?3 ( то есть выражение 28-16?3 еще под двумя корнями, не только 28, а все выражение!)
0
Спасибо
Ответить
15 июля 2016 в 0:04
Ответ для Temur Uldashev
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
?(28 ? 16?3) = 4 ? 2?3.
Скобки не знешь?
0
Спасибо
Ответить
15 июля 2016 в 6:53
Ответ для Temur Uldashev
Temur Uldashev
Профиль
Благодарили: 0
Сообщений: 2
Temur Uldashev
Профиль
Благодарили: 0
Сообщений: 2
Затупил. Но и вы не правильно подсказали. Я уже решил ответ ?3-1
0
Спасибо
Ответить
16 июля 2016 в 22:58
Ответ для Temur Uldashev
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Чушь не пори.
Спасибо скажи, что тебе подсказали.
0
Спасибо
Ответить
21 июля 2016 в 13:24
Ответ для Temur Uldashev
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Что не верно у меня, митрофанушка?
0
Спасибо
Ответить
23 ноября 2015 в 15:15
Ксюша Новикова
Профиль
Благодарили: 0
Сообщений: 1
Ксюша Новикова
Профиль
Благодарили: 0
Сообщений: 1
0
Спасибо
Ответить
16 сентября 2016 в 14:23
Ответ для Ксюша Новикова
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
1,38 · ?361 = 1,38 · 19 = 26,22
0
Спасибо
Ответить
16 сентября 2015 в 16:11
Макс Простов
Профиль
Благодарили: 0
Сообщений: 4
Макс Простов
Профиль
Благодарили: 0
Сообщений: 4
Расположите в порядке возрастания Корни:3V16, 7V19, 8V13 срочно)))))
0
Спасибо
Ответить
9 сентября 2016 в 9:41
Ответ для Макс Простов
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
?16 = 4
?19 ? 4,35
?13 ? 3,61
3 · 4 = 12
7 · 4,35 = 30,45
8 · 3,61 = 28,88
Ответ: 3?16, 8?13, 7?19
0
Спасибо
Ответить
Загрузить PDF
Загрузить PDF
До появления калькуляторов студенты и преподаватели вычисляли квадратные корни вручную. Существует несколько способов вычисления квадратного корня числа вручную. Некоторые из них предлагают только приблизительное решение, другие дают точный ответ.
-
1
Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число.[1]
Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.- Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16. Число 16 также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
- Записать это можно следующим образом: √400 = √(25 х 16).
-
2
Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b.[2]
Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.- В нашем примере извлеките корень из 25 и из 16.
- √(25 х 16)
- √25 х √16
- 5 х 4 = 20
- В нашем примере извлеките корень из 25 и из 16.
-
3
Если подкоренное число не раскладывается на два квадратных множителя (а так происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа. Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.
- Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
- √147
- = √(49 х 3)
- = √49 х √3
- = 7√3
- Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
-
4
Если нужно, оцените значение корня. Теперь можно оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.
- Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
- Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Так как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 — мы были правы.
- Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
-
5
Еще один способ – разложите подкоренное число на простые множители. Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.
- Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
- Рассмотрим другой пример: √88.
- √88
- = √(2 х 44)
- = √ (2 х 4 х 11)
- = √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
- = 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.
Реклама
При помощи деления в столбик
-
1
Этот метод включает процесс, аналогичный делению в столбик, и дает точный ответ. Сначала проведите вертикальную линию, делящую лист на две половины, а затем справа и немного ниже верхнего края листа к вертикальной линии пририсуйте горизонтальную линию. Теперь разделите подкоренное число на пары чисел, начиная с дробной части после запятой. Так, число 79520789182,47897 записывается как «7 95 20 78 91 82, 47 89 70».
- Для примера вычислим квадратный корень числа 780,14. Нарисуйте две линии (как показано на рисунке) и слева сверху напишите данное число в виде «7 80, 14». Это нормально, что первая слева цифра является непарной цифрой. Ответ (корень из данного числа) будете записывать справа сверху.
-
2
Для первой слева пары чисел (или одного числа) найдите наибольшее целое число n, квадрат которого меньше или равен рассматриваемой паре чисел (или одного числа). Другими словами, найдите квадратное число, которое расположено ближе всего к первой слева паре чисел (или одному числу), но меньше ее, и извлеките квадратный корень из этого квадратного числа; вы получите число n. Напишите найденное n сверху справа, а квадрат n запишите снизу справа.
- В нашем случае, первым слева числом будет число 7. Далее, 4 < 7, то есть 22 < 7 и n = 2. Напишите 2 сверху справа — это первая цифра в искомом квадратном корне. Напишите 2×2=4 справа снизу; вам понадобится это число для последующих вычислений.
-
3
Вычтите квадрат числа n, которое вы только что нашли, из первой слева пары чисел (или одного числа). Результат вычисления запишите под вычитаемым (квадратом числа n).
- В нашем примере вычтите 4 из 7 и получите 3.
-
4
Снесите вторую пару чисел и запишите ее около значения, полученного в предыдущем шаге. Затем удвойте число сверху справа и запишите полученный результат снизу справа с добавлением «_×_=».
- В нашем примере второй парой чисел является «80». Запишите «80» после 3. Затем, удвоенное число сверху справа дает 4. Запишите «4_×_=» снизу справа.
-
5
Заполните прочерки справа. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.
- В нашем случае, если вместо прочерков поставить число 8, то 48 х 8 = 384, что больше 380. Поэтому 8 — слишком большое число, а вот 7 подойдет. Напишите 7 вместо прочерков и получите: 47 х 7 = 329. Запишите 7 сверху справа — это вторая цифра в искомом квадратном корне числа 780,14.
-
6
Вычтите полученное число из текущего числа слева. Запишите результат из предыдущего шага под текущим числом слева, найдите разницу и запишите ее под вычитаемым.
- В нашем примере, вычтите 329 из 380, что равно 51.
-
7
Повторите шаг 4. Если сносимой парой чисел является дробная часть исходного числа, то поставьте разделитель (запятую) целой и дробной частей в искомом квадратном корне сверху справа. Слева снесите вниз следующую пару чисел. Удвойте число сверху справа и запишите полученный результат снизу справа с добавлением «_×_=».
- В нашем примере следующей сносимой парой чисел будет дробная часть числа 780.14, поэтому поставьте разделитель целой и дробной частей в искомом квадратном корне сверху справа. Снесите 14 и запишите снизу слева. Удвоенным числом сверху справа (27) будет 54, поэтому напишите «54_×_=» снизу справа.
-
8
Повторите шаги 5 и 6. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.
- В нашем примере 549 х 9 = 4941, что меньше текущего числа слева (5114). Напишите 9 сверху справа и вычтите результат умножения из текущего числа слева: 5114 — 4941 = 173.
-
9
Если для квадратного корня вам необходимо найти больше знаков после запятой, напишите пару нулей у текущего числа слева и повторяйте шаги 4, 5 и 6. Повторяйте шаги, до тех пор пока не получите нужную вам точность ответа (число знаков после запятой).
Реклама
Понимание процесса
-
1
Для усвоения данного метода представьте число, квадратный корень которого необходимо найти, как площадь квадрата S. В этом случае вы будете искать длину стороны L такого квадрата. Вычисляем такое значение L, при котором L² = S.
-
2
Задайте букву для каждой цифры в ответе. Обозначим через A первую цифру в значении L (искомый квадратный корень). B будет второй цифрой, C — третьей и так далее.
-
3
Задайте букву для каждой пары первых цифр. Обозначим через Sa первую пару цифр в значении S, через Sb — вторую пару цифр и так далее.
-
4
Уясните связь данного метода с делением в столбик. Как и в операции деления, где каждый раз нас интересует только одна следующая цифра делимого числа, при вычислении квадратного корня мы последовательно работаем с парой цифр (для получения одной следующей цифры в значении квадратного корня).
-
5
Рассмотрим первую пару цифр Sa числа S (Sa = 7 в нашем примере) и найдем ее квадратный корень. В этом случае первой цифрой A искомого значения квадратного корня будет такая цифра, квадрат которой меньше или равен Sa (то есть ищем такое A, при котором выполняется неравенство A² ≤ Sa < (A+1)²). В нашем примере, S1 = 7, и 2² ≤ 7 < 3²; таким образом A = 2.
- Допустим, что нужно разделить 88962 на 7; здесь первый шаг будет аналогичным: рассматриваем первую цифру делимого числа 88962 (8) и подбираем такое наибольшее число, которое при умножении на 7 дает значение меньшее или равное 8. То есть ищем такое число d, при котором верно неравенство: 7×d ≤ 8 < 7×(d+1). В этом случае d будет равно 1.
-
6
Мысленно представьте квадрат, площадь которого вам нужно вычислить. Вы ищите L, то есть длину стороны квадрата, площадь которого равна S. A, B, C — цифры в числе L. Записать можно иначе: 10А + B = L (для двузначного числа) или 100А + 10В + С = L (для трехзначного числа) и так далее.
- Пусть (10A+B)² = L² = S = 100A² + 2×10A×B + B². Запомните, что 10A+B — это такое число, у которого цифра B означает единицы, а цифра A — десятки. Например, если A=1 и B=2, то 10A+B равно числу 12.(10A+B)² — это площадь всего квадрата, 100A² — площадь большого внутреннего квадрата, B² — площадь малого внутреннего квадрата, 10A×B — площадь каждого из двух прямоугольников. Сложив площади описанных фигур, вы найдете площадь исходного квадрата.
-
7
Вычтите A² из Sa. Для учета множителя 100 снесите одну пару цифр (Sb) из S: вам нужно, чтобы «SaSb» было равным общей площади квадрата, и из нее вычтите 100A² (площадь большого квадрата). В результате получите число N1, стоящее слева в шаге 4 (N = 380 в нашем примере). N1 = 2×10A×B + B² (площадь двух прямоугольников плюс площадь малого квадрата).
-
8
Выражение N1 = 2×10A×B + B² можно записать как N1 = (2×10A + B) × B. В нашем примере вам известно значение N1 (=380) и A(=2) и необходимо вычислить B. Скорее всего, B не является целым числом, поэтому необходимо найти наибольшее целое B, удовлетворяющее условию: (2×10A + B) × B ≤ N1. При этом B+1 будет слишком большим, поэтому N1 < (2×10A + (B+1)) × (B+1).
-
9
Решите уравнение. Для решения умножьте A на 2, переведите результат в десятки (что эквивалентно умножению на 10), поместите B в положение единиц, и умножьте это число на B. Это число (2×10A + B) × B и это выражение абсолютно идентичны записи «N_×_=» (где N=2×A) сверху справа в шаге 4. А в шаге 5 вы находите наибольшее целое B, которое ставится на место прочерков и соответствует неравенству: (2×10A + B) × B ≤ N1.
-
10
Вычтите площадь (2×10A + B) × B из общей площади (слева в шаге 6). Так вы получите площадь S-(10A+B)², которая еще не учитывалась (и которая поможет вычислить следующие цифры).
-
11
Для вычисления следующей цифры C повторите процесс. Слева снесите следующую пару цифр (Sc) из S для получения N2 и найдите наибольшее C, удовлетворяющее условию (2×10×(10A+B)+C) × C ≤ N2 (что эквивалентно двукратному написанию числа из пары цифр «A B» с соответствующим «_×_=», и нахождению наибольшего числа, которое можно подставить вместо прочерков).
Реклама
Советы
- Перемещение десятичного разделителя при увеличении числа на 2 цифры (множитель 100), перемещает десятичный разделить на одну цифру в значении квадратного корня этого числа (множитель 10).
- В нашем примере, 1,73 может считаться остатком: 780,14 = 27,9² + 1,73.
- Данный метод верен для любых чисел.
- Записывайте процесс вычисления в том виде, который вам наиболее удобен. Например, некоторые записывают результат над исходным числом.
- Альтернативный метод с использованием непрерывных дробей включает формулу: √z = √(x^2+y) = x + y/(2x + y/(2x + y/(2x + …))). Например, для вычисления квадратного корня из 780,14, целым числом, квадрат которого близок к 780,14 будет число 28, поэтому z=780,14, x=28, y=-3,86. Подставляя эти значения в уравнение и решая его в упрощении до х+у/(2x), уже в младших членах получаем результат 78207/2800 или около 27,931(1), а в следующих членах 4374188/156607 или около 27,930986(5). Решение каждого последующего члена добавляет около 3 цифр к дробной доли по сравнению с предыдущем членом.
Реклама
Предупреждения
- Не забудьте разделить число на пары, начиная с дробной части числа. Например, разделяя 79520789182,47897 как «79 52 07 89 18 2,4 78 97″, вы получите бессмысленное число.
Реклама
Похожие статьи
Источники
Об этой статье
Эту страницу просматривали 929 858 раз.
Была ли эта статья полезной?
Благодаря прочтению этой статьи вы научитесь:
- Извлекать корни из разных чисел;
- Решать разнообразные задания по этой тематике;
- Применять удобные таблицы на практике.
А также пополните свой мозг новыми знаниями, что всегда хорошо и полезно! Приятным бонусом для вас будут задания для отработки материала с ответами, которые вы сможете найти в конце этой статьи. Что значит понятие: «Извлечение корня из числа»?
Определение
Извлечение корня из числа — это нахождение значения корня, т.е. действие, обратное возведению в степень.
Числа b и a равны, ведь при извлечении корня n-ной степени одного из чисел, мы, соответственно, находим и второе.
- n — натуральное число, являющиеся степенью корня.
- a — подкоренное значение.
Интересно
При помощи разложения функции в ряд можно показать, что сумма всех натуральных чисел равна:
1/12[18]
Когда следует извлекать корень? Если вы видите, что a можно представить в виде n-ной степени какого-либо числа b, то корень a можно извлечь.
Определение
Квадратный корень из числа — это неизвестное число, которое дает это же число при возведении его в квадрат.
Пример извлечения корня:
√25=5×5 — из этого становится ясно, что квадратный корень числа равен 5.
В обратной ситуации, когда нельзя представить корень n-ной степени из числа a, в виде n-ной степени числа b, корень не извлекается или находится лишь приближенное значение этого корня.
Пример:
√6≈√2,44949
Для этого используют различные виды решений, начиная с калькулятора, заканчивая формулами. Калькулятор хоть и посчитает все вместо нас, но не всегда мы можем его применить. Поэтому важно знать другие варианты нахождения приближенного значения корня.
Способы извлечения корня
Для того, чтобы найти значение корня, существуют такие способы извлечения корня, как:
- Применение различных таблиц.
- Разложение чисел или выражений на простые множители.
- Извлечение корней из дробных чисел.
- Извлечение отрицательного корня.
- Поразрядное нахождение значения корня.
Они основываются на свойствах корней. Далее рассмотрим таблицы, которые могут помочь в процессе извлечения корней.
Квадраты натуральных чисел
Основной является таблица квадратов натуральных чисел:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
0 | 0 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 |
1 | 100 | 121 | 144 | 169 | 196 | 225 | 256 | 289 | 324 | 361 |
2 | 400 | 441 | 484 | 529 | 576 | 625 | 676 | 729 | 784 | 841 |
3 | 900 | 961 | 1024 | 1089 | 1156 | 1225 | 1296 | 1369 | 1444 | 1521 |
4 | 1600 | 1681 | 1764 | 1849 | 1936 | 2025 | 2116 | 2209 | 2304 | 2401 |
5 | 2500 | 2601 | 2704 | 2809 | 2916 | 3025 | 3136 | 3249 | 3364 | 3481 |
6 | 3600 | 3721 | 3844 | 3969 | 4096 | 4225 | 4356 | 4489 | 4624 | 4761 |
7 | 4900 | 5041 | 5184 | 5329 | 5476 | 5625 | 5776 | 5929 | 6084 | 6241 |
8 | 6400 | 6561 | 6724 | 6889 | 7056 | 7225 | 7396 | 7569 | 7744 | 7921 |
9 | 8100 | 8281 | 8464 | 8649 | 8836 | 9025 | 9216 | 9409 | 9604 | 9801 |
Она, пожалуй, самая распространенная среди школьников. Если в какой-то важный момент она вам необходима, но у вас отсутствует к ней доступ, можно воспользоваться несколькими хитростями:
- Чтобы быстро возвести в квадрат число, на конце которого 0, можно добавить к нему парочку нулей: 80×80=6400; 30×30=900. Т.е., первые цифры умножаем и дописываем два 0 к этому числу.
- Теперь возьмём какое-нибудь число так, чтобы вторая его цифра оканчивалась на 5. Так, например, число 75. Чтобы быстро возвести его в квадрат, прибавьте к первой цифре единицу, из чего получаются цифры 7 и 8.
- Умножаем их и приписываем в конец число 25 и получаем конечный результат в виде числа 5625.
Квадратные корни
Вторая таблица — это таблица квадратных корней:
√x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
0 | 0 | 1 | 1,41421 | 1,73205 | 2 | 2,23607 | 2,44949 | 2,64575 | 2,82843 | 3 |
1 | 3,16228 | 3,31662 | 3,4641 | 3,60555 | 3,74166 | 3,87298 | 4 | 4,12311 | 4,24264 | 4,3589 |
2 | 4,47214 | 4,58258 | 4,69042 | 4,79583 | 4,89898 | 5 | 5,09902 | 5,19615 | 5,2915 | 5,38516 |
3 | 5,47723 | 5,56776 | 5,65685 | 5,74456 | 5,83095 | 5,91608 | 6 | 6,08276 | 6,16441 | 6,245 |
4 | 6,32456 | 6,40312 | 6,48074 | 6,55744 | 6,63325 | 6,7082 | 6,78233 | 6,85565 | 6,9282 | 7 |
5 | 7,07107 | 7,14143 | 7,2111 | 7,28011 | 7,34847 | 7,4162 | 7,48331 | 7,54983 | 7,61577 | 7,68115 |
6 | 7,74597 | 7,81025 | 7,87401 | 7,93725 | 8 | 8,06226 | 8,12404 | 8,18535 | 8,24621 | 8,30662 |
7 | 8,3666 | 8,42615 | 8,48528 | 8,544 | 8,60233 | 8,66025 | 8,7178 | 8,77496 | 8,83176 | 8,88819 |
8 | 8,94427 | 9 | 9,05539 | 9,11043 | 9,16515 | 9,21954 | 9,27362 | 9,32738 | 9,38083 | 9,43398 |
9 | 9,48683 | 9,53939 | 9,59166 | 9,64365 | 9,69536 | 9,74679 | 9,79796 | 9,84886 | 9,89949 | 9,94987 |
Числа в кубе
И, конечно же, третья — таблица кубов, при помощи которой осуществляется извлечение кубического корня.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
0 | 0 | 1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 | 729 |
1 | 1000 | 1331 | 1728 | 2197 | 2744 | 3375 | 4096 | 4913 | 5832 | 6859 |
2 | 8000 | 9261 | 10648 | 12167 | 13824 | 15625 | 17576 | 19683 | 21952 | 24389 |
3 | 27000 | 29791 | 32768 | 35937 | 39304 | 42875 | 46656 | 50653 | 54872 | 59319 |
4 | 64000 | 68921 | 74088 | 79507 | 85184 | 91125 | 97336 | 103823 | 110592 | 117649 |
5 | 125000 | 132651 | 140608 | 148877 | 157464 | 166375 | 175716 | 185193 | 195112 | 205379 |
6 | 216000 | 226981 | 238328 | 250047 | 262144 | 274625 | 287496 | 300763 | 314432 | 328509 |
7 | 343000 | 357911 | 373248 | 389017 | 405224 | 421875 | 438976 | 456533 | 474552 | 493039 |
8 | 512000 | 531441 | 551368 | 571787 | 592704 | 614125 | 636056 | 658503 | 681472 | 704969 |
9 | 729000 | 753571 | 778688 | 804357 | 830584 | 857375 | 884736 | 912673 | 941192 | 970299 |
Интересно
Название «Куб» приобрелось из-за того, что такая операция проводится для нахождения объема куба. Т.е., для этого нужно возвести длину ребра куба в третью степень.
Такие таблицы достаточно просты в использовании. Слева — десятки, а справа — единицы. С их помощью можно быстро и легко извлечь корень числа от 0 до 99. Это был один из методов извлечения корней, как мне кажется, самый простой после вычислительного средства — калькулятора, но, зачастую, мы не всегда можем им воспользоваться, как говорилось ранее. Так давайте же перейдем к другим интересным и сложным на первый взгляд вариантам решения.
Разложение подкоренного числа на простые множители
Двигаясь от наиболее удобного и быстрого способа к более сложному, давайте разберемся во втором из них — разложение подкоренного числа на простые множители.
Этот метод состоит в том, чтобы представить какое-либо число в виде степени с нужным нам показателем, из чего мы можем получить значение этого корня.
Пример 1:
Возьмём число 196. Для извлечения его квадратного корня, разложим это число на простые множители: √196=2×2×7×7=2²×7²
Теперь делаем следующие действия: 2×7=14.
Ответ: √196=14.
Объяснение:
Множители находятся так: 196 делим на 2, а полученное число 98 мы тоже делим на 2. Делим до тех пор, пока деление станет невозможным. Так, число 49 нельзя поделить пополам, поэтому мы действуем методом подбора. Находим такое число, которое делится. В данном случае — это 7. Два числа, что у нас получились (2 и 7), мы умножаем друг на друга, но уже без степени и получаем число 14, что есть извлечённый корень из числа 196.
Пример 2:
Для того, чтобы лучше понять, как раскладывать на множители, приведем ещё одно число и перейдем к действиям. Деление 441 на 2 невозможно, поэтому подбираем число. Оно делится на 3 два раза. Опять выходит число 49, которое мы делим 2 раза на 7. Из этого следует: √441=3×3×7×7=3²×7²
3×7=21. Значит, ответ: √441=21.
Объяснение:
3 мы умножили на 7, так как это два числа, имеющих 2 степень. Будь у одного из них 4 степень, например: 3⁴×7² — нужно было бы сделать так: 3×3×7. Проще сказать, что мы сокращаем степени ⁴ и ².
Интересно
Подкоренные числа, разложенные на простые множители, могут иметь лишь чётную степень.
Извлечение корней из дробных чисел
Перед тем, как начать вычисления, убедитесь, что дробное число представлено в виде обыкновенной дроби.
Перейдем к свойству корня из частного:
[sqrt[n]{frac{a}{b}}=frac{sqrt[n]{a}}{sqrt[n]{b}}]
Далее нужно воспользоваться правилом извлечения корня из дроби, которое гласит: корень из дроби равен от деления корня числителя на корень знаменателя.
Пример 1:
Давайте возьмем любую десятичную дробь и на её примере посмотрим, как нужно извлекать корень.
Так, например, найдем кубический корень из 373,248.
Первый ход — это представление десятичной дроби в виде обыкновенной:
³√373248/³√1000. После этого найдем кубический корень в числе и знаменателе:
³√373248=2×2×2×2×2×2×2×2×2×3×3×3×3×3×3=2⁹×3⁶=72³
Эти действия происходят как с квадратными корнями, но здесь уже мы считаем числа 2 и 3 не по двойке, а тройке, т.е. 2⁹=2×2×2, а 3⁶=3×3. Или же сокращаем ⁹ и ⁶.
Проверим таким образом: из 9 вычитаем тройки до тех пор, пока не придем к 0: 9-3-3-3 – это значит, что двоек у нас будет именно 3. Так и с 3⁶. Если от 6 отнять 3 два раза, то будет 0. Выходит, что троек у нас именно две.
А 1000=10³.
Получается, ³√373248/³√1000=72/10=7,2.
Извлечение отрицательного корня
Существуют вещественные числа, из которых невозможно извлечь корень, т.е. решения нет. А вот из комплексных чисел можно извлекать корень. Для начала узнаем, что это за числа.
Определение
Вещественные (действительные) числа— это рациональные и иррациональные числа, которые можно записать в форме конечной или бесконечной десятичной дроби.
Комплексные числа — это выражение, в котором есть:
- вещественные числа a и b;
- i — мнимая единица.
Итак, чтобы извлечь корень из отрицательного числа, нужно помнить, что если знаменатель является нечётным, то число под знаком корня может оказаться отрицательным.
Далее, чтобы провести эту операцию с отрицательным числом, перейдем к следующим действиям:
- Извлекаем корень из противоположного ему положительного числа.
- Ставим перед полученным числом знак минус.
Пример 1:
1. Преобразуем выражение ⁵√-12 640/32 так, чтобы вместо отрицательного числа под корнем оказалось положительное:
⁵√-12 640/32 = -⁵√12 640/32
2. Избавимся от смешанного числа, заменив его обыкновенной дробью:
-⁵√12 640/32= -⁵√1024/32
3. С помощью правила извлечения корней из обыкновенной дроби, начнем извлекать:
-⁵√1024/32 = — ⁵√1024/⁵√32.
4. Теперь нужно вычислить корни в числителе и знаменателе:
— ⁵√1024/⁵√32 = — ⁵√4⁵/⁵√2⁵ = — 4/2 = -2.
Нет времени решать самому?
Наши эксперты помогут!
Поразрядное нахождение значения корня
Мы разобрали несколько методов, которые вы можете выбрать на своё усмотрение. Однако, есть еще один, который может понадобиться в таких ситуациях, когда нужно знать полное значение корня, а число, находящееся под корнем нельзя представить в виде n-ной степени определенного числа.
Для таких случаев существует алгоритм поразрядного нахождения значения корня, который нужно использовать, чтобы получить нужное количество значений определяемого числа.
Пример 1:
Итак, чтобы в этом разобраться, найдем значение квадратного корня из 7:
1. Находим значение разряда единиц, перебирая значения 0, 1, 2, …, 9, в это же время вычисляя их во 2 степени до нужного значения, которое больше подкоренного числа 7. Значение ряда единиц равняется 2 (потому как 2² < 7, а 2³ > 7).
2. Следующий на очереди — разряд десятых. Здесь мы будем возводить в квадрат числа: 2.0, 2.1, 2.2, …, 2.9, сравнивая результат с нужным нам числом 7. Так как 2.6² < 7, а 2.7² > 7, то значение десятых равняется 6.
3. Значение сотых. По аналогии находим приближенное значение к 7.
2.64² = 6,9696 подходит нам, так как 2.65²=7.0225, а это больше 7. Действуя таким же образом, можно и дальше находить значение √7 ≈ 2.64.
Теперь, когда мы разобрались с извлечением корней, перейдем к практике. Специально для вас составлены задания с ответами, чтобы вы попробовали воспользоваться приобретенными знаниями. Решайте без таблиц и калькулятора.
Задания для отработки материала
1 задание
а)√324
б)√900
в)√1369
2 задание
а)³√531,441
б)³√166,375
3 задание
а) ⁵√-14 2471/1024
б) ⁵√-5 1182/3125
4 задание
а)Найдите квадратный корень из 3.
б)Найдите квадратный корень из 5.
в)Найдите квадратный корень из 9.
Ответы с решением
1 задание
а)√324
1)2×2×3×3×3×3=2²×3⁴=√324, а чтобы извлечь, мы умножаем:
2)2×3×3=18. Получается, √324=18.
б)√900
1)2×2×3×3×5×5=2²×3²×5²=√900.
Извлекаем:
2)2×3×5=30. Мы получили √900=30.
в)√1369
1)37×37=37²=√1369.
А здесь мы оставляем 37, так как это единственное число в квадрате. Конечным ответом будет: √1369=37.
2 задание
а)³√531441.
1)3×3×3×3×3×3×3×3×3×3×3×3=3¹²=³√531441.
Разложили на простые множители, а теперь найдем квадратный корень.
2)3¹² это 3×3×3×3, т.к. 3 у нас в 12 степени. Это можно проверить, отняв из 12 столько троек, чтобы вышел 0: 12-3-3-3-3. Так что, 3⁴=81; ³√531441=81.
3)1000=10³.
4)³√531441/³√1000=81/10=8,1.
б)³√166,375.
1) 5×5×5×11×11×11=5³×11³=³√166375.
2)5³×11³=55. Так как числа в кубе – они в степени 1.
3) 1000=10³.
4)³√166375/³√1000=55/10=5,5.
3 задание
а)
1) ⁵√-14 2471/1024 = -⁵√14 2471/1024.
2) -⁵√14 2471/1024= -⁵√16801/1024.
3) -⁵√16801/1024 = — ⁵√16801/⁵√1024.
4) ⁵√16801/⁵√1024 = — ⁵√6⁵/⁵√4⁵ = — 6/4 = — 1,5.
б)
1) ⁵√-5 1182/3125 = -⁵√5 1182/3125.
2) -⁵√5 1182/3125= -⁵√16807/3125.
3) -⁵√16807/3125 = — ⁵√16807/⁵√3125.
4) ⁵√16807/⁵√3125 = — ⁵√7⁵/⁵√5⁵ = — 7/5 = — 1,4.
4 задание
а)√3≈1,73.
б√5≈2,23.
в)√8≈2,82.
Содержание:
Квадратные корни
Уравнение х2 = 9 имеет два решения: 3 и -3. Говорят, что 3 и -3 — квадратные корни из числа 9.
Квадратным корнем из числа а называют число, I квадрат которого равен а.
Примеры:
Квадратными корнями из числа:
- а) 1600 являются 40 и — 40, поскольку 402 = 1600 и (-40)2 = 1600;
- б) 0,49 являются 0,7 и 0,7, поскольку 0,72 = 0,49 и (-0,7)2 = 0,49.
Среди известных вам чисел нет такого, квадрат которого был бы равен отрицательному числу, поэтому квадратного корня из отрицательного числа не существует.
Квадратный корень из числа 0 равен нулю. Квадратный корень из положительного числа имеет два значения: одно из них положительное, другое — противоположное ему отрицательное число.
Неотрицательное значение квадратного корня называют арифметическим значением этого корня.
Арифметическое значение квадратного корня из числа a обозначают символом
Примечание. Символом обозначают только арифметическое значение квадратного корня из числа а, хотя читается оно короче: «квадратный корень из числа а».
Вычисление арифметического значения квадратного корня называют извлечением квадратного корня.
Из небольших чисел, являющихся точными квадратами чисел, извлекать квадратные корни желательно устно.
а | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Квадратные корни из больших натуральных чисел можно находить, пользуясь таблицей квадратов.
Например, , .
С помощью калькулятора можно извлекать квадратные корни с большей точностью. Например, чтобы извлечь квадратный корень из 1000, набираем это число, затем нажимаем клавишу . На экране высвечивается число 31,622776.
Следовательно, .
Если таким способом найти значение , то на некоторых калькуляторах высвечиваются два числа: 5,9160797 и -2. Число -2 здесь показывает порядок искомого значения, записанного в стандартном виде. Следовательно,
.
Хотите знать ещё больше?
Извлекать квадратные корни из натуральных чисел вавилонские учёные умели ещё 4 тыс. лет тому назад Они составили таблицу квадратов многих натуральных чисел и, пользуясь ею, находили квадратные корни. Если число m не было точным квадратом натурального числа, то они искали ближайшее приближённое значение а квадратного корня из m, представляли число m в виде m = а2 + b и применяли правило, которое сейчас можно записать в виде формулы Например, если m = 108, то .
Проверка. 10,42 = 108,16.
Это правило извлечения квадратных корней было известно и учёным Древней Греции.
Известны и другие алгоритмы извлечения квадратных корней, но теперь это удобнее делать с помощью калькулятора.
Квадратный корень из произведения, дроби, степени
Арифметический корень из а — неотрицательное значение квадратного корня из неотрицательного числа а. Поэтому для любого неотрицательного числа а выполняется тождество .
Примеры:
Верны и такие тождества:
- — для неотрицательных значений а и b;
- — для неотрицательного а и положительного b;
- — для неотрицательного а и натурального к.
Докажем эти тождества:
1. Если а и b — произвольные неотрицательные числа, то числа также неотрицательные. Кроме того,
Следовательно, — неотрицательное число, квадрат которого равен ab, то есть
2. Если , то числа неотрицательные, a — положительное. Кроме того,
Следовательно, неотрицательное число, квадрат которого равен , то есть
3. Если число а — неотрицательное, a k — натуральное, то числа — неотрицательные. Кроме того,. Следовательно, — неотрицательный квадратный корень из , то есть
Доказанные три теоремы кратко можно сформулировать так.
- Корень из произведения двух неотрицательных чисел равен произведению корней из этих чисел (теорема о корне из произведения).
- Корень из дроби, числитель которой неотрицательный, а знаменатель положительный, равен корню из числителя, делённому на корень из знаменателя (теорема о корне из дроби).
- Корень из степени a , в котором числа а — неотрицательное и k — натуральное, равен ст (теорема о корне из степени)
Примечание. Здесь под «корнем» понимают только квадратный арифметический корень.
Теорему о корне из произведения можно распространить на три множителя и более. Действительно, если числа а, b и с — неотрицательные, то Если в доказанных тождествах поменять местами их левые и правые части, то получим:
Эти тождества показывают, как можно умножать и делить корни. Например,
Из теоремы о корне из степени следует, что , если . Если а < 0, то равенство — а неверное, поскольку число неотрицательное и не может быть равным отрицательному числу а.
Равенство верное при каждом значении а, поскольку число — неотрицательное и его квадрат равен а2.
Примеры:
Хотите знать ещё больше?
В сформулированных выше теоремах представлены только простейшие случаи преобразования арифметических значений квадратных корней: если все числа под корнями положительные или неотрицательные Но бывают и такие выражения, в которых под знаком корня — произведение либо частное двух отрицательных чисел. В этом случае можно использовать определения квадратного корня, арифметического значения квадратного корня и т. д.
Например, .
Из теоремы 3 несложно получить такое следствие.
Если натуральное число — чётное, то для любых значений а выполняется тождество
Ведь обе части этого равенства — числа неотрицательные, их квадраты — равны.
Выполним вместе!
Пример:
Найдите значение выражения: а) ; б) ; в) ; г) .
Решение:
О т в е т. а) 35; б) 1,2; в) 6; г)
Преобразование выражений с корнями
Выражения с квадратными корнями можно складывать, вычитать, умножать, возводить в степень и делить (на делитель, отличный от нуля).
Примеры:
Рассмотрим и другие преобразования выражений с корнями.
Подобное преобразование называют вынесением множителя за знак корня. В последнем примере за знак корня вынесен множитель 10.
Преобразование, обратное вынесению множителя за знак корня, называют внесением множителя под знак корня.
В атом примере под знак корня вносим множитель 0,3. Рассмотренные преобразования осуществляются на основании теоремы о корне из произведения.
Если знак корня находится в знаменателе дроби, то такую дробь можно заменить тождественной, знаменатель которой не имеет корней. Достаточно умножить члены дроби на соответствующее выражение. Например,
Такие преобразования называют освобождением дроби от иррациональности в знаменателе.
Эти преобразования можно выполнять также с выражениями, содержащими переменные. Например,
Примечание. При вынесении переменной за знак корня необходимо помнить, что равенство верно только при неотрицательных значениях а и с. Если , то . При любых действительных значениях а и неотрицательных с верно тождество: .
Пример:
Вынесите множитель за знак корня: a)
Решение:
а) б) Ответ. a) ; б) .
При внесении переменной под знак корня следует помнить, что под корень можно вносить лишь положительные числа.
Пример:
Внесите множитель под знак корня: а) ; б)
Решение:
а) ; б) О т в е т. a) ; б)
Используя словосочетание «выражения с корнями», в этой главе мы будем говорить только о «выражениях с арифметическими квадратными корнями». Но в математике выражения с корнями имеют более широкий смысл поскольку корни бывают не только квадратные, но и кубические четвёртой, пятой …. n-й степеней. Корни из числа а таких степеней обозначают символами:
Выражения, содержащие любые из таких корней, называют выражениями с корнями, или иррациональными выражениями. Выражения с арифметическими квадратными корнями — это только часть иррациональных выражений (рис 45) .
Рис. 45 Раньше знаки корней …, называли радикалами, поэтому в некоторых публикациях иррациональные выражения до сих пор называют выражениями с радикалами.
Выполним вместе!
Пример:
Упростите выражение: а) ; б) ; в).
Решение:
a) . б) ;
в) . О т в е т. a) ; б)16; в) 9.
Пример:
Разложите на множители выражение: a) ; б) ; в) .
Решение:
а) ; б) ; в) если а — число положительное, то . Поэтому
Ответ, a) ; б) ; в) .
Пример:
Освободитесь от иррациональности в знаменателе дроби:
а) ; б) ;
Решение:
а) ; б)
Ответ. а) ; б) .
ИСТОРИЧЕСКИЕ СВЕДЕНИЯ
Квадратные корни из чисел вавилонские математики умели вычислять ещё 4 тыс. лет тому назад. Находили даже приближённые значения квадратных корней, пользуясь правилом, которое теперь можно записать (при небольших значениях с) в виде приближённого равенства:
В XIII в. европейские математики предложили сокращённое обозначение корня. Вместо нынешнего писали R12 (от латинского Radix — корень). Позднее вместо R стали писать знак V, например V7, V(a + b). Затем над многочленом за корнем добавили черту: . Р. Декарт (1596 -1650) соединил знак корня с чертой, после чего запись приобрела современный вид: . Действительные числа входили в математику непросто. Учёные античного мира не предполагали, что кроме целых и дробных могут быть и другие числа. Хотя Пифагор (VI в. до и. э.) и его ученики доказали: если длина стороны квадрата равна 1, то длину его диагонали нельзя выразить ни одним рациональным числом. Таким образом, они выяснили, что существуют отрезки, длины которых не выражаются рациональными числами, но при этом иррациональных чисел не ввели. Математики Индии и Среднего Востока пользовались иррациональными числами, но считали их ненастоящими, неправильными, «глухими». И только когда Р. Декарт предложил каждой точке координатной прямой поставить в соответствие число, иррациональные числа объединили с рациональными во множество действительных чисел. Строгая теория действительных чисел появилась лишь в XIX в. В 8 классе изучают не все действительные числа. Кроме квадратных существуют корни третьей, четвёртой и высших степеней, например , , . С такими действительными числами вы ознакомитесь в старших классах.
ОСНОВНОЕ В ГЛАВЕ
Квадратным корнем из числа а называют число, квадрат которого равен а. Например, число 16 имеет два квадратных корня: 4 и -4. Неотрицательное значение квадратного корня из числа а называют арифметическим значением корня я обозначают символом . Свойства квадратных корней. Если а > 0 и b > 0, то
Для любого действительного . Значения многих квадратных корней — числа не рациональные, а иррациональные. Числа целые и дробные, положительные, отрицательные и нуль вместе составляют множество рациональных чисел. Каждое рациональное число можно записать в виде дроби , где — число целое, а n— натуральное. Любое рациональное число можно представить в виде бесконечной периодической десятичной дроби. А любая бесконечная периодическая десятичная дробь изображает некоторое рациональное число. Примеры: = 0,6666…, =1,181818…. Числа, которые можно представить в виде бесконечных непериодических десятичных дробей, называют иррациональными. Примеры иррациональных чисел: = 1,4142136…, = 3,1415927… . Иррациональные числа вместе с рациональными образуют множество действительных чисел. Множества натуральных, целых, рациональных и действительных чисел обозначают соответственно буквами N, Z, Q, R (см. рис. 41). Действительные числа можно складывать, вычитать, умножать, возводить в степень и делить (на числа, отличные от нуля). Для сложения и умножения произвольных действительных чисел верны переместительный, сочетательный и распределительный законы: а + b = b + а, ab=ba, a + (b + c) = (a + b) + c, a . (bc) = (ab) . c, (a + b) с = ас +bс.
Квадратные корни. Арифметический квадратный корень
Рассмотрим квадрат, площадь которого равна 49 квадратным единицам. Пусть длина его стороны составляет единиц. Тогда уравнение можно рассматривать как математическую модель задачи о нахождении стороны квадрата, площадь которого равна 49 квадратным единицам.
Корнями этого уравнения являются числа 7 и —7. Говорят, что числа 7 и —7 являются квадратными корнями из числа 49.
Определение: Квадратным корнем из числа называют число, квадрат которого равен
Приведем несколько примеров.
Квадратными корнями из числа 9 являются числа 3 и —3. Действительно,
Квадратными корнями из числа являются числа и
Действительно,
Квадратным корнем из числа 0 является только число 0. Действительно, существует лишь одно число, квадрат которого равен нулю, — это число 0.
Поскольку не существует числа, квадрат которого равен отрицательному числу, то квадратного корня из отрицательного числа не существует.
Положительный корень уравнения число 7, является ответом в задаче о нахождении стороны квадрата, площадь которого равна 49 квадратным единицам. Это число называют арифметическим квадратным корнем из числа 49.
Определение: Арифметическим квадратным корнем из числа называют неотрицательное число, квадрат которого равен .
Арифметический квадратный корень из числа обозначают Знак называют знаком квадратного корня или радикалом (от лат. radix — корень).
Запись читают: «квадратный корень из », опуская при чтении слово «арифметический».
Выражение, стоящее под радикалом, называют подкоренным выражением. Например, в записи двучлен является подкоренным выражением. Из определения арифметического квадратного корня следует, что подкоренное выражение может принимать только неотрицательные значения.
Действие нахождения арифметического квадратного корня из числа называют извлечением квадратного корня.
Рассмотрим несколько примеров:
так как и
так как и
так как и
Вообще, равенство выполняется при условии, что и
Этот вывод можно представить в другой форме: для любого неотрицательного числа справедливо, что а
Например, и и и
Подчеркнем, что к понятию квадратного корня мы пришли, решая уравнение вида где Корни этого уравнения — числа, каждое из которых является квадратным корнем из числа
Поиск корней уравнения проиллюстрируем, решив графически уравнение
В одной системе координат построим графики функций и (рис. 17). Точки пересечения этих графиков имеют абсциссы 2 и —2, которые и являются корнями данного уравнения.
Уравнение при не имеет корней, что подтверждается графически: графики функций и при общих точек не имеют (рис. 18).
При уравнение имеет единственный корень что также подтверждается графически: графики функций и имеют только одну общую точку (рис. 18).
Графический метод также позволяет сделать следующий вывод: если то уравнение имеет два корня. Действительно, парабола и прямая где имеют две общие точки (рис. 18). При этом корнями уравнения являются числа и Действительно,
Например, уравнение имеет два корня: и
Пример:
Найдите значение выражения
Решение:
Применив правило возведения произведения в степень и тождество получим:
Пример:
Решите уравнение:
Решение:
1) Имеем: Тогда
Ответ: 36.
2)
Ответ: 7.
Пример:
Решите уравнение
Решение:
или или
Ответ: 1; 9. ▲
Пример:
Решите уравнение
Решение:
или
или
или
Ответ:
Пример:
При каких значениях имеет смысл выражение:
Решение:
1) Выражение имеет смысл, если подкоренное выражение принимает неотрицательные значения. Подкоренное выражение является произведением двух множителей, один из которых — отрицательное число. Следовательно, это произведение будет принимать неотрицательные значения, если другой множитель будет принимать неположительные значения.
Ответ: при
2) Данное выражение имеет смысл, если выполняются два условия: имеет смысл выражение и знаменатель отличен от нуля. Следовательно, должны одновременно выполняться два условия: и Отсюда и
Ответ: при и
Пример:
Решите уравнение:
Решение:
1) Левая часть данного уравнения имеет смысл, если подкоренные выражения и одновременно принимают неотрицательные значения. Из того, что первое подкоренное выражение должно быть неотрицательным, получаем: тогда Однако если то второе подкоренное выражение, принимает только отрицательные значения. Следовательно, левая часть данного уравнения не имеет смысла.
Ответ: корней нет.
2) Левая часть данного уравнения является суммой двух слагаемых, каждое из которых может принимать только неотрицательные значения. Тогда их сумма будет равна нулю, если каждое из слагаемых равно нулю. Следовательно, одновременно должны выполняться два условия: и Это означает, что надо найти общие корни полученных уравнений, то есть решить систему уравнений
Имеем,
Решением последней системы, а значит, и исходного уравнения, является число 2.
Ответ: 2.
3) Используя условие равенства произведения нулю, получаем:
или или
Однако при выражение не имеет смысла. Следовательно, данное уравнение имеет единственный корень — число 2.
Ответ: 2.
Свойства арифметического квадратного корня
Легко проверить, что Может показаться, что при любом значении а выполняется равенство Однако это не так. Например, равенство является ошибочным, поскольку На самом деле Также можно убедиться, что, например,
Вообще, справедлива следующая теорема.
Теорема: Для любого действительного числа а выполняется равенство
Доказательство: Для того чтобы доказать равенство надо показать, что и
Имеем: при любом
Также из определения модуля следует, что
Следующая теорема обобщает доказанный факт.
Теорема: (арифметический квадратный корень из степени). Для любого действительного числа и любого натурального числа выполняется равенство
Доказательство этой теоремы аналогично доказательству теоремы 15.1. Проведите это доказательство самостоятельно.
Теорема: (арифметический квадратный корень из произведения). Для любых действительных чисел и таких, что и выполняется равенство
Доказательство: Имеем: и Тогда Кроме того,
Следовательно, выражение принимает только неотрицательные значения, и его квадрат равен
Эту теорему можно обобщить для произведения трех и более множителей. Например, если и то
Теорема: (арифметический квадратный корень из дроби). Для любых действительных чисел и таких, что и выполняется равенство
Доказательство этой теоремы аналогично доказательству теоремы 15.3. Проведите это доказательство самостоятельно.
Понятно, что из двух квадратов с площадями и (рис. 27) большую сторону имеет тот, у которого площадь больше, то есть если то Это очевидное соображение иллюстрирует такое свойство арифметического квадратного корня: для любых неотрицательных чисел и таких, что выполняется неравенство
Пример:
Найдите значение выражения:
Решение:
Пример:
Найдите значение выражения:
Решение:
1) Заменив произведение корней корнем из произведения, получим:
2) Заменив частное корней корнем из частного (дроби), получим:
Пример:
Упростите выражение: если
если
Решение:
1) По теореме об арифметическом квадратном корне из степени имеем:
2) Имеем: Поскольку по условию то Тогда
3) Имеем: Поскольку по условию то Поскольку то Следовательно,
4) Имеем: Поскольку то
Пример:
Найдите значение выражения:
Решение:
1) Преобразовав подкоренное выражение по формуле разности квадратов, получаем:
Пример:
Постройте график функции
Решение:
Поскольку то
Если то
Если то
Следовательно,
График функции изображен на рисунке 28.
Тождественные преобразования выражений, содержащих квадратные корни
Пользуясь теоремой об арифметическом квадратном корне из произведения, преобразуем выражение Имеем: Выражение мы представили в виде произведения рационального числа 4 и иррационального числа Такое преобразование называют вынесением множителя из-под знака корня. В данном случае был вынесен из-под знака корня множитель 4. Рассмотрим выполненное преобразование в обратном порядке:
Такое преобразование называют внесением множителя под знак корня. В данном случае был внесен под знак корня множитель 4.
Пример:
Вынесите множитель из-под знака корня:
если
Решение:
1) Представим число, стоящее под знаком корня, в виде произведения двух чисел, одно из которых является квадратом рационального числа:
2)
3) Поскольку подкоренное выражение должно быть неотрицательным, то из условия следует, что Тогда
4) Из условия следует, что Тогда
5) Из условия следует, что Поскольку подкоренное выражение должно быть неотрицательным, то получаем, что Тогда
Пример:
Внесите множитель под знак корня:
Решение:
2) Если то если то
3) Из условия следует, что Тогда
4) Из условия следует, что Тогда
Пример:
Упростите выражение:
Решение:
1) Имеем:
2)
3) Применяя формулы сокращенного умножения (квадрат двучлена и произведение разности и суммы двух выражений), получим:
Пример:
Разложите на множители выражение:
если
Решение:
1) Представив данное выражение в виде разности квадратов, получим:
2) Поскольку по условию то
3) Применим формулу квадрата разности:
4) Имеем:
5)
6)
Пример:
Сократите дробь:
если
Решение:
1) Разложив числитель данной дроби на множители, получаем:
2)
3) Поскольку по условию и то числитель и знаменатель данной дроби можно разложить на множители и полученную дробь сократить:
Освободиться от иррациональности в знаменателе дроби означает преобразовать дробь так, чтобы ее знаменатель не содержал квадратного корня.
Пример:
Освободитесь от иррациональности в знаменателе дроби:
Решение:
1) Умножив числитель и знаменатель данной дроби на получаем:
2) Умножив числитель и знаменатель данной дроби на выражение получаем:
Пример:
Докажите тождество
Решение:
Пример:
Упростите выражение
Решение:
Представив подкоренное выражение в виде квадрата суммы, получаем:
Растут ли в огороде радикалы?
В Древней Греции действие извлечения корня отождествляли с поиском стороны квадрата по его площади, а сам квадратный корень называли «стороной».
В Древней Индии слово «мула» означало «начало», «основание», «корень дерева». Это же слово стали употреблять и по отношению к стороне квадрата, возможно, исходя из такой ассоциации: из стороны квадрата, как из корня, вырастает сам квадрат. Вероятно, поэтому в латинском языке понятия «сторона» и «корень» выражаются одним и тем же словом — radix. От этого слова произошел термин «радикал».
Слово radix можно также перевести как «редис», то есть корнеплод — часть растения — видоизмененный корень, который может являться съедобным.
В XIII-XV вв. европейские математики, сокращая слово radix, обозначали квадратный корень знаками Например, запись имела следующий вид: .
В XVI в. стали использовать знак Происхождение этого символа, по-видимому, связано с рукописным начертанием латинской буквы
В XVII в. выдающийся французский математик Рене Декарт, соединив знак с горизонтальной черточкой, получил символ Рене Декарт который мы и используем сегодня. (1596-1650)
Множество и его элементы. Подмножество
Мы часто говорим: стадо баранов, букет цветов, коллекция марок, косяк рыб, стая птиц, рой пчел, собрание картин, набор ручек, компания друзей.
Если в этих парах перемешать первые слова, то может получиться смешно: букет баранов, косяк картин, стадо друзей. В то же время такие словосочетания, как коллекция рыб, коллекция птиц, коллекция картин, коллекция ручек и т. д., вполне приемлемы. Дело в том, что слово «коллекция» достаточно универсальное. Однако в математике есть термин, которым можно заменить любое из первых слов в данных парах. Это слово множество.
Приведем еще несколько примеров множеств:
Отдельным важнейшим множествам присвоены общепринятые названия и обозначения:
Как правило, множества обозначают прописными буквами латинского алфавита: и т. д.
Объекты, составляющие данное множество, называют элементами этого множества. Обычно элементы обозначают строчными буквами латинского алфавита: и т. д.
Если — элемент множества то пишут: (читают: «принадлежит множеству »). Если не является элементом множества , то пишут: (читают: « не принадлежит множеству »).
Если множество состоит из трех элементов то пишут:
Если — множество натуральных делителей числа 6, то пишут: Множество делителей числа 6, являющихся составными числами, имеет следующий вид: {6}. Это пример одноэлементного множества.
Задавать множество с помощью фигурных скобок, в которых указан список его элементов, удобно в тех случаях, когда множество состоит из небольшого количества элементов.
Определение: Два множества и называют равными, если они состоят из одних и тех же элементов, то есть каждый элемент множества принадлежит множеству и, наоборот, каждый элемент множества В принадлежит множеству .
Если множества и равны, то пишут:
Из определения следует, что множество однозначно определяется своими элементами. Если множество записано с помощью фигурных скобок, то порядок, в котором выписаны его элементы, не имеет значения. Так, для множества, состоящего из трех элементов существует шесть вариантов его записи:
Поскольку из определения равных множеств следует, что, например, то в дальнейшем будем рассматривать множества, состоящие из разных элементов. Так, множество букв слова «космодром» имеет вид {к, о, с, м, д, р}.
Заметим, что Действительно, множество состоит из одного элемента и; множество состоит из одного элемента — множества .
Чаще всего множество задают одним из следующих двух способов.
Первый способ состоит в том, что множество задают указанием (перечислением) всех его элементов. Мы уже использовали этот способ, записывая множество с помощью фигурных скобок, в которых указывали список его элементов. Ясно, что не всякое множество можно задать таким способом. Например, множество четных чисел так задать невозможно.
Второй способ состоит в том, что указывают характеристическое свойство элементов множества, то есть свойство, которым обладают все элементы данного множества и только они. Например, свойство «натуральное число при делении на 2 дает в остатке 1» задает множество нечетных чисел.
Если задавать множество характеристическим свойством его элементов, то может оказаться, что ни один объект этим свойством не обладает.
Обратимся к примерам.
Приведенные примеры указывают на то, что удобно к совокупности множеств отнести еще одно особенное множество, не содержащее ни одного элемента. Его называют пустым множеством и обозначают символом
Заметим, что множество не является пустым. Оно содержит один элемент — пустое множество.
Рассмотрим множество цифр десятичной системы счисления: Выделим из множества его элементы, являющиеся четными цифрами. Получим множество все элементы которого являются элементами множества
Определение: Множество называют подмножеством множества если каждый элемент множества является элементом множества
Это записывают так: или (читают: «множество является подмножеством множества » или «множество содержит множество »).
Рассмотрим примеры:
Для иллюстрации соотношений между множествами пользуются схемами, которые называют диаграммами Эйлера.
На рисунке 20 изображены множество (больший круг) и множество (меньший круг, содержащийся в большем). Эта схема означает, что (или ).
Из определений подмножества и равенства множеств следует, что если и то
Если в множестве нет элемента, не принадлежащего множеству А, то множество является подмножеством множества . В силу этих соображений пустое множество считают подмножеством любого множества. Действительно, пустое множество не содержит ни одного элемента, следовательно, в нем нет элемента, который не принадлежит данному множеству . Поэтому для любого множества справедливо утверждение:
Любое множество является подмножеством самого себя, то есть
- Заказать решение задач по высшей математике
Пример:
Выпишите все подмножества множества
Решение:
Имеем:
Числовые множества
Натуральные числа — это первые числа, которыми начали пользоваться люди. С ними вы ознакомились в детстве, когда учились считать предметы. Все натуральные числа образуют множество натуральных чисел, которое обозначают буквой
Практические потребности людей привели к возникновению дробных чисел. Позже появилась необходимость рассматривать величины, для характеристики которых положительных чисел оказалось недостаточно. Так возникли отрицательные числа.
Все натуральные числа, противоположные им числа и число нуль образуют множество целых чисел, которое обозначают буквой
Например,
Множество натуральных чисел является подмножеством множества целых чисел, то есть
Целые и дробные (как положительные, так и отрицательные) числа образуют множество рациональных чисел, которое обозначают буквой Например,
Понятно, что Схема, изображенная на рисунке 21, показывает, как соотносятся множества и
Каждое рациональное число можно представить в виде отношения где — целое число, а — натуральное. Например,
С возможностью такого представления связано название «рациональное число»: одним из значений латинского слова ratio является «отношение».
В 6 классе вы узнали, что каждое рациональное число можно представить в виде конечной десятичной дроби или в виде бесконечной периодической десятичной дроби. Для дроби такое представление можно получить, выполнив деление числа на число уголком.
Например,
Число записано в виде конечной десятичной дроби, а число в виде бесконечной периодической десятичной дроби. В записи 0,454545… цифры 4 и 5 периодически повторяются. Повторяющуюся группу цифр называют периодом дроби и записывают в круглых скобках. В данном случае период дроби составляет 45, а дробь записывают так:
Заметим, что любую конечную десятичную дробь и любое целое число можно представить в виде бесконечной периодической десятичной дроби. Например,
Следовательно, каждое рациональное число можно представить в виде бесконечной периодической десятичной дроби.
Справедливо и такое утверждение: каждая бесконечная периодическая десятичная дробь является записью некоторого рационального числа.
В 9 классе вы научитесь записывать бесконечную периодическую десятичную дробь в виде обыкновенной дроби.
Сумма и произведение двух натуральных чисел являются натуральными числами. Однако разность натуральных чисел не всегда обладает таким свойством. Например,
Сумма, разность, произведение двух целых чисел являются целыми числами. Однако частное целых чисел не всегда обладает таким свойством. Например,
Сумма, разность, произведение и частное (кроме деления на нуль) двух рациональных чисел являются рациональными числами.
Итак, действие вычитания натуральных чисел может вывести результат за пределы множества действие деления целых чисел — за пределы множества однако выполнение любого из четырех арифметических действий с рациональными числами не выводит результат за пределы множества
Вы ознакомились с новым действием — извлечением квадратного корня. Возникает естественный вопрос: всегда ли квадратный корень из неотрицательного рационального числа является рациональным числом? Иными словами, может ли действие извлечения квадратного корня из рационального числа вывести результат за пределы множества
Рассмотрим уравнение Поскольку то это уравнение имеет два корня: и (рис. 22). Однако не существует рационального числа, квадрат которого равен 2 (доказательство этого факта вы можете найти в рубрике «Когда сделаны уроки» в рассказе «Открытие иррациональности»), то есть числа и не являются рациональными. Эти числа — примеры иррациональных чисел (приставка «ир» означает отрицание).
Следовательно, действие извлечения корня из рационального числа может вывести результат за пределы множества
Ни одно иррациональное число не может быть представлено в виде дроби где а следовательно, и в виде бесконечной периодической десятичной дроби.
Иррациональные числа могут быть представлены в виде бесконечных непериодических десятичных дробей.
Например, с помощью специальной компьютерной программы можно установить, что
Числа и — это не первые иррациональные числа, с которыми вы встречаетесь. Число равное отношению длины окружности к диаметру, также является иррациональным:
Иррациональные числа возникают не только в результате извлечения квадратных корней. Их можно конструировать, строя бесконечные непериодические десятичные дроби.
Например, число (после запятой записаны последовательно степени числа 10) является иррациональным. Действительно, если предположить, что у рассматриваемой десятичной дроби есть период, состоящий из цифр, то с некоторого места этот период будет полностью состоять из нулей. Иными словами, начиная с этого места в записи не должна встретиться ни одна единица, что противоречит конструкции числа.
Вместе множества иррациональных и рациональных чисел образуют множество действительных чисел. Его обозначают буквой (первой буквой латинского слова realis — «реальный», «существующий в действительности»).
Теперь «цепочку» можно продолжить:
Связь между числовыми множествами, рассмотренными в этом пункте, иллюстрирует схема, изображенная на рисунке 23.
Длину любого отрезка можно выразить действительным числом. Eh-от факт позволяет установить связь между множеством и множеством точек координатной прямой. Точке началу отсчета, поставим в соответствие число 0. Каждой точке координатной прямой, отличной от точки поставим в соответствие единственное число, равное длине отрезка если точка А расположена справа от точки и число, противоположное длине отрезка если точка расположена слева от точки . Также понятно, что каждое действительное число является соответствующим единственной точке координатной прямой.
Над действительными числами можно выполнять четыре арифметических действия: сложение, вычитание, умножение, деление (кроме деления на ноль), в результате будем получать действительное число. Эти действия обладают известными вам свойствами:
Действительные числа можно сравнивать, используя правила сравнения десятичных дробей, то есть сравнивая цифры в соответствующих разрядах. Например,
Любое положительное действительное число больше нуля и любого отрицательного действительного числа. Любое отрицательное действительное число меньше нуля. Из двух отрицательных действительных чисел больше то, у которого модуль меньше.
Если отметить на координатной прямой два действительных числа, то меньшее из них будет расположено слева от большего.
Находя длину окружности и площадь круга, вы пользовались приближенным значением числа (например, ). Аналогично при решении практических задач, где нужно выполнить действия с действительными числами, при необходимости эти числа заменяют их приближенными значениями. Например, для числа можно воспользоваться такими приближенными равенствами: или Первое из них называют приближенным значением числа по недостатку с точностью до 0,001, второе — приближенным значением числа по избытку с точностью до 0,001. Более подробно о приближенных значениях вы узнаете в 9 классе.
В заключение подчеркнем, что из любого неотрицательного действительного числа можно извлечь квадратный корень и в результате этого действия получить действительное число. Следовательно, действие извлечения квадратного корня из неотрицательного действительного числа не выводит результат за пределы множества
Открытие иррациональности
Решая графически уравнение мы установили, что длина каждого из отрезков и равна (рис. 24). Покажем, что число иррациональное. Предположим, что число рациональное. Тогда его можно
представить в виде несократимой дроби где и — натуральные числа. Имеем:
Тогда
Из последнего равенства следует, что число четное. А это значит, что четным является и число Тогда где — некоторое натуральное число. Имеем: Отсюда следует, что число а следовательно, и число четные.
Таким образом, числитель и знаменатель дроби — четные числа. Следовательно, эта дробь является сократимой. Получили противоречие.
Приведенный пример показывает, что существуют отрезки (в нашем случае это отрезки и на рисунке 24), длины которых нельзя выразить рациональными числами, то есть для измерения отрезков рациональных чисел недостаточно.
Этот факт был открыт в школе великого древнегреческого ученого Пифагора.
Сначала пифагорейцы считали, что для любых отрезков и всегда можно найти такой отрезок который в каждом из них укладывается целое число раз. Отсюда следовало, что отношение длин любых двух отрезков выражается отношением целых чисел, то есть рациональным числом.
Например, на рисунке 25 имеем:
и . Отрезок называют общей мерой отрезков и
Если для отрезков существует общая мера, то их называют соизмеримыми. Например, отрезки и (рис. 25) являются соизмеримыми.
Итак, древнегреческие ученые считали, что любые два отрезка соизмеримы. А из этого следовало, что длину любого отрезка можно выразить рациональным числом.
Действительно, пусть некоторый отрезок выбран в качестве единичного. Тогда для отрезка и любого другого отрезка существует отрезок длиной являющийся их общей мерой. Получаем: где и — некоторые натуральные числа. Отсюда Поскольку то
Однако сами же пифагорейцы сделали выдающееся открытие. Они доказали, что диагональ и сторона квадрата несоизмеримы, то есть если сторону квадрата принять за единицу, то длину диагонали квадрата выразить рациональным числом нельзя.
Для доказательства рассмотрим произвольный квадрат и примем его сторону за единицу длины. Тогда его площадь равна На диагонали построим квадрат (рис. 26). Понятно, что площадь квадрата в 2 раза больше площади квадрата . Отсюда , то есть Следовательно, длина диагонали не может быть выражена рациональным числом.
Это открытие изменило один из фундаментальных постулатов древнегреческих ученых, заключавшийся в том, что отношение любых двух величин выражается отношением целых чисел.
Существует легенда о том, что пифагорейцы держали открытие иррациональных чисел в строжайшей тайне, а человека, разгласившего этот факт, покарали боги: он погиб при кораблекрушении.
ГЛАВНОЕ В ПАРАГРАФЕ 2
Свойства функции
Область определения:
Область значений: множество неотрицательных чисел.
График: парабола.
Нуль функции:
Свойство графика: если точка принадлежит графику функции, то точка также принадлежит графику.
Квадратный корень
Квадратным корнем из числа называют число, квадрат которого равен
Арифметический квадратный корень
Арифметическим квадратным корнем из числа называют неотрицательное число, квадрат которого равен
Равные множества
Два множества и называют равными, если они состоят из одних и тех же элементов, то есть каждый элемент множества принадлежит множеству и, наоборот, каждый элемент множества принадлежит множеству .
Подмножество
Множество называют подмножеством множества , если каждый элемент множества является элементом множества .
Обозначения числовых множеств
— множество натуральных чисел;
— множество целых чисел;
— множество рациональных чисел;
— множество действительных чисел.
Связь между числовыми множествами
Свойства арифметического квадратного корня
Для любого действительного числа выполняется равенство
Для любого действительного числа и любого натурального числа выполняется равенство
Для любых действительных чисел и таких, что и выполняется равенство
Для любых действительных чисел и таких, что и
выполняется равенство
Для любых неотрицательных чисел и таких, что выполняется неравенство
Свойства функции
Область определения: множество неотрицательных чисел.
Область значений: множество неотрицательных чисел.
График: ветвь параболы.
Нуль функции:
Большему значению аргумента соответствует большее значение функции.
———
Квадратные корни
Функция y=x2 её график и свойства
Функция её график и свойства
Пример №223
Пусть сторона квадрата равна см. Тогда его площадь (в можно найти но формуле В этой формуле каждому положительному значению переменной соответствует единственное значение переменной
Если обозначить независимую переменную через а зависимую — через то получим функцию, которую задают формулой В этой формуле переменная может принимать любые значения (положительные, отрицательные, значение нуль).
Составим таблицу значений функции для нескольких значений аргумента:
Отметим на координатной плоскости точки координаты которых записаны в таблице (рис. 8). Если на этой плоскости отметить больше точек, координаты которых удовлетворяют формуле а потом соединить их плавной линией, то получим график функции (рис. 9). График этой функции называют параболой, точку (0; 0) — вершиной параболы. Вершина делит параболу на две части, каждую из которых называют ветвью параболы.
Сформулируем некоторые свойства функции
1. Область определения функции состоит из всех чисел.
2. Область значений функции состоит из всех неотрицательных чисел, то есть
Действительно, так как для любого то
3. Графиком функции является парабола с вершиной в точке ветви которой направлены вверх. Все точки параболы, за исключением вершины, лежат выше оси абсцисс.
4. Противоположным значениям аргумента соответствует одно и то же значение функции.
Действительно, это следует из того, что при любом значении
Пример №224
Решите графически уравнение
Решение:
График функции — парабола, а функции — прямая, проходящая через точки (0; 3) и (2; -1). Построим эти графики в одной системе координат ( рис.10). Они пересекутся в двух точках с абсциссами
Убедимся, что числа 1 и -3 являются корнями уравнения:
1) для
2) для
Следовательно, 3 и -1 — корни уравнения
Ответ. -3; 1.
Пример №225
Между какими последовательными целыми числами лежит корень уравнения
Решение:
Решим уравнение графически, построив графики функций в одной системе координат. Так как для любого то в данном уравнении и
Откуда Поэтому рассмотрим графики функций только для Это ветвь гиперболы и ветвь параболы, лежащие в первой координатной четверти (рис. 11).
Графики пересекаются в одной точке, абсцисса которой является корнем уравнения и заключена между числами 1 и 2.
Таким образом, корень уравнения лежит между числами 1 и 2.
Ответ. Между числами 1 и 2.
Арифметический квадратный корень
Если известна сторона квадрата, можно легко найти его площадь. Но часто приходится решать и обратную задачу: по известной площади квадрата находить его сторону.
Пример №226
Площадь квадрата равна Чему равна длина его стороны?
Решение:
Пусть длина стороны квадрата равна см, тогда его площадь будет Имеем уравнение: корнями которого являются числа 4 и -4. Действительно, и Длина не может выражаться отрицательным числом, поэтому условию задачи удовлетворяет только один из корней уравнения — число 4. Следовательно, длина стороны квадрата равна 4 см.
Корни уравнения то есть числа, квадраты которых равны 16, называют квадратными корнями из числа 16.
Квадратным корнем из числа называют число, квадрат которого равен .
Например, квадратными корнями из числа 100 являются числа 10 и -10, потому что Квадратным корнем из числа 0 является число 0, потому что Квадратного корня из числа -16 мы не найдем, ведь среди известных нам чисел не существует числа, квадрат которого равнялся бы -16.
Число 4, являющееся неотрицательным корнем уравнения . называют арифметическим квадратным корнем из числа 16.
Арифметическим квадратным корнем из числа а называют неотрицательное число, квадрат которого равен
Арифметический квадратный корень из числа обозначают знак арифметического квадратного корня, или радикал). Выражение, стоящее под знаком корня, называют подкоренным выражением. Запись читают следующим образом: квадратный корень из (слово арифметический при чтении принято опускать, поскольку в школе рассматривают только арифметические корни).
Пример №227
1) так как
2) так как
Вообще равенство является верным, если выполняются два условия:
Так как для всех значений переменной
Выражение не имеет смысла, если
Например, не имеют смысла выражения
Действие нахождения значения арифметического квадратного корня называют извлечением квадратного корня. Из небольших чисел квадратный корень желательно извлекать устно. Извлекать квадратный корень из больших чисел поможет таблица квадратов двузначных натуральных чисел на форзаце или калькулятор.
Пример №228
Найдите значение корня
Решение:
По таблице квадратов двузначных натуральных чисел имеем: Поэтому
Пример №229
Вычислите
Решение:
Сначала нужно найти значение выражения а потом извлечь из него корень:
Ответ. 35.
Рассмотрим уравнение где — некоторое число. Если то по определению квадратного корня следует, что Если же то уравнение не имеет решений, так как по определению число — неотрицательное.
Систематизируем данные о решениях уравнения в виде схемы:
Пример №230
Решите уравнение:
Ответ. 1) 49; 2) решений нет; 3) 13.
Множество. Подмножество. Числовые множества. Рациональные числа. Иррациональные числа. Действительные числа
Понятие множества является одним из основных понятий математики. Под множеством будем понимать совокупность объектов, имеющих общую природу (или объединенных по общему признаку), сами объекты при этом будем называть элементами множества.
Как правило, множества обозначают большими латинскими буквами. Если, например, множество состоит из чисел 1, 2, 3, а множество — из знаков то это записывают так: Числа 1, 2, 3 — элементы множества а знаки — элементы множества Тот факт, что число 1 принадлежит множеству записывают с помощью уже известного нам символа а именно: Тот факт, что число 1 не принадлежит множеству записывают так:
Множества, количество элементов которых можно выразить натуральным числом, называют конечными.
Множество, не содержащее ни одного элемента, называют пустым множеством. Его обозначают символом Так, например, пустым множеством является множество корней уравнения
Множества, количество элементов которых нельзя выразить натуральным числом и которые не являются пустыми, называют бесконечными.
Если каждый элемент множества является элементом множества то говорят, что множество является подмножеством множества
Записывают это следующим образом: Схематическая иллюстрация этого факта представлена на рисунке 12.
Пример №231
Пусть Тогда множество является подмножеством множества то есть Множество не является подмножеством множества так как множество содержит элемент — число 5, которое не является элементом множества
Считают, что пустое множество является подмножеством любого множества, то есть
Целые числа и дробные числа образуют множество рациональных чисел.
Множество натуральных чисел обозначают буквой множество целых чисел — буквой множество рациональных чисел -буквой Они являются бесконечными множествами.
Можно утверждать, что
Любое рациональное число можно представить в виде где — целое число, — натуральное число.
Например
Рациональное число можно также представить и в виде десятичной дроби. Для этого достаточно числитель дроби разделить на ее знаменатель. Например,
В последнем случае мы получили бесконечную десятичную периодическую дробь. Дроби также можно представить в виде бесконечных десятичных периодических дробей, дописав справа в десятичной части бесконечное много нулей:
Таким образом, каждое рациональное число можно представить в виде бесконечной десятичной периодической дроби.
Справедливо и обратное утверждение:
Каждая бесконечная периодическая десятичная дробь является записью некоторого рационального числа.
Например,
В правильности этих равенств легко убедиться, выполнив соответствующее деление.
Но в математике существуют числа, которые нельзя записать в виде где — целое число, а — натуральное.
Числа, которые нельзя записать в виде где — целое число, a — натуральное, называют иррациональными числами.
Префикс «иp» означает отрицание, иррациональные значит не рациональные.
Например, иррациональными являются числа Приближенные значения таких чисел можно находить с определенной точностью (то есть округленными до определенного разряда) с помощью микрокалькулятора или компьютера:
Каждое иррациональное число можно представить в виде бесконечной десятичной непериодической дроби.
Рациональные числа вместе с иррациональными числами образуют множество действительных чисел.
Множество действительных чисел обозначают буквой
Так как каждое натуральное число является целым числом, то множество является подмножеством множества Аналогично, множество является подмножеством множества а множество подмножеством множества (рис. 13).
Действительные числа, записанные в виде бесконечных десятичных непериодических дробей, можно сравнивать по тем же правилам, что и конечные десятичные дроби. Например,
В задачах с практическим содержанием действительные числа (для выполнения арифметических действий) заменяют на их приближенные значения, округленные до определенного разряда.
Пример №232
Вычислите с точностью до тысячных.
Решение:
Заметим, что при сложении, вычитании, умножении, делении и возведении в степень действительных чисел справедливы те же свойства и ограничения, что и при действиях с рациональными числами.
Понятие числа появилось очень давно.
А еще раньше Оно является одним из самых общих понятий математики. Потребность в измерениях и подсчетах обусловила появление положительных рациональных чисел. Именно тогда возникли и использовались натуральные числа и дробные числа, которые рассматривались как отношение натуральных чисел.
Следующим этапом развития понятия числа является введение в практику отрицательных чисел. В Древнем Китае эти числа появились во II в. до н. э. Там умели складывать и вычитать отрицательные числа. Отрицательные числа толковали как долг, а положительные — как имущество. В Индии в VII в. эти числа воспринимали так же, но еще и умели их умножать и делить.
Уже древние вавилоняне около 4 тыс. лет назад знали ответ на вопрос: «Какова должна быть длина стороны квадрата, чтобы его площадь равнялась Ими были составлены таблицы квадратов чисел и квадратных корней. Вавилоняне использовали и метод нахождения приближенного значения квадратного корня из числа не являющегося квадратом натурального числа. Суть метода заключалась в том, что число записывали в виде было достаточно малым в сравнении с и применяли формулу
Например, с помощью этого метода:
Проверим точность результата:
Такой метод вычисления приближенного значения квадратного корня использовался и в Древней Греции. Его детально описал Герон Александрийский (I в. н. э.).
В эпоху Возрождения (XV — нач. XVII в.) европейские математики обозначали корень латинским словом Radix (корень), потом — сокращенно — буквой Так появился термин «радикал», которым называют знак корня. Впоследствии для обозначения корня стали использовать точку, а потом ромбик. Спустя некоторое время — уже знак и горизонтальную черточку над подкоренным выражением. Затем знак и черточка были объединены, и современные математики стали использовать знак квадратного корня в привычном нам виде:
Тождество (√a)2=a, a⩾0 уравнение x2=a
Тождество уравнение
Напомним, что для любых значений равенство является верным, если выполняются два условия: Подставив в последнее равенство вместо его запись в виде получим тождество
Для любого справедливо тождество
Пример №233
Вычислите:
Решение:
Ответ:
Рассмотрим уравнение где — некоторое число.
Так как квадрат числа не может быть отрицательным, то при уравнение не имеет решений, что можно записать следующим образом:
Если то единственным корнем уравнения является число 0.
Если то корни уравнения — числа Действительно, Для того чтобы убедиться, что уравнение при других корней не имеет, обратимся к графическому методу решения уравнения. Построим графики функций (рис. 14). Эти графики пересекутся дважды: в точках с абсциссами Систематизируем данные о решениях уравнения в виде схемы:
Пример №234
Решите уравнение:
Решение:
2) уравнение корней не имеет, то есть
Эти корни являются иррациональными числами;
4) Имеем:
Таким образом, получим два корня:
Ответ.
Свойства арифметического квадратного корня
Сравним значения выражений
Имеем: то есть корень из произведения двух чисел равен произведению их корней. Это свойство справедливо для произведения любых двух неотрицательных чисел.
Теорема (о корне из произведения). Корень из произведения двух неотрицательных чисел равен произведению корней из этих чисел, то есть при и
Доказательство: Так как то выражения имеют смысл, причем Поэтому Кроме того,
Имеем: Тогда по определению арифметического квадратного корня:
Доказанная теорема распространяется и на случай, когда множителей под знаком корня три и больше.
Следствие. Корень из произведения неотрицательных множителей равен произведению корней из этих множителей.
Доказательство: Докажем это следствие, например, для трех чисел
Имеем:
Пример №235
Замечание 1. Очевидно, что выражение имеет смысл при условии то есть когда переменные — одного знака, а значит и тогда, когда переменные одновременно отрицательны. В таком случае тождество, рассмотренное выше, принимает вид где и Учитывая оба случая, можно записать, что
Если в равенстве поменять местами левую и правую части, получим тождество:
Произведение корней из неотрицательных чисел равно корню из произведения этих чисел.
Пример №236
Рассмотрим квадратный корень из дроби.
Теорема (о корне из дроби). Корень из дроби, числитель которой неотрицателен, а знаменатель -положителен, равен корню из числителя, деленному на корень из знаменателя, то есть при
Доказательство: Так как то выражения имеют смысл и Поэтому
Кроме того,
Имеем: Тогда по определению квадратного корня:
Пример №237
Замечание 2. По аналогии с замечанием 1, тождество, только что рассмотренное нами, можно записать и так:
Если в равенстве поменять местами левую и правую части, получим тождество:
Частное, числитель которого является корнем из неотрицательного числа, а знаменатель — корнем из положительного числа, равно корню из частного этих чисел.
Пример №238
Рассмотрим, как извлечь квадратный корень из квадрата.
Теорема (о корне из квадрата). Для любого значения справедливо равенство
Доказательство: Так как для любого то по определению квадратного корня:
Пример №239
Рассмотрим квадратный корень из степени.
Теорема (о корне из степени). Для любого значения и натурального числа справедливо равенство
Доказательство: По теореме о корне из квадрата имеем Следовательно,
Пример №240
Вычислите:
Решение:
Пример №241
Упростите выражение:
Решение:
Так как для любого то Следовательно,
Так как поэтому Следовательно, если
Ответ.
Тождественные преобразования выражений, содержащих квадратные корни
Рассмотрим тождественные преобразования выражений, содержащих квадратные корни.
Вынесение множителя из-под знака корня
Воспользуемся теоремой о корне из произведения для преобразования выражения
Говорят, что множитель вынесли из-под знака корня. В данном случае из-под знака корня вынесли множитель 2.
Пример №242
Вынесите множитель из-под знака корня в выражении
Решение:
Выражение имеет смысл при поскольку если Представим выражение в виде произведения в котором является степенью с четным показателем. Тогда
Так как Поэтому
Следовательно,
Ответ.
Внесение множителя под знак корня
Рассмотрим тождественное преобразование, обратное к предыдущему. Воспользуемся правилом умножения корней:
Говорят, что множитель внесли под знак корня. В данном случае под знак корня внесли множитель 2.
Отметим, что под знак корня можно вносить только положительный множитель.
Пример №243
Внести множитель под знак корня:
Решение:
2) Множитель может принимать любые значения (быть положительным, нулем или отрицательным). Поэтому рассмотрим два случая:
— если
— если
Ответ.
Сложение, вычитание, умножение, деление и возведение в степень выражений, содержащих квадратные корни
Используя свойства умножения и деления корней, можно выполнять арифметические действия с выражениями, содержащими квадратные корни.
Пример №244
Используя тождество можно возводить в степень выражения, содержащие квадратные корни.
Пример №245
Рассмотрим примеры, где квадратные корни можно складывать.
Пример №246
Упростите выражение
Решение:
Слагаемые содержат общий множитель Вынесем его за скобки и выполним действие в скобках:
Обычно решение записывают короче:
Заметим, что выражения в данном примере называют подобными радикалами (по аналогии с подобными слагаемыми), мы их сложили по правилу приведения подобных слагаемых.
Пример №247
Упростите выражение
Решение:
В каждом из слагаемых можно вынести множитель из-под знака корня, в результате получим подобные радикалы и приведем их:
Ответ.
Пример №248
Упростите выражение:
Решение:
Применим формулы сокращенного умножения.
Ответ.
Сокращение дробей
Пример №249
Сократите дробь:
Решение:
1) Учитывая, что числитель дроби представим в виде разности квадратов, получим:
2) Учитывая, что в числителе и знаменателе вынесем за скобки общий множитель, получим:
Ответ.
Избавление от иррациональности в знаменателе дроби
Пример №250
Преобразуйте дробь так, чтобы она не содержала корня в знаменателе.
Решение:
Учитывая, что достаточно числитель и знаменатель дроби умножить на
Ответ.
В таких случаях говорят, что избавились от иррациональности в знаменателе дроби.
Пример №251
Избавьтесь от иррациональности в знаменателе дроби
Решение:
Умножим числитель и знаменатель дроби на чтобы в знаменателе получить формулу сокращенного умножения разности двух выражений на их сумму:
Ответ.
Заметим, что выражение называют сопряженным выражению Вообще-то, если в формулах сокращенного умножения в результате умножения скобок, содержащих радикалы, получается рациональное выражение, то выражения в скобках называют взаимно сопряженными. Так, и взаимно сопряженные выражения.
Взаимно сопряженными также являются выражения и им подобные.
Функция y= √x её график и свойства
Функция её график и свойства
Пример №252
Пусть — площадь квадрата, а см — длина его стороны. Так как то зависимость длины стороны квадрата от его площади можно задать формулой
Рассмотрим функцию Очевидно, что переменная принимает только неотрицательные значения, то есть
Составим таблицу значений функции для нескольких значений аргумента:
Отметим эти точки на координатной плоскости (рис. 15). Если бы мы отметили на этой плоскости больше точек, координаты которых удовлетворяют уравнению а потом соединили их плавной линией, то получили бы график функции (рис. 16).
Графиком этой функции является ветвь параболы.
Обобщим свойства функции
1. Областью определения функции является множество всех неотрицательных чисел:
2. Областью значений функции является множество всех неотрицательных чисел:
3. График функции — ветвь параболы, выходящая из точки все другие точки графика лежат в первой координатной четверти.
Большему значению аргумента соответствует большее значение функции
Последнее свойство дает возможность сравнивать значения выражении, содержащих корни.
Пример №253
Сравните числа:
Решение:
1) Так как
поэтому значит,
3) Внесем множитель в обоих выражениях под знак корня:
Так как поэтому
Пример №254
Решите графически уравнение
Решение:
Поскольку мы пока не умеем строить график функции разделим обе части уравнения на число 5. Получим уравнение:
Построим графики функций в одной системе координат (рис. 17). Они пересекаются в точке с абсциссой 4. Проверкой убеждаемся, что число 4 — корень уравнения. Действительно,
Ответ. 4.
Пример №255
Постройте график функции
Ответ. График изображен на рисунке 18.
- Квадратные уравнения
- Неравенства
- Числовые последовательности
- Предел числовой последовательности
- Формулы сокращенного умножения
- Разложение многочленов на множители
- Системы линейных уравнений с двумя переменными
- Рациональные выражения