Как найти значение производной функции по графику

Производная функции. Геометрический смысл производной



Производная функции — одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна. Мы не будем сейчас стремиться к математической строгости изложения. Самое главное — понять смысл.

Запомним определение:

Производная — это скорость изменения функции.

На рисунке — графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден — третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

производная функции в точке

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная, — разная. Что касается Матвея — у его дохода производная вообще отрицательна.

Определение.

Производная – это скорость изменения функции.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами — насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной — то есть может меняться быстрее или медленнее.

Производная функции обозначается f.

Покажем, как найти f с помощью графика.

угол наклона касательной

Нарисован график некоторой функции y=f{left( x right)}. Возьмем на нем точку А с абсциссой x_0. Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого — тангенс угла наклона касательной.

Производная функции f{left( x right)} в точке x_0 равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

f

Обратите внимание — в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси ОХ.

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем k=tg mkern 3mu alpha. Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника AMN:

f

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике.

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

y=kx+b.

Величина k в этом уравнении называется угловым коэффициентом прямой. Она равна тангенсу угла наклона прямой к оси X.

k=tg mkern 3mu alpha.

Мы получаем, что

f

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке x_0 равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции y=f{left( x_0 right)}. Пусть на одних участках эта функция возрастает, на других — убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

точки максимума и минимума функции

В точке A функция f{left( x_0 right)} возрастает. Касательная к графику, проведенная в точке A, образует острый угол alpha с положительным направлением оси X. Значит, в точке A производная положительна.

В точке B наша функция убывает. Касательная в этой точке образует тупой угол beta с положительным направлением оси X. Поскольку тангенс тупого угла отрицателен, в точке B производная отрицательна.

Вот что получается:

Если функция y=fleft( x right) возрастает, ее производная положительна.

Если fleft( x right) убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках C (точка максимума) и D (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка С — точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке С с «плюса» на «минус».

В точке D — точке минимума — производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная f положительна, то функция fleft( x right) возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое — на первом курсе, при более серьезном изучении функций и производных.

1. Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая точка перегиба:

точка перегиба

В точке E касательная к графику горизонтальна, и производная равна нулю. Однако до точки E функция возрастала — и после точки E продолжает возрастать. Знак производной не меняется — она как была положительной, так и осталась.

2. Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется таблица производных. В ней вы найдете производные всех элементарных функций и правила взятия производных, то есть дифференцирования.

Геометрический смысл производной, задачи

Покажем, что такое геометрический смысл производной, на примере нескольких задач из Банка заданий ФИПИ.

Задача 1. На рисунке изображен график функции y=f(x). Найдите количество решений уравнения f)=0 на отрезке [-2,5; 9,5].

Решение:

Производная функции f равна нулю в точках максимума и минимума функции f(x). Таких точек на графике 5.

Ответ: 5.

Задача 2. На рисунке изображен график функции y= f) — производной функции y=f(x). Сколько точек максимума имеет функция y=f(x) на отрезке  [-1; 5]? В ответе запишите это число.

Решение:

Обратите внимание, что на этом рисунке изображен не график функции, а график ее производной.

В вариантах ЕГЭ по математике таких задач много. Пользуясь графиком производной, надо ответить на вопрос о поведении функции.

В точке максимума функции производная равна нулю и меняет знак с «плюса» на «минус». Такая точка на отрезке [-1; 5] на графике одна.

Ответ: 1.

Задача 3. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.

Решение:

Вспомним определение.

Производная функции в точке равна тангенсу угла наклона касательной, проведенной к графику функции в этой точке (то есть угловому коэффициенту касательной).

Это геометрический смысл производной.

f

В точке x_0 функция y = f(x) убывает. Касательная, проведенная к ее графику в этой точке, образует тупой угол beta с положительным направлением оси Х. Найдем тангенс острого угла alpha , смежного с углом beta .

alpha +beta =180{}^circ.

tgbeta =-tgalpha = -0,5.

Ответ: -0,5.

Задача 4. На рисунке изображен график производной функции f(x), определенной на отрезке [-3; 7]. В какой точке отрезка [1; 5] f(x) принимает наименьшее значение?

Решение:

На рисунке изображен график производной. Если функция возрастает — ее производная положительна. Если функция убывает — ее производная отрицательна. В точке минимума производная равна нулю и меняет знак с «минуса» на «плюс».

На рисунке есть такая точка, и это x = 1,5.

Слева от этой точки, на отрезке [1; 1,5] производная отрицательна, и функция убывает. Справа от этой точки, на интервале [1,5; 5), производная положительна, и функция возрастает.

Значит, x=1,5 — точка минимума функции f(x).

Поэтому и свое наименьшее значение функция y = f(x) принимает в точке 1,5.

Ответ: 1,5.

Задача 5. На рисунке изображен график {y=f} — производной функции y = f(x). В какой точке отрезка [1; 5] функция y = f(x) принимает наименьшее значение?

Решение:

На рисунке изображен график производной. Если функция возрастает — ее производная положительна. Если функция убывает — ее производная отрицательна. В точке минимума производная равна нулю и меняет знак с «минуса» на «плюс».

На рисунке есть такая точка, и это x = 3.

Слева от этой точки производная отрицательна, и функция убывает. Справа от точки x = 3 производная положительна, и функция возрастает.

Значит, x=3 — точка минимума функции f(x).

Кстати, вид графика функции f(x) определить нетрудно. Это квадратичная парабола с ветвями вверх.

Ответ: 3.

Задача 6. На рисунке изображен график {y=f} производной непрерывной функции y=f(x). В какой точке отрезка [-4; - 1] функция y=f(x) принимает наибольшее значение?

Решение:

На отрезке left[-4;1right] расположена точка x=-2,5, в которой производная равна нулю и меняет знак с «+» на «-».

Это значит, что x=-2,5 — точка максимума функции f(x) на отрезке left[-4;1right] и наибольшее значение функция f(x) принимает именно в этой точке.

Ответ: — 2,5.

Задача 7. На рисунке изображен график производной функции y=f(x) определенной на интервале (-3;7). В какой точке отрезка [-2; 4] функция y=f(x) принимает наименьшее значение?

Решение:

Точка минимума функции f(x) — это x = 0. В этой точке производная равна 0 и меняет знак с «минуса» на «плюс».

Слева от точки 0 производная отрицательна, функция убывает. Справа от этой точки производная положительна, функция возрастает.

Наименьшее значение на отрезке достигается при x = 0.

Ответ: 0.

Задача 8. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.

Решение:

Производная функции f(x) в точке x_0 равна тангенсу угла наклона касательной, проведенной к графику функции f(x) в этой точке.

f

y=kx+b — касательная к f(x).

В точке x_0 производная отрицательная, f т.к. функция f(x) — убывает в этой точке.

alpha — угол, который образует касательная с положительным направлением оси Х.

Угол alpha — тупой, а смежный с ним угол varphi — острый.

tgalpha =-tgvarphi =-displaystyle frac{3}{8}=-0,375.

Ответ: -0,375.

Задача 9. На рисунке изображен график непрерывной функции f(x) и касательные CD и MN, проведенные к ее графику в точках А и В. Найдите отношение значений производной функции f(x) в точках А и В.

Решение:

Найдём значения производных в точках А и В с помощью графика.

f где alpha — угол наклона касательной к графику функции в точке с абсциссой x_0.

Для точки А: f

Для точки В: f

Отношение производных: f

Ответ: 0,15.

Условия касания

Пусть прямая y=kx+b касается графика функции y=f(x) в точке x_0. Тогда для точки x_0 выполняются условия касания:

left{ begin{array}{c}f(x)=kx+b \f

Первое уравнение показывает, что значения функций y=f(x) и y=kx+b в точке x_0 равны друг другу. Это верно, поскольку эта точка лежит и на одном, и на другом графике.

Второе условие показывает, что производная функции f(x) в точке x_0 равна угловому коэффициенту касательной, то есть k.

Задача 10. Прямая y=7x+b касается графика функции f(x)=2x^3-x^2+3x-4, причем абсцисса точки касания положительна. Найдите b.

Решение:

Запишем условие касания:

left{ begin{array}{c}f(x)=kx+b \f

left{ begin{array}{c}2x^3-x^2+3x-4=7x+b \6x^2-2x+3=7 end{array}right. .

Начнем со второго уравнения:

6x^2-2x-4=0;

D=b^2-4ac=4+4cdot 6cdot 4=4cdot 25={10}^2;

x_{1,2}=displaystyle frac{-bpm sqrt{D}}{2a}=displaystyle frac{2pm 10}{12};

x_1=1;  x_2=-displaystyle frac{2}{3}.

Т.к. x_0textgreater 0, то x_0=1.

Найдем b, подставив x_0 в первое уравнение:

2x^3-x^2+3x-4=7x+b, отсюда

b=-7.

Ответ: -7.

Условия касания встречаются нам не только в заданиях 1 части ЕГЭ по математике, но и в задачах с параметрами. Более того, это один из приемов решения уравнений и неравенств с параметрами.

Физический смысл производной

Мы узнали, что такое геометрический смысл производной. Научились находить производную с помощью графика функции и решать задачи ЕГЭ. Производная помогает нам исследовать функции, находить их точки максимума и минимума, строить графики функций.

И оказывается, что с производной вы познакомились намного раньше — в школьном курсе физики. Вы уже пользовались этим математическим понятием, но не называли его словом «производная».

Вспомним тему «Кинематика» в физике. Это раздел физики, описывающий механическое движение. Величины, которыми описывается движение какого-либо тела, — это скорость v, время t, координата х, если тело движется вдоль прямой. Или координаты x и y, если оно движется по плоскости.

Вспомним формулу для равномерного прямолинейного движения: x = v cdot t, где x — координата.

Пусть 3 материальных точки — например, три автомобиля — одновременно выезжают с постоянными скоростями из точки А и едут по прямолинейному шоссе. На графике показано, как меняется их координата x с течением времени. У какого из автомобилей скорость больше?

Очевидно, у третьего. Считая, что x = vt, для первого автомобиля найдем v_1 = 20 км/ч. Возможно, это машина, которая поливает или чистит дорогу, и поэтому так медленно едет. Для второго автомобиля v_2 = 40 км/ч, для третьего v_3 = 75 км/ч.

Но если пройденный путь, то есть изменение координаты тела, мы разделим на время, то найдем тангенс угла наклона для каждой из этих прямых. Так и есть.

Скорость тела — это производная от его координаты по времени.

А теперь пусть тело, например, автомобиль, движется вдоль оси x, причем его скорость не является постоянной. Зависимость его координаты от времени x(t) показана на графике.

Возьмем на графике точку, соответствующую моменту времени t_0, и проведем в этой точке касательную к графику функции.

Тангенс угла наклона этой касательной численно равен мгновенной скорости тела в момент t_0.

v_{x }(t_0) = tg alpha .

Мы получили, что мгновенная скорость — это производная от координаты по времени.

Это физический смысл производной.

Но не только скорость в физике является производной от другой физической величины, координаты.

Ускорение — это производная от скорости по времени. Сила тока — производная от заряда по времени.

Изучая курс физики в школе и в вузе, вы увидите множество уравнений, связывающих одни физические величины с производными других физических величин. Такие уравнения называются дифференциальными. А само действие взятия производной называется дифференцированием.

Вот задача из вариантов ЕГЭ по математике, где используется физический смысл производной.

Задача 11. Материальная точка M начинает движение из точки A и движется по прямой на протяжении 12 секунд. График показывает, как менялось расстояние от точки A до точки M со временем. На оси абсцисс откладывается время t в секундах, на оси ординат — расстояние s.

Определите, сколько раз за время движения скорость точки M обращалась в ноль (начало и конец движения не учитывайте).

Решение:

Производная — это скорость изменения функции. Мгновенная скорость движущегося тела (материальной точки) является производной от его координаты по времени. Это физический смысл производной.

Найдем на графике s(t) точки, в которых производная функции s(t) равна нулю. Таких точек 6. Это точки максимума и минимума функции s(t).

Ответ: 6.

Изучая высшую математику в вузе, вы узнаете еще одно определение производной.

Производной функции f(x) в точке x_0 называется предел отношения приращения функции к приращению аргумента при приращении аргумента, стремящемся к нулю.

Это определение есть в вашем школьном учебнике алгебры. Но намного важнее не механически его запомнить, а понять его смысл. Первые шаги к этому мы сделали, определив производную как скорость изменения функции. Мы также узнали, что такое геометрический смысл производной и физический смысл производной.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Производная функции. Геометрический смысл производной» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

15 марта 2011

В задаче 6 дается график функции или производной, по которому требуется определить одну из следующих величин:

  1. Значение производной в некоторой точке x0,
  2. Точки максимума или минимума (точки экстремума),
  3. Интервалы возрастания и убывания функции (интервалы монотонности).

Функции и производные, представленные в этой задаче, всегда непрерывны, что значительно упрощает решение. Не смотря на то, что задача относится к разделу математического анализа, она вполне по силам даже самым слабым ученикам, поскольку никаких глубоких теоретических познаний здесь не требуется.

Для нахождения значения производной, точек экстремума и интервалов монотонности существуют простые и универсальные алгоритмы — все они будут рассмотрены ниже.

Внимательно читайте условие задачи B9, чтобы не допускать глупых ошибок: иногда попадаются довольно объемные тексты, но важных условий, которые влияют на ход решения, там немного.

Вычисление значения производной. Метод двух точек

Если в задаче дан график функции f(x), касательная к этому графику в некоторой точке x0, и требуется найти значение производной в этой точке, применяется следующий алгоритм:

  1. Найти на графике касательной две «адекватные» точки: их координаты должны быть целочисленными. Обозначим эти точки A (x1; y1) и B (x2; y2). Правильно выписывайте координаты — это ключевой момент решения, и любая ошибка здесь приводит к неправильному ответу.
  2. Зная координаты, легко вычислить приращение аргумента Δx = x2 − x1 и приращение функции Δy = y2 − y1.
  3. Наконец, находим значение производной D = Δy/Δx. Иными словами, надо разделить приращение функции на приращение аргумента — и это будет ответ.

Еще раз отметим: точки A и B надо искать именно на касательной, а не на графике функции f(x), как это часто случается. Касательная обязательно будет содержать хотя бы две таких точки — иначе задача составлена некорректно.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

Нахождение производной по графику касательной - функция возрастает

Рассмотрим точки A (−3; 2) и B (−1; 6) и найдем приращения:
Δx = x2 − x1 = −1 − (−3) = 2; Δy = y2 − y1 = 6 − 2 = 4.

Найдем значение производной: D = Δy/Δx = 4/2 = 2.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

Нахождение производной по графику касательной - функция убывает

Рассмотрим точки A (0; 3) и B (3; 0), найдем приращения:
Δx = x2 − x1 = 3 − 0 = 3; Δy = y2 − y1 = 0 − 3 = −3.

Теперь находим значение производной: D = Δy/Δx = −3/3 = −1.

Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

Нахождение производной по графику касательной в точках экстремума

Рассмотрим точки A (0; 2) и B (5; 2) и найдем приращения:
Δx = x2 − x1 = 5 − 0 = 5; Δy = y2 − y1 = 2 − 2 = 0.

Осталось найти значение производной: D = Δy/Δx = 0/5 = 0.

Из последнего примера можно сформулировать правило: если касательная параллельна оси OX, производная функции в точке касания равна нулю. В этом случае даже не надо ничего считать — достаточно взглянуть на график.

Вычисление точек максимума и минимума

Иногда вместо графика функции в задаче B9 дается график производной и требуется найти точку максимума или минимума функции. При таком раскладе метод двух точек бесполезен, но существует другой, еще более простой алгоритм. Для начала определимся с терминологией:

  1. Точка x0 называется точкой максимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x0) ≥ f(x).
  2. Точка x0 называется точкой минимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x0) ≤ f(x).

Для того чтобы найти точки максимума и минимума по графику производной, достаточно выполнить следующие шаги:

  1. Перечертить график производной, убрав всю лишнюю информацию. Как показывает практика, лишние данные только мешают решению. Поэтому отмечаем на координатной оси нули производной — и все.
  2. Выяснить знаки производной на промежутках между нулями. Если для некоторой точки x0 известно, что f’(x0) ≠ 0, то возможны лишь два варианта: f’(x0) ≥ 0 или f’(x0) ≤ 0. Знак производной легко определить по исходному чертежу: если график производной лежит выше оси OX, значит f’(x) ≥ 0. И наоборот, если график производной проходит под осью OX, то f’(x) ≤ 0.
  3. Снова проверяем нули и знаки производной. Там, где знак меняется с минуса на плюс, находится точка минимума. И наоборот, если знак производной меняется с плюса на минус, это точка максимума. Отсчет всегда ведется слева направо.

Эта схема работает только для непрерывных функций — других в задаче B9 не встречается.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−5; 5]. Найдите точку минимума функции f(x) на этом отрезке.

Нахождение точки минимума по графику производной

Избавимся от лишней информации — оставим только границы [−5; 5] и нули производной x = −3 и x = 2,5. Также отметим знаки:

Нахождение точки минимума по графику производной - без лишней информации

Очевидно, в точке x = −3 знак производной меняется с минуса на плюс. Это и есть точка минимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7]. Найдите точку максимума функции f(x) на этом отрезке.

Нахождение точки максимума по графику производной

Перечертим график, оставив на координатной оси только границы [−3; 7] и нули производной x = −1,7 и x = 5. Отметим на полученном графике знаки производной. Имеем:

Нахождение точки максимума по графику производной - без лишней информации

Очевидно, в точке x = 5 знак производной меняется с плюса на минус — это точка максимума.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−6; 4]. Найдите количество точек максимума функции f(x), принадлежащих отрезку [−4; 3].

Подсчет точек максимума на графике производной

Из условия задачи следует, что достаточно рассмотреть только часть графика, ограниченную отрезком [−4; 3]. Поэтому строим новый график, на котором отмечаем только границы [−4; 3] и нули производной внутри него. А именно, точки x = −3,5 и x = 2. Получаем:

Подсчет точек максимума на графике производной - без лишней информации

На этом графике есть лишь одна точка максимума x = 2. Именно в ней знак производной меняется с плюса на минус.

Небольшое замечание по поводу точек с нецелочисленными координатами. Например, в последней задаче была рассмотрена точка x = −3,5, но с тем же успехом можно взять x = −3,4. Если задача составлена корректно, такие изменения не должны влиять на ответ, поскольку точки «без определенного места жительства» не принимают непосредственного участия в решении задачи. Разумеется, с целочисленными точками такой фокус не пройдет.

Нахождение интервалов возрастания и убывания функции

В такой задаче, подобно точкам максимума и минимума, предлагается по графику производной отыскать области, в которых сама функция возрастает или убывает. Для начала определим, что такое возрастание и убывание:

  1. Функция f(x) называется возрастающей на отрезке [a; b] если для любых двух точек x1 и x2 из этого отрезка верно утверждение: x1 ≤ x2 ⇒ f(x1) ≤ f(x2). Другими словами, чем больше значение аргумента, тем больше значение функции.
  2. Функция f(x) называется убывающей на отрезке [a; b] если для любых двух точек x1 и x2 из этого отрезка верно утверждение: x1 ≤ x2 ⇒ f(x1) ≥ f(x2). Т.е. большему значению аргумента соответствует меньшее значение функции.

Сформулируем достаточные условия возрастания и убывания:

  1. Для того чтобы непрерывная функция f(x) возрастала на отрезке [a; b], достаточно, чтобы ее производная внутри отрезка была положительна, т.е. f’(x) ≥ 0.
  2. Для того чтобы непрерывная функция f(x) убывала на отрезке [a; b], достаточно, чтобы ее производная внутри отрезка была отрицательна, т.е. f’(x) ≤ 0.

Примем эти утверждения без доказательств. Таким образом, получаем схему для нахождения интервалов возрастания и убывания, которая во многом похожа на алгоритм вычисления точек экстремума:

  1. Убрать всю лишнюю информацию. На исходном графике производной нас интересуют в первую очередь нули функции, поэтому оставим только их.
  2. Отметить знаки производной на интервалах между нулями. Там, где f’(x) ≥ 0, функция возрастает, а где f’(x) ≤ 0 — убывает. Если в задаче установлены ограничения на переменную x, дополнительно отмечаем их на новом графике.
  3. Теперь, когда нам известно поведение функции и ограничения, остается вычислить требуемую в задаче величину.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7,5]. Найдите промежутки убывания функции f(x). В ответе укажите сумму целых чисел, входящих в эти промежутки.

Нахождение интервалов убывания функции

Как обычно, перечертим график и отметим границы [−3; 7,5], а также нули производной x = −1,5 и x = 5,3. Затем отметим знаки производной. Имеем:

Нахождение интервалов убывания функции - без лишней информации

Поскольку на интервале (− 1,5) производная отрицательна, это и есть интервал убывания функции. Осталось просуммировать все целые числа, которые находятся внутри этого интервала:
−1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.

Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−10; 4]. Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

Нахождение интервалов возрастания функции

Избавимся от лишней информации. Оставим только границы [−10; 4] и нули производной, которых в этот раз оказалось четыре: x = −8, x = −6, x = −3 и x = 2. Отметим знаки производной и получим следующую картинку:

Нахождение интервалов возрастания функции - без лишней информации

Нас интересуют промежутки возрастания функции, т.е. такие, где f’(x) ≥ 0. На графике таких промежутков два: (−8; −6) и (−3; 2). Вычислим их длины:
l1 = − 6 − (−8) = 2;
l2 = 2 − (−3) = 5.

Поскольку требуется найти длину наибольшего из интервалов, в ответ записываем значение l2 = 5.

Смотрите также:

  1. ЕГЭ 2022, задание 6. Касательная к графику функции
  2. ЕГЭ 2022, задание 6. Касательная к графику функции
  3. Схема Бернулли. Примеры решения задач
  4. Решение задач B6: №362—377
  5. Четырехугольная пирамида: как найти координаты вершин
  6. Нестандартная задача B2: студенты, гонорары и налоги

Производная положительна только тогда, когда функция возрастает. То есть, нам необходимо найти точки, в которых функция растет. Смотрим на график нашей функции: функция растет на промежутках: от (x=-7) до (x=0) и от (x = 6) до (x=12).

Так как по условию нам нужны только ЦЕЛЫЕ точки, в которых производная положительна, то это будут: (x=—6); (x=-5), (x=-4), (x=-3), (x=-2), (x=-1), (x=7), (x=8), (x=9), (x=10), (x=11). Всего точек получилось (11). Я отметил их зеленым цветом.

Обратите внимание, что точки (x=-7), (x=0), (x=6), (x=12) мы не считаем, так как в этих точках у нас будут минимумы и максимумы функции, а в них производная равна нулю, то есть не положительна.

Ответ: (11.)

Пример 2
На рисунке 6 изображен график функции, определенной на промежутке ((-10;12)). Найдите количество точек, в которых производная функции равна нулю.


Download Article

Find the derivative with or without an equation


Download Article

  • Estimate without an Equation
  • |

  • Finding the Derivative Equation
  • |

  • Finding the Tangent Slope at a Single Point
  • |

  • Tips

Estimate the derivative at a point by drawing a tangent line and calculating its slope. If you have the function, you can find the equation for a derivative by using the formal definition of a derivative. This wikiHow guide will show you how to estimate or find the derivative from a graph and get the equation for the tangent slope at a specific point.

Things You Should Know

  • To estimate the tangent slope at a point, draw a tangent line at the point. Then, choose two points on the tangent line.
  • Use the formula slope = (y2 — y1) / (x2 — x1) to find the tangent slope.
  • To find the derivative, use the equation f’(x) = [f(x + dx) – f(x)] / dx, replacing f(x + dx) and f(x) with your given function.
  • Simplify the equation and solve for dx→0. Replace dx in the equation with 0. This will give you the final derivative equation.
  1. Image titled Find the Derivative from a Graph Step 1

    1

    Draw a tangent line. Use a straightedge to draw a tangent line at the point on the graph that you want to estimate the derivative for. The derivative describes how the slope of a curve changes as x, the horizontal value, changes. Drawing a tangent line allows you to estimate the derivative (the tangent slope) at a given point.

    • A tangent line is a straight line that touches a curve at a single point.
    • The tangent slope is the slope of the tangent line.
    • Make sure your curve and tangent line are drawn on a graph with grid lines. This will make it easier to calculate the tangent slope.
    • Since this is a hand-drawn method, this calculation will only be an estimate, not the exact derivative at a point.
  2. Image titled Find the Derivative from a Graph Step 2

    2

    Find the slope of the tangent line. Choose two points that the tangent line passes through. Use the grid to find two simple points, preferably integers. The equation to find the slope with two points is

    • slope = (y2 — y1) / (x2 — x1)
    • using the points (x1, y1) and (x2, y2)
      • for example, if you have the points (1, 3) and (3, 7),
      • slope = (7 — 3) / (3 — 1)
      • slope = 4 / 2
      • slope = 2
  3. Advertisement

  1. Image titled Find the Derivative from a Graph Step 3

    1

    Review the formal definition of a derivative. The derivative can be defined as the equation:[1]

    • (df / dx)(x) = [f(x + dx) – f(x)] / dx
    • which can be written as f’(x) = [f(x + dx) – f(x)] / dx
    • where
      • f(x) is the function f of x (sometimes written as “y”), i.e. how the value of y changes as the value of x changes
      • f’(x) is the derivative of f(x), as indicated by the prime symbol (’)
      • dx is a small change in x that approaches 0
      • f(x + dx) is the value of y at the horizontal value x + dx
  2. Image titled Find the Derivative from a Graph Step 4

    2

  3. Image titled Find the Derivative from a Graph Step 5

    3

    Write the formal definition using the given function. Replace the terms f(x + dx) and f(x) with your given function. For example, if you were given f(x) = x^2, you would write the formal definition as

    • f’(x) = [(x + dx)^2 – (x)^2] / dx
  4. Image titled Find the Derivative from a Graph Step 6

    4

    Simplify the equation. For simple functions, you can simplify the function algebraically. Here’s a step by step example for f’(x) = [(x + dx)^2 – (x)^2] / dx

    • Our starting equation:
      • f’(x) = [(x + dx)^2 – (x)^2] / dx
    • Writing out the expanded polynomial term:
      • f’(x) = [x^2 + 2xdx + dx^2 – x^2] / dx
    • The terms x^2 and – x^2 equal zero, resulting in:
      • f’(x) = [2xdx + dx^2] / dx
    • Both terms in the numerator have a dx, which can cancel out with the dx in the denominator, giving the simplified equation:
      • f’(x) = 2x + dx
  5. Image titled Find the Derivative from a Graph Step 7

    5

    Resolve the equation for dx→0. Replace every instance of dx with a 0. For our example, this would yield the equation:

    • f’(x) = 2x + 0
    • which simplifies to:
      • f’(x) = 2x
    • So, the derivative of f(x) = x^2 is f’(x) = 2x
  6. Advertisement

  1. Image titled Find the Derivative from a Graph Step 8

    1

    Find the derivative of the curve. Follow the previous method, Finding the Derivative Equation, to get the derivative equation for the given function f(x).

  2. Image titled Find the Derivative from a Graph Step 9

    2

    Insert the x value of the point. Replace x in the derivative function f’(x). Using our previous example:

    • Find the slope of the tangent line at x = 5 for the function f(x) = x^2.
      • f’(x) = 2x
      • f’(5) = 2(5)
      • f’(5) = 10
    • The slope of the tangent line at x = 5 is 10.
  3. Advertisement

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

References

About This Article

Thanks to all authors for creating a page that has been read 7,544 times.

Did this article help you?

Продолжение задач на производные для первой части ЕГЭ.

Геометрический смысл производной и ее применения для исследования функций.


Первая часть о производных.

Геометрический смысл производной

Про геометрический смысл написано много теории. Не буду вдаваться в вывод приращения функции, напомню основное для выполнения заданий:

Производная в точке x равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке, то есть это тангенс угла наклона к оси Х.

Возьмем сразу задание из ЕГЭ и начнем в нем разбираться:

Задание №1. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Кто очень торопится и не хочет разбираться в объяснениях: стройте до любого такого треугольника (как показано ниже) и делите стоячую сторону (вертикальную) на лежащую (горизонтальную) и будет вам счастье, если про знак не забудите (если прямая убывает(→↓), то ответ должен быть с минусом, если прямая возрастает(→↑), то ответ должен быть положительный!)

Найти нужно угол между касательной и осью Х, назовем его α: проведем параллельную оси Х прямую в любом месте через касательную к графику, получим тот же угол.

Лучше не брать точку х0, т.к. понадобится большая лупа для определения точных координат.

Взяв любой прямоугольный треугольник (на рисунке предложено 3 варианта), найдем tgα (углы, то равны, как соответственные), т.е. получим производную функции f(x) в точке x0. Почему же так?

Если мы проведем касательные в других точках x2, x1 и т.д. касательные будут другие.

Вернемся к 7 классу, чтобы построить прямую!

Уравнение прямой задается уравнением y = kx + b, где

 наклон относительно оси Х.

 расстояние между точкой пересечения с осью Y и началом координат.

Производная прямой, всегда одна и та же: y’ = k.

В какой бы точке на прямой мы не взяли производную, она будет неизменна.

Поэтому, осталось только найти tgα (как было сказано выше: делим стоячую сторону на лежачую). Делим противолежащий катет на прилежащий, получаем, что k = 0,5. Однако, если график убывает, коэффициент отрицательный: k = −0,5. 

Советую себя проверять вторым способом: 
По двум точкам можно задать прямую. Найдем координаты двух любых точек. Например, (-2;-2) и (2;-4):

 Подставим в уравнение y = kx + b вместо y и х координаты точек:

−2 = −2k + b

−4 = 2k + b

Решив эту систему, получим b = −3, k = −0,5

Вывод: Второй способ дольше, но в нем вы не забудете про знак.

Ответ: 0,5

Задание №2. На рисунке изображён график производной функции f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, …, x8. Сколько из этих точек лежит на промежутках возрастания функции f(x) ?


Если график функции убывает — производная отрицательна (верно и наоборот).

Если график функции возрастает — производная положительна (верно и наоборот).

Эти две фразы помогут вам решить большую часть задач.

Внимательно смотрите, рисунок производной вам дан или функции, а дальше выбирайте одну из двух фраз.

Построим схематично график функции. Т.к. нам дан график производной, то там, где она отрицательна, график функции убывает, где положительна — возрастает!

Получается, что 3 точки лежат на участках возрастания: x4; x5; x6.

Ответ: 3

Задание №3. Функция f(x) определена на промежутке (-6; 4).  На рисунке изображен график ее производной. Найдите абсциссу точки, в которой функция принимает наибольшее значение.

Советую всегда строить, как идет график функции, такими стрелочками или схематично со знаками (как в №4 и №5):

Очевидно, если график возрастает до −2, то максимальная точка и есть −2.

Ответ: −2

Задача №4. На рисунке изображён график функции f(x) и двенадцать точек на оси абсцисс: x1, x2, …, x12. В скольких из этих точек производная функции отрицательна?

Задача обратная, дан график функции, нужно схематично построить, как будет выглядеть график производной функции, и посчитать, сколько точек будет лежать в отрицательном диапазоне.

Положительные:  x1, x6, x7, x12.

Отрицательные: x2, x3, x4, x5, x9, x10, x11.

Ноль: x8.

Ответ: 7

Еще один вид заданий, когда спрашивается про какие-то страшные «экстремумы»? Что это такое вам найти не составит труда, я же поясню для графиков.

Задача №5. На рисунке изображен график производной функции f(x), определенной на интервале (-16; 6). Найдите количество точек экстремума функции f(x) на отрезке [-11; 5].

Отметим промежуток от -11 до 5!

Обратим свои светлые очи на табличку: дан график производной функции => тогда экстремумы это точки пересечения с осью X.

Ответ: 3

Задача №6. На рисунке изображен график производной функции f(x), определенной на интервале (-13; 9). Найдите количество точек максимума функции f(x) на отрезке [-12; 5]. 

Отметим промежуток от -12 до 5!

Можно одним глазом взглянуть в табличку, точка максимума — это экстремум, такой, что до него производная положительна (функция возрастает), а после него производная отрицательна (функция убывает). Такие точки обведены в кружочек.

Стрелочками показано, как ведет себя график функции

Ответ: 3

Задача №7. На рисунке изображен график функции f(x),определенной на интервале (-7; 5). Найдите количество точек, в которых производная функции f(x) равна 0.

Можно посмотреть на выше приведенную табличку (производная равна нулю, значит это точки экстремума). А в даной задаче дан график функции, значит требуется найти количество точек перегиба!

А можно, как обычностроим схематический график производной. 

Производная равна нулю, когда график функций меняет свое направление (с возрастания на убывание и наоборот)

Ответ: 8

Задача №8. На рисунке изображен график производной функции f(x), определенной на интервале (-2; 10). Найдите промежутки возрастания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.

Построим схематично график функции:

Там, где он возрастает, получаем 4 целые точки: 4 + 5 + 6 + 7 = 22.

Ответ: 22

Задача №9. На рисунке изображен график производной функции f(x), определенной на интервале (-6; 6).  Найдите количество точек f(x), в которых касательная к графику функции параллельна прямой y = 2x + 13  или совпадает с ней.

Нам дан график производной! Значит, и нашу касательную нужно «перевести» в производную. 

Производная касательной: y’ = 2.

А теперь построим обе производные:

Касательные пересекаются в трех точках, значит, наш ответ  3.

Ответ: 3

Задача №10. На рисунке изображен график функции f(x), и отмечены точки -2, 1, 2, 3. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.


Задание чем-то похоже на первое: чтобы найти значение производной, нужно построить касательную к этому графику в точке и найти коэффициент k.

Если прямая убывает, k < 0.

Если прямая возрастает, k > 0.

Подумаем, как значение коэффициента отразится на наклоне прямой:

При k = 1 или k = 1 график будет посередине между осями Х и У.

Чем ближе прямая к оси Х, тем ближе коэффициент k нулю.

Чем ближе прямая к оси Y, тем ближе коэффициент k к бесконечности.

В точке -2 и 1 k<0, однако в точке 1 прямая убывает «быстрее» больше похоже на ось Y => именно там и будет наименьшее значение производной

Ответ: 1

Задание №11. Прямая является касательной y = 3x + 9 к графику функции y = x³ + x² + 2x + 8. Найдите абсциссу точки касания. 

Прямая будет касательной к графику, когда графики имеют общую точку, как и их производные. Приравняем уравнения графиков и их производные:

Решив второе уравнение, получаем 2 точки. Чтобы проверить, какая из них подходит, подставляем в первое уравнение каждый из иксов. Подойдет только один.

Кубическое уравнение совсем решать не хочется, а квадратное за милую душу.

Вот только, что записывать в ответ, если получится два «нормальных» ответа?

При подстановке икса (х) в первоначальные графики y = 3x + 9 и y = x³ + x² + 2x + 8  должен получиться один и тот же Y

y= 3×1+9=12

y= 1³+1²+2×1+8=12

Верно! Значит x=1 и будет ответом

Ответ: 1

Задание №12. Прямая y = − 5x − 6 является касательной к графику функции ax² + 5x − 5. Найдите a.

Аналогично приравняем функции и их проивзодные:

Решим эту систему относительно переменных a и x:

Ответ: 25

Задание с производными считается одним из самых сложных в первой части ЕГЭ, однако, при небольшой доли внимательности и понимания вопроса у вас все получится, и вы поднимете процент выполнения этого задания!

Тест для закрепления

Будь в курсе новых статеек, видео и легкого математического юмора.

Большинство заданий взято с сайтов ФИПИ и РЕШУ ЕГЭ. 

Понравилась статья? Поделить с друзьями:
  • Как найти концентрацию веществ формула
  • Как составить претензию на возврат долга по расписке образец
  • Как найти анекдоты в ютубе
  • Как найти силу давления ботинка
  • Как найти obd разъем