Сложение и вычитание дробей
30 июля 2011
Дроби — это обычные числа, их тоже можно складывать и вычитать. Но из-за того, что в них присутствует знаменатель, здесь требуются более сложные правила, нежели для целых чисел.
Рассмотрим самый простой случай, когда есть две дроби с одинаковыми знаменателями. Тогда:
Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить без изменений.
Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель опять же оставить без изменений.
Задача. Найдите значение выражения:
Внутри каждого выражения знаменатели дробей равны. По определению сложения и вычитания дробей получаем:
Как видите, ничего сложного: просто складываем или вычитаем числители — и все.
Но даже в таких простых действиях люди умудряются допускать ошибки. Чаще всего забывают, что знаменатель не меняется. Например, при сложении их тоже начинают складывать, а это в корне неправильно.
Избавиться от вредной привычки складывать знаменатели достаточно просто. Попробуйте сделать то же самое при вычитании. В результате в знаменателе получится ноль, и дробь (внезапно!) потеряет смысл.
Поэтому запомните раз и навсегда: при сложении и вычитании знаменатель не меняется!
Также многие допускают ошибки при сложении нескольких отрицательных дробей. Возникает путаница со знаками: где ставить минус, а где — плюс.
Эта проблема тоже решается очень просто. Достаточно вспомнить, что минус перед знаком дроби всегда можно перенести в числитель — и наоборот. Ну и конечно, не забывайте два простых правила:
- Плюс на минус дает минус;
- Минус на минус дает плюс.
Разберем все это на конкретных примерах:
Задача. Найдите значение выражения:
В первом случае все просто, а во втором внесем минусы в числители дробей:
Что делать, если знаменатели разные
Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.
Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю», поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:
Задача. Найдите значение выражения:
В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.
Что делать, если у дроби есть целая часть
Могу вас обрадовать: разные знаменатели у дробей — это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.
Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:
- Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
- Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
- Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.
Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь». Если не помните — обязательно повторите. Примеры:
Задача. Найдите значение выражения:
Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:
Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.
Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.
Перечитайте это предложение еще раз, взгляните на примеры — и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.
Резюме: общая схема вычислений
В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:
- Если в одной или нескольких дробях выделена целая часть, переведите эти дроби в неправильные;
- Приведите все дроби к общему знаменателю любым удобным для вас способом (если, конечно, этого не сделали составители задач);
- Сложите или вычтите полученные числа по правилам сложения и вычитания дробей с одинаковыми знаменателями;
- Если возможно, сократите полученный результат. Если дробь оказалась неправильной, выделите целую часть.
Помните, что выделять целую часть лучше в самом конце задачи, непосредственно перед записью ответа.
Смотрите также:
- Тест к уроку «Сложение и вычитание дробей» (легкий)
- Приведение дробей к общему знаменателю
- Тест к уроку «Десятичные дроби» (1 вариант)
- Метод узлов в задаче B5
- Задача B5: площадь кольца
- Сфера, вписанная в куб
При вычитании дробей, как и при сложении, могут встретиться несколько случаев.
Вычитание дробей с одинаковыми знаменателями
При вычитании дробей с одинаковыми знаменателями от числителя уменьшаемого (первой дроби) отнимают
числитель вычитаемого (второй дроби), а знаменатель оставляют прежним.
Пример.
Запомните!
Прежде чем записать конечный ответ, проверьте, нельзя ли сократить полученную дробь.
В буквенном виде правило вычитания дробей с одинаковыми знаменателями
записывают так:
Вычитание правильной дроби из единицы
Когда нужно вычесть из единицы правильную дробь, единицу представляют в виде
неправильной дроби, знаменатель которой, равен знаменателю вычитаемой дроби.
Пример.
Знаменатель вычитаемой дроби равен 7, значит, единицу представляют как неправильную
дробь
и вычитают по правилу вычитания дробей с одинаковыми знаменателями.
Вычитание правильной дроби из целого числа
Чтобы из целого числа вычесть правильную дробь нужно представить это натуральное число
в виде смешанного числа.
Для этого занимаем единицу в натуральном числе и представляем её в виде неправильной дроби,
знаменатель которой равен знаменателю вычитаемой дроби.
Пример.
В примере единицу мы заменили неправильной дробью
и вместо 3 записали смешанное
число и от дробной части отняли дробь.
Вычитание смешанных чисел
При вычитании смешанных чисел отдельно из целой части вычитают целую часть, а из дробной части
вычитают дробную часть.
При подобных расчётах могут встретиться разные случаи.
Первый случай вычитания смешанных чисел
У дробных частей одинаковые знаменатели и числитель дробной части
уменьшаемого (из чего вычитаем) больше или равен числителю дробной части вычитаемого
(что вычитаем).
Пример.
Второй случай вычитания смешанных чисел
У дробных частей разные знаменатели.
В этом случае вначале нужно
привести к общему знаменателю
дробные части, а затем
выполнить вычитание целой части из целой, а дробной из дробной.
Пример.
Третий случай вычитания смешанных чисел
Дробная часть уменьшаемого меньше дробной части вычитаемого.
Пример.
Так как у дробных частей разные знаменатели, то как и
во втором случае, вначале приведём обыкновенные дроби к общему знаменателю.
Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого.
3 < 14
Поэтому, вспомнив
вычитание правильной дроби из целого числа, займём единицу из целой части и представим
эту единицу в виде неправильной дроби с одинаковым знаменателем и числителем равным 18.
Сложим полученную неправильную дробь
и дробную часть
уменьшаемого и получим:
Все рассмотренные случаи можно описать с помощью правил вычитания
смешанных чисел.
- Привести дробные части уменьшаемого и вычитаемого к наименьшему общему знаменателю.
- Если дробная часть уменьшаемого меньше дробной части
вычитаемого, то занимаем у целой части уменьшаемого единицу. Эту единицу
превращаем в неправильную дробь с одинаковым числителем и знаменателем равными наименьшему общему знаменателю. - Прибавляем полученную неправильную дробь к дробной части уменьшаемого.
- Вычитаем из целой части целую, а из дробной — дробную.
- Проверяем, нельзя ли сократить и выделить целую часть в конечной дроби.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
13 ноября 2019 в 6:24
Валя Гутник
Профиль
Благодарили: 0
Сообщений: 7
Валя Гутник
Профиль
Благодарили: 0
Сообщений: 7
как вычитать дроби с разным знаменателем
−
0
Спасибо
Ответить
15 апреля 2020 в 13:34
Ответ для Валя Гутник
Саша Алекс
Профиль
Благодарили: 0
Сообщений: 1
Саша Алекс
Профиль
Благодарили: 0
Сообщений: 1
Хз
0
Спасибо
Ответить
18 марта 2019 в 18:37
Никита Рулькевич
Профиль
Благодарили: 0
Сообщений: 2
Никита Рулькевич
Профиль
Благодарили: 0
Сообщений: 2
0
Спасибо
Ответить
18 марта 2019 в 18:51
Ответ для Никита Рулькевич
Никита Рулькевич
Профиль
Благодарили: 0
Сообщений: 2
Никита Рулькевич
Профиль
Благодарили: 0
Сообщений: 2
11
0
Спасибо
Ответить
4 сентября 2015 в 12:08
Зарина-И-Владимир Вебер
Профиль
Благодарили: 0
Сообщений: 1
Зарина-И-Владимир Вебер
Профиль
Благодарили: 0
Сообщений: 1
?12
? 7
? ?
?я незнаю ответ помогите пожалуста
0
Спасибо
Ответить
2 сентября 2016 в 14:33
Ответ для Зарина-И-Владимир Вебер
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Евгений Колосов
Профиль
Благодарили: 12
Сообщений: 197
Сначала — действие в скобках. Переводим в дробь целую часть, приводим к общему знаменателю, производим действие, далее производим умножение.
= (
?) · = · = = == 2=2,5
0
Спасибо
Ответить
7 апреля 2015 в 13:14
Женечка Беляевская
Профиль
Благодарили: 0
Сообщений: 1
Женечка Беляевская
Профиль
Благодарили: 0
Сообщений: 1
вычитание дроби из целого числа 9-
0
Спасибо
Ответить
8 апреля 2015 в 0:39
Ответ для Женечка Беляевская
Алёна Гермес
Профиль
Благодарили: 0
Сообщений: 2
Алёна Гермес
Профиль
Благодарили: 0
Сообщений: 2
9-3/4 = 9/1-3/4 = 36/4-3/4 = 33/4 = 8
Целое число представляем в виде дроби, затем приводим к общему знаменателю, путем умножения первой дроби на знаменаетль второй и знаменателя первой на вторую дробь. Получаем неправельную дробь, и превращаем её в правильную, делим 33 на 4 и получаем 8 и остаток от деления 1.
0
Спасибо
Ответить
14 апреля 2015 в 17:00
Ответ для Женечка Беляевская
Asel Talantbekovna
Профиль
Благодарили: 0
Сообщений: 8
Asel Talantbekovna
Профиль
Благодарили: 0
Сообщений: 8
9- = 8 — =8 =8
0
Спасибо
Ответить
6 апреля 2015 в 14:02
Алексей Старков
Профиль
Благодарили: 0
Сообщений: 1
Алексей Старков
Профиль
Благодарили: 0
Сообщений: 1
(1 — 1/2): (1/2 — 1/3) =
0
Спасибо
Ответить
7 апреля 2015 в 3:34
Ответ для Алексей Старков
Алёна Гермес
Профиль
Благодарили: 0
Сообщений: 2
Алёна Гермес
Профиль
Благодарили: 0
Сообщений: 2
1) (1 — 1/2) = 1/1 — 1/2 = 2/2 — 1/2 = 1/2
Находим общий заменатель, перемножая первую дробь на знаменатель второй, и вторую на знаменатель первой.
2) (1/2 — 1/3) = 3/6 — 2/6 = 1/6
Находим общий знаменатель.
3) 1/2: 1/6 = 1/2 · 6/1 = 6/2 =3/1 = 3
Что бы разделить одну дробь на другую, нужно перевернуть вторую дробь и разделить её на первую. Затем следует сократить дробь.
0
Спасибо
Ответить
14 апреля 2015 в 17:08
Ответ для Алексей Старков
Asel Talantbekovna
Профиль
Благодарили: 0
Сообщений: 8
Asel Talantbekovna
Профиль
Благодарили: 0
Сообщений: 8
(1- ): ( — )
1)
— =
2)
=
3)
— = =
0
Спасибо
Ответить
14 апреля 2015 в 17:10
Ответ для Алексей Старков
Asel Talantbekovna
Профиль
Благодарили: 0
Сообщений: 8
Asel Talantbekovna
Профиль
Благодарили: 0
Сообщений: 8
последнее дествие исправлю!
: =
0
Спасибо
Ответить
9 апреля 2019 в 17:24
Ответ для Алексей Старков
Настя Бородина
Профиль
Благодарили: 0
Сообщений: 1
Настя Бородина
Профиль
Благодарили: 0
Сообщений: 1
самый понятный овет
0
Спасибо
Ответить
Перед тем как перейти к сложению дробей, вспомним теоретические основы. Итак, дробь — это форма записи числа:
где a — числитель, b — знаменатель.
Дробь называется правильной — если числитель меньше знаменателя (к примеру, 1/3), неправильной — если числитель больше знаменателя (например, 5/2).
Вычитание обыкновенных дробей
Вычитание дробей — это арифметическое действие, в результате которого получается новое число, содержащее разность заданных чисел.
Разберем на конкретных примерах: как находить разность дробей с одинаковыми и разными знаменателями, как из натурального числа вычесть дробь и наоборот, познакомимся с вычитанием смешанных дробей.
Вычитание дробей с одинаковыми знаменателями
Чтобы вычесть дроби с одинаковыми знаменателями нужно из числителя первой дроби вычесть числитель второй, а знаменатели оставить без изменения. В общем виде это будет выглядеть следующим образом:
Пример 1:
7 8
—
2 8
Решение:
7 8
—
2 8
=
7 — 2 8
=
5 8
Таким образом, чтобы вычесть дроби с одинаковыми знаменателями нужно найти разность их числителей, а знаменатель оставить без изменения.
Как вычитать дроби с разными знаменателями
В общем виде, вычитание дробей с разными знаменателями, выглядит следующим образом:
a b
—
c d
=
a ∙ m1 — c ∙ m2 e
где e — наименьший общий знаменатель (НОЗ — наименьшее число, которое делится без остатка и на b и на d), m1 и m2 — дополнительные множители (m1 = e : b, m2 = e : d).
Пример 3:
5 3
—
2 7
Решение:
5 3
—
2 7
=
5 ∙ 7 21
—
2 ∙ 3 21
=
35 21
—
6 21
=
35 — 6 21
=
29 21
=
1
8 21
Подробнее про нахождение НОЗ — смотрите тут.
Как из целого числа вычесть дробь?
Вычитание обыкновенной дроби из целого числа, сводится к представлению целого числа в виде дроби, в которой знаменатель будет единицей, а числитель самим числом, к примеру:
Дальнейшее вычисление происходит по стандартному алгоритму.
Как из обыкновенной дроби вычесть целое число?
Порядок действий, при вычитании целого числа из дробного, аналогичен, т.е. представляем целое число в виде дроби со знаменателем — 1 и находим разность, согласно представленным выше алгоритмам вычитания.
Как вычитать смешанные дроби?
Вычитание смешанных дробей сводится к переводу их к неправильному виду и дальнейшим действиям согласно вышеописанным алгоритмам. Перевод смешанного числа в неправильную дробь, в общем виде, выглядит следующим образом:
Пример 4:
3
2 4
—
3 5
Решение:
3
2 4
—
3 5
=
3 ∙ 4 + 2 4
—
3 5
=
14 4
—
3 5
=
14 ∙ 5 20
—
3 ∙ 4 20
=
70 20
—
12 20
=
70 — 12 20
=
58 20
=
29 10
=
2
9 10
Правила вычитания дробей
Резюмируя вышесказанное, выведем общий алгоритм вычитания дробей:
- Если дробь смешанная — приводим её к неправильному виду;
- Если дроби имеют одинаковые знаменатели — из числителя первой дроби вычитаем числитель второй;
- Если дроби имеют разные знаменатели — находим НОЗ и дополнительные множители, находим разность числителей;
- При необходимости сокращаем и приводим к неправильному виду.
Смотрите также:
- Смотрите также
- Калькуляторы
- Последние примеры
Калькулятор вычитания дробей
Оцените материал:
Загрузка…