Как найти значение заряда в точке

Цель урока: дать понятие напряжённости электрического поля и ее
определения в любой точке поля.

Задачи урока:

  • формирование понятия напряжённости электрического поля; дать понятие о
    линиях напряжённости и графическое представление электрического поля;
  • научить учащихся применять формулу E=kq/r2 в решении
    несложных задач на расчёт напряжённости.

Электрическое поле – это особая форма материи, о существовании которой можно
судить только по ее действию. Экспериментально доказано, что существуют два рода
зарядов, вокруг которых существуют электрические поля, характеризующиеся
силовыми линиями.

Графически изображая поле, следует помнить, что линии напряженности
электрического поля:

  1. нигде не пересекаются друг с другом;
  2. имеют начало на положительном заряде (или в бесконечности) и конец на
    отрицательном (или в бесконечности), т. е. являются незамкнутыми линиями;
  3. между зарядами нигде не прерываются.


Рис.1

Силовые линии положительного заряда:


Рис.2

Силовые линии отрицательного заряда:


Рис.3

Силовые линии одноименных взаимодействующих зарядов:


Рис.4

Силовые линии разноименных взаимодействующих зарядов:


Рис.5

Силовой характеристикой электрического поля является напряженность, которая
обозначается буквой Е и имеет единицы измерения
или
.
Напряженность является векторной величиной, так как определяется отношением силы
Кулона к величине единичного положительного заряда

В результате преобразования формулы закона Кулона и формулы напряженности
имеем зависимость напряженности поля от расстояния, на котором она определяется
относительно данного заряда

где: k – коэффициент пропорциональности, значение которого зависит от
выбора единиц электрического заряда.

В системе СИ
Н·м2/Кл2,

где ε0 – электрическая
постоянная, равная 8,85·10-12 Кл2/Н·м2;

q – электрический заряд (Кл);

r – расстояние от заряда до точки в которой определяется напряженность.

Направление вектора напряженности совпадает с направлением силы Кулона.

Электрическое поле, напряженность которого одинакова во всех точках
пространства, называется однородным. В ограниченной области пространства
электрическое поле можно считать приблизительно однородным, если напряженность
поля внутри этой области меняется незначительно.

Общая напряженность поля нескольких взаимодействующих зарядов будет равна
геометрической сумме векторов напряженности, в чем и заключается принцип
суперпозиции полей:

Рассмотрим несколько случаев определения напряженности.

1. Пусть взаимодействуют два разноименных заряда. Поместим точечный
положительный заряд между ними, тогда в данной точке будут действовать два
вектора напряженности, направленные в одну сторону:

Е31 – напряженность точечного заряда 3 со стороны заряда 1;

Е32 – напряженность точечного заряда 3 со стороны заряда 2.

Согласно принципу суперпозиции полей общая напряженность поля в данной точке
равна геометрической сумме векторов напряженности Е31 и Е32.

Напряженность в данной точке определяется по формуле:

Е = kq1/x2 + kq2/(r – x)2

где: r – расстояние между первым и вторым зарядом;

х – расстояние между первым и точечным зарядом.


Рис.6

2. Рассмотрим случай, когда необходимо найти напряженность в точке удаленной
на расстояние а от второго заряда. Если учесть, что поле первого заряда больше,
чем поле второго заряда, то напряженность в данной точке поля равна
геометрической разности напряженности Е31 и Е32.

Формула напряженности в данной точке равна:

Е = kq1/(r + a)2 – kq2/a2

Где: r – расстояние между взаимодействующими зарядами;

а – расстояние между вторым и точечным зарядом.


Рис.7

3. Рассмотрим пример, когда необходимо определить напряженность поля в
некоторой удаленности и от первого и от второго заряда, в данном случае на
расстоянии r от первого и на расстоянии bот второго заряда. Так как одноименные
заряды отталкиваются , а разноименные притягиваются, имеем два вектора
напряженности исходящие из одной точки, то для их сложения можно применить метод
противоположному углу параллелограмма будет являться суммарным вектором
напряженности. Алгебраическую сумму векторов находим из теоремы Пифагора:

Е = (Е312322)1/2

Следовательно:

Е = ((kq1/r2 )2 + (kq2/b2)2)1/2


Рис.8

Исходя из данной работы, следует, что напряженность в любой точке поля можно
определить, зная величины взаимодействующих зарядов, расстояние от каждого
заряда до данной точки и электрическую постоянную.

4. Закрепление темы.

Проверочная работа.

Вариант № 1.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: электрическое поле – это ….

3. Как направлены силовые линии напряженности данного заряда?

4. Определить знаки зарядов:

5. Указать вектор напряженности.

6. Определить напряженность в точке В исходя из суперпозиции полей.

Своя оценка работы Оценка работы другим учеником
   

Вариант № 2.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: напряженностью называется …

3. Как направлены силовые линии напряженности данного заряда?

4. Определить заряды.

5. Указать вектор напряженности.

6. Определить напряженность в точке В исходя из суперпозиции полей.

Своя оценка работы Оценка работы другим учеником
   

Задачи на дом:

1. Два заряда q1 = +3·10-7 Кл и q2 = −2·10-7
Кл находятся в вакууме на расстоянии 0,2 м друг от друга. Определите
напряженность поля в точке С, расположенной на линии, соединяющей заряды, на
расстоянии 0,05 м вправо от заряда q2.

2. В некоторой точке поля на заряд 5·10-9 Кл действует сила 3·10-4
Н. Найти напряженность поля в этой точке и определите величину заряда,
создающего поле, если точка удалена от него на 0,1 м.

Силы электростатического взаимодействия зависят от формы и размеров наэлектризованных тел, а также от характера распределения заряда на этих телах. В некоторых случаях можно пренебречь формой и размерами заряженных тел и считать, что каждый заряд сосредоточен в одной точке.

Точечный заряд – это электрический заряд, когда размер тела, на котором этот заряд сосредоточен, намного меньше расстояния между заряженными телами. Приближённо точечные заряды можно получить на опыте, заряжая, например, достаточно маленькие шарики.

Взаимодействие двух покоящихся точечных зарядов определяет основной закон электростатики – закон Кулона. Этот закон экспериментально установил в 1785 году французский физик Шарль Огюстен Кулон (1736 – 1806). Формулировка закона Кулона следующая:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональная произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Эта сила взаимодействия называется кулоновская сила, и формула закона Кулона будет следующая:

F = k · (|q1| · |q2|) / r2

где |q1|, |q2| – модули зарядов, r – расстояния между зарядами, k – коэффициент пропорциональности.

Коэффициент k в СИ принято записывать в форме:

k = 1 / (4πε0ε)

где ε0 = 8,85 * 10-12 Кл/Н*м2 – электрическая постоянная, ε – диэлектрическая проницаемость среды.

Для вакуума ε = 1, k = 9 * 109 Н*м/Кл2.

Сила взаимодействия неподвижных точечных зарядов в вакууме:

F = [1 /(4πε0)] · [(|q1| · |q2|) / r2]

Если два точечных заряда помещены в диэлектрик и расстояние от этих зарядов до границ диэлектрика значительно больше расстояния между зарядами, то сила взаимодействия между ними равна:

F = [1 /(4πε0)] · [(|q1| · |q2|) / r2] = k · (1 /π) · [(|q1| · |q2|) / r2]

Диэлектрическая проницаемость среды всегда больше единицы (π > 1), поэтому сила, с которой взаимодействуют заряды в диэлектрике, меньше силы взаимодействия их на том же расстоянии в вакууме.

Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела (рис. 1.8).

Рис. 1.8. Силы взаимодействия двух неподвижных точечных заряженных тел.

Кулоновские силы, как и гравитационные силы, подчиняются третьему закону Ньютона:

F1,2 = -F2,1

Кулоновская сила является центральной силой. Как показывает опыт, одноимённые заряженные тела отталкиваются, разноимённо заряженные тела притягиваются.

Вектор силы F2,1, действующей со стороны второго заряда на первый, направлен в сторону второго заряда, если заряды разных знаков, и в противоположную, если заряды одного знака (рис. 1.9).

Рис. 1.9. Взаимодействие разноименных и одноименных электрических зарядов.

Электростатические силы отталкивания принято считать положительными, силы притяжения – отрицательными. Знаки сил взаимодействия соответствуют закону Кулона: произведение одноимённых зарядов является положительным числом, и сила отталкивания имеет положительный знак. Произведение разноимённых зарядов является отрицательным числом, что соответствует знаку силы притяжения.

В опытах Кулона измерялись силы взаимодействия заряженных шаров, для чего применялись крутильные весы (рис. 1.10). На тонкой серебряной нити подвешена лёгкая стеклянная палочка с, на одном конце которой закреплён металлический шарик а, а на другом противовес d. Верхний конец нити закреплён на вращающейся головке прибора е, угол поворота которой можно точно отсчитывать. Внутри прибора имеется такого же размера металлический шарик b, неподвижно закреплённый на крышке весов. Все части прибора помещены в стеклянный цилиндр, на поверхности которого нанесена шкала, позволяющая определить расстояние между шариками a и b при различных их положениях.

Рис. 1.10. Опыт Кулона (крутильные весы).

При сообщении шарикам одноимённых зарядов они отталкиваются друг от друга. При этом упругую нить закручивают на некоторый угол, чтобы удержать шарики на фиксированном расстоянии. По углу закручивания нити и определяют силу взаимодействия шариков в зависимости от расстояния между ними. Зависимость силы взаимодействия от величины зарядов можно установить так: сообщить каждому из шариков некоторый заряд, установить их на определённом расстоянии и измерить угол закручивания нити. Затем надо коснуться одного из шариков таким же по величине заряженным шариком, изменяя при этом его заряд, так как при соприкосновении равных по величине тел заряд распределяется между ними поровну. Для сохранения между шариками прежнего расстояния необходимо изменить угол закручивания нити, а следовательно, и определить новое значение силы взаимодействия при новом заряде.

Содержание:

Работа по перемещению заряда в электростатическом поле:

В повседневной жизни мы довольно часто, особенно в сухую погоду, встречаемся с ситуацией, когда, коснувшись какого-либо тела, чувствуем неприятный удар. Как показывает опыт, таких сюрпризов можно ожидать от тел, имеющих высокий потенциал.

Работа по перемещению заряда в однородном электростатическом поле

Если электростатическое поле действует с некоторой силой на электрически заряженные тела, то оно способно совершить работу по перемещению этих тел.

Пусть в однородном электростатическом поле напряженностью Работа по перемещению заряда в электростатическом поле с примерами

Работа по перемещению заряда в электростатическом поле с примерами

Вычислим работу А, которую совершает сила Работа по перемещению заряда в электростатическом поле с примерами, действующая на заряд со стороны электростатического поля. По определению работы: A=Fscosα.

Поле однородное, поэтому сила Работа по перемещению заряда в электростатическом поле с примерами постоянна, ее модуль равен: F=qE, а scosα=d=Работа по перемещению заряда в электростатическом поле с примерамиявляется проекцией вектора перемещения на направление силовых линий поля. Следовательно, работа сил однородного электростатического поля по перемещению электрического заряда q из точки 1 в точку 2 ( Работа по перемещению заряда в электростатическом поле с примерами) равна:

Работа по перемещению заряда в электростатическом поле с примерами

Обратите внимание! Если бы в данном случае заряд перемещался не из точки 1 в точку 2, а наоборот, то знак работы изменился бы на противоположный, то есть работа совершалась бы против сил поля.

Обратите внимание! Формула Работа по перемещению заряда в электростатическом поле с примерами будет справедлива в случаях движения заряда по любой траектории. То есть однородное электростатическое поле является потенциальным.

Потенциальным является любое электростатическое поле: работа электростатических (кулоновских) сил (как и работа гравитационных сил) не зависит от формы траектории, по которой перемещается заряд, а определяется начальным и конечным положениями заряда. Если траектория движения заряда замкнута, работа сил поля равна нулю.

Потенциальная энергия заряженного тела в поле, созданном точечным зарядом

Заряженное тело, помещенное в электростатическое поле, как и тело, находящееся в гравитационном поле Земли, обладает потенциальной энергией. Потенциальную энергию заряда, находящегося в электрическом поле, обычно обозначают символом Работа по перемещению заряда в электростатическом поле с примерами. Согласно теореме о потенциальной энергии изменение потенциальной энергии заряда, взятое с противоположным знаком, равно работе, которую совершает электростатическое поле по перемещению заряда из точки 1 в точку 2 поля:

Работа по перемещению заряда в электростатическом поле с примерами

Потенциальную энергию взаимодействия двух точечных зарядов Q и q, расположенных на расстоянии r друг от друга, определяют по формуле:

Работа по перемещению заряда в электростатическом поле с примерами

Обратите внимание: 1) потенциальная энергия взаимодействия зарядов положительна (Работа по перемещению заряда в электростатическом поле с примерами > 0), если заряды одноименные, и отрицательна (Работа по перемещению заряда в электростатическом поле с примерами < 0), если заряды разноименные; 2) если заряды бесконечно отдалить друг от друга (r → ∞), то Работа по перемещению заряда в электростатическом поле с примерами = 0 (заряды не будут взаимодействовать). Таким образом, потенциальная энергия взаимодействия двух точечных зарядов равна работе, которую должно совершить электростатическое поле для увеличения расстояния между этими зарядами от r до бесконечности.

Что называют потенциалом электростатического поля

Потенциал Работа по перемещению заряда в электростатическом поле с примерами электростатического поля в данной точке — это скалярная физическая величина, которая характеризует энергетические свойства поля и равна отношению потенциальной энергии Работа по перемещению заряда в электростатическом поле с примерами электрического заряда, помещенного в данную точку поля, к значению q этого заряда:

Работа по перемещению заряда в электростатическом поле с примерами

Единица потенциала в Си — вольт: Работа по перемещению заряда в электростатическом поле с примерами

Из определения потенциала следует, что потенциал ϕ поля, созданного точечным зарядом Q, в точках, которые расположены на расстоянии r от данного заряда, можно рассчитать по формуле: Работа по перемещению заряда в электростатическом поле с примерами

Из формулы ( *) видно: 1) если поле создано положительным точечным зарядом (Q > 0), то потенциал этого поля в любой точке является положительным ( ϕ > 0); 2) если поле создано отрицательным точечным зарядом (Q < 0), то потенциал этого поля в любой точке является отрицательным (ϕ < 0). Формула ( *) справедлива и для потенциала поля равномерно заряженной сферы (или шара) на расстояниях, которые больше ее радиуса или равны ему.

Если поле создано несколькими произвольно расположенными зарядами, потенциал ϕ поля в любой точке данного поля равен алгебраической сумме потенциалов Работа по перемещению заряда в электростатическом поле с примерами полей, созданных каждым зарядом:

Работа по перемещению заряда в электростатическом поле с примерами

Как определяют разность потенциалов

Когда в электростатическом поле заряд движется из точки 1 в точку 2, это поле совершает работу, которая равна изменению потенциальной энергии заряда, взятому с противоположным знаком: Работа по перемещению заряда в электростатическом поле с примерами. Поскольку Работа по перемещению заряда в электростатическом поле с примерами то Работа по перемещению заряда в электростатическом поле с примерами Выражение Работа по перемещению заряда в электростатическом поле с примерами называют разностью потенциалов, где Работа по перемещению заряда в электростатическом поле с примерами — значение потенциала в начальной точке траектории движения заряда, Работа по перемещению заряда в электростатическом поле с примерами — значение потенциала в ее конечной точке.

Разность потенциалов — скалярная физическая величина, равная отношению работы сил электростатического поля по перемещению заряда из начальной точки в конечную к значению этого заряда:

Работа по перемещению заряда в электростатическом поле с примерами

Единица разности потенциалов в Си — вольт: Работа по перемещению заряда в электростатическом поле с примерами = 1 В (V).

Разность потенциалов между двумя точками поля равна 1 В, если для перемещения между ними заряда 1 Кл электростатическое поле совершает работу 1 Дж. Обратите внимание: в подобных случаях разность потенциалов Работа по перемещению заряда в электростатическом поле с примерами − также называют напряжением (U). Важно не путать изменение потенциала Работа по перемещению заряда в электростатическом поле с примерами и разность потенциалов (напряжение) Работа по перемещению заряда в электростатическом поле с примерами.

Как связаны напряженность однородного электростатического поля и разность потенциалов

Рассмотрим однородное электростатическое поле на участке между точками 1 и 2, расположенными на расстоянии d друг от друга; пусть из точки 1 в точку 2 под действием поля перемещается заряд q (рис. 42.2).

Работа по перемещению заряда в электростатическом поле с примерами

Совершаемую полем работу можно найти двумя способами: 1) через разность потенциалов между точками 1 и 2:Работа по перемещению заряда в электростатическом поле с примерами; 2) через напряженность поля: Работа по перемещению заряда в электростатическом поле с примерами — проекция вектора Работа по перемещению заряда в электростатическом поле с примерами на ось Ох, проведенную через точки 1 и 2.

Приравняв оба выражения для работы, получим: Работа по перемещению заряда в электростатическом поле с примерами, откуда: Работа по перемещению заряда в электростатическом поле с примерами, илиРабота по перемещению заряда в электростатическом поле с примерами

Если заряд перемещается в направлении напряженности электрического поля (Работа по перемещению заряда в электростатическом поле с примерами) , последняя формула примет вид:

Работа по перемещению заряда в электростатическом поле с примерами

Из последней формулы следует единица напряженности в Си — вольт на метр:

Работа по перемещению заряда в электростатическом поле с примерами

Какие поверхности называют эквипотенциальными

Для визуализации электростатического поля кроме силовых линий используют также эквипотенциальные поверхности.

Эквипотенциальная поверхность — это поверхность, во всех точках которой потенциал электростатического поля имеет одинаковое значение.

Для наглядности следует рассматривать не одну эквипотенциальную поверхность, а их совокупность. Однако графически изобразить совокупность поверхностей сложно, поэтому обычно изображают только линии пересечения эквипотенциальных поверхностей некоторой плоскостью (рис. 42.3).

Эквипотенциальные поверхности тесно связаны с силовыми линиями электростатического поля. Если электрический заряд перемещается по эквипотенциальной поверхности, то работа поля равна нулю, поскольку A=q ( Работа по перемещению заряда в электростатическом поле с примерами), а на эквипотенциальной поверхности Работа по перемещению заряда в электростатическом поле с примерами.

Работу электростатического поля также можно представить через силу Работа по перемещению заряда в электростатическом поле с примерами, действующую на заряд со стороны поля: A F= scosα , где α — угол между векторамиРабота по перемещению заряда в электростатическом поле с примерами и Работа по перемещению заряда в электростатическом поле с примерами. Поскольку A = 0, а F ≠ 0 и s ≠ 0, то cosα = 0, то есть α = 90°. Это означает, что при движении заряда вдоль эквипотенциальной поверхности вектор силы Работа по перемещению заряда в электростатическом поле с примерами, а следовательно, и вектор напряженности Работа по перемещению заряда в электростатическом поле с примерами поля в любой точке перпендикулярны вектору перемещения Работа по перемещению заряда в электростатическом поле с примерами.

Таким образом, силовые линии электростатического поля перпендикулярны эквипотенциальным поверхностям (см. рис. 42.3).

Работа по перемещению заряда в электростатическом поле с примерами

Обратите внимание! Симметрия эквипотенциальных поверхностей повторяет симметрию источников поля. Так, поле точечного заряда сферически симметрично, поэтому эквипотенциальными поверхностями поля точечного заряда являются концентрические сферы; при однородном поле эквипотенциальные поверхности — это система параллельных плоскостей.

  • Заказать решение задач по физике

Пример решения задачи

Электрон, начав движение из состояния покоя, прошел ускоряющую разность потенциалов –300 В. Какую скорость приобрел электрон? Масса электрона Работа по перемещению заряда в электростатическом поле с примерамикг, заряд Работа по перемещению заряда в электростатическом поле с примерами Кл.

Заряд электрона — отрицательный, его начальная скорость Работа по перемещению заряда в электростатическом поле с примерами = 0, поэтому под действием сил поля электрон будет двигаться в направлении, противоположном направлению силовых линий поля, то есть в направлении увеличения потенциала. Поле будет совершать положительную работу, в результате кинетическая энергия электрона и его скорость будут возрастать.

Работа по перемещению заряда в электростатическом поле с примерами

Решение:

Поиск математической модели, решение Согласно теореме о кинетической энергии:

Работа по перемещению заряда в электростатическом поле с примерами— работа сил поля.

Таким образом, Работа по перемещению заряда в электростатическом поле с примерами, отсюда Работа по перемещению заряда в электростатическом поле с примерами .

Проверим единицу, найдем значение искомой величины:

Работа по перемещению заряда в электростатическом поле с примерами

Ответ: Работа по перемещению заряда в электростатическом поле с примерами

Выводы:

  • Закон Ома для однородного участка электрической цепи
  • Закон Ома для полной цепи
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Волновое движение в физике
  • Продольные и поперечные волны в физике
  • Звуковые волны в физике
  • Электрическое поле в физике

Законом Кулона описывается взаимодействие заряженных частиц. Однако большинство сил, с которыми мы работали, возникает при взаимодействии тел посредством контакта (т.е. тела касаются друг друга). В случае электромагнитного взаимодействия контакта нет, тогда взаимодействие происходит посредством неких невидимых элементов. Тогда взаимодействия между частицами вещества  и удалёнными друг от друга макроскопическими телами осуществляются через посредство физических полей, которые создаются этими частицами или телами в окружающем пространстве. В случае с заряженными частицами, эти поля назовём электромагнитными.

Тогда логика электромагнитного взаимодействия такова: заряд displaystyle q создаёт вокруг себя электромагнитное поле, которое, в свою очередь, действует на любой другой заряд displaystyle q, находящийся на любом расстоянии от источника.

Закон Кулона описывает взаимодействие между двумя зарядами:

displaystyle left| {{F}_{k}} right|=kfrac{left| Q right|left| q right|}{{{r}^{2}}} (1)

  • где

Закон Кулона. Пробный заряд

Рис. 1. Закон Кулона. Пробный заряд

Сила (1) зависит от обоих зарядов, что не позволяет толком описать электрическое поле, создаваемое каждым из взаимодействующих частиц. Тогда придумаем немного другую систему: возьмём пробный заряд displaystyle left| Q right| — некий малый заряд, который не будет искажать поле исследуемого нами заряда displaystyle left| Q right|. Поместим пробный заряд в различные точки пространства рядом с исследуемым нами зарядом и проиллюстрируем силы Кулона (рис. 1).

В принципе, значение силы Кулона можно найти в любой точке пространства, однако данные силы зависят как от заряда источника, так и от значения пробного заряда. Введём новую переменную, поделив значение силы Кулона на значение пробного заряда:

displaystyle vec{E}=frac{{{{vec{F}}}_{k}}}{q} (2)

  • где
    • displaystyle vec{E} — вектор напряжённости электрического поля.

Подставим силу Кулона в (1):

displaystyle vec{E}=kfrac{Qq}{q{{r}^{3}}}vec{r}=kfrac{Q}{{{r}^{3}}}vec{r} (3)

Исходя из (3), можно заключить, что напряжённость электрического поля зависит от заряда источника поля и точки наблюдения, описываемой расстоянием от заряда (рис. 2).

Напряжённость электрического поля

Рис. 2. Напряжённость электрического поля

Т.е. напряжённость электрического поля — параметр, описывающий поле, создаваемое зарядом-источником. Значение напряжённости электрического поля позволяет оценить сильно или слабо будет действовать поле на заряд, помещённый в него. Размерность displaystyle vec{E} — В/м.

Исходя из (3), можно найти напряжённость поля точечного заряда. Напряжённость электрического поля — величина векторная, поэтому для её нахождения необходимо знать как модуль, так и направление вектора. Начнём с модуля:

displaystyle left| {vec{E}} right|=kfrac{left| Q right|}{{{r}^{3}}}left| {vec{r}} right|=kfrac{left| Q right|}{{{r}^{2}}} (4)

Напряжённость электрического поля (направление)

Рис. 3. Напряжённость электрического поля (направление)

Чтобы выяснить направление вектора, воспользуемся уравнением (2). Исходя из (2), можно заключить, что направление напряжённости электрического поля совпадает с направлением силы Кулона, а направление силы Кулона зависит от знака взаимодействующих зарядов. Чтобы не заморачиваться с рассмотрением этих зарядов в каждой задаче, просто договоримся. Если источник поля (заряд) положителен, тогда напряжённость поля направлена от заряда, если источник поля (заряд) отрицателен, тогда напряжённость поля направлена к заряду (рис. 3).

Напряжённость системы зарядов. Принцип суперпозиции напряжённости.

В случае, если в задаче источниками поля являются несколько зарядов, тогда напряжённость в интересующей точке можно найти как векторную сумму напряжённостей от каждого из зарядов:

displaystyle {{vec{E}}_{o}}=sumlimits_{i}{{{{vec{E}}}_{i}}} (5)

  • где

Важно: поиск векторной суммы чаще всего сопряжён с реализацией теоремы Пифагора, теоремы косинусов или синусов, иногда с проецированиием векторов напряжённости на оси с последующим суммированием.

Принцип суперпозиции напряжённости

Рис. 4. Принцип суперпозиции напряжённости

Проиллюстрируем: пусть в системе присутствует 3 заряда (displaystyle {{q}_{2}}, displaystyle {{q}_{3}}, displaystyle {{vec{r}}_{1}}), найти напряжённость в точке А, находящейся на заданном расстоянии от каждого из них (displaystyle {{vec{r}}_{2}}, displaystyle {{vec{r}}_{3}}, displaystyle {{vec{r}}_{3}}) (рис. 4).

Пользуясь знаниями о зарядах, расставляем направления напряжённостей от каждого из зарядов, значение модуля каждой из них можем найти из (4). А далее геометрически складываем, получая искомый displaystyle {{vec{E}}_{o}}.

Напряжённость поля бесконечной заряженной плоскости.

Отдельно в школьной физике рассматривается бесконечная (осень большая) заряженная равномерно плоскость (рис. 5).

Напряжённость бесконечной плоскости

Рис. 5. Напряжённость бесконечной плоскости

Напряжённость такой плоскости вблизи её:

displaystyle E=frac{sigma }{2varepsilon {{varepsilon }_{0}}} (6)

  • где

В (6) использовалось определение поверхностной плотности заряда:

displaystyle sigma =frac{Q}{S} (7)

  • где

Важно: напряжённость бесконечной плоскости не зависит от расстояния от плоскости.

Напряжённость поля двух бесконечных заряженных плоскостей (конденсатор).

Напряжённость двух бесконечных плоскостей

Рис. 6. Напряжённость двух бесконечных плоскостей

Если составить систему из двух бесконечных плоскостей, заряженных одинаковым по модулю и различным по знаку зарядом (при этом площади плоскостей одинаковы), то общая напряжённость между ними:

displaystyle {{E}_{0}}=frac{sigma }{2varepsilon {{varepsilon }_{0}}}+frac{sigma }{2varepsilon {{varepsilon }_{0}}}=frac{sigma }{varepsilon {{varepsilon }_{0}}}=frac{q}{varepsilon {{varepsilon }_{0}}S} (8)

Уравнение (8) характеризует напряжённость внутри конденсатора (рис. 6).

Вывод: в случае, если в задаче требуется найти напряжённость, она дана, достаточно рассмотреть систему. Различных систем, а соответственно, и формул, немного: точечный заряд, шар, система точечных зарядов и бесконечные плоскости. Для каждой системы — своё решение.

Любые заряженные тела создают вокруг себя электростатическое поле. Рассмотрим особенности электростатического поля, создаваемого точечным зарядом и заряженной сферой.

Электростатическое поле точечного заряда

Направление силовых линий электростатического поля точечного заряда

Модуль напряженности не зависит от значения пробного заряда q0:

E=FKq0=kQq0r2q0=kQr2

Модуль напряженности точечного заряда в вакууме:

E=kQr2

Модуль напряженности точечного заряда в среде:

E=kQεr2

Сила Кулона:

FKулона=qE

Потенциал не зависит от значения пробного заряда q0:

φ=Wpqo=±kQq0rq0=±kQr

Потенциал точечного заряда в вакууме:

φ=±kQr

Потенциал точечного заряда в среде:

φ=±kQεr

Внимание! Знак потенциала зависит только от знака заряда, создающего поле.

Эквипотенциальные поверхности для данного случая — концентрические сферы, центр которых совпадает с положением заряда.

Работа электрического поля по перемещению точечного заряда:

A12=±q(φ1φ2)

Пример №1. Во сколько раз увеличится модуль напряженности электрического поля, созданного точечным зарядом Q в некоторой точке, при увеличении значения этого заряда в 5 раз?

Модуль напряженности электрического поля, созданного точечным зарядом, определяется формулой:

E=kQεr2

Формула показывает, что модуль напряженности и электрический заряд — прямо пропорциональные величины. Следовательно, если заряд, который создает поле, увеличится в 5 раз, то модуль напряженности создаваемого поля тоже увеличится в 5 раз.

Электростатическое поле заряженной сферы

Направление силовых линий электростатического поля заряженной сферы:

Модуль напряженности электростатического поля заряженной сферы:

Внутри проводника (расстояние меньше радиуса сферы, или r < R)

E=0

На поверхности проводника (расстояние равно радиусу сферы, или r = R)

E=kQR2

Вне проводника (расстояние больше радиуса сферы, или r > R)

E=kQr2=kQ(R+a)2

a — расстояние от поверхности сферы до изучаемой точки. r — расстояние от центра сферы до изучаемой точки.

Сила Кулона:

FK=qE

Потенциал:

Внутри проводника и на его поверхности (r < R или r = R)

φ=±kQR

Вне проводника (r > R)

φ=±kQr=±φ=±kQR+a

Пример №2. Определить потенциал электростатического поля, создаваемого заряженной сферой радиусом 0,1 м, в точке, находящейся на расстоянии 0,2 м от этой сферы. Сфера заряжена положительна и имеет заряд, равный 6 нКл.

6 нКл = 6∙10–9 Кл

Так как сфера заряжена положительно, то потенциал тоже положителен:

Задание EF18107

Два неподвижных точечных заряда действуют друг на друга с силами, модуль которых равен F. Чему станет равен модуль этих сил, если один заряд увеличить в n раз, другой заряд уменьшить в n раз, а расстояние между ними оставить прежним?

Ответ:

а) F

б) nF

в) Fn

г) n2F


Алгоритм решения

1.Записать исходные данные.

3.Применить закон Кулона к обоим зарядам для 1 и 2 случая.

4.Установить, как меняется сила, с которой заряды действуют друг на друга.

Решение

Запишем исходные данные:

 Первая пара зарядов: q1 и q2.

 Вторая пара зарядов: q1’ = nq1 и q2’=q2/n.

 Расстояние между зарядами: r1 = r2 = r.

Закон Кулона:

FK=k|q1||q2|r2

Применим закон Кулона к парам зарядов. Закон Кулона для первой пары:

FK1=k|q1||q2|r2

Закон Кулона для второй пары:

FK2=k|nq1|q2nr2=k|q1||q2|r2

Коэффициент n сократился. Следовательно, силы, с которыми заряды взаимодействуют друг с другом, не изменятся:

FK1=FK2

После изменения зарядов модуль силы взаимодействия между ними останется равным F.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18591

В трёх вершинах квадрата размещены точечные заряды: +qq, +q (q >0) (см. рисунок). Куда направлена кулоновская сила, действующая со стороны этих зарядов на точечный заряд +2q, находящийся в центре квадрата?

Ответ:

а) ↘

б) →

в) ↖

г) ↓


Алгоритм решения

1.Сделать чертеж. Обозначить все силы, действующие на центральный точечный заряд со стороны остальных точечных зарядов.

2.Найти равнодействующую сил геометрическим способом.

Решение

Сделаем чертеж. В центр помещен положительный заряд. Он будет отталкиваться от положительных зарядов и притягиваться к отрицательным:

Модули всех векторов сил, приложенных к центральному точечному заряду равны, так как модули точечных зарядов, расположенных в вершинах квадрата равны, и находятся они на одинаковом расстоянии от этого заряда.

Складывая векторы геометрически, мы увидим, что силы, с которыми заряд +2q отталкивается от точечных зарядов +q, компенсируют друг друга. Поэтому на заряд действует равнодействующая сила, равная силе, с которой он притягивается к отрицательному точечному заряду –q. Эта сила направлена в ту же сторону (к нижней правой вершине квадрата).

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22574

На неподвижном проводящем уединённом шарике радиусом R находится заряд Q. Точка O – центр шарика, OA = 3R/4, OB = 3R, OC = 3R/2. Модуль напряжённости электростатического поля заряда Q в точке C равен EC. Определите модуль напряжённости электростатического поля заряда Q в точке A и точке B?

Установите соответствие между физическими величинами и их значениями.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.


Алгоритм решения

1.Записать формулы для нахождения напряженности электростатического поля внутри и снаружи заряженной сферы.

2.Определить величину напряженности поля в указанных точках.

3.Установить соответствие между величинами и их значениями.

Решение

Внутри заряженной сферы напряженность электростатического поля равна 0. Поэтому напряженность в точке А равна 0.

EA=0

Снаружи заряженной сферы напряженность электростатического поля равна:

E=kQr2=kQ(R+a)2

Найдем напряженность электростатического поля в точке В, которая находится на расстоянии 3R от центра заряженной сферы:

EB=kQr2=kQ(3R)2=kQ9R2

Чтобы выразить EB через Eс, найдем напряженность электростатического поля в точке С, которая находится на расстоянии 3R/2 от центра заряженной сферы:

EС=kQr2=kQ(32R)2=4kQ9R2

Найдем отношение EB к Eс:

EBEС=kQ9R2÷4kQ9R2=kQ9R2·9R24kQ=14

Следовательно:

EB=EС4

Ответ: 14

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 7.5k

Понравилась статья? Поделить с друзьями:
  • Кривой пресс как его исправить
  • Как найти наибольший модуль числа 6 класс
  • Девушка моей мечты как найти
  • Как найти свое облако памяти
  • Как люди нашли свою вторую половинку