Как найти значения cos косинуса

Определение значения синуса, косинуса, тангенса и котангенса

Определение

Тригонометрия — это техническая часть математики, в которой представлены особенности взаимосвязи между сторонами и углами треугольников.

Тригонометрические функции, является очень важной составляющей не только математики, но других технических наук.

Применяя основные формулы и законы тригонометрии при вычислении задач. Огромное значение имеют таблицы значений данных функций. Они существенно упрощают решение задач различной сложности.  

Процесс работы и расчета функций данного вида, очень непростой. Решение задач и уравнение, очень часто вызывают сложности. Поэтому, со временем, были созданы и разработаны несколько видов решений, чтобы облегчить жизнь математика и всем представителям технических наук. Преобразовывая тригонометрические формулы, необходимо руководствоваться следующими правилами:

  1. Нельзя продумывать весь процесс решения от начала до самого конца сразу. Нужно определиться с основными задачами и данными.
  2. Весь пример, подвергать упрощению или преобразования постепенно;
  3. Разрешается применять все преобразования и действия, связанные с алгеброй, а именно: вынести значение за пределы скобок. сократить значение и многое другое:

[ sin x=frac{a}{c} ; cos x=frac{b}{c} ; operatorname{tg} x=frac{sin x}{cos x} ; operatorname{ctg}=frac{1}{operatorname{tg} x}=frac{sin x}{cos x} ]

Зная основные определения тригонометрических функций, можно определить их угловые значения. Для углов от нуля до трехсот шестидесяти градусов, вычислим данные и запишем их в виде таблицы.

Значения вышеупомянутых математических функций, в частности в разделе геометрия, вычисляются как соотношения длин прямоугольного треугольника.

Углы геометрической фигуры имеют соответствующие значения в градусах. Используя основные определения математики, а именно тригонометрии можно определить нужные нам данные.

Определим основные значения

1.синуса (sin):

Основные значения синуса

2. косинуса (cos):

Основные значения косинуса

3. тангенса(tg):

Основные значения тангенса

[ operatorname{tg} 90^{circ}, 270^{circ} ]

Данные выше угловые значения, не определяются, согласно основным законам геометрии и математики.

4. котангенса (ctg)

[ operatorname{ctg} 0^{circ}, 180^{circ}, 360^{circ} ]

Для перечисленных выше угловых значений по законам математики и всех технических наук в целом, значения не определяются

Основные значения котангенса

Мы произвели основные расчеты. Определили результаты угловых значений.

Мы определились с основными угловыми значениями функций. Следующим шагом будет их сведение в таблицу.

Таблица1.  Основные значения функций косинус, синус, тангенс и котангенс, для угловых значений и радиан

Основные значения функций 1
Основные значения функций 2
Продолжение таблицы 1
Основные значения функций 3
Продолжение таблицы 1

Вычисленные значения принято сводить в таблицу, показанную выше. Особенно рекомендуются, ее заучивать наизусть, для более лучшего восприятия. Рассмотрим, также значения для нестандартных угловых значений и сведем их в таблицу.

Таблица 2. Нестандартные углы функций косинус, синус, тангенс и котангенс в тригонометрии

Нестандартные углы функций 1

В данной таблице приведены значения углов, которые считаются нестандартными, также таблица необходима, чтобы облегчить жизнь, в первую очередь, школьной программе.

Например:

Пример 1

Значение заданной функции берется из таблицы. Оно равняется данному, которое попадает на пересечение столбца и строки.

Пример №1.  Необходимо определить чему равен [operatorname{tg} 300]

Берем левый столбец с наименованием функции, находим в верхней строке нужный градус, и на пересечении определяем нужный ответ.

Следовательно:[operatorname{tg} 300^{circ}=-sqrt{3}].

Пример №2. Необходимо определить чему равен [cos frac{5 pi}{3}].

Берем левый столбец с наименованием функции, находим в нижней строке значение радиан, поднимается на верх таблицы и определяем градусы.

[text { Следовательно: } operatorname{tg} 300^{circ}=frac{1}{2} .]

Пример №3. Необходимо определить чему равен [cos frac{11 pi}{6}].

Проводим аналогичные действия, как в предыдущих двух примерах и определяем угловое значение.

[text { Следовательно } cos =frac{sqrt{3}}{2}=330^{circ}.]

Таблица Брадиса для решения основных задач по тригонометрии

Первое упоминание о таблице, датируется 20-ми годами прошлого века. Основоположником, является советский ученый математик, и талантливый педагог Владимир Брадис. Созданная Брадисом таблица, позволяет определить значения тригонометрических функций, с большой точностью, а именно до четырех знаков. На практике решений, обычно требуется точность в три-четыре знака, после запятой, но не более. Для расчета, с такой точностью, значение синуса, в формуле достаточно трех известных слагаемых, а иногда и двух.  Произвести простых четыре перемножения.  Дважды разделить, умножить и отнять.

Если производить действия инженерным калькулятором, становится понятно, что все вышеперечисленные действия, уже запрограммированы в его микросхеме.  В таблице представлены следующие данные:

  • число в квадратной и кубической степени;
  • числа квадратных корней;
  • логарифмические функции и значение;
  • функции тригонометрии, представленный в градусах и радианах;
  • обратные функции.

Можно определить точность углового значения до минуты. Существуют также таблицы, где есть семизначные значения.

Для того чтобы составить таблицы следует пользовался методом разложения функций (либо метод разложения на степень в ряд)

Примеры решения задач

Пример 1:

Необходимо определить синус угла 18 ° 44 ‘.

По таблице значений определяем данные синуса 18 ° 42 ‘. Далее используем поправку, равную две минуты. Плюсуем ее и заданные минуты: 18 ° 44 ‘ − 18 ° 42 ‘ = 2 ‘   

Нужное значение равняется —  0,0006.

Узнав все необходимые значения, находим окончательное решение:

 sin   18 ° 44 ‘ = 0. 3208 + 0. 0006 = 0. 3214

Пример 2:

Условие задачи, заключается в необходимости вычислить угол функции синус 76 ° 12. В таблице находим столбец с название угол и ищем 76 градусов и строку со значением 12. Далее, исходя из найденных ячеек, находим значение угла — 0,2284.

Ответ: синус 76 ° 12 =0,2284.

Пример 3:

Нужно найти значение синус 16 градусов 32 минут.  Для того чтобы посчитать значение 16 ° 32 минуты. В таблице находим значение нужного угла, которое ближе всего по значению подходит к заданному. Это sin16 30 =0.2840. Так как 16 32=16 30+2, то в столбце, выбираем нужную поправку, которая находится на пересечении со строкой, со значением 16 градусов стоит 0,0006, то есть

 sin   16 ° 32 ‘ = 0. 3208 + 0. 0006 = 0. 3214

Пример 4:

Нужно найти значение синус 22 градусов 10 минут. Чтобы посчитать значение  22 ° 12,  в таблице найдем значение необходимого угла, наиболее подходящее заданному. Это sin16 30 =0.3778. Так как  22 ° 10= 22 ° 12+2, то тогда выбираем поправку равную двум  и видим, что нужный нам градус равный  22 ° имеет значение 0,0005. Далее записываем:

 sin   22 ° 10 ‘ = (22 12-2) =0. 3778 + 0. 0005 = 0. 3773

Пример 5:

Нужно найти значение косинус 50 градусов 33 минут.  Для того, чтобы посчитать значение 53 31 в таблице найдем значение нужного угла, наиболее близкого к искомому со знаком минус. Это косинус 50 33 =0.6361 Так как 50 33=50 30+3, то в нужном столбце выбираем значение 3. Далее находим значение 0,0007, и записываем следующее уравнение:

 косинус 50 ° 33 ‘ = (50 30-3) =0. 6361 +(- 0. 0007) = 0. 6454

Пример 6:

Нужно найти tg 35 градусов 6 минут.  В таблице значений функции, в столбце найдем значение 35 градусов, а в строке 6 минут. Определяем нужное значение по таблице равное 0,7028.

Пример 7:

Нужно найти значение котангенс 13 градусов 42 минут.  Снова применим таблицу значения функций и найдем значение 13 градусов, а в строке 40 минут и поправку равную 2.  Находим искомое значение 4,102.

Пример 8:

Нужно найти значение косинус для 49° 33 минут.  

Для того чтобы вычислить  значение 49° 31.  В таблице найдем значение угла, наиболее близкого по значению к заданному, но только с отрицательным знаком минус. Это косинус 49° 31/ =0.6361 Так как 49° 31/=50 30+3, из этого следует, что поправка  равняется  трем. Значение  49 градусов равно 0,0007, поэтому: косинус 49° 33 ‘ = ( 49° 31-3) =0 . 6361 +(- 0 . 0007) = 0,6454

Нет времени решать самому?

Наши эксперты помогут!

Основные способы, которые помогут заполнить таблицу функций

1 Действие: Необходимо изобразить простую таблицу, где будет несколько столбцов и строк, необходимых для заполнения данных. Следующая задача, состоит в том, что нужно пустые графы заполнить. Записываем в первом столбике значение математических функций, ранее нами изученных.

В начальной строке, должны отображаться самые часто используемые значения углов: от нуля до девяноста градусов и так далее.

Оставшиеся ячейки нужно оставить незаполненными, для следующих действий. Чтобы понять тригонометрию, нужно изучать не только основные функции. Стоит уделить внимание и таким функциях как: косеканс (cosec) и секанс (sec).

2. Действие: Заполняем пустые ячейки со значение синус. Берем выражение [frac{sqrt{x}}{2}] и подставляем числовые значения, то есть величины углов. они записаны в первом столбике. Далее применяя   [frac{sqrt{x}}{2}] можно вычислить данные для углов, которые нам необходимы. Вычисленные значения, записываются в таблицу.

Для наглядности все прописанные действия, можно разобрать на конкретном примере.

Например, мы заполняем ячейку sin 0 градусов. На месте неизвестного значения в выражении [frac{sqrt{x}}{2}] записываем значение угла.

Получаем следующую запись: [frac{sqrt{x}}{2}=frac{0}{2}=0]. Затем, проводим те же операции для заполнения оставшихся пустых строк.

[ frac{sqrt{1}}{2}=frac{1}{2} ; frac{sqrt{2}}{2}=frac{(sqrt{2 cdot 2})}{(2 cdot sqrt{2})}=frac{2}{2 cdot sqrt{2}}=frac{1}{sqrt{2}} ; frac{sqrt{3}}{2} frac{sqrt{4}}{2}=frac{2}{2}=1 ]

Необходимо первым делом заполнять неизвестные ячейки, для функции синус. Это значительно в будущем облегчит заполнение всей таблицы. Так как именно за данной функции и ее данных и завязана вся работы таблицы.

3. Действие: Продолжаем считать таблицу. для этого значения синуса, которые подсчитаны были ранее, переписываем для функции косинус. Только делаем это в порядке обратном значению синусу. Данная теория действительна, потому что sin x° = cos (90-x). Если в самой крайней ячейке синус, имеется  1(sin90°=1). То в первую строку значения косинус, перепишется это числовое значение, cos 0° = 1. Таким образом заканчиваем заполнение до конца.

4. Действие: Для определения тангенса. Необходимо произвести деление данных синуса на косинус. Так как тангенс равен данной функции. [operatorname{tg}=frac{sin }{cos }]. Выходим что искомое значение равно данному выражению.  Если [operatorname{tg} 45^{circ}=frac{sin }{cos }=frac{sqrt{1}}{2} / frac{sqrt{3}}{2}=frac{1}{sqrt{3}} .]

Аналогично поступаем и далее.

5. Действие: Для заполнения граф косеканс и секанс нужно 1/sin и 1/cos.

[text { Так как, } operatorname{cosec}=frac{1}{sin } . text { Например, } sin 40^{circ}=frac{1}{2}, text { поэтому } operatorname{cosec} 40^{circ}=frac{1}{frac{1}{2}}=2]

Действие 6: Оставшиеся функции тангенс и котангенс. также записываются обратно значениям. Если tg90 равняется ctg0, значение tg60 будет соответственно равен значению ctg 30 градусов.

[text { Таким же методом заполняются оставшиеся строки таблицы. Так } text { как } operatorname{ctg}=frac{1}{t g}, text { в свою очередь } operatorname{ctg}=frac{cos }{sin }]

Вычисление данных при помощи фигуры — прямоугольный треугольник

Для этого строится нужный треугольник заданным углом, который необходимо определить. Строится угол, точка и луч, которые выходят из данной точки под определенным углом. Соединяем лучи, прямой линией перпендикулярной, одному из лучей. В конечном итоге получаем фигуру, угол которой равняется заданному в задаче углу. В процессе вычисления, также задаются длины сторон. Поэтому трудней с построением не должно возникнуть.  

Вычисление при помощи длин сторон треугольника происходит следующим образом:

  • обозначается катет;
  • сторона возле угла;
  • сторона напротив угла с прямым значением.

Функции могут выражаться по-разному в отношении сторон. Например, нам нужно определим значение sin 45°. Поделим имеющуюся длину значения противолежащего катета на значение длины гипотенузы. Если заданные значения длины равны 4 и 6 соответственно. Тогда, составим следующее выражение и получим sin[45^{circ}=frac{4}{6}=0,67]

Для определения значений основных функций в математике, необходимо заучить наизусть определение основных понятий, связанный с данной темой.  

В процессе решения задачи, это придется применять постоянно.

Значения косеканса и секанса определяются в обратном порядке. Для этого необходимо знать какие стороны нужно делить для определения вышеперечисленных функций.

Косеканс находится [operatorname{cosec}=frac{1}{sin }] следовательно, нужно разделить гипотенузу на противолежащий катет. Секанс, наоборот к прилежащему катету [mathrm{sec}=frac{1}{cos }].

Например, для определения cosec 40°, если катет равен 5, а гипотенуза соответственно равна 8.  Нужно разделить 5/8 и получим ответ cosec 40° = 0,63.

При вычислениях всегда рекомендуется исключать значение под корнем в знаменателе, это наиболее облегчает процесс расчета.

Рассмотренная тема преобразования и расчета функций, является довольно громоздкой, на первый взгляд. Применяя для решения огромные формулы и функции можно растеряться и не сразу сообразить, как производить их расчет. Однако досконально рассмотрев и изучив каждый раздел, становится понятно, что все достаточно просто и громоздкие таблицы освоить можно быстро и легко.

Вычисление значений углов по окружности

Самый простой и понятный способ для вычисления углов и радиан.

Для этого вычерчиваем окружность с радиусом R. Он в свою очередь, равен единичному значению. Центр окружности равен центру системы координат. От положительной оси считаем углы, по часовой стрелке, выполняющей движении против хода. Точка, имеющая координаты 1;0 равняется угловому значению ноль. если координаты -1;0, тогда угол равен 90 градусов. Точка, находящаяся на окружности, соответствует углу от нуля до 360 градусов. Так как окружность является единичной, значения углов для синуса и косинуса находятся в пределах от -1 до 1:

Вычисление значений углов по окружности

Определяются знаки функций, также по окружности. если угловое значение более 360 градусов, делается два оборота по часовой стрелке и плюсуется еще дополнительно 12 минут.

[ cos (alpha+360 cdot n)=sin alpha ;] [ sin (alpha+360 cdot n)=sin alpha / ]

Значения тангенсов и котангенсов, можно вычислить аналогично, по окружности. Однако легче посчитать по формулам, уже известных данных.

[ operatorname{tg} alpha=frac{sin alpha}{cos alpha} ; operatorname{ctg} alpha=frac{cos alpha}{sin alpha} ]

Таблица косинусов, найти значения угла косинусов

Косинус угла представляет собой одну из тригонометрических функций. Является соотношением ближнего к углу прямоугольного треугольника катета к гипотенузе. Записывается следующим образом: cos (А) = АС/АВ, где АС – ближний катет угла (А), АВ – гипотенуза.

Зачем необходимо производить такие сложные на первый взгляд вычисления? Еще с древних времен известна аксиома: знаю угол – знаю его тригонометрическую функцию. Соответственно, если известен cos любого угла, в таблице Брадиса можно найти этот угол. И наоборот – зная угол, не сложно вычислить косинус. Отсюда можно найти следующие данные: длина катетов и гипотенузы.

Эти данные используются не только в голых математических вычислениях. Невозможно составить даже элементарный план местности, не зная тригонометрических функций. Посредством онлайн калькулятора можно облегчить задачу и получать требуемые данные за доли секунды.

Таблица косинусов от 0° — 360°

Cos(1°) 0.9998
Cos(2°) 0.9994
Cos(3°) 0.9986
Cos(4°) 0.9976
Cos(5°) 0.9962
Cos(6°) 0.9945
Cos(7°) 0.9925
Cos(8°) 0.9903
Cos(9°) 0.9877
Cos(10°) 0.9848
Cos(11°) 0.9816
Cos(12°) 0.9781
Cos(13°) 0.9744
Cos(14°) 0.9703
Cos(15°) 0.9659
Cos(16°) 0.9613
Cos(17°) 0.9563
Cos(18°) 0.9511
Cos(19°) 0.9455
Cos(20°) 0.9397
Cos(21°) 0.9336
Cos(22°) 0.9272
Cos(23°) 0.9205
Cos(24°) 0.9135
Cos(25°) 0.9063
Cos(26°) 0.8988
Cos(27°) 0.891
Cos(28°) 0.8829
Cos(29°) 0.8746
Cos(30°) 0.866
Cos(31°) 0.8572
Cos(32°) 0.848
Cos(33°) 0.8387
Cos(34°) 0.829
Cos(35°) 0.8192
Cos(36°) 0.809
Cos(37°) 0.7986
Cos(38°) 0.788
Cos(39°) 0.7771
Cos(40°) 0.766
Cos(41°) 0.7547
Cos(42°) 0.7431
Cos(43°) 0.7314
Cos(44°) 0.7193
Cos(45°) 0.7071
Cos(46°) 0.6947
Cos(47°) 0.682
Cos(48°) 0.6691
Cos(49°) 0.6561
Cos(50°) 0.6428
Cos(51°) 0.6293
Cos(52°) 0.6157
Cos(53°) 0.6018
Cos(54°) 0.5878
Cos(55°) 0.5736
Cos(56°) 0.5592
Cos(57°) 0.5446
Cos(58°) 0.5299
Cos(59°) 0.515
Cos(60°) 0.5
Cos(61°) 0.4848
Cos(62°) 0.4695
Cos(63°) 0.454
Cos(64°) 0.4384
Cos(65°) 0.4226
Cos(66°) 0.4067
Cos(67°) 0.3907
Cos(68°) 0.3746
Cos(69°) 0.3584
Cos(70°) 0.342
Cos(71°) 0.3256
Cos(72°) 0.309
Cos(73°) 0.2924
Cos(74°) 0.2756
Cos(75°) 0.2588
Cos(76°) 0.2419
Cos(77°) 0.225
Cos(78°) 0.2079
Cos(79°) 0.1908
Cos(80°) 0.1736
Cos(81°) 0.1564
Cos(82°) 0.1392
Cos(83°) 0.1219
Cos(84°) 0.1045
Cos(85°) 0.0872
Cos(86°) 0.0698
Cos(87°) 0.0523
Cos(88°) 0.0349
Cos(89°) 0.0175
Cos(90°) 0
Cos(91°) -0.0175
Cos(92°) -0.0349
Cos(93°) -0.0523
Cos(94°) -0.0698
Cos(95°) -0.0872
Cos(96°) -0.1045
Cos(97°) -0.1219
Cos(98°) -0.1392
Cos(99°) -0.1564
Cos(100°) -0.1736
Cos(101°) -0.1908
Cos(102°) -0.2079
Cos(103°) -0.225
Cos(104°) -0.2419
Cos(105°) -0.2588
Cos(106°) -0.2756
Cos(107°) -0.2924
Cos(108°) -0.309
Cos(109°) -0.3256
Cos(110°) -0.342
Cos(111°) -0.3584
Cos(112°) -0.3746
Cos(113°) -0.3907
Cos(114°) -0.4067
Cos(115°) -0.4226
Cos(116°) -0.4384
Cos(117°) -0.454
Cos(118°) -0.4695
Cos(119°) -0.4848
Cos(120°) -0.5
Cos(121°) -0.515
Cos(122°) -0.5299
Cos(123°) -0.5446
Cos(124°) -0.5592
Cos(125°) -0.5736
Cos(126°) -0.5878
Cos(127°) -0.6018
Cos(128°) -0.6157
Cos(129°) -0.6293
Cos(130°) -0.6428
Cos(131°) -0.6561
Cos(132°) -0.6691
Cos(133°) -0.682
Cos(134°) -0.6947
Cos(135°) -0.7071
Cos(136°) -0.7193
Cos(137°) -0.7314
Cos(138°) -0.7431
Cos(139°) -0.7547
Cos(140°) -0.766
Cos(141°) -0.7771
Cos(142°) -0.788
Cos(143°) -0.7986
Cos(144°) -0.809
Cos(145°) -0.8192
Cos(146°) -0.829
Cos(147°) -0.8387
Cos(148°) -0.848
Cos(149°) -0.8572
Cos(150°) -0.866
Cos(151°) -0.8746
Cos(152°) -0.8829
Cos(153°) -0.891
Cos(154°) -0.8988
Cos(155°) -0.9063
Cos(156°) -0.9135
Cos(157°) -0.9205
Cos(158°) -0.9272
Cos(159°) -0.9336
Cos(160°) -0.9397
Cos(161°) -0.9455
Cos(162°) -0.9511
Cos(163°) -0.9563
Cos(164°) -0.9613
Cos(165°) -0.9659
Cos(166°) -0.9703
Cos(167°) -0.9744
Cos(168°) -0.9781
Cos(169°) -0.9816
Cos(170°) -0.9848
Cos(171°) -0.9877
Cos(172°) -0.9903
Cos(173°) -0.9925
Cos(174°) -0.9945
Cos(175°) -0.9962
Cos(176°) -0.9976
Cos(177°) -0.9986
Cos(178°) -0.9994
Cos(179°) -0.9998
Cos(180°) -1
Cos(181°) -0.9998
Cos(182°) -0.9994
Cos(183°) -0.9986
Cos(184°) -0.9976
Cos(185°) -0.9962
Cos(186°) -0.9945
Cos(187°) -0.9925
Cos(188°) -0.9903
Cos(189°) -0.9877
Cos(190°) -0.9848
Cos(191°) -0.9816
Cos(192°) -0.9781
Cos(193°) -0.9744
Cos(194°) -0.9703
Cos(195°) -0.9659
Cos(196°) -0.9613
Cos(197°) -0.9563
Cos(198°) -0.9511
Cos(199°) -0.9455
Cos(200°) -0.9397
Cos(201°) -0.9336
Cos(202°) -0.9272
Cos(203°) -0.9205
Cos(204°) -0.9135
Cos(205°) -0.9063
Cos(206°) -0.8988
Cos(207°) -0.891
Cos(208°) -0.8829
Cos(209°) -0.8746
Cos(210°) -0.866
Cos(211°) -0.8572
Cos(212°) -0.848
Cos(213°) -0.8387
Cos(214°) -0.829
Cos(215°) -0.8192
Cos(216°) -0.809
Cos(217°) -0.7986
Cos(218°) -0.788
Cos(219°) -0.7771
Cos(220°) -0.766
Cos(221°) -0.7547
Cos(222°) -0.7431
Cos(223°) -0.7314
Cos(224°) -0.7193
Cos(225°) -0.7071
Cos(226°) -0.6947
Cos(227°) -0.682
Cos(228°) -0.6691
Cos(229°) -0.6561
Cos(230°) -0.6428
Cos(231°) -0.6293
Cos(232°) -0.6157
Cos(233°) -0.6018
Cos(234°) -0.5878
Cos(235°) -0.5736
Cos(236°) -0.5592
Cos(237°) -0.5446
Cos(238°) -0.5299
Cos(239°) -0.515
Cos(240°) -0.5
Cos(241°) -0.4848
Cos(242°) -0.4695
Cos(243°) -0.454
Cos(244°) -0.4384
Cos(245°) -0.4226
Cos(246°) -0.4067
Cos(247°) -0.3907
Cos(248°) -0.3746
Cos(249°) -0.3584
Cos(250°) -0.342
Cos(251°) -0.3256
Cos(252°) -0.309
Cos(253°) -0.2924
Cos(254°) -0.2756
Cos(255°) -0.2588
Cos(256°) -0.2419
Cos(257°) -0.225
Cos(258°) -0.2079
Cos(259°) -0.1908
Cos(260°) -0.1736
Cos(261°) -0.1564
Cos(262°) -0.1392
Cos(263°) -0.1219
Cos(264°) -0.1045
Cos(265°) -0.0872
Cos(266°) -0.0698
Cos(267°) -0.0523
Cos(268°) -0.0349
Cos(269°) -0.0175
Cos(270°) -0
Cos(271°) 0.0175
Cos(272°) 0.0349
Cos(273°) 0.0523
Cos(274°) 0.0698
Cos(275°) 0.0872
Cos(276°) 0.1045
Cos(277°) 0.1219
Cos(278°) 0.1392
Cos(279°) 0.1564
Cos(280°) 0.1736
Cos(281°) 0.1908
Cos(282°) 0.2079
Cos(283°) 0.225
Cos(284°) 0.2419
Cos(285°) 0.2588
Cos(286°) 0.2756
Cos(287°) 0.2924
Cos(288°) 0.309
Cos(289°) 0.3256
Cos(290°) 0.342
Cos(291°) 0.3584
Cos(292°) 0.3746
Cos(293°) 0.3907
Cos(294°) 0.4067
Cos(295°) 0.4226
Cos(296°) 0.4384
Cos(297°) 0.454
Cos(298°) 0.4695
Cos(299°) 0.4848
Cos(300°) 0.5
Cos(301°) 0.515
Cos(302°) 0.5299
Cos(303°) 0.5446
Cos(304°) 0.5592
Cos(305°) 0.5736
Cos(306°) 0.5878
Cos(307°) 0.6018
Cos(308°) 0.6157
Cos(309°) 0.6293
Cos(310°) 0.6428
Cos(311°) 0.6561
Cos(312°) 0.6691
Cos(313°) 0.682
Cos(314°) 0.6947
Cos(315°) 0.7071
Cos(316°) 0.7193
Cos(317°) 0.7314
Cos(318°) 0.7431
Cos(319°) 0.7547
Cos(320°) 0.766
Cos(321°) 0.7771
Cos(322°) 0.788
Cos(323°) 0.7986
Cos(324°) 0.809
Cos(325°) 0.8192
Cos(326°) 0.829
Cos(327°) 0.8387
Cos(328°) 0.848
Cos(329°) 0.8572
Cos(330°) 0.866
Cos(331°) 0.8746
Cos(332°) 0.8829
Cos(333°) 0.891
Cos(334°) 0.8988
Cos(335°) 0.9063
Cos(336°) 0.9135
Cos(337°) 0.9205
Cos(338°) 0.9272
Cos(339°) 0.9336
Cos(340°) 0.9397
Cos(341°) 0.9455
Cos(342°) 0.9511
Cos(343°) 0.9563
Cos(344°) 0.9613
Cos(345°) 0.9659
Cos(346°) 0.9703
Cos(347°) 0.9744
Cos(348°) 0.9781
Cos(349°) 0.9816
Cos(350°) 0.9848
Cos(351°) 0.9877
Cos(352°) 0.9903
Cos(353°) 0.9925
Cos(354°) 0.9945
Cos(355°) 0.9962
Cos(356°) 0.9976
Cos(357°) 0.9986
Cos(358°) 0.9994
Cos(359°) 0.9998
Cos(360°) 1

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»

В статье мы рассмотрим, как найти значения:

(cosfrac{π}{6}),       (sin⁡(-frac{7π}{3})),     (cosfrac{3π}{4}),     (sin⁡(-frac{27π}{2}))

и других тригонометрических выражений без тригонометрической таблицы.

Для начала внимательно прочтите статью о числовой окружности. Вы должны научиться находить точки на окружности в числах с Пи.

Уже умеете? Тогда два ключевых утверждения:

Например, пусть нам нужно найти синус и косинус числа (frac{π}{6}). Обозначим на числовой окружности точку со значением (frac{π}{6}).

Если построить все точно и крупно, то можно убедиться, что абсцисса этой точки будет равна (0,866…) , что соответствует числу (frac{sqrt{3}}{2}) , а ордината равна (0,5), то есть (frac{1}{2}).

Как найти синус пи на 6 и косинус пи на 6

Значит, что (cos⁡(frac{π}{6}) = frac{sqrt{3}}{2}), а (sin(frac{π}{6}) ⁡=frac{1}{2}).

Аналогично и для любой другой точки: значение абсциссы совпадает со значением косинуса, а ординаты – синуса. Поэтому:

В тригонометрии ось абсцисс часто называют «ось косинусов», а ординат – «ось синусов».

И обычно на них не наносят значения в десятичных ((0,1); (0,2); (0,3) и т.д.), а сразу отмечают стандартные значения для синуса и косинуса: (frac{1}{2} =0,5); (frac{sqrt{2}}{2} ≈0,707); (frac{sqrt{3}}{2}≈0,866), причем, как со знаком плюс, так и минус. Почему стандартные значения синуса и косинуса именно (frac{1}{2}),(frac{sqrt{2}}{2}) и (frac{sqrt{3}}{2}) вы можете узнать из этого видео.

Как находить значения синуса и косинуса без таблицы, а только с помощью круга?

Алгоритм прост:

  1. Начертите круг и оси косинусов и синусов.
  2. Отметьте на круге число, синус и косинус которого надо найти. Если с этим возникают проблемы, прочитайте здесь о том, как расставлять числа на числовой окружности. 
  3. Найдите координаты точки, используя картинку ниже.

тригонометрический круг

Пример. Найдите синус и косинус для числа (-frac{7π}{6}).
Решение:(-frac{7π}{6}=-frac{6π}{6}-frac{π}{6}=-π-frac{π}{6}) , то есть, чтобы отметить на окружности точку (-frac{7π}{6}) сначала находим число (-π) и от него в отрицательную сторону откладываем дугу длиной (frac{π}{6}).

Находим - 7пи на 6

Отмечаем число, синус и косинус которого надо найти:

Находим синус - 7 пи на 6

Получается, что (sin⁡(-frac{7π}{6})=frac{1}{2}), (cos⁡(-frac{7π}{6})=-frac{sqrt{3}}{2}).

Пример. Вычислите (sinfrac{5π}{2}) и (cosfrac{5π}{2}).
Решение:  (frac{5π}{2}=frac{4π+π}{2}=frac{4π}{2}+frac{π}{2}=2π+frac{π}{2}).

5 пи на 2 на тригонометрической окружности

Точка (frac{5π}{2}) совпадает с (1) на оси синусов, значит (sin⁡frac{5π}{2}=1). А если провести перпендикуляр из точки (frac{5π}{2}) до оси косинусов, то можно убедиться, что он попадет в (0). Поэтому (cosfrac{5π}{2}=0).

как вычислить косинус 5 пи на 2

И тут некоторые из вас подумали: «с кругом, на котором подписаны числа, каждый дурак сможет посчитать, а что делать, когда его под рукой нет? Что делать на ЕГЭ?» Ответ прост – нарисуйте круг сами! Для этого вам будет нужно понять логику расположения чисел на осях (подробнее об этом читайте в статье «Как запомнить тригонометрический круг»).

Пример. Найдите а) (sin⁡frac{3π}{2}), б) (cos⁡frac{3π}{4}), в) (sin⁡(-frac{π}{3})) .
Решение: а) Чертим круг, оси и отмечаем число (frac{3π}{2}). Обращаем внимание на ось синусов и понимаем, что точка совпала с (-1), получается (sin⁡frac{3π}{2}=-1).
б) (frac{3π}{4}=frac{4π}{4}-frac{π}{4}=π-frac{π}{4}) — отмечаем число на круге. Проводим перпендикуляр до оси косинусов и вспоминаем, что точки со знаменателем (4) находятся посередине. Мы еще попали и в отрицательную часть оси косинусов, получается (cos⁡frac{3π}{4}=-frac{sqrt{2}}{2}).
в) (-frac{π}{3}) – отмечаем число на круге. Видим, что перпендикуляр к оси синусов попал в точку близкую к (-1), значит (sin⁡(-frac{π}{3})=-frac{sqrt{3}}{2}).

как рисовать тригонометрический круг

Как видите не обязательно рисовать, очень красивую или очень большую окружность — вы можете определить нужное вам значение, быстро набросав круг. И ничего не надо учить!

Если вы хотите еще примеров с вычислением синусов и косинусов без тригонометрической таблицы, то прочтите эту статью.

Пример (ЕГЭ). Найдите значение выражения (frac{8}{sin⁡(-frac{27π}{4}) cos⁡(frac{31π}{4})}) .
Решение.    (-frac{27π}{4}=-frac{28π}{4}+frac{π}{4}=-7π+frac{π}{4}).
(frac{31π}{4}=frac{32π}{4}-frac{π}{4}=8π-frac{π}{4}).

как рисовать тригонометрический круг

(sin⁡(-frac{27π}{4})=-frac{sqrt{2}}{2}),      (cos⁡(frac{31π}{4})=frac{sqrt{2}}{2}).

(frac{8}{sin⁡(-frac{27π}{4}) cos⁡(frac{31π}{4})})(=) (frac{ 8}{-frac{sqrt{2}}{2}cdotfrac{sqrt{2}}{2}})(=-8:frac{2}{4}=-8cdotfrac{2}{1}=-16).

Ответ: (-16).

Смотрите также:
Как найти синус и косинус углов в градусах без тригонометрической таблицы?
Из градусов в радианы и наборот

Тригонометрическая таблица с кругом
Почему в тригонометрической таблице такие числа?

Для тех кто хочет закрепить знания:
Задание на вычисление синусов, косинусов, тангенсов и котангенсов

Синус, косинус и тангенс острого угла прямоугольного треугольника

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин :-)

Развёрнутый, прямой, острый и тупой углы

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается C. Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается a.

Угол A обозначается соответствующей греческой буквой alpha.

Гипотенуза и катеты

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Катет a, лежащий напротив угла alpha, называется противолежащим (по отношению к углу alpha). Другой катет b, который лежит на одной из сторон угла alpha, называется прилежащим.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

sin A=genfrac{}{}{}{0}{displaystyle a}{displaystyle c}.

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

cos A=genfrac{}{}{}{0}{displaystyle b}{displaystyle c}.

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

tg A =genfrac{}{}{}{0}{displaystyle a}{displaystyle b}.

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

tg A=genfrac{}{}{}{0}{displaystyle sin A}{displaystyle cos A}.

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

ctg A =genfrac{}{}{}{0}{displaystyle cos A}{displaystyle sin A}.

Обратите внимание на основные формулы для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

sin displaystyle alpha = frac{a}{c} sin{}^2 alpha +cosdisplaystyle {}^2 alpha =1 alpha + beta = 90 ^{circ} 
cos displaystyle alpha = frac{b}{c} 1+tg displaystyle {}^2 alpha =frac{1}{cos ^2 alpha} cosalpha = sin beta
tg displaystyle alpha = frac{a}{b} 1+ctg displaystyle {}^2 alpha =frac{1}{sin ^2 alpha} sinalpha = cosbeta
ctg displaystyle alpha = frac{b}{a} tgalpha = ctgbeta

Давайте докажем некоторые из них.

  1. Сумма углов любого треугольника равна 180^{circ}. Значит, сумма двух острых углов прямоугольного треугольника равнa 90^{circ}.
  2. С одной стороны, sin A =genfrac{}{}{}{0}{displaystyle a}{displaystyle c} как отношение противолежащего катета к гипотенузе. С другой стороны, cos B =genfrac{}{}{}{0}{displaystyle a}{displaystyle c}, поскольку для угла beta катет а будет прилежащим. Получаем, что cos beta =sin alpha. Иными словами, cos left( 90^{circ}-A right) = sin A.
  3. Возьмем теорему Пифагора: a^2+b^2=c^2. Поделим обе части на c^2, получаем displaystyle left ( frac{a}{c} right )^2+left ( frac{b}{c} right )^2=left ( frac{c}{c} right )^2 , то есть sin ^2 A+cos^2 A=1.
    Мы получили основное тригонометрическое тождество.
  4. Поделив обе части основного тригонометрического тождества на cos^2 A, получим: 1+tg ^2 A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle cos ^2 A }. Это значит, что если нам дан тангенс острого угла alpha, то мы сразу можем найти его косинус. Аналогично,1+ctg ^2 A =genfrac{}{}{}{0}{1}{sin ^2 A }.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна 180^{circ}.

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: a^2+b^2=c^2.

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от 0^{circ} до 90^{circ}.

varphi 0 genfrac{}{}{}{0}{displaystyle pi}{displaystyle 6} genfrac{}{}{}{0}{displaystyle pi}{displaystyle 4} genfrac{}{}{}{0}{displaystyle pi}{displaystyle 3} genfrac{}{}{}{0}{displaystyle pi}{displaystyle 2}
sinvarphi 0 displaystyle frac{1}{2} displaystyle frac{sqrt{2}}{2} displaystyle frac{sqrt{3}}{2} 1
cosvarphi 1 displaystyle frac{sqrt{3}}{2} displaystyle frac{sqrt{2}}{2} displaystyle frac{1}{2} 0
tgvarphi 0 genfrac{}{}{}{0}{displaystyle 1}{displaystyle sqrt{3}} 1 sqrt{3}
ctgvarphi sqrt{3} 1 genfrac{}{}{}{0}{displaystyle 1}{displaystyle sqrt{3}} 0

Обратите внимание на два прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Докажем теорему:

Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.

В самом деле, пусть АВС и A_1B_1C_1 — два прямоугольных треугольника с прямыми углами С и C_1 и равными острыми углами А и A_1.

Треугольники АВС и A_1B_1C_1 подобны по первому признаку подобия треугольников, поэтому displaystyle frac{AB}{A_1 B_1}=frac{BC}{B_1 C_1}=frac{AC}{A_1 C_1 } .

Из этих равенств следует, что displaystyle frac{BC}{AB}=frac{B_1 C_1}{A_1 B_1} , т. е. sin А = sin A_1.

Аналогично, displaystyle frac{AC}{AB}=frac{A_1C_1}{A_1 B_1}, т. е. cos А = cosA_1, и displaystyle frac{BC}{AC}=frac{B_1C_1}{A_1 C_1}, т. е. tg A = tg A_1.

Это значит, что синус, косинус и тангенс зависят только от величины угла.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

Задача 1. В треугольнике ABC угол C равен 90^{circ}, sin A = 0,1. Найдите cos B.

Задача решается за четыре секунды.

Поскольку A+B = 90^{circ}, sin A = cos B = 0,1.

Задача 2В треугольнике ABC угол C равен 90^{circ}, AB=5, sin A = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25}.

Найдите AC.

Решение:

sin A = genfrac{}{}{}{0}{displaystyle a}{displaystyle c} = genfrac{}{}{}{0}{displaystyle BC}{displaystyle AB} = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25}.

Отсюда

BC= genfrac{}{}{}{0}{displaystyle 7}{displaystyle 25} cdot AB = genfrac{}{}{}{0}{displaystyle 7}{displaystyle 5}.

Найдем AC по теореме Пифагора.

AC=sqrt{AB^2-BC^2} = genfrac{}{}{}{0}{displaystyle 24}{displaystyle 5} = 4,8.

Ответ: 4,8.

Задача 3. В треугольнике АВС угол С равен 90^circ , AВ = 13, ВС = 5. Найдите косинус и тангенс острого угла А. Ответ округлите до сотых.

Решение:

Для угла А противолежащий катет – это ВС,

АВ является гипотенузой треугольника, лежит против angle C. Значит, sin A displaystyle = frac{BC}{AB}= frac{5}{13}.

Катет, прилежащий к angle A – это катет АС, следовательно, cos⁡ А displaystyle = frac{AC}{AB}=frac{AC}{13}.

Длину катета АС найдем по теореме Пифагора: AC^2+BC^2=AB^2.

Тогда AC = sqrt{AB^2-BC^2}=sqrt{(13)^2-5^2}=sqrt{144}=12.

cos⁡ А displaystyle = frac{12}{13}=0,923 ... approx 0,92 ;

tg A displaystyle = frac{BC}{AC} = frac{5}{12}=0,416...approx 0,42.

Ответ: 0,92; 0,42.

Заметим, что если катеты прямоугольного треугольника равны 5 и 12, то гипотенуза равна 13. Это одна из так называемых Пифагоровых троек. О них мы расскажем в других статьях сайта.

Задача 4. В треугольнике АВС угол С равен 90^circ , AC = 2, sin A= displaystyle frac{sqrt{17}}{17} .

Найдите BC.
Решение:

AC = b = 2, BC = a, AB = c.

Так как sin A displaystyle = frac{a}{c} = frac{BC}{AB} = frac{sqrt{17}}{17}, displaystyle frac{a}{c} = frac{sqrt{17}}{17} , displaystyle c = frac{17a}{sqrt{17}}=sqrt{17}a.

По теореме Пифагора a^2+b^2=c^2, получим

a^2+2^2=(sqrt{17} a)^2;

a^2+4=17a^2;

16a^2=4, displaystyle a= frac{1}{2}=0,5;

BC = 0,5.

Ответ: 0,5.

Задача 5. В треугольнике АВС угол С равен 90^circ , AC = 4, tg A = displaystyle frac{33}{4sqrt{33}} . Найдите AB.

Решение:

AC = b = 4, tg A displaystyle = frac{a}{b}=frac{33}{4sqrt{33}},

displaystyle frac{a}{4}=frac{33}{4sqrt{33}}, displaystyle a=frac{4 cdot 33}{4 cdot sqrt{33}}=sqrt{33},

AB = c = sqrt{a^2+b^2}=sqrt{(sqrt{33})^2+4^2}=sqrt{33+16} =7.

Ответ: 7.

Задача 6.

В треугольнике АВС угол С равен 90^ circ, CH – высота, AB = 13, tg A = displaystyle frac{1}{5} . Найдите AH.

Решение:

AВ = с = 13, tg A = displaystyle frac{a}{b}=frac{1}{5} , тогда b = 5a.

По теореме Пифагора triangleABC: a^2+b^2=c^2,

a^2+(5a)^2=13^2,

26 a^2=169,

displaystyle a=sqrt{frac{169}{26}}=frac{13}{sqrt{26}}, тогда displaystyle b = 5a=5cdot frac{13}{sqrt{26}}=frac{65}{sqrt{26}}.

triangle AHC approx triangle ACB (по двум углам), следовательно displaystyle frac{AH}{AC}=frac{AC}{AB} , откуда

displaystyle AH = frac{AC^2}{AB}=frac{b^2}{c}=left ( frac{65}{sqrt{26}}right )^2:13=12,5.

Ответ: 12,5.

Задача 7. В треугольнике АВС угол С равен 90^circ,

CH – высота, BC = 3, sin A = displaystyle frac{1}{6} .

Найдите AH.

Решение:

Так как sin A = displaystyle frac{a}{c} = frac{BC}{AB} = frac{1}{6}, тогда displaystyle frac{3}{c} = frac{1}{6} , c = АВ = 18.

sin A = displaystyle frac{a}{c} = cos⁡ B = displaystyle frac{1}{6} .

Рассмотрим triangle BHC:

{cos B=  }displaystyle frac{BH}{BC} = displaystyle frac{1}{6} , получим displaystyle frac{BH}{3}=displaystyle frac{1}{6},

тогда BH = displaystyle frac{3}{6}=displaystyle frac{1}{2} = 0,5,

AH = AB — BH = 18 — 0,5 = 17,5.

Ответ: 17,5.

Задача 8. В треугольнике АВС угол С равен 90{}^circ, CH — высота, BC = 3, cos A = displaystyle frac{sqrt{35}}{6}.

Найдите АH.

Решение:

Так как для triangle АВС: cos A = displaystyle frac{AC}{AB}= sin В = displaystyle frac{sqrt{35}}{6},

а для triangle ВНС: sin В = displaystyle frac{CH}{BC} = displaystyle frac{sqrt{35}}{6} , откуда СН = displaystyle frac{BC cdot  sqrt{35}}{6}=displaystyle frac{3 cdot sqrt{35}}{6}=displaystyle frac{sqrt{35}}{2},

По теореме Пифагора найдем ВН:

BH = sqrt{{BC}^2-{CH}^2}=sqrt{3^2-{left(displaystyle frac{sqrt{35}}{2}right)}^2}=

=sqrt{9-displaystyle frac{35}{4}}=sqrt{displaystyle frac{1}{4}}=displaystyle frac{1}{2}=0,5.

Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Поэтому для triangle АВС получим:

{CH}^2=AH cdot BH, тогда AH= displaystyle frac{ {CH}^2}{BH}, ; AH= displaystyle frac{ {left(displaystyle frac{sqrt{35}}{2}right)}^2}{0,5}=displaystyle frac{35 cdot 2}{4}=17,5.

Ответ: 17,5.

Задача 9. В треугольнике АВС угол С равен 90{}^circ, CH — высота, СН = 24 и BН = 7. Найдите sin A.

Решение:

По определению sin A= displaystyle frac{a}{c} = displaystyle frac{BC}{AB} = {cos B}.

Рассмотрим triangle BHC : {cos B=  }displaystyle frac{BH}{BC}.

ВС найдем по теореме Пифагора:

ВС= sqrt{{BH}^2+{CH}^2}=sqrt{7^2+{24}^2}=sqrt{49+576}=sqrt{625}=25,

тогда {cos B=  }displaystyle frac{BH}{BC}=displaystyle frac{7}{25}=0,28, а значит и sin A = {cos B  }= 0,28.

Ответ: 0,28.

Задача 10. В треугольнике АВС угол С равен 90{}^circ, CH — высота, СН = 8 и BН = 4. Найдите tg A.

Решение:

По определению sin A = displaystyle frac{a}{c} = displaystyle frac{BC}{AB} = ;   cos A = displaystyle frac{b}{c} = displaystyle frac{AC}{AB} = {sin B },

тогда tg A = displaystyle frac{sin A}{{cos A }}=displaystyle frac{cosB}{sinB}=ctgB, который найдем из triangle BHC:

ctgB=displaystyle frac{BH}{CH}=displaystyle frac{4}{8}=0,5.

Ответ: 0,5.

Задача 11. В треугольнике АВС угол С равен 90{}^circ, CH — высота, BН = 12, tg A = displaystyle frac{2}{3}. Найдите АН.

Решение:

По определению tg A= displaystyle frac{BC}{AC}=ctgB=displaystyle frac{2}{3}.

Для triangle BHC: ctgB=displaystyle frac{BH}{CH}=displaystyle frac{2}{3} , значит displaystyle frac{12}{CH}=displaystyle frac{2}{3}, СН = displaystyle frac{12 cdot 3}{2}=18.

Для triangle АHC: tg A= displaystyle frac{CH}{AH}=displaystyle frac{2}{3}, то displaystyle frac{18}{AH}=displaystyle frac{2}{3}, AH = displaystyle frac{18 cdot 3}{2}=27.

Ответ: 27.

Задача 12. В треугольнике АВС угол С равен 90{}^circ, CH — высота, BН = 12, sin A = displaystyle frac{2}{3}. Найдите АВ.

Решение:

Так как cos В = displaystyle frac{BC}{AB} = sin A = displaystyle frac{2}{3}.

Из triangle СВН имеем cos В = displaystyle frac{HB}{BC} = displaystyle frac{2}{3}, тогда ВС = displaystyle frac{3 cdot  HB}{2}=displaystyle frac{3 cdot 12}{2}=18.

В triangle АВС имеем sinA = displaystyle frac{BC}{AB} = displaystyle frac{2}{3}, тогда AВ = displaystyle frac{3 cdot BC}{2}=displaystyle frac{3 cdot 18}{2}=27.

Ответ: 27.

Задача 13. В треугольнике АВС угол С равен 90{}^circ, из вершины прямого угла к гипотенузе проведена высота СН. Найдите cos A, AC и AB, если СН = 12, ВС = 20.

Решение:

Найдем НВ по теореме Пифагора из triangle ВСН:

HB = sqrt{BC^2-BH^2}=sqrt{20^2-12^2}=sqrt{(20-12)(20+12)}=

sqrt{8 cdot 32}= sqrt{8 cdot 2 cdot 16}=16.

sin В = displaystyle frac{CH}{BC} = displaystyle frac{12}{20}=displaystyle frac{3}{5}.

Для triangle АВС: cos A = displaystyle frac{AC}{AB}=sin B=displaystyle frac{3}{5}, получили cos A = 0,6.

Найдем АС и АВ несколькими способами.

1-й способ.

Так как cos A = displaystyle frac{AC}{AB}=displaystyle frac{3}{5}, то пусть АС = 3х, АВ = 5х,

тогда по теореме Пифагора {AC}^2+{BC}^2= {AB}^2, получим {(3x)}^2+{(20)}^2= {(5x)}^2
{25x}^2-{9x}^2= {20}^2 ,

{16x}^2= {20}^2,

x^2= {left(displaystyle frac{20}{4}right)}^2,
х = 5 ( так как хtextgreater 0). Значит, AC=15,  AB=25.

2-й способ.

triangle HBC approx triangle CBA (по двум углам), значит displaystyle frac{HB}{CB}=frac{HC}{AC}=frac{BC}{AB} или displaystyle frac{16}{20}={12}{AC}={20}{AB} = k,

k = displaystyle frac{16}{20}=displaystyle frac{4}{5} , тогда displaystyle frac{12}{AC}=displaystyle frac{4}{5}, АС = displaystyle frac{12 cdot 5}{4}=15; displaystyle frac{20}{AB}=displaystyle frac{4}{5}, АВ = displaystyle frac{20 cdot 5}{4}=25.

3-й способ.

{CH}^2=AH cdot HB (высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой) , тогда {12}^2=AH cdot 16, АН = 144:16 = 9.

АВ = АН + НВ = 9 + 16 = 25.

По теореме Пифагора найдем АС:

AC = sqrt{{AB}^2-{BC}^2}=sqrt{{25}^2-{20}^2}=sqrt{(25-20)(25+20)} = sqrt{5cdot 45}=sqrt{5cdot 5cdot 9}=15.

Ответ: cos A = 0,6; АС = 15, АВ = 25.

Задача 14.

Высота ВН прямоугольного треугольника АВС, проведенная из вершины прямого угла В, равна 24 и отсекает от гипотенузы АС отрезок НС, равный 18.

Найдите АВ и cos А.

Решение:

Из прямоугольного triangle ВНС по теореме Пифагора найдем гипотенузу ВС и cos C:

ВС = sqrt{{HC}^2+{BH}^2}=sqrt{{18}^2+{24}^2}=sqrt{324+576}= sqrt{900}=30;

cos C = displaystyle frac{HC}{BC}=displaystyle frac{18}{30}=displaystyle frac{3}{5}.

Для triangle АВС: sin А = displaystyle frac{BC}{AC} = cos C = displaystyle frac{3}{5}.

Для triangle АНВ: sin А = displaystyle frac{BH}{AB} = displaystyle frac{3}{5}, то displaystyle frac{24}{AB} = displaystyle frac{3}{5}, АВ = displaystyle frac{24 cdot 5}{3}=40.

Из основного тригонометрического тождества найдем

cos A = sqrt{1-{sin}^2A}=sqrt{1-0,36}=sqrt{0,64}=0,8.

Ответ: АВ = 40, cos A = 0,8.

Задача 15.

Гипотенуза АС прямоугольного треугольника АСЕ равна 50, sin А = displaystyle frac{7}{25}.

Найдите площадь треугольника.

Решение:

В прямоугольном triangle АСЕ sin А = displaystyle frac{CE}{AC},

значит CE=AC cdot sinA=50 cdot displaystyle frac{7}{25} = 14.

Второй катет найдем, используя теорему Пифагора: AE= sqrt{{AC}^2-{CE}^2};

AE = sqrt{{50}^2-{14}^2}=sqrt{(50-14)(50+14)} =sqrt{36cdot 64}=6cdot8=48.

Площадь прямоугольного треугольника равна S = displaystyle frac{1}{2}ab,

поэтому S_{ACE}= displaystyle frac{1}{2} AEcdot CE=displaystyle frac{48cdot 14}{2}=336.

Ответ: 336.

Задача 16.

В треугольнике АВС угол С — прямой, катеты АВ = 13 и ВС = 12, СК — высота.

Найдите sin angle ACK. Результат округлите до сотых.

Решение:

triangle CAK approx triangle BAC ( angle A-общий, angle AKC=angle ACB=90{}^circ ),

значит angle ACK=angle ABC, sin angle ACK=displaystyle frac{AK}{AC}=displaystyle frac{AC}{AB}.

Найдем АС по теореме Пифагора из triangle САВ:

AC = sqrt{{AB}^2-{BC}^2}=sqrt{{13}^2-{12}^2}=

=sqrt{(13-12)(13+12)}=sqrt{25}= 5.

Тогда sin angle ACK=displaystyle frac{5}{13}=0,384..approx 0,38.

Ответ: 0,38.

Задача 17. В треугольнике АВС АС = ВС, АВ = 72, cos A = displaystyle frac{12}{13}. Найдите высоту СН.

Решение:

Так как АС = ВС, то triangle АВС — равнобедренный с основанием АВ, тогда

высота СН является медианой, то есть АН = НВ = displaystyle frac{1}{2}AB=36.

Поскольку triangle АСН — прямоугольный,

cos A = displaystyle frac{AH}{AC}= displaystyle frac{12}{13}, то есть displaystyle frac{36}{AC}= displaystyle frac{12}{13} Rightarrow АС = displaystyle frac{36 cdot 13}{12}=39.

По теореме Пифагора {AH}^2+{CH}^2={AC}^2, тогда

CH = sqrt{{AC}^2-{AH}^2} = sqrt{{39}^2-{36}^2}=

=sqrt{(39-36)(39+36)}=sqrt{3cdot 3cdot 25}=15.

Ответ: 15.

Задача 18. В треугольнике АВС угол С равен 90{}^circ, sin A = displaystyle frac{11}{14}, AC = 10sqrt{3}. Найдите АВ.

Решение:

1-й способ.

Поскольку sin A = displaystyle frac{BC}{AB}= displaystyle frac{11}{14}, то можно обозначить

ВС = 11х, АВ = 14х.

По теореме Пифагора AC^2+{BC}^2={AB}^2;

{(10sqrt{3})}^2+{(11x)}^2={(14x)}^2;

{(14x)}^2-{(11x)}^2 = 3 cdot 100;

(14х- 11х)(14х + 11х) = 3 cdot 100;

3cdot 25 x^2 = 3 cdot 100.

x^2=4, учитывая, что длина стороны положительна, х = 2,

следовательно, АВ = 14 cdot 2 = 28.

2-й способ.

Воспользуемся основным тригонометрическим тождеством {sin}^2A+{cos}^2A=1;

cos A = sqrt{1-{sin}^2A}=sqrt{1-{left(displaystyle frac{11}{14}right)}^2}=sqrt{displaystyle frac{196-121}{196}}=sqrt{displaystyle frac{75}{196}}=displaystyle frac{5sqrt{3}}{14}.

По определению cos A = displaystyle frac{AC}{AB}, значит displaystyle frac{AC}{AB}= displaystyle frac{5sqrt{3}}{14}.

Так как АС=10sqrt{3}, то displaystyle frac{10sqrt{3}}{AB}= displaystyle frac{5sqrt{3}}{14}, откуда АВ = displaystyle frac{10sqrt{3} cdot 14}{5sqrt{3}} = 28.

Ответ: 28.

Задача 19. Найдите углы ромба АВСD, если его диагонали АС и ВD равны 4sqrt{3} и 4.

Решение:

Пусть angle ВАО = alpha .

Диагонали ромба делят его углы пополам, значит, angle DAO=angle BAO = alpha .

Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, следовательно, в прямоугольном треугольнике АВО катет АО = displaystyle frac{1}{2} AC=2sqrt{3}, а катет ВО = displaystyle frac{1}{2}BD =2.

Поэтому tgalpha =displaystyle frac{BO}{AO}=displaystyle frac{2}{2sqrt{3}}=displaystyle frac{1}{sqrt{3}}, откуда alpha =30{}^circ .

angle BAD=2alpha =60{}^circ , ; angle ADC=angle ABC=180{}^circ -60{}^circ =120{}^circ .

Ответ: {60}^circ, {120}^circ, {60}^circ, {120}^circ .

Часто в задачах встречаются треугольники с углами 90^{circ},, 30^{circ} и 60^{circ} или с углами 90^{circ},, 45^{circ} и 45^{circ}. Основные соотношения для них запоминайте наизусть!

Прямоугольные треугольники с углами 30, 60, 90 и 45, 45, 90 градусов

Для треугольника с углами 90^{circ},, 30^{circ} и 60^{circ} катет, лежащий напротив угла в 30^{circ}, равен половине гипотенузы.

Треугольник с углами 90^{circ},, 45^{circ} и 45^{circ} — равнобедренный. В нем гипотенуза в sqrt{2} раз больше катета.

Задача 20.

В треугольнике АВС угол С равен 90{}^circ, угол А равен 30{}^circ, АВ = 2sqrt{3} .

Найдите высоту CH.

Решение:

Рассмотрим triangle АВС:

По свойству катета, лежащего против угла {30}^circ, имеем ВС = displaystyle frac{1}{2} АВ = sqrt{3}.

В triangle BHC: angle BHC=90{}^circ ,;  angle B=60{}^circ , то angle HCB=30{}^circ , следовательно, ВН = displaystyle frac{1}{2} BC = displaystyle frac{sqrt{3}}{2}.

По теореме Пифагора найдем НС:

HC = sqrt{{BC}^2-{BH}^2}=sqrt{{left(sqrt{3}right)}^2-{left(displaystyle frac{sqrt{3}}{2}right)}^2}=sqrt{3-displaystyle frac{3}{4}}=

=sqrt{2displaystyle frac{1}{4}}=sqrt{displaystyle frac{9}{4}}=displaystyle frac{3}{2}=1,5.

Ответ: 1,5.

Задача 21.

В треугольнике АВС угол С равен 90{}^circ, CH — высота, АВ = 2, angle A=30{}^circ . Найдите АH.

Решение:

Из triangle АВС найдем ВС = displaystyle frac{1}{2} АВ = 1 (по свойству катета, лежащего против угла 30{}^circ),

angle A=30{}^circ , то angle B=60{}^circ .

Из triangle ВСН: angle BHC=90{}^circ ,  angle B=60{}^circ , то angle HCB=30{}^circ , следовательно,

ВН = displaystyle frac{1}{2} ВС = displaystyle frac{1}{2}.

АН = АВ — НВ = 2 — displaystyle frac{1}{2} = 1,5.

Ответ: 1,5.

Еще раз повторим, что такое синус, косинус и тангенс угла в прямоугольном треугольнике.

Как запомнить эти соотношения? Лучший способ – решать много задач, и на уроках геометрии, и готовясь к ЕГЭ. Тогда все формулы, равенства, соотношения запомнятся сами собой.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Если вам понравился разбор данной темы — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Синус, косинус и тангенс острого угла прямоугольного треугольника» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Содержание материала

  1. Определение косинуса угла
  2. Видео
  3. Определение угла с помощью косинуса
  4. Косинус любого угла
  5. Производные
  6. Тригонометрическое определение
  7. Угол поворота
  8. Тригонометрические функции углового и числового аргумента
  9. Функция (y=cos{x})

Определение косинуса угла

Определение

Косинус — это прилежащая сторона катет к гипотенузе, обозначается как (cos).

Угловые значения функции в градусах (cos):

[cos 0^{circ}=1 ; cos 30^{circ}=frac{sqrt{3}}{2} ; cos 45^{circ}=frac{sqrt{2}}{2} ; cos 60^{circ}=frac{1}{2} ;][cos 90^{circ}=0 ; cos 120^{circ}=-frac{1}{2} ; cos 135^{circ}=-frac{sqrt{2}}{2} ; cos 150^{circ}=-frac{sqrt{3}}{2} ;][cos 180=-1 ; cos 210^{circ}=-frac{sqrt{3}}{2} ; cdot cos 225^{circ}=-frac{sqrt{2}}{2} ;][cos 240^{circ}=-frac{1}{2} ; cos 270^{circ}=0 ; cos 300^{circ}=frac{1}{2} ; . cos 315^{circ}=frac{sqrt{2}}{2} ;][cos 330^{circ}=frac{sqrt{3}}{2} ; cos 360^{circ}=1]

Формулы кратности значения угла:

[cos 2 a=cos ^{2} a-sin ^{2} a][cos 2 a=1-sin ^{2} a][cos 2 a=2 cos ^{2} a-1][cos 3 a=cos ^{3} a-3 sin ^{2} a][cos 3 a=-3 cos a+4 cos ^{3} a]

Формулы угла, определяющие половину тригонометрического значения (половинного угла):

[cos ^{2} frac{a}{2}=frac{1+cos a}{2}]

Видео

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Косинус любого угла

Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем (360°) (полный оборот). Как это делать — проще один раз увидеть, чем (100) раз услышать, поэтому смотрите картинку.

Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в (150°). Совмещаем точку О с центром окружности, а сторону ОК – с осью (x). После этого откладываем (150°) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.

Если же нас интересует угол с градусной мерой, например, в (-60°) (угол КОВ), делаем также, но (60°) откладываем по часовой стрелке.

И, наконец, угол больше (360°) (угол КОС) — всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол (405°) отложен как (360° + 45°).

Несложно догадаться, что для откладывания угла, например, в (960°), надо сделать уже два оборота ((360°+360°+240°)), а для угла в (2640°) — целых семь.

Стоит запомнить, что:

Производные

( ( sin x )’ = cos x )( ( cos x )’ = — sin x ). Вывод формул > > >

Производные n-го порядка:( left( sin x right)^{(n)} = sinleft( x + ndfrac{pi}2 right) )( left( cos x right)^{(n)} = cosleft( x + ndfrac{pi}2 right) ).

Тригонометрическое определение

С помощью формул, указанных выше, можно найти синус и косинус острого угла. Но нужно научиться вычислять синус и косинус угла произвольной величины. Прямоугольный треугольник не даёт такой возможности (тупого угла, например, в нём быть не может); следовательно, нужно более общее определение синуса и косинуса, содержащее указанные формулы как частный случай.

На помощь приходит тригонометрическая окружность. Пусть дан некоторый угол; ему отвечает одноимённая точка на тригонометрической окружности.

Рис. 2. Тригонометрическое определение синуса и косинуса

Косинус угла — это абсцисса точки. Синус угла — это ордината точки.

На рис. 2 угол взят острым, и легко понять, что данное определение совпадает с общим геометрическим определением. В самом деле, мы видим прямоугольный треугольник с единичной гипотенузой O и острым углом. Прилежащий катет этого треугольника есть cos (сравните с рис. 1) и одновременно абсцисса точки ; противолежащий катет есть sin (как на рис. 1) и одновременно ордината точки.

Но теперь мы уже не стеснены первой четвертью и получаем возможность распространить данное определение на любой угол . На рис. 3 показано, что такое синус и косинус угла во второй, третьей и четвёртой четвертях.

Рис. 3. Синус и косинус во II, III и IV четвертях

Рис. 3. Синус и косинус во II, III и IV четвертях

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от —∞ до +∞. 

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α, отличным от α = 90 ° + 180 ° · k ,   k ∈ Z   ( α = π 2 + π · k ,   k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α, кроме α = 180 ° · k ,   k ∈ Z   ( α = π · k ,   k ∈ Z ). 

Можно сказать, что sin α, cos α, tg α, ctg α — это функции угла альфа, или функции углового аргумента. 

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k ,   k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k ,   k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс — основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело. 

Функция (y=cos{x})

Если отложить по оси (x) углы в радианах, а по оси (y) — соответствующие этим углам значения косинуса, мы получим следующий график:

График данной функции называется косинусоида и обладает следующими свойствами:

      — область определения – любое значение икса:   (D(cos{⁡x} )=R)       — область значений – от (-1) до (1) включительно:    (E(cos{x} )=[-1;1])       — четная:   (cos⁡(-x)=cos{x})       — периодическая с периодом (2π):   (cos⁡(x+2π)=cos{x})       — точки пересечения с осями координат:              ось абсцисс:   (()(frac{π}{2})(+πn),(;0)), где (n ϵ Z)              ось ординат:   ((0;1))       — промежутки знакопостоянства:              функция положительна на интервалах:   ((-)(frac{π}{2})(+2πn;) (frac{π}{2})(+2πn)), где (n ϵ Z)              функция отрицательна на интервалах:   (()(frac{π}{2})(+2πn;)(frac{3π}{2})(+2πn)), где (n ϵ Z)       — промежутки возрастания и убывания:              функция возрастает на интервалах:    ((π+2πn;2π+2πn)), где (n ϵ Z)              функция убывает на интервалах:    ((2πn;π+2πn)), где (n ϵ Z)        — максимумы и минимумы функции:              функция имеет максимальное значение (y=1) в точках (x=2πn), где (n ϵ Z)              функция имеет минимальное значение (y=-1) в точках (x=π+2πn), где (n ϵ Z).

Смотрите также:

Синус Тангенс Котангенс Решение уравнения (cos⁡x=a)

Теги

Понравилась статья? Поделить с друзьями:
  • Как найти несовпадение в таблицах excel
  • Как найти объем производства в натуральном выражении
  • Исправьте ошибки как избежать такую ошибку
  • Как найти родственников участника вов по фамилии
  • Как найти потерянный huawei p40 lite e