Как найти знак тангенса

Знаки тригонометрических функций

5 ноября 2011

  • Знаки триг. функций

Знак тригонометрической функции зависит исключительно от координатной четверти, в которой располагается числовой аргумент. В прошлый раз мы учились переводить аргументы из радианной меры в градусную (см. урок «Радианная и градусная мера угла»), а затем определять эту самую координатную четверть. Теперь займемся, собственно, определением знака синуса, косинуса и тангенса.

Синус угла α — это ордината (координата

y

) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

Косинус угла α — это абсцисса (координата

x

) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

Тангенс угла α — это отношение синуса к косинусу. Или, что то же самое, отношение координаты

y

к координате

x

.

Обозначение: sin α =

y

; cos α =

x

; tg α =

y

:

x

.

Все эти определения знакомы вам из курса алгебры старших классов. Однако нас интересуют не сами определения, а следствия, которые возникают на тригонометрической окружности. Взгляните:

Знаки синуса и косинуса на тригонометрической окружности

Синим цветом обозначено положительное направление оси

OY

(ось ординат), красным — положительное направление оси

OX

(ось абсцисс). На этом «радаре» знаки тригонометрических функций становятся очевидными. В частности:

  1. sin α > 0, если угол α лежит в

    I

    или

    II

    координатной четверти. Это происходит из-за того, что по определению синус — это ордината (координата

    y

    ). А координата

    y

    будет положительной именно в

    I

    и

    II

    координатных четвертях;

  2. cos α > 0, если угол α лежит в

    I

    или

    IV

    координатной четверти. Потому что только там координата

    x

    (она же — абсцисса) будет больше нуля;

  3. tg α > 0, если угол α лежит в

    I

    или

    III

    координатной четверти. Это следует из определения: ведь tg α =

    y

    :

    x

    , поэтому он положителен лишь там, где знаки

    x

    и

    y

    совпадают. Это происходит в

    I

    координатной четверти (здесь

    x

    > 0,

    y

    > 0) и

    III

    координатной четверти (

    x

    < 0,

    y

    < 0).

Для наглядности отметим знаки каждой тригонометрической функции — синуса, косинуса и тангенса — на отдельных «радарах». Получим следующую картинку:

Знаки синуса, косинуса и тангенса

Заметьте: в своих рассуждениях я ни разу не говорил о четвертой тригонометрической функции — котангенсе. Дело в том, что знаки котангенса совпадают со знаками тангенса — никаких специальных правил там нет.

Теперь предлагаю рассмотреть примеры, похожие на задачи B11 из пробного ЕГЭ по математике, который проходил 27 сентября 2011. Ведь лучший способ понять теорию — это практика. Желательно — много практики. Разумеется, условия задач были немного изменены.

Задача. Определите знаки тригонометрических функций и выражений (значения самих функций считать не надо):

  1. sin (3π/4);
  2. cos (7π/6);
  3. tg (5π/3);
  4. sin (3π/4) · cos (5π/6);
  5. cos (2π/3) · tg (π/4);
  6. sin (5π/6) · cos (7π/4);
  7. tg (3π/4) · cos (5π/3);
  8. ctg (4π/3) · tg (π/6).

План действий такой: сначала переводим все углы из радианной меры в градусную (π → 180°), а затем смотрим в какой координатной четверти лежит полученное число. Зная четверти, мы легко найдем знаки — по только что описанным правилам. Имеем:

  1. sin (3π/4) = sin (3 · 180°/4) = sin 135°. Поскольку 135° ∈ [90°; 180°], это угол из

    II

    координатной четверти. Но синус во

    II

    четверти положителен, поэтому sin (3π/4) > 0;

  2. cos (7π/6) = cos (7 · 180°/6) = cos 210°. Т.к. 210° ∈ [180°; 270°], это угол из

    III

    координатной четверти, в которой все косинусы отрицательны. Следовательно, cos (7π/6) < 0;

  3. tg (5π/3) = tg (5 · 180°/3) = tg 300°. Поскольку 300° ∈ [270°; 360°], мы находимся в

    IV

    четверти, где тангенс принимает отрицательные значения. Поэтому tg (5π/3) < 0;

  4. sin (3π/4) · cos (5π/6) = sin (3 · 180°/4) · cos (5 · 180°/6) = sin 135° · cos 150°. Разберемся с синусом: т.к. 135° ∈ [90°; 180°], это

    II

    четверть, в которой синусы положительны, т.е. sin (3π/4) > 0. Теперь работаем с косинусом: 150° ∈ [90°; 180°] — снова

    II

    четверть, косинусы там отрицательны. Поэтому cos (5π/6) < 0. Наконец, следуя правилу «плюс на минус дает знак минус», получаем: sin (3π/4) · cos (5π/6) < 0;

  5. cos (2π/3) · tg (π/4) = cos (2 · 180°/3) · tg (180°/4) = cos 120° · tg 45°. Смотрим на косинус: 120° ∈ [90°; 180°] — это

    II

    координатная четверть, поэтому cos (2π/3) < 0. Смотрим на тангенс: 45° ∈ [0°; 90°] — это

    I

    четверть (самый обычный угол в тригонометрии). Тангенс там положителен, поэтому tg (π/4) > 0. Опять получили произведение, в котором множители разных знаков. Поскольку «минус на плюс дает минус», имеем: cos (2π/3) · tg (π/4) < 0;

  6. sin (5π/6) · cos (7π/4) = sin (5 · 180°/6) · cos (7 · 180°/4) = sin 150° · cos 315°. Работаем с синусом: поскольку 150° ∈ [90°; 180°], речь идет о

    II

    координатной четверти, где синусы положительны. Следовательно, sin (5π/6) > 0. Аналогично, 315° ∈ [270°; 360°] — это

    IV

    координатная четверть, косинусы там положительны. Поэтому cos (7π/4) > 0. Получили произведение двух положительных чисел — такое выражение всегда положительно. Заключаем: sin (5π/6) · cos (7π/4) > 0;

  7. tg (3π/4) · cos (5π/3) = tg (3 · 180°/4) · cos (5 · 180°/3) = tg 135° · cos 300°. Но угол 135° ∈ [90°; 180°] — это

    II

    четверть, т.е. tg (3π/4) < 0. Аналогично, угол 300° ∈ [270°; 360°] — это

    IV

    четверть, т.е. cos (5π/3) > 0. Поскольку «минус на плюс дает знак минус», имеем: tg (3π/4) · cos (5π/3) < 0;

  8. ctg (4π/3) · tg (π/6) = ctg (4 · 180°/3) · tg (180°/6) = ctg 240° · tg 30°. Смотрим на аргумент котангенса: 240° ∈ [180°; 270°] — это

    III

    координатная четверть, поэтому ctg (4π/3) > 0. Аналогично, для тангенса имеем: 30° ∈ [0; 90°] — это

    I

    координатная четверть, т.е. самый простой угол. Поэтому tg (π/6) > 0. Снова получили два положительных выражения — их произведение тоже будет положительным. Поэтому ctg (4π/3) · tg (π/6) > 0.

В заключение рассмотрим несколько более сложных задач. Помимо выяснения знака тригонометрической функции, здесь придется немного посчитать — именно так, как это делается в настоящих задачах B11. В принципе, это почти настоящие задачи, которые действительно встречается в ЕГЭ по математике.

Задача. Найдите sin α, если sin2 α = 0,64 и α ∈ [π/2; π].

Поскольку sin2 α = 0,64, имеем: sin α = ±0,8. Осталось решить: плюс или минус? По условию, угол α ∈ [π/2; π] — это

II

координатная четверть, где все синусы положительны. Следовательно, sin α = 0,8 — неопределенность со знаками устранена.

Задача. Найдите cos α, если cos2 α = 0,04 и α ∈ [π; 3π/2].

Действуем аналогично, т.е. извлекаем квадратный корень: cos2 α = 0,04 ⇒ cos α = ±0,2. По условию, угол α ∈ [π; 3π/2], т.е. речь идет о

III

координатной четверти. Там все косинусы отрицательны, поэтому cos α = −0,2.

Задача. Найдите sin α, если sin2 α = 0,25 и α ∈ [3π/2; 2π].

Имеем: sin2 α = 0,25 ⇒ sin α = ±0,5. Снова смотрим на угол: α ∈ [3π/2; 2π] — это

IV

координатная четверть, в которой, как известно, синус будет отрицательным. Таким образом, заключаем: sin α = −0,5.

Задача. Найдите tg α, если tg2 α = 9 и α ∈ [0; π/2].

Все то же самое, только для тангенса. Извлекаем квадратный корень: tg2 α = 9 ⇒ tg α = ±3. Но по условию угол α ∈ [0; π/2] — это

I

координатная четверть. Все тригонометрические функции, в т.ч. тангенс, там положительны, поэтому tg α = 3. Все!

Смотрите также:

  1. Радианная мера угла
  2. Тест к уроку «Знаки тригонометрических функций» (1 вариант)
  3. Тест к параграфу «Что такое логарифм» (легкий)
  4. Сводный тест по задачам B12 (1 вариант)
  5. Изюм и виноград (смеси и сплавы)
  6. Задача B4: транзит нефти

Алгебра и начала математического анализа, 10 класс

Урок №31. Знаки синуса, косинуса и тангенса

Перечень вопросов, рассматриваемых в теме

1) Знаки синуса, косинуса, тангенса и котангенса;

2)Зависимость знаков синуса, косинуса, тангенса и котангенса от положения точки, движущейся по тригонометрической окружности, от произвольного угла;

3) Знаки тригонометрического выражения.

Глоссарий по теме

Число (пи) – математическая константа, которая выражает отношение длины окружности к её диаметру. Равна приблизительно 3,14.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2014.

Открытые электронные ресурсы:

Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/

Теоретический материал для самостоятельного изучения

Какие знаки имеюткоординаты точки в зависимости от их положения в системе координат?

У точек первой четверти

у точек второй четверти

у точек третьей четверти

у точек четвёртой четверти

Пример.

В какой координатной четверти находятся точки с указанными координатами

Ответ:

A

B

C

D

E

F

2

4

2

3

1

4

А если точка находится на тригонометрической окружности, то как узнать зависимость знака координат точки от угла поворота вокруг начала координат?

Сегодня на уроке мы узнаем знаки синуса, косинуса, тангенса и котангенса, научимся определять положение точки на тригонометрической окружности в зависимости от комбинации знаков синуса и косинуса, тангенса и котангенса.

1.Рассмотрим единичную окружность в прямоугольной системе координат хОу.

Точка Р(1;0) при повороте вокруг начала координат на угол переместилась в точку Рₐ. Определим её координаты.

Синусом углаявляется ордината точки, полученной поворотом точки (1;0) вокруг начала координат на угол .

Косинусом углаявляется абсцисса точки, полученной поворотом точки (1;0) вокруг начала координат на угол .

Если угол то точка Рₐ находится в первой четверти, здесь , значит

, .

Если угол , то точка Рₐ находится во второй четверти, здесь , , значит , .

Если угол , то точка Рₐ находится в третьей четверти, здесь , , значит

, .

Если угол , то точка Рₐ находится в четвертой четверти, здесь , , значит ,

На рисунке видно какие знаки имеет синус, а какие косинус.

Примеры и разбор решения заданий тренировочного модуля

Пример1. Определить знаки синуса и косинуса угла .

Решение: Выясним, в какой четверти находится точка, полученная поворотом на угол .

во второй четверти синусы положительны, косинусы отрицательны.

Ответ:

Пример 2. Определить знаки синуса и косинуса угла .

Решение: Полный угол, при котором точка «обойдёт» всю окружность, равен .

а это значит, что точка после 2 оборотов окажется в первой четверти, где синус и косинус положительны.

Ответ:

Пример 3.

Определить знаки синуса и косинуса угла .

Решение: Угол отрицательный, значит точка получена поворотом по часовой стрелке.

в 4 четверти синусы отрицательны, косинусы положительны.

Ответ: синус отрицательный, косинус положительный.

Пример 4.

Определить знаки .

Решение: Знаем, что, а . Значит, . Точка во второй четверти.

Ответ:

2.Знаки тангенса и котангенса.

Тангенс это отношение синуса угла к его косинусу:

Котангенс это отношение косинуса угла к его синусу: .

Тангенс и котангенс будут положительными там, где синус и косинус имеют одинаковые знаки. Это первая и третья четверти. Синус и косинус имеют разные знаки во второй и четвёртой четвертях, здесь тангенс и котангенс будут отрицательны. На рисунке изображены знаки тангенса и котангенса.

Пример 5.

Определить знак тангенса угла

Решение , угол второй четверти

Ответ:

Пример 6.

Определить знак тангенса угла .

Решение: Угол в третьей четверти, тангенс положительный.

Ответ:

Вывод: чтобы определить знаки синуса, косинуса, тангенса и котангенса, нужно:

  1. выяснить в какой координатной четверти находится угол;
  2. знак синусов такой же, как ордината точки (у).
  3. знак косинусов такой же, как абсцисса точки (х).
  4. тангенсы и котангенсы положительны там, где синус и косинус имеют одинаковые знаки(1ч. и 4ч.), отрицательны, где синус и косинус имеют противоположные знаки (2ч. и 3ч.).

Чаще всего единичная окружность используется для определения знака тригонометрической функции, числовые значения находятся в таблицах или вычисляются с помощью калькулятора.

Важно уметь считывать с единичной окружности следующие значения тангенса и котангенса:

(tg) (0^{circ}=0);            

(tg) (90^{circ})  не существует;

(tg) (180 ^{circ}=0);     

(tg) (270^{circ}) не существует;

(tg) (360^{circ}=0)   

(ctg) (0 ^{circ}) не существует;

(ctg) (90^{circ}=0);   

(ctg) (180^{circ}) не существует;

(ctg) (270^{circ}=0);   

(ctg) (360 ^{circ}) не существует

Знаки тригонометрических функций

Знак тригонометрической функции зависит исключительно от координатной четверти, в которой располагается числовой аргумент. В прошлый раз мы учились переводить аргументы из радианной меры в градусную (см. урок «Радианная и градусная мера угла»), а затем определять эту самую координатную четверть. Теперь займемся, собственно, определением знака синуса, косинуса и тангенса.

угла α — это ордината (координата y ) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

угла α — это абсцисса (координата x ) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

угла α — это отношение синуса к косинусу. Или, что то же самое, отношение координаты y к координате x .

Обозначение: sin α = y ; cos α = x ; tg α = y : x .

Все эти определения знакомы вам из курса алгебры старших классов. Однако нас интересуют не сами определения, а следствия, которые возникают на тригонометрической окружности. Взгляните:

Синим цветом обозначено положительное направление оси OY (ось ординат), красным — положительное направление оси OX (ось абсцисс). На этом «радаре» знаки тригонометрических функций становятся очевидными. В частности:

  1. sin α > 0, если угол α лежит в I или II координатной четверти. Это происходит из-за того, что по определению синус — это ордината (координата y ). А координата y будет положительной именно в I и II координатных четвертях;
  2. cos α > 0, если угол α лежит в I или IV координатной четверти. Потому что только там координата x (она же — абсцисса) будет больше нуля;
  3. tg α > 0, если угол α лежит в I или III координатной четверти. Это следует из определения: ведь tg α = y : x , поэтому он положителен лишь там, где знаки x и y совпадают. Это происходит в I координатной четверти (здесь x > 0, y > 0) и III координатной четверти ( x y II координатной четверти. Но синус во II четверти положителен, поэтому sin (3π/4) > 0;
  4. cos (7π/6) = cos (7 · 180°/6) = cos 210°. Т.к. 210° ∈ [180°; 270°], это угол из III координатной четверти, в которой все косинусы отрицательны. Следовательно, cos (7π/6) IV четверти, где тангенс принимает отрицательные значения. Поэтому tg (5π/3) II четверть, в которой синусы положительны, т.е. sin (3π/4) > 0. Теперь работаем с косинусом: 150° ∈ [90°; 180°] — снова II четверть, косинусы там отрицательны. Поэтому cos (5π/6) II координатная четверть, поэтому cos (2π/3) I четверть (самый обычный угол в тригонометрии). Тангенс там положителен, поэтому tg (π/4) > 0. Опять получили произведение, в котором множители разных знаков. Поскольку «минус на плюс дает минус», имеем: cos (2π/3) · tg (π/4) II координатной четверти, где синусы положительны. Следовательно, sin (5π/6) > 0. Аналогично, 315° ∈ [270°; 360°] — это IV координатная четверть, косинусы там положительны. Поэтому cos (7π/4) > 0. Получили произведение двух положительных чисел — такое выражение всегда положительно. Заключаем: sin (5π/6) · cos (7π/4) > 0;
  5. tg (3π/4) · cos (5π/3) = tg (3 · 180°/4) · cos (5 · 180°/3) = tg 135° · cos 300°. Но угол 135° ∈ [90°; 180°] — это II четверть, т.е. tg (3π/4) IV четверть, т.е. cos (5π/3) > 0. Поскольку «минус на плюс дает знак минус», имеем: tg (3π/4) · cos (5π/3) III координатная четверть, поэтому ctg (4π/3) > 0. Аналогично, для тангенса имеем: 30° ∈ [0; 90°] — это I координатная четверть, т.е. самый простой угол. Поэтому tg (π/6) > 0. Снова получили два положительных выражения — их произведение тоже будет положительным. Поэтому ctg (4π/3) · tg (π/6) > 0.

В заключение рассмотрим несколько более сложных задач. Помимо выяснения знака тригонометрической функции, здесь придется немного посчитать — именно так, как это делается в настоящих задачах B11. В принципе, это почти настоящие задачи, которые действительно встречается в ЕГЭ по математике.

Задача. Найдите sin α, если sin 2 α = 0,64 и α ∈ [π/2; π].

Поскольку sin 2 α = 0,64, имеем: sin α = ±0,8. Осталось решить: плюс или минус? По условию, угол α ∈ [π/2; π] — это II координатная четверть, где все синусы положительны. Следовательно, sin α = 0,8 — неопределенность со знаками устранена.

Задача. Найдите cos α, если cos 2 α = 0,04 и α ∈ [π; 3π/2].

Действуем аналогично, т.е. извлекаем квадратный корень: cos 2 α = 0,04 ⇒ cos α = ±0,2. По условию, угол α ∈ [π; 3π/2], т.е. речь идет о III координатной четверти. Там все косинусы отрицательны, поэтому cos α = −0,2.

Задача. Найдите sin α, если sin 2 α = 0,25 и α ∈ [3π/2; 2π].

Имеем: sin 2 α = 0,25 ⇒ sin α = ±0,5. Снова смотрим на угол: α ∈ [3π/2; 2π] — это IV координатная четверть, в которой, как известно, синус будет отрицательным. Таким образом, заключаем: sin α = −0,5.

Задача. Найдите tg α, если tg 2 α = 9 и α ∈ [0; π/2].

Все то же самое, только для тангенса. Извлекаем квадратный корень: tg 2 α = 9 ⇒ tg α = ±3. Но по условию угол α ∈ [0; π/2] — это I координатная четверть. Все тригонометрические функции, в т.ч. тангенс, там положительны, поэтому tg α = 3. Все!

Тригонометрия: определение тригонометрических функций

В этой статье мы рассмотрим тригонометрический круг и введем определения тригонометрических функций с помощью тригонометрического круга .

Впервые с определением синуса, косинуса, тангенса и котангенса школьники встречаются в восьмом классе в курсе геометрии. Напомню эти определения. Рассмотрим прямоугольный треугольник: Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:

sin A=a/b; sin C=c/b

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:

cos A=c/b; cos C= a/b

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:

tg A=a/c; tg C=c/a.

Эти определения тригонометрических функций удобно использовать при решении геометрических задач, связанных с нахождением сторон и углов в прямоугольном треугольнике, однако они не улучшают понимания того, что из себя представляют тригонометрические функции именно как функции.

Часто во время занятий со школьниками я сталкиваюсь с тем, что они не понимают, откуда «взялись» тригонометрические функции, что они из себя представляют, и как их «готовить», чтобы легко решать уравнения и неравенства, содержащие тригонометрические функции.

Предлагаю вам посмотреть ВИДЕОУРОК, чтобы понять, что такое синус, косинус, тангенс и котангенс, как они между собой связаны, и как легко определять знаки тригонометрических функций без использования таблиц.

  • Косинусом угла α называется абсцисса (то есть координата по оси OX) точки на единичной окружности, соответствующей данному углу α.

    Синусом угла α называется ордината (то есть координата по оси OY ) точки на единичной окружности, соответствующеий данному углу α.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса (x), синус — ордината (y).

    Поскольку радиус окружности равен 1, для любого угла и синус, и косинус находятся в пределах от −1 до 1:

    −1 ≤ cos α ≤ 1, −1 ≤ sin α ≤ 1.

    Основное тригонометрическое тождество является следствием теоремы Пифагора (квадрат гипотенузы равен сумме квадратов катетов):

    sin 2 α+ cos 2 α = 1

    Чтобы узнать знаки синуса и косинуса какого-либо угла, находим на нашей окружности точку, соответствующую данному углу α, смотрим, положительны или отрицательны её координаты по x (это косинус угла α) и по y (это синус угла α).

    Купить видеокурс «ВСЯ ТРИГОНОМЕТРИЯ. Часть В и 13»

    Знаки тригонометрических функций по четвертям — примеры определения

    Общая информация

    Раздел математики, который занимается изучением тригонометрических функций, называется тригонометрией. К функциям относятся следующие: синус (sin), косинус (cos), тангенс (tg) и котангенс (ctg). Существуют также и обратные им функции: арксинус (arcsin), арккосинус (arccos), арктангенс (arctg) и арккотангенс (arcctg).

    Для нахождения знаков тригонометрических функций по четвертям рекомендуется применять специальный «инструмент». Он называется окружностью синусов и косинусов. Однако по ней можно находить не только функции, которые соответствуют ее названию, но и другие. Делается это с помощью тригонометрических тождеств.

    Специалисты рекомендуют для понимания материала получить базовые знания об углах и основных тригонометрических функциях. Следует применять принцип «от простого к сложному», поскольку нужно учитывать физиологические особенности головного мозга.

    Виды углов

    Важной «ступенью» в освоении тригонометрии является идентификация углов. Они делятся на 7 видов. Кроме того, существует еще два типа классификации по знаку: положительные и отрицательные.

    Для составления критериев, по которым математики классифицируют углы, необходимо ввести некоторую переменную. Пусть существует некоторый угол a, градусная мера которого составляет x градусов. Необходимо рассмотреть 7 случаев, в которых он измеряется только в градусной размерности:

    Последний случай встречается очень часто в различных задачах, в которых следует вычислить определенное значение, упростить тригонометрическое выражение или использовать формулы приведения, а также найти разность между функциями.

    Градус — это не единственная единица измерения размерности угла. Существует также и радиан, который пользуется большей популярностью, чем предыдущая единица. Согласно статистике, которая составлена математиками, при решении задач с тригонометрическим уклоном многие используют радиан (около 95,88%). Это объясняется удобством, поскольку в основном применяется тригонометрическая окружность для быстрого нахождения значений функций. Перевод одной единицы в другую осуществляется с помощью двух простых соотношений:

    1. В радианы: P = (a * ПИ) / 180.
    2. В градусы: а = (P * 180) / ПИ.

    Существует 2 метода перевода: автоматизированный и ручной. В первом случае следует применять специальные радианные таблицы, программы и тригонометрическую окружность. Во втором — пользоваться формулами для преобразований. Если очень часто приходится решать задачи подобного типа, то можно создать свой инструмент. Для этого потребуется табличный процессор EXCEL. Необходимо вбить в ячейки две формулы, и тогда ручной метод «превратится» в автоматизированный.

    Смысл функций

    Тригонометрические функции используются не только в математике, но и в других дисциплинах (физике, электронике, микросхемотехнике, акустике и так далее). С их помощью можно описывать законы изменения различных периодических величин.

    Для определения функции необходимо представить прямоугольный треугольник. Его стороны называются катетами и гипотенузой. Угол между двумя катетами является прямым, то есть он равен 90 градусам.

    Синус угла — значение, которое вычисляется отношением линейного размера противолежащего катета к гипотенузе прямоугольного треугольника. Если выразить величину через отношение прилежащего катета к гипотенузе, то она называется косинусом угла. Величина, полученная при отношении двух катетов — противолежащего к прилежащему, называется тангенсом. В случае с котангенсом, необходимо поменять числитель и знаменатель местами, то есть отношение прилежащего к противолежащему. Следует также напомнить, что все четыре функции обладают периодичностью. Для sin и cos период соответствует 2 ПИ, а для tg и ctg — ПИ.

    Обратными тригонометрическими функциями являются arcsin, arccos, arctg и arcctg. Их необходимо использовать в том случае, когда нужно найти угол по заданному значению. Для этих целей применяются таблицы Брадиса, тригонометрический калькулятор и программное обеспечение, а также круг синусов и косинусов.

    Определение знака

    Достоверность результата зависит от правильного решения. Неверный знак функции способен кардинально его изменить. Для безошибочного определения значений потребуются еще кое-какие знания. К ним относятся следующие: понятие о системе координат и теорема Пифагора, а также умение чертить окружность с определенным радиусом.

    Системы координат, которые применяются при решении задач бывают полярными и декартовыми. Последние используются чаще, чем первые. Полярные применяются для решения задач из области высшей математики, а также в других сложных дисциплинах с физико-математическим уклоном.

    Дополнительные сведения

    Для определения знака применяется обыкновенная система координат с двумя осями. Одна из них (ОХ) является осью абсцисс, а другая (ОУ) — ординат. Ее центром, который совпадает с центром тригонометрической окружности, является точка «О». Очень часто для работы необходимо знание теоремы Пифагора. Ее формулировка имеет следующий вид: в любом прямоугольном треугольнике выполняется равенство квадрата гипотенузы и суммы квадратов катетов. Вторая формулировка записывается в виде формулы: с^2 = a^2 + b^2 (c, a и b — гипотенуза и два катета соответственно).

    Необходимо обратить внимание на следующий факт: сумма всех углов треугольника составляет 180 градусов, то есть является развернутым углом. Математически утверждение можно записать следующим образом через углы а, b и c: а + b + c = 180. Кроме того, существуют и другие соотношения между острыми углами прямоугольного треугольника: cos (a) = sin (b), cos (b) = sin (a), tg (a) = ctg (b), и tg (b) = ctg (a).

    Чтобы найти знаки тангенса и котангенса по четвертям, используются такие соотношения: tg (a) = sin (a) / cos (a) и ctg (a) = cos (a) / sin (a).

    Построение окружности

    Сделать «инструмент», который значительно ускорит процесс решения задач довольно просто. Для этого нужно построить декартовую систему координат и единичную окружность с центром в точке О (точка пересечения осей абсцисс и ординат). Горизонтальная ось обозначается «х», а вертикальная — «у».

    Рекомендуется чертить произвольную окружность. Чертеж должен быть простым и понятным. Это называется масштабирование, при котором изображение не соответствует действительному размеру объекта. Его примером является обыкновенная географическая карта. Кроме того, при проектировании очень мелких деталей применяются чертежи, которые в несколько десятков или сотен раз превышают натуральные размеры. Обозначение точки на плоскости выполняется следующим образом:

    1. Координаты заключаются в круглые скобки и разделяются «;».
    2. На первом месте стоит значение, соответствующее оси абсцисс, а на втором — ординат: (x;y).

    Окружность пересекает оси в четырех точках: (1;0), (0;1), (-1;0) и (0;-1). Четвертями называются области, которые делят систему координат на четыре равные части. Отсчет выполняется от первой четверти (x>0 и y>0) против часовой стрелки:

    1. Значения по x и y больше 0 соответствуют первой четверти (I).
    2. II: x 0.
    3. III: x 0 и y 0 и ctg>0.
    4. -sin(ПИ + ПИ/4) = -sin(ПИ/4) = -cos(ПИ/4) = -sqrt(2)/2.
    5. tg(ПИ/4) = ctg(ПИ/4) = -sin(ПИ/4) / -cos(ПИ/4) = 1.

    После расчетов нужно выполнить проверку знаков. В III четверти больше нуля только тангенс и котангенс. Однако бывают случаи, когда значение градусной меры угла превышает 360.

    Свыше 2ПИ

    Существует определенный тип задач, в которых величина градусной меры угла свыше 360 градусов. Например, следует вычислить значения тригонометрических функций угла -26ПИ/6. Решается она следующим образом:

    1. Следует выделить целую часть из -26ПИ/6 и привести к удобному виду: 26/6 = 4 + 2/6 = 4 + 1/3. Угол находится в IV четверти (движение по часовой стрелке).
    2. -sin(4ПИ + ПИ/3) = -sin(ПИ/3) = — sqrt(3)/2.
    3. cos(ПИ/3) = 1/2.
    4. -tg(ПИ/3) = — sqrt(3).
    5. -сtg(ПИ/3) = — 1/sqrt(3).

    Во втором, четвертом и пятом пунктах функции являются нечетными. Если посмотреть на график, то движение осуществляется по часовой стрелке, поскольку угол является отрицательным числом. Функция косинуса является четной. Ее числовое значение — положительная величина. Последним этапом считается проверка знаков. Угол находится в IV четверти. Значения функций совпадают.

    Таким образом, при решении задач по тригонометрии следует применять тригонометрическую окружность, с помощью которой можно безошибочно определять знак функции.

    источники:

    http://ege-ok.ru/2011/12/29/trigonometriya-opredelenie-trigonom

    http://nauka.club/matematika/znaki-trigonometricheskikh-funktsiy.html

  • Примеры:

    (tg⁡:30^° =frac{1}{sqrt{3}})
    (tg⁡:(frac{π}{3})=sqrt{3})
    (tg:⁡2=-2,185…)

    Содержание:

    • Аргумент и значение

    • Тангенс острого угла

    • Тангенс числа или любого угла

    • Знаки по четвертям

    • Связь с другими функциями

    Аргумент и значение тангенса

    аргумент и значение тангенса

    Аргументом тангенса может быть:
    — как число или выражение с Пи: (1,3), (frac{π}{4}), (π), (-frac{π}{3}) и т.п.
    — так и угол в градусах: (45^°), (360^°),(-800^°), (1^° ) и т.п.

    Для обоих случаев тангенс вычисляется одинаковым способом – либо через значения синуса и косинуса, либо через тригонометрический круг (см. ниже).

    Значение тангенса – всегда действительное число (возможно, иррациональное): (1), (sqrt{3}), (-frac{1}{sqrt{3}}), (-0,1543…)

    Тангенс острого угла

    Тангенс можно определить с помощью прямоугольного треугольника — он равен отношению противолежащего катета к прилежащему.

    Пример:

    1) Пусть дан угол и нужно определить тагенс этого угла.

    угол

    2) Достроим на этом угле любой прямоугольный треугольник.

    противолежащий катет к прилежащему

    3) Измерив, нужные стороны, можем вычислить тангенс.

    вычисление тангенса

    Вычисление тангенса числа или любого угла

    Для чисел, а также для тупых, развернутых углов и углов больших (360°) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:

    (tg: t=)(frac{sin:⁡t}{cos:⁡t})

    Пример. Вычислите (tg:0).
    Решение: Чтобы найти тангенс нуля нужно найти сначала синус и косинус (0). И то, и другое найдем с помощью тригонометрического круга:

    определение тангенса через синус и косинус

    Точка (0) на числовой окружности совпадает с (1) на оси косинусов, значит (cos:0=1). Если из точки (0) на числовой окружности провести перпендикуляр к оси синусов, то мы попадем в точку (0), значит (sin:⁡0=0). Получается: (tg:0=)(frac{sin:⁡0}{cos:⁡0}) (=)(frac{0}{1})(=0).

    Ответ: (0).

    Пример. Вычислите (tg:(-765^circ)).
    Решение:   (tg: (-765^circ)=)(frac{sin:(-⁡765^circ)}{cos:⁡(-765^circ)})
    Что бы вычислить синус и косинус (-765^°). Отложим (-765^°) на тригонометрическом круге. Для этого надо повернуть в отрицательную сторону на (720^°) , а потом еще на (45^°).

    вычисление тангенса -765 градусов через синус и косинус

    (sin⁡(-765^°)=-frac{sqrt{2}}{2});
    (cos⁡(-765^°)=frac{sqrt{2}}{2}) ;
    получается (tg(-765^°)= -frac{sqrt{2}}{2} ∶ frac{sqrt{2}}{2}=-1).

    Ответ: (-1).

    Пример. Вычислите (tg:frac{π}{3}).
    Решение:   (tg: frac{π}{3}=)(frac{sin:⁡frac{π}{3}}{cos:⁡frac{π}{3}}). Опять находим синус пи на 3 и косинус пи на 3 (хоть с помощью тригонометрического круга, хоть по таблице):
    (sin⁡(frac{π}{3})=frac{sqrt{3}}{2});
    (cos⁡(frac{π}{3})=frac{1}{2}) ;
    получается (tg(frac{π}{3})= frac{sqrt{3}}{2} ∶ frac{1}{2}= frac{sqrt{3}}{2} cdot frac{2}{1}=sqrt{3}).

    Ответ: (sqrt{3}).

    Однако можно определять тангенс и напрямую через тригонометрический круг — для этого надо на нем построить дополнительную ось:

    Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.

    ось тангенсов

    Ось тангенсов – это фактически копия оси синусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси синусов.

    Чтобы определить тангенс с помощью числовой окружности, нужно:
    1) Отметить соответствующую аргументу тангенса точку на числовой окружности.
    2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов.
    3) Найти координату пересечения этой прямой и оси тангенсов.

    Пример. Вычислите (tg:frac{π}{4}).
    Решение:   
    1)Отмечаем (frac{π}{4}) на окружности.

    как с помощью оси тангенсов определить tg пи на 4

    2) Проводим через данную точку и начало координат прямую.

    Проводим через данную точку и начало координат прямую

    3) В данном случае координату долго искать не придется – она равняется (1).

    Ответ: (1).

    Пример. Вычислите (tg: 45°) и (tg: (-240°)).
    Решение:   
    Для угла (45°) ((∠KOA)) тангенс будет равен (1), потому что именно в таком значении сторона угла, проходящая через начало координат и точку (A), пересекает ось тангесов. А для угла (-240°) ((∠KOB)) тангенс равен (-sqrt{3}) (приблизительно (-1,73)).

    определение тангенса любого угла через окружность

    Значения для других часто встречающихся в практике углов смотри в тригонометрической таблице.

    В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.

    значение тангенса

    При этом тангенс не определен для:
    1) всех точек (A) (значение в Пи: …(-)(frac{7π}{2}),(-)(frac{3π}{2}),(frac{π}{2}), (frac{5π}{2}), (frac{9π}{2}) …; и значение в градусах: …(-630°),(-270°),(90°),(450°),(810°)…)
    2) всех точек (B) (значение в Пи: …(-)(frac{9π}{2}),(-)(frac{5π}{2}),(-)(frac{π}{2}), (frac{3π}{2}), (frac{7π}{2}) …; и значение в градусах: …(-810°),(-450°),(-90°),(270°)…) .

    Так происходит потому, что прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось тангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках тангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений тангенс может быть найден).

    Из-за этого при решении тригонометрических уравнений и неравенств с тангенсом необходимо учитывать ограничения на ОДЗ.

    Знаки по четвертям

    С помощью оси тангенсов легко определить знаки по четвертям тригонометрической окружности. Для этого надо взять любую точку на четверти и определить знак тангенса для нее описанным выше способом. У всей четверти знак будет такой же.

    Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение тангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение тангенса будет положительно (знак плюс).
    С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.

    знаки тангенса по четвертям

    Связь с другими тригонометрическими функциями:

    — косинусом того же угла: формулой (1+tg^2⁡x=)(frac{1}{cos^2⁡x}) 

    — синусом и косинусом того же угла: (tg⁡:x=)(frac{sin:⁡x}{cos⁡:x}) 

    — котангенсом того же угла: формулой (ctg⁡:x=)(frac{1}{tg:x}) 
    Другие наиболее часто применяемые формулы смотри здесь.

    Смотрите также:
    Формулы приведения

    Понравилась статья? Поделить с друзьями:
  • Код уип как найти
  • 3ds max error report как исправить
  • Как найти фондоемкость если известна фондоотдача
  • Почему не загустел домашний майонез при взбивании как исправить
  • Как найти инст человека по телефону