Как найти знаменатель если известен ответ

Содержание

  1. как найти общий знаменатель
  2. Находим общий знаменатель
  3. Что такое общий знаменатель?
  4. Но что такое общий знаменатель простыми словами ?
  5. Пример общего знаменателя :
  6. В каком случае ноз двух дробей будет являться произведением знаменателей?
  7. Когда ноз двух дробей равен произведению знаменателей?
  8. Формула общего знаменателя
  9. Нахождение общего знаменателя с помощью нок.
  10. Пример нахождения общего знаменателя методом разложения на множители
  11. Пример номер 2 подбора общего знаменателя
  12. Как найти общий знаменатель дробей онлайн
  13. Переходим к нахождению общего знаменателя онлайн
  14. Что такое наименьший общий знаменатель?
  15. Но, что же такое «наименьший общий знаменатель»
  16. Определение, что же такое «наименьший общий знаменатель»
  17. Формула наименьшего общего кратного
  18. Как найти наименьший общий знаменатель на калькуляторе
  19. Как найти общий знаменатель трех дробей
  20. Задача/пример найдите общий знаменатель для трех дробей.
  21. Найдем общий знаменатель для трех дробей на калькуляторе через НОК.
  22. Как найти общий знаменатель дробей с разными знаменателями
  23. Общий знаменатель дробей онлайн
  24. Как привести дроби к общему знаменателю?
  25. Общий знаменатель трёх дробей

как найти общий знаменатель

Как найти общий знаменатель, что такое общий знаменатель и конечно же нахождение общего знаменателя онлайн на нашем калькуляторе. И если вам требуется наименьший общий знаменатель, то он тут.

И! Вне зависимости от класса — общий знаменатель находят одинаково!

Находим общий знаменатель

Что такое общий знаменатель?

Кроме понятия «общий знаменатель«, есть еще такое понятие как — «Наименьший общий знаменатель (НОЗ)» — это. тоже самое, что и «НОК». Поэтому, мы не будем это разбирать здесь второй раз.

Но что такое общий знаменатель простыми словами ?

Общий знаменатель — это любое целое число, которое делится без остатка на первый и второй знаменатель.

Количество чисел, которые могут быть общим знаменателем стремится к бесконечности, но обычно общим знаменателем принимают НОЗ

Пример общего знаменателя :

Для того, чтобы понять, «что такое общий знаменатель» нам нужен пример двух дробей и какое-то действие(иначе смысла в этом нет), пусть это будут две дроби 1/2 и 1/3 и действие сложение — «+».

Для таких маленьких чисел, как 2 и 3 — «нок» будет равен 6. Для этого нам никакие инструменты не понадобятся, наверняка вы это тоже смогли посчитать в уме.

Т.е. 6 делится на 2 без остатка 6 : 2 = 3, и 6 делится на 3 без остатка 6 : 3 = 2.

Мы получили два числа, первую дробь 1/2 надо умножить на 3, чтобы привести её к общему знаменателю 6 — 1*3/2*3 = 3/6.

А вторую дробь нужно умножить на 2, чтобы привести и её к общему знаменатель 6, 1*2/3*2 = 2/6.

После того, как мы нашли общий знаменатель, мы можем произвести действие, в нашем случае — «+» — 3/6 + 2/6 = (3 + 2)/6 = 5/6.

Когда мы нашли «общий знаменатель» мы смогли выполнить необходимое действие с дробями.

В каком случае ноз двух дробей будет являться произведением знаменателей?

Отличный поисковый запрос — «в каком случае ноз двух дробей будет являться произведением знаменателей?«, что выше не было озвучено.

Когда ноз двух дробей равен произведению знаменателей?

Как минимум, когда знаменатели будут простыми числами, т.е. в качестве примера, это выше приведенные дроби со знаменателями 2 и 3. Эти числа являются простыми, т.е. делятся на себя и на 1.

И общий знаменатель двух чисел 2 и 3 будет равен произведению 2 * 3 = 6.

Формула общего знаменателя

Как вы знаете. что если умножить и числитель и знаменатель на одно число, то результат дроби не изменится! Поэтому мы можем вывести формулу общего знаменателя буквами :

Первую дробь умножаем на знаменатель второй дроби.

А вторую дробь умножаем на знаменатель первой дроби

Нахождение общего знаменателя с помощью нок.

Для того чтобы найти общий знаменатель, можно воспользоваться правилом «НОК» для двух чисел, которые здесь — знаменатели.

Если вы не сходили по ссылке, то давайте вкратце попробуем разобраться в формуле подбора общего знаменателя.

Пример нахождения общего знаменателя методом разложения на множители

Это тоже самое. что и выше приведенный «НОК» — только может называться по другому.

Этот способ может называться как «нахождение общего знаменателя методом разложения на множители»

Либо «метод нахождения наименьшего общего знаменателя» или просто «НОЗ»

Рассмотрим два знаменателя 8 и 6, к примеру это могут быть две дроби 1/8 и 1/6 и нам нужно найти их общий знаменатель.

Надо расположить в первую строчку наибольший знаменатель — это 8 и разложить его на множители:

Ниже раскладываем меньший знаменатель :

Далее нам нужно исключить все множители, которые повторяются в меньшем знаменателе. это 2 и у нас остается 3. далее эту тройку надо умножить на больший знаменатель :

Итого получаем общий знаменатель = 24.

Пример номер 2 подбора общего знаменателя

Чтобы у вас не возникало сомнений, давайте разберем второй пример подбора общего знаменателя, пусть это будут 4 и 10.

Берем больший знаменатель раскладываем его на множители :

Раскладываем меньший знаменатель :

Виртуально исключаем повторяющиеся множители из второго знаменателя — это 2. И во втором знаменателе остается вторая 2. Умножаем больший знаменатель на 2 :

Итого получаем общий знаменатель 20, двух чисел 4 и 10.

Как найти общий знаменатель дробей онлайн

У нас есть калькулятор, который в том числе умеет находить общий знаменатель дробей онлайн!

Прежде чем приступать к поиску общего знаменателя, давайте найдем общий знаменатель для двух знаменателей, а потом проверим данное решение на калькуляторе.

Пусть это будут два знаменателя 20 и 6.

Раскладываем больший знаменатель на множители :

Раскладываем на множители второй знаменатель :

Исключаем повторяющиеся множители во втором знаменателе и у нас остается одна двойка.

Умножаем больший знаменатель на 2 :

Итого получаем их общий знаменатель 40.

Переходим к нахождению общего знаменателя онлайн

Вводим первый знаменатель 20.

Набираем второй знаменатель 8.

Получаем результат нахождения общего знаменателя онлайн :

Далее вы можете сравнить два результата нахождения общего знаменателя.

Что такое наименьший общий знаменатель?

Разница между «общим знаменателем«(1) и «наименьшим общим знаменателем«(2) в том, что первое может быть бесконечное количество. а второе «НОЗ», только один!

Но, что же такое «наименьший общий знаменатель»

НОЗ — это абсолютно тоже самое, что и «НОК».

Определение, что же такое «наименьший общий знаменатель»

Наименьший общий знаменатель двух знаменателей — это самое маленькое целое число, которое делится без остатка на первый и второй знаменатель.

Формула наименьшего общего кратного

Для нахождения «наименьшего общего знаменателя» двух знаменателей, нужно эти два знаменателя разложить на множители. Больший знаменатель записываем в первую строчку, второй знаменатель раскладываем на множители и записываем во вторую строчку.
Сравниваем две строки и удаляем из второй все цифры, которые повторяются в первой строчке.
То число(если больше 1, то перемножаем между собой) умножаем на большее число.

Для понимания формулы наименьшего общего кратного нам нужен пример!

Предположим, что у нас есть два знаменателя 10 и 6 и нужно найти наименьший общий знаменатель :

Разложим больший знаменатель на множители :

Разложим второй знаменатель на множители :

Теперь, нам нужно исключить повторяющеюся цифру 2 из второй строчки, остается цифра 3.

Умножаем больший знаменатель на 3.

Итого получаем, что наименьший общий знаменатель двух знаменателей 10 и 5 равно 30.

Как найти наименьший общий знаменатель на калькуляторе

Для понимания процесса получения наименьшего общего знаменателя на калькуляторе нам потребуются два знаменателя, например 18 и 12 из дробей 1/18 и 1/12

Прежде чем приступать к нахождению «нок» двух чисел на калькуляторе, давайте найдем наименьшее общее кратное, как мы делали это выше :

Раскладываем большее число на множители :

Раскладываем меньшее число на множители :

Исключаем повторяющиеся цифры — это одна 2 и 3, остается 2.

Умножаем большее число на 2.

Итого получаем, что наименьшее общее кратное двух чисел 18 и 12 = 36.

Теперь проверим правильность нахождения «нок» на калькуляторе.

Набираем первое число – пусть это будет число 12

Нажимаем «нок» на калькуляторе – для этого есть специальная кнопка.

После нажатия на кнопку нок – нам нужно добавить втрое число –пусть это будет 18.

И нам отсеется нажать кнопку равно!

И видим результат нахождения наименьшего общего кратного на калькуляторе…

Как найти общий знаменатель трех дробей

Для того чтобы найти общий знаменатель сразу трех дробей нужно подряд найти нок между этими тремя знаменателями!

Для подтверждения данного тезиса — давайте решим задачку/пример.

Задача/пример найдите общий знаменатель для трех дробей.

У нас даны три дроби и у них у всех три разных знаменателя :

Для такой простой задачи можно в уме посчитать. перебором. а потом подтвердим наше решение через «НОК».

5 — не подходит — не делится на 3.

10 — не подходит — не делится на 3.

15 — не подходит, не делится на 2.

20 — не подходит, не делится на 3.

25 — не подходит, не делится на 2.

30 — подходит , делится на все без остатка. мы нашли общий знаменатель для трех дробей, методом перебора

Найдем общий знаменатель для трех дробей на калькуляторе через НОК.

Набираем первый знаменатель — 2.

Нажимаем кнопку — «НОК».

Набираем второй знаменатель — 3.

Далее опять нажимаем — «НОК».

Набираем третий знаменатель — 6.

Получаем общий знаменатель для трех дробей посчитанный онлайн на калькуляторе.

Как найти общий знаменатель дробей с разными знаменателями

Если говориться о том, чтобы найти общий знаменатель, то логично предположить, что у дробей изначально разные знаменатели — иначе, зачем искать общий знаменатель — ведь знаменатели одинаковые.

Выше были рассмотрены варианты нахождения общего знаменателя дробей с разными знаменателями .

Вариант разложения знаменателей на множители.

Вариант нахождения общего знаменателя с помощью НОК и т.д

Источник

Общий знаменатель дробей онлайн

Калькулятор приводит несколько дробей к общему знаменателю. Просто введите дроби и получите подробное решение и ответ. Можно вводить две, три дроби и более. Числители и знаменатели дробей должны быть натуральными числами.

Как привести дроби к общему знаменателю?

Чтобы выполнить с дробями такие операции, как сравнение, сложение и вычитание, дроби нужно привести к общему знаменателю.

Пример. Привести к общему знаменателю дроби и

Решение. Находим наименьшее общее кратное знаменателей дробей. НОК(12, 8) = 24. Это число и будет новым знаменателем.

Чтобы знаменатели обеих дробей стали равны 24, числитель и знаменатель первой дроби нужно домножить на 2 = 24:12, а числитель и знаменатель второй дроби — на 3 = 24:8.

Приводим к общему знаменателю первую дробь:

Приводим к общему знаменателю вторую дробь:

Общий знаменатель трёх дробей

Если к общему знаменателю требуется привести три дроби и более, то алгоритм действий в таком случае аналогичен алгоритму для двух дробей.

  1. Находим наименьшее число , которое делится на знаменатели всех дробей (наименьшее общее кратное знаменателей всех дробей). Найденное число будет новым знаменателем.
  2. Домножаем числитель и знаменатель каждой дроби на частное

В результате знаменатели всех дробей будут равны .

Чтобы разобраться лучше, рассмотрим пример.

Пример. Привести к общему знаменателю три дроби и

Решение. Сначала найдём наименьшее общее кратное знаменателей дробей. Число 12 делится на знаменатели всех дробей, и это наименьшее такое число. Поэтому НОК(3, 4, 6) = 12. Число 12 будет новым знаменателем.

Чтобы знаменатели дробей стали равны 12, числитель и знаменатель первой дроби нужно домножить на 4 = 12:3, числитель и знаменатель второй дроби — на 3 = 12:4, а числитель и знаменатель третьей дроби — на 2 = 12:6.

Приводим дроби к общему знаменателю и получаем:

Всё — дроби приведены! Пожалуй, самая большая сложность — правильно найти (или угадать) число, которое будет новым знаменателем.

Источник

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Дробно-рациональные уравнения

    Что такое дробно-рациональные уравнения

    Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

    при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

    Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

    9 x 2 — 1 3 x = 0

    1 2 x + x x + 1 = 1 2

    6 x + 1 = x 2 — 5 x x + 1

    Уравнения, которые не являются дробно-рациональными:

    Как решаются дробно-рациональные уравнения

    В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

    Алгоритм действий при стандартном способе решения:

    1. Выписать и определить ОДЗ.
    2. Найти общий знаменатель для дробей.
    3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
    4. Записать уравнение со скобками.
    5. Раскрыть скобки для приведения подобных слагаемых.
    6. Найти корни полученного уравнения.
    7. Выполним проверку корней в соответствии с ОДЗ.
    8. Записать ответ.

    Пример 1

    Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

    x x — 2 — 7 x + 2 = 8 x 2 — 4

    Начать следует с области допустимых значений:

    x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

    Воспользуемся правилом сокращенного умножения:

    x 2 — 4 = ( x — 2 ) ( x + 2 )

    В результате общим знаменателем дробей является:

    Выполним умножение каждого из членов выражения на общий знаменатель:

    x x — 2 — 7 x + 2 = 8 x 2 — 4

    x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

    После сокращения избавимся от скобок и приведем подобные слагаемые:

    x ( x + 2 ) — 7 ( x — 2 ) = 8

    x 2 + 2 x — 7 x + 14 = 8

    Осталось решить квадратное уравнение:

    Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

    Примеры задач с ответами для 9 класса

    Требуется решить дробно-рациональное уравнение:

    x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

    x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

    Определим область допустимых значений:

    О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

    x 2 + 7 x + 10 ≠ 0

    D = 49 — 4 · 10 = 9

    x 1 ≠ — 7 + 3 2 = — 2

    x 2 ≠ — 7 — 3 2 = — 5

    Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

    a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

    x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

    Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

    x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

    Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

    x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

    — ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

    x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

    x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

    2 x 2 + 9 x — 5 = 0

    Потребуется решить квадратное уравнение:

    2 x 2 + 9 x — 5 = 0

    Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

    Дано дробно-рациональное уравнение, корни которого требуется найти:

    4 x — 2 — 3 x + 4 = 1

    В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

    4 ( x + 4 ) x — 2 — 3 ( x — 2 ) x + 4 — 1 ( x — 2 ) ( x + 4 ) = 0

    4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

    4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

    x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

    Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

    — x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

    Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

    ( x — 2 ) ( x + 4 ) ≠ 0

    Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

    — x 2 — x + 30 = 0 _ _ _ · ( — 1 )

    Получилось квадратное уравнение, которое можно решить:

    Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

    Нужно решить дробно-рациональное уравнение:

    x + 2 x 2 — 2 x — x x — 2 = 3 x

    На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

    x + 2 1 x ( x — 2 ) — x x x — 2 — 3 ( x — 2 ) x = 0

    x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

    x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

    — x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

    Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

    — x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

    Корни квадратного уравнения:

    x 1 = — 4 ; x 2 = 2

    Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

    Найти корни уравнения:

    x 2 — x — 6 x — 3 = x + 2

    Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

    x 2 — x — 6 1 x — 3 — x ( x — 3 ) — 2 ( x — 3 ) = 0

    x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

    x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

    0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

    Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

    Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

    Ответ: х — любое число, за исключением 3.

    Требуется вычислить корни дробно-рационального уравнения:

    5 x — 2 — 3 x + 2 = 20 x 2 — 4

    На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

    5 ( x + 2 ) x — 2 — 3 ( x — 2 ) x + 2 — 20 1 ( x — 2 ) ( x + 2 ) = 0

    5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

    5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

    2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

    ( x — 2 ) ( x + 2 ) ≠ 0

    Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

    Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

    Ответ: корни отсутствуют

    Нужно найти корни уравнения:

    x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

    Начнем с определения ОДЗ:

    — 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

    При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

    x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

    ( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

    ( x — 3 ) x + x = x + 5

    Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

    x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

    Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

    x 1 · x 2 = — 10 x 1 + x 2 = 3

    В этом случае подходящими являются числа: -2 и 5.

    Второе значение не соответствует области допустимых значений.

    Наименьший общий знаменатель (НОЗ) алгебраических дробей, его нахождение

    Большинство действий с алгебраическими дробями, такие, например, как сложение и вычитание, требуют предварительного приведения этих дробей к одинаковым знаменателям. Такие знаменатели также часто обозначаются словосочетанием «общий знаменатель». В данной теме мы рассмотрим определение понятий «общий знаменатель алгебраических дробей» и «наименьший общий знаменатель алгебраических дробей (НОЗ)», рассмотрим по пунктам алгоритм нахождения общего знаменателя и решим несколько задач по теме.

    Общий знаменатель алгебраических дробей

    Если говорить про обыкновенные дроби, то общим знаменателем является такое число, которое делится на любой из знаменателей исходных дробей. Для обыкновенных дробей 1 2 и 5 9 число 36 может быть общим знаменателем, так как без остатка делится на 2 и на 9 .

    Общий знаменатель алгебраических дробей определяется похожим образом, только вместо чисел используются многочлены, так как именно они стоят в числителях и знаменателях алгебраической дроби.

    Общий знаменатель алгебраической дроби – это многочлен, который делится на знаменатель любой из дробей.

    В связи с особенностями алгебраических дробей, речь о которых пойдет ниже, мы чаще будем иметь дело с общими знаменателями, представленными в виде произведения, а не в виде стандартного многочлена.

    Многочлену, записанному в виде произведения 3 · x 2 · ( x + 1 ) , соответствует многочлен стандартного вида 3 · x 3 + 3 · x 2 . Этот многочлен может быть общим знаменателем алгебраических дробей 2 x , — 3 · x · y x 2 и y + 3 x + 1 , в связи с тем, что он делится на x , на x 2 и на x + 1 . Информация о делимости многочленов есть в соответствующей теме нашего ресурса.

    Наименьший общий знаменатель (НОЗ)

    Для заданных алгебраических дробей количество общих знаменателей может быть бесконечное множество.

    Возьмем для примера дроби 1 2 · x и x + 1 x 2 + 3 . Их общим знаменателем является 2 · x · ( x 2 + 3 ) , как и − 2 · x · ( x 2 + 3 ) , как и x · ( x 2 + 3 ) , как и 6 , 4 · x · ( x 2 + 3 ) · ( y + y 4 ) , как и − 31 · x 5 · ( x 2 + 3 ) 3 , и т.п.

    При решении задач можно облегчить себе работу, используя общий знаменатель, который среди всего множества знаменателей имеет самый простой вид. Такой знаменатель часто обозначается как наименьший общий знаменатель.

    Наименьший общий знаменатель алгебраических дробей – это общий знаменатель алгебраических дробей, который имеет самый простой вид.

    К слову, термин «наименьший общий знаменатель» не является общепризнанным, потому лучше ограничиваться термином «общий знаменатель». И вот почему.

    Ранее мы сфокусировали ваше внимание на фразе «знаменатель самого простого вида». Основной смысл этой фразы следующий: на знаменатель самого простого вида должен без остатка делиться любой другой общий знаменатель данных в условии задачи алгебраических дробей. При этом в произведении, которое является общим знаменателем дробей, можно использовать различные числовые коэффициенты.

    Возьмем дроби 1 2 · x и x + 1 x 2 + 3 . Мы уже выяснили, что проще всего работать нам будет с общим знаменателем вида 2 · x · ( x 2 + 3 ) . Также общим знаменателем для этих двух дробей может быть x · ( x 2 + 3 ) , который не содержит числового коэффициента. Вопрос в том, какой из этих двух общих знаменателей считать наименьшим общим знаменателем дробей. Однозначного ответа нет, потому правильнее говорить просто об общем знаменателе, а в работу брать тот вариант, с которым работать будет удобнее всего. Так, мы можем использовать и такие общие знаменатели как x 2 · ( x 2 + 3 ) · ( y + y 4 ) или − 15 · x 5 · ( x 2 + 3 ) 3 , которые имеют более сложный вид, но проводить с ними действия может быть сложнее.

    Нахождение общего знаменателя алгебраических дробей: алгоритм действий

    Предположим, что у нас имеется несколько алгебраических дробей, для которых нам необходимо отыскать общий знаменатель. Для решения этой задачи мы можем использовать следующий алгоритм действий. Сначала нам необходимо разложить на множители знаменатели исходных дробей. Затем мы составляем произведение, в которое последовательно включаем:

    • все множители из знаменателя первой дроби вместе со степенями;
    • все множители, присутствующие в знаменателе второй дроби, но которых нет в записанном произведении или их степень недостаточно;
    • все недостающие множители из знаменателя третьей дроби, и так далее.

    Полученное произведение и будет общим знаменателем алгебраических дробей.

    В качестве множителей произведения мы можем взять все знаменатели дробей, данных в условии задачи. Однако множитель, который мы получим в итоге, по смыслу будет далек от НОЗ и использование его будет иррациональным.

    Определите общий знаменатель дробей 1 x 2 · y , 5 x + 1 и y — 3 x 5 · y .

    Решение

    В данном случае у нас нет необходимости раскладывать знаменатели исходных дробей на множители. Потому начнем применять алгоритм с составления произведения.

    Из знаменателя первой дроби возьмем множитель x 2 · y , из знаменателя второй дроби множитель x + 1 . Получаем произведение x 2 · y · ( x + 1 ) .

    Знаменатель третьей дроби может дать нам множитель x 5 · y , однако в составленном нами ранее произведении уже есть множители x 2 и y . Следовательно, добавляем еще x 5 − 2 = x 3 . Получаем произведение x 2 · y · ( x + 1 ) · x 3 , которое можно привести к виду x 5 · y · ( x + 1 ) . Это и будет наш НОЗ алгебраических дробей.

    Ответ: x 5 · y · ( x + 1 ) .

    Теперь рассмотрим примеры задач, когда в знаменателях алгебраических дробей есть целые числовые множители. В таких случаях мы также действуем по алгоритму, предварительно разложив целые числовые множители на простые множители.

    Найдите общий знаменатель дробей 1 12 · x и 1 90 · x 2 .

    Решение

    Разложив числа в знаменателях дробей на простые множители, получаем 1 2 2 · 3 · x и 1 2 · 3 2 · 5 · x 2 . Теперь мы можем перейти к составлению общего знаменателя. Для этого из знаменателя первой дроби возьмем произведение 2 2 · 3 · x и добавим к нему множители 3 , 5 и x из знаменателя второй дроби. Получаем 2 2 · 3 · x · 3 · 5 · x = 180 · x 2 . Это и есть наш общий знаменатель.

    Ответ: 180 · x 2 .

    Если внимательно посмотреть на результаты двух разобранных примеров, то можно заметить, что общие знаменатели дробей содержат все множители, присутствующие в разложениях знаменателей, причем если некоторый множитель имеется в нескольких знаменателях, то он берется с наибольшим из имеющихся показателей степени. А если в знаменателях имеются целые коэффициенты, то в общем знаменателе присутствует числовой множитель, равный наименьшему общему кратному этих числовых коэффициентов.

    В знаменателях обеих алгебраических дробей 1 12 · x и 1 90 · x 2 есть множитель x . Во втором случае множитель x возведен в квадрат. Для составления общего знаменателя это множитель нам необходимо взять в наибольшей степени, т.е. x 2 . Других множителей с переменными нет. Целые числовые коэффициенты исходных дробей 12 и 90 , а их наименьшее общее кратное равно 180 . Получается, что искомый общий знаменатель имеет вид 180 · x 2 .

    Теперь мы можем записать еще один алгоритм нахождения общего множителя алгебраических дробей. Для этого мы:

    • раскладываем знаменатели всех дробей на множители;
    • составляем произведение всех буквенных множителей (при наличии множителя в нескольких разложениях, берем вариант с наибольшим показателем степени);
    • добавляем НОК числовых коэффициентов разложений к полученному произведению.

    Приведенные алгоритмы равноценны, так что использовать в решении задач можно любой из них. Важно уделять внимание деталям.

    Встречаются случаи, когда общие множители в знаменателях дробей могут быть незаметны за числовыми коэффициентами. Здесь целесообразно сначала вынести числовые коэффициенты при старших степенях переменных за скобки в каждом из множителей, имеющихся в знаменателе.

    Какой общий знаменатель имеют дроби 3 5 — x и 5 — x · y 2 2 · x — 10 .

    Решение

    В первом случае за скобки необходимо вынести минус единицу. Получаем 3 — x — 5 . Умножаем числитель и знаменатель на — 1 для того, чтобы избавиться от минуса в знаменателе: — 3 x — 5 .

    Во втором случае за скобку выносим двойку. Это позволяет нам получить дробь 5 — x · y 2 2 · x — 5 .

    Очевидно, что общий знаменатель данных алгебраических дробей — 3 x — 5 и 5 — x · y 2 2 · x — 5 это 2 · ( x − 5 ) .

    Ответ: 2 · ( x − 5 ) .

    Данные в условии задачи дроби могут иметь дробные коэффициенты. В этих случаях необходимо сначала избавиться от дробных коэффициентов путем умножения числителя и знаменателя на некоторое число.

    Упростите алгебраические дроби 1 2 · x + 1 1 14 · x 2 + 1 7 и — 2 2 3 · x 2 + 1 1 3 , после чего определите их общий знаменатель.

    Решение

    Избавимся от дробных коэффициентов, умножив числитель и знаменатель в первом случае на 14 , во втором случае на 3 . Получаем:

    1 2 · x + 1 1 14 · x 2 + 1 7 = 14 · 1 2 · x + 1 14 · 1 14 · x 2 + 1 7 = 7 · x + 14 x 2 + 2 и — 2 2 3 · x 2 + 1 1 3 = 3 · — 2 3 · 2 3 · x 2 + 4 3 = — 6 2 · x 2 + 4 = — 6 2 · x 2 + 2 .

    После проведенных преобразований становится понятно, что общий знаменатель – это 2 · ( x 2 + 2 ) .

    Ответ: 2 · ( x 2 + 2 ) .

    источники:

    http://wika.tutoronline.ru/algebra/class/9/drobnoraczionalnye-uravneniya

    http://zaochnik.com/spravochnik/matematika/vyrazhenija/naimenshij-obschij-znamenatel/

    Вася Иванов

    Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
    1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
    2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
    3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
    4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

    Содержание материала

    1. Правильная и неправильная дробь
    2. Видео
    3. Дроби
    4. Нахождение части от целого (дроби от числа)
    5. Вычитание дробей
    6. Нахождение целого числа по дроби
    7. Как перевести десятичную дробь в обыкновенную или смешанную
    8. Применение нахождения дроби от числа для решения задач
    9. Нахождение числа по значению дроби

    Правильная и неправильная дробь

    Дробь, в которой числитель меньше знаменателя, называется правильной, а дробь, где числитель больше или равен знаменателю, — неправильной.

    Число, состоящее из целой и дробной частей, можно

    Число, состоящее из целой и дробной частей, можно обратить в неправильную дробь. Для этого нужно умножить целую часть на знаменатель и к произведению прибавить числитель данной дроби. Полученная сумма будет числителем дроби, а знаменателем остается знаменатель дробной части.

    Из любой неправильной дроби можно выделить целую ч

    Из любой неправильной дроби можно выделить целую часть. Для этого нужно разделить с остатком числитель на знаменатель. Частное от деления — это целая часть, остаток — это числитель, делитель — это знаменатель.

    Дроби

    Дроби вида $frac{n}{m}$  называют «обыкновенные дроби». В дроби $frac{n}{m}$ число над чертой называют числителем дроби, а число под чертой – знаменателем дроби.

    Знаменатель показывает, на сколько долей делят, а числитель — сколько таких долей взято.

    Таким образом, если нам нужно обозначить не один «кусочек» числа, а больше, мы просто пишем в верхней части дроби не единицу, а другое число, например, так:

    Рисунок 5

    Рисунок 5

    Дроби нужно уметь читать правильно: числитель читается как количественное числительное женского рода (одна, две и т.д.), а знаменатель как порядковое числительное (вторая, пятая) и согласуется с первым числительным.Например: $frac{1}{2}$  — одна вторая, $frac{2}{5}$ — две пятых,  $frac{6}{11}$  — шесть одиннадцатых.

    На рисунке 6 изображён отрезок АВ, его длина 10 см, то есть 1 дм. Длина отрезка АС будет 1 см.

    Рисунок 6

    Рисунок 6

    А какую долю составит сантиметр от метра?

    Показать ответ

    Скрыть

    $frac{1}{100}$ 

    А грамм от килограмма?

    Показать ответ

    Скрыть

    $frac{1}{1000}$ 

    Видео

    Нахождение части от целого (дроби от числа)

    Чтобы найти часть от целого, нужно число, соответствующее целому, разделить на знаменатель дроби, выражающей эту часть, и результат умножить на числитель той же дроби.

    Задача нахождения части от целого по существу является задачей нахождения дроби от числа. Чтобы найти дробь (часть) от числа, необходимо число умножить на эту дробь.

    Вычитание дробей

    Алгоритм действий при вычитании двух дробей:

    1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
    2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
    3. Вычесть одну дробь из другой, путем вычитания числителя второй дроби из числителя первой.
    4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
    5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

    Нахождение целого числа по дроби

    Зная часть числа и сколько это составляет от целого числа, можно найти изначальное целое число. Это обратная задача к той, которую мы рассматривали в предыдущей теме. Там мы искали дробь от числа, деля это число на знаменатель дроби, и полученный результат умножая на числитель дроби.

    А сейчас наоборот, зная дробь и сколько это составляет от числа, найти изначальное целое число.

    Например, если Требуется найти длину всей линейки по дроби . Изве длины линейки составляют шесть сантиметров и нам говорят найти длину всей линейки, то мы должны понимать, что от нас требуют найти изначальное целое число (длину всей линейки) по дроби Требуется найти длину всей линейки по дроби . Изве. Давайте решим эту задачу.

    Требуется найти длину всей линейки по дроби Мы уже знаем каким образом получились эти 6 см. Им. Известно, что Мы уже знаем каким образом получились эти 6 см. Им длины всей линейки составляют 6 см.

    Мы уже знаем каким образом получились эти 6 см. Имелась какая-то длина, её разделили на пять частей, поскольку знаменатель дроби Чтобы узнать длину всей линейки, сначала нужно узн это число 5. Затем было взято две части от пяти частей, поскольку числитель дроби Чтобы узнать длину всей линейки, сначала нужно узн это число 2.

    Чтобы узнать длину всей линейки, сначала нужно узнать длину одной части. Как это узнать? Попробуем догадаться, внимательно изучив следующий рисунок:

    Если две части длины линейки составляют 6 см, то н

    Если две части длины линейки составляют 6 см, то нетрудно догадаться, что одна часть составляет 3 см. А чтобы получить эти 3 см, надо 6 разделить на 2

    6 см : 2 = 3 см

    Итак, мы нашли длину одной части. Одна часть из пяти или 3 см × 5 = 15  длины линейки составляет 3 см. Если частей всего пять, то для нахождения длины линейки, нужно взять три сантиметра пять раз. Другими словами, умножить 3 см на число 5

    3 см × 5 = 15

    Мы нашли длину линейки. Она составляет 15 сантиметров. Это можно увидеть на следующем рисунке.

    Видно, что пять частей из пяти или  составляют пят

    Видно, что пять частей из пяти или Чтобы легче было находить число по его дроби, можн составляют пятнадцать сантиметров.

    Чтобы легче было находить число по его дроби, можно пользоваться следующим правилом:

    Чтобы найти число по его дроби, нужно известное число разделить на числитель дроби, и полученный результат умножить на знаменатель дроби.

    Пример 2. Число 20 это Знаменатель дроби  показывает, что число, которое  от всего числа. Найдите это число.

    Знаменатель дроби 20 : 4 = 5  показывает, что число, которое мы должны найти, разделено на пять частей. Если 20 : 4 = 5  этого числа составляет число 20, то для нахождения всего числа, сначала нужно найти 20 : 4 = 5  (одну часть из пяти) от всего числа. Для этого 20 надо разделить на числитель дроби 20 : 4 = 5

    20 : 4 = 5

    Мы нашли 5 × 5 = 25  от всего числа. Эта часть равна 5. Чтобы найти всё число, нужно полученный результат 5 умножить на знаменатель дроби 5 × 5 = 25

    5 × 5 = 25

    Мы нашли Пример 3. Десять минут это  времени приготовления  от всего числа. Другими словами, нашли всё число, которое от нас требовали найти. Это число 25.

    Пример 3. Десять минут это Знаменатель дроби  показывает, что общее время при времени приготовления каши. Найдите общее время приготовления каши.

    Знаменатель дроби 10 мин : 2 = 5 мин  показывает, что общее время приготовления каши разделено на три части. Если 10 мин : 2 = 5 мин  времени приготовления каши составляет десять минут, то для нахождения общего времени приготовления, нужно сначала найти 10 мин : 2 = 5 мин  времени приготовления. Для этого 10 нужно разделить на числитель дроби 10 мин : 2 = 5 мин

    10 мин : 2 = 5 мин

    Мы нашли 5 мин × 3 = 15 мин  времени приготовления каши. 5 мин × 3 = 15 мин  времени приготовления каши составляют пять минут. Для нахождения общего времени приготовления, нужно 5 минут умножить на знаменатель дроби 5 мин × 3 = 15 мин

    5 мин × 3 = 15 мин

    Мы нашли Пример 4.     массы мешка цемента составляет 30 кг времени приготовления каши, то есть нашли общее время приготовления. Оно составляет 15 минут.

    Пример 4.   Знаменатель дроби  показывает, что общая масса меш  массы мешка цемента составляет 30 кг. Найти общую массу мешка.

    Знаменатель дроби 30кг : 2 = 15кг показывает, что общая масса мешка разделена на четыре части. Если 30кг : 2 = 15кг массы мешка составляет 30 кг то для того, чтобы найти общую массу мешка нужно сначала найти 30кг : 2 = 15кг массы мешка. Для этого 30 надо разделить на числитель дроби 30кг : 2 = 15кг.

    30кг : 2 = 15кг

    Мы нашли 15кг × 4 = 60кг массы мешка. 15кг × 4 = 60кг массы мешка составляет 15 кг. Теперь, чтобы найти общую массу мешка, надо 15кг умножить на знаменатель дроби 15кг × 4 = 60кг

    15кг × 4 = 60кг

    Мы нашли 
массы мешка. Другими словами, нашли общую массу мешка. Общая масса мешка цемента составляет 60 кг.

    Как перевести десятичную дробь в обыкновенную или смешанную

    Для того, чтобы перевести десятичную дробь в обыкновенную, необходимо:

    1. Записать дробь в виде десятичная дробь1
    2. Умножать числитель и знаменатель на 10 до тех пор, пока числитель не станет целым числом.
    3. Найти наибольший общий делитель и сократить дробь.

    Например, переведем 0.36 в обыкновенную дробь:

    1. Записываем дробь в виде: 0.361
    2. Умножаем на 10 два раза, получим 36100
    3. Сокращаем дробь 36100 = 925

    Применение нахождения дроби от числа для решения задач

    В начале урока мы уже разобрали пример с тортом, сейчас посмотрим на другие примеры.

    Задача 1

    Остап зарабатывает 40 000 рублей в месяц.

    Из них (mathbf{frac{1}{4}}) это подработка.

    Сколько рублей Остапу приносит подработка?

    Решение:

    В данной случае числом будет являться сумма заработка за месяц — 40 000

    Ну а дробью, очевидно, будет (mathbf{frac{1}{4}}).

    Тогда, чтобы найти прибыль от подработки, надо просто умножить дробь на число.

    (mathbf{40000cdotfrac{1}{4}=frac{40000}{4}=10000})

    Ответ: 10 000 рублей.

    Теперь рассмотрим что-нибудь посложнее.

    Задача 2

    Порфирий живет в комнате площадью 18 квадратных метров.

    3 кровати занимают (mathbf{frac{1}{3}}) площади комнаты.

    Какую площадь занимает одна кровать?

    Решение:

    Сначала найдем, какую площадь занимают 3 кровати, затем разделим это число на 3, чтобы получить площадь одной кровати.

    1) (mathbf{18cdotfrac{1}{3}=frac{18}{3}=6}) (квадратных метров) занимают 3 кровати

    2) (mathbf{6div3=2}) (квадратных метра) занимает одна кровать

    Ответ: 2 квадратных метра.

    Теперь посмотрим, как в задачах применяются проценты.

    Задача 3

    Пересвет работает на заводе и производит 100 деталей в день.

    Начальник Елисей пообещал Пересвету выдать премию, если он будет делать на 20% деталей больше.

    Сколько деталей в день должен делать Пересвет, чтобы получить премию?

    Решение:

    Для начала надо понять, на сколько в количественном измерении больше деталей нужно выпустить Пересвету, чтобы получить премию.

    Для этого домножим текущее количество деталей на процент или долю, учитывая, что 20% — это 20 частей из 100, или иначе 0,20, и получим искомую прибавку.

    1) (mathbf{20%=20div100=0.2})

    2) (mathbf{100cdot0.2=20}) (деталей)- то, насколько больше деталей нужно производить

    Теперь, чтобы найти общее количество деталей, надо прибавить эту прибавку к тому, что Пересвет производит уже сейчас.

    3) (mathbf{100+20=120}) (деталей) в день нужно производить для получения премии

    Ответ: 120 деталей.

    В некоторых задачах нужно несколько раз применять нахождение процентов от числа.

    Задача 4

    Глубина реки в начале мая была равна 10 метрам, к началу июня она обмелела на 10%, а к началу июля еще на 15% относительно показателей начала июня. Вычислите, какая глубина реки была в начале июля.

    Решение:

    Исходное число- 10 метров, дробь задана в виде процентов.

    Первым действием нужно будет найти глубину реки в начале июня.

    Здесь можно пойти двумя разными путями:

    I. Посчитаем, на сколько метров опустился уровень воды, а затем вычтем это из исходных показателей.

    0) (mathbf{10%=10div100=0.1})

    1) (mathbf{10-10cdot0.1=10-1=9}) (метров)- глубина реки в начале июня

    II. Можно вместо того, чтобы считать разницу и вычитать ее, посчитать сколько процентов останется и найти сразу именно эту часть от исходного числа.

    Учитывая, что всего у нас 100%, да если глубина уменьшилась на 10%, то осталось 90%.

    0) (mathbf{100-10=90}) (процентов) останется

    1) (mathbf{90%=90div100=0.9})

    2) (mathbf{10cdot0.9=9}) (метров)- глубина реки в начале июня

    Как мы видим, эти два подхода дают одинаковый результат.

    Поэтому вы можете выбирать любой из них в зависимости от задачи и ваших предпочтений.

    Таким образом, мы посчитали глубину в начале июня. Теперь нужно понять, какая будет глубина в начале июля, когда глубина уменьшится еще на 15 процентов.

    Используем в этом случае второй способ.

    3) (mathbf{100-15=85}) (процентов) останется в июле от уровня июня

    4) (mathbf{85%=85div100=0.85})

    5) (mathbf{0.85cdot9=7.65}) (метров) составит глубина реки в начале июля

    Ответ: 7.65 метра.

    Пройти тест Закрыть тест

    Пройти тест и получить оценку можно после входа или регистрации Вход Регистрация

    Нахождение числа по значению дроби

    Если известно сколько число n занимает в числе m, и эта доля выражена в виде дроби, то для нахождения числа m используется формула:

    m = m : a / b

     Пример:

    Один ряд кинозала вмещает 20 кресел, что составляет2 / 5

    от всей вместимости зала. Определите, сколько всего посадочных мест в зале.

     Решение

    Общее количество кресел равняется:

    20 :2 / 5

    = 20 ⋅5 / 2

    =20 ⋅ 5 / 2

    = 50

    Теги

    Нахождение наименьшего общего знаменателя бывает нужно для сложения, вычитания и сравнения дробей.

    Наименьший общий знаменатель – это наименьшее число, которое нацело делится и на первый, и на второй знаменатель двух дробей.

    Правило нахождения наименьшего знаменателя следующее:

    Наименьший знаменатель

    Для того, чтобы найти наименьший общий знаменатель двух дробей, нужно найти методом подбора наименьшее общее число, которое бы делилось и на первый, и на второй знаменатель. После этого нужно умножить каждую дробь на такое число, чтобы в знаменателе этих дробей получилось найденное нами наименьшее общее число.

    Пример 1

    Найти наименьший общий знаменатель двух дробей: 56frac{5}{6} и 34frac{3}{4}.

    Решение

    Находим методом подбора такое наименьшее число, которое нацело делилось бы и на 6, и на 4. Это число 12. Далее умножаем каждую дробь на такие числа, чтобы в знаменателе получилось 12. Первую дробь умножаем на 2, а вторую на 3:

    56=5⋅26⋅2=1012frac{5}{6}=frac{5cdot2}{6cdot2}=frac{10}{12}

    34=3⋅34⋅3=912frac{3}{4}=frac{3cdot3}{4cdot3}=frac{9}{12}

    Дроби приведены к наименьшему общему знаменателю: 12.

    Ответ

    12

    Пример 2

    Найти наименьший общий знаменатель двух дробей: 521frac{5}{21} и 27frac{2}{7}.

    Решение

    Находим методом подбора такое наименьшее число, которое нацело делилось бы и на 21, и на 7. В этом случае это – один из знаменателей, число 21. Далее нужно умножить вторую дробь на такое число, чтобы в знаменателе получилось 21. Умножаем вторую дробь на 3:

    27=2⋅37⋅3=621frac{2}{7}=frac{2cdot3}{7cdot3}=frac{6}{21}

    Дроби приведены к наименьшему общему знаменателю: 21.

    Ответ

    21

    Решение задач по алгебре онлайн от экспертов Студворк!

    Тест по теме “Наименьший общий знаменатель”

    Понравилась статья? Поделить с друзьями:
  • Как найти истинный азимут по формуле
  • Не нравится цвет линолеума как исправить
  • Как найти домашнюю черепаху
  • Как найти звуковые эффекты
  • Как найти свое объявление на циане бесплатно