Как нашли мощность синуса

Коэффициент реактивной мощности sin фи

Коэффициент реактивной мощности sin фи формула

  • sin(φ)=√(1-cos²φ)

Коэффициент реактивной мощности sin фи онлайн калькулятор

cos φ:

sin φ:

Поделиться в соц сетях:

Расчет коэффициента мощности (cosφ)

Популярные сообщения из этого блога

Найти тангенс фи , если известен косинус фи

Калькулятор коэффициент мощности cos fi в tg fi Как найти тангенс фи, если известен косинус фи формула: tg φ = (√(1-cos²φ))/cos φ Калькулятор онлайн — косинус в тангенс cos φ: tg φ: Поделиться в соц сетях: Найти синус φ, если известен тангенс φ Найти косинус φ, если известен тангенс φ

Индекс Руфье калькулятор

Проба Руфье калькулятор онлайн. Первые упоминания теста относиться к 1950 году. Именно в это время мы находим первое упоминание  доктора Диксона о «Использование сердечного индекса Руфье в медико-спортивном контроле». Проба Руфье — представляет собой нагрузочный комплекс, предназначенный для оценки работоспособности сердца при физической нагрузке. Индекс Руфье для школьников и студентов. У испытуемого, находящегося в положении лежа на спине в течение 5 мин, определяют число пульсаций за 15 сек (P1); После чего в течение 45 сек испытуемый выполняет 30 приседаний. После окончания нагрузки испытуемый ложится, и у него вновь подсчитывается число пульсаций за первые 15 с (Р2); И в завершении за последние 15 сек первой минуты периода восстановления (Р3); Оценку работоспособности сердца производят по формуле:  Индекс Руфье = (4(P1+P2+P3)-200)/10; Индекс Руфье для спортсменов Измеряют пульс в положении сидя (Р1); Спортсмен выполняет 30 глубоких приседаний в

Найти косинус фи (cos φ), через тангенс фи (tg φ)

tg фи=…  чему равен cos фи? Как перевести тангенс в косинус формула: cos(a)=(+-)1/sqrt(1+(tg(a))^2) Косинус через тангенс, перевести tg в cos, калькулятор — онлайн tg φ: cos φ: ± Поделиться в соц сетях:

Функция синуса описывает соотношение между радиусом единичной окружности (или окружности в декартовой плоскости с единичным радиусом) и положением оси Y точки на окружности. Дополнительной функцией является косинус, который описывает то же соотношение, но для положения оси x.

Мощность синусоидальной волны относится к переменному току, при котором ток и, следовательно, напряжение, изменяются со временем как синусоидальная волна. Иногда важно рассчитать средние величины для периодических (или повторяющихся) сигналов, таких как переменный ток, при проектировании или создании цепей.

Что такое функция синуса

Будет полезно определить функцию синуса, чтобы понять ее свойства и, следовательно, как рассчитать среднее значение синуса.

В общем, функция синуса, как она определена, всегда имеет единичную амплитуду, период 2π и отсутствие сдвига фазы. Как уже упоминалось, это отношение между радиусом R и положением оси Y , y , точки на окружности радиуса R. По этой причине амплитуда определяется для единичного круга, но может быть масштабирована на R при необходимости.

Сдвиг фазы будет описывать некоторый угол от оси x, где новая «начальная точка» круга была смещена. Хотя это может быть полезно для некоторых проблем, оно не регулирует среднюю амплитуду или мощность синусоидальной функции.

Расчет среднего значения

Помните, что для цепи уравнение для мощности: P = IV, где V — напряжение, а I — ток. Поскольку V = IR, для цепи с сопротивлением R мы теперь знаем, что P = I 2 R.

Сначала рассмотрим изменяющийся во времени ток I (t) в форме I (t) = _I 0 _sin (ωt). Ток имеет амплитуду I 0 и период 2π / ω. Если известно, что сопротивление в цепи равно R , то мощность как функция времени равна P (t) = I 0 2 R sin 2 ( * ω * t).

Чтобы рассчитать среднюю мощность, необходимо следовать общей процедуре усреднения: общая мощность в каждый момент в интересующем периоде, деленная на период времени, T.

Поэтому вторым шагом является интеграция P (t) за полный период.

Интеграл от I 0 2 Rsin 2 (ωt) за период T определяется как:

frac {I_0 R (T — Cos (2 pi) Sin (2 pi) / omega)} {2} = frac {I_0RT} {2}

Тогда среднее значение является интегральной или общей мощностью, деленной на период Т:

frac {I_0 R} {2}

Может быть полезно знать, что среднее значение квадрата синусоидальной функции за ее период всегда равно 1/2. Запоминание этого факта может помочь в расчете быстрых оценок.

Как рассчитать среднеквадратичную мощность

Так же, как процедура вычисления среднего значения, среднеквадратичное значение является еще одной полезной величиной. Он рассчитывается (почти) точно так, как он назван: возьмите интересующее вас количество, возведите в квадрат, вычислите среднее (или среднее) и затем возьмите квадратный корень. Это количество часто сокращается как RMS.

Итак, какова среднеквадратичная величина синусоиды? Как и прежде, мы знаем, что среднее значение квадрата синусоидальной волны равно 1/2. Если мы возьмем квадратный корень из 1/2, мы можем определить, что среднеквадратичное значение синусоидальной волны составляет приблизительно 0, 707.

Часто при проектировании схемы требуется среднеквадратичное значение тока или напряжения. Самый быстрый способ определить это — определить пиковый ток или напряжение (или максимальное значение волны), а затем умножить пиковое значение на 1/2, если вам нужно среднее значение, или на 0, 707, если вам нужно среднеквадратичное значение.

Plan

  • 1 Что такое реактивная мощность простыми словами?
  • 2 Как рассчитывается активная реактивная и полная мощность трехфазной цепи?
  • 3 Что такое коэффициент Фи?
  • 4 Как определяется коэффициент мощности?
  • 5 Зачем нужно повышать коэффициент мощности?
  • 6 Как найти реактивную мощность?
  • 7 Когда косинус фи равен 1?
  • 8 В чем измеряется cos фи?
  • 9 Как можно найти тангенс?
  • 10 Как найти косинус какого то числа?

Что такое реактивная мощность простыми словами?

Мощность, которая не была передана в нагрузку, а привела к потерям на нагрев и излучение, называется реактивной мощностью. Она равна произведению действующих значений тока и напряжения на синус угла сдвига фаз между ними (sin φ). Таким образом, реактивная мощность является величиной характеризующей нагрузку.

В чем разница между активной и реактивной мощности?

Пример работы активной энергии: ток, проходя через элемент сопротивления, часть энергии преобразует в нагрев. Эта совершённая работа тока и является активной. Реактивная электроэнергия – это энергия, возвращаемая обратно источнику тока.

Что такое активная мощность?

Для определения полной мощности нагрузки необходимо вычислить активную и реактивную мощность. Активная мощность — это полезная часть мощности, та часть, которая определяет прямое преобразования электрической энергии в другие необходимые виды энергии.

Как рассчитывается активная реактивная и полная мощность трехфазной цепи?

Активная мощность трехфазной цепи равна сумме активных мощностей ее фаз: Реактивная мощность трехфазной цепи равна сумме реактивных мощностей ее фаз: Очевидно, что в симметричной трехфазной цени Тогда Мощность одной фазы определяется по формулам для однофазной цепи….

Как определяется полная мощность трехфазной цепи?

Мощность трехфазного тока равна тройной мощности одной фазы. При соединении в звезду PY=3·Uф·Iф·cosфи =3·Uф·I·cosфи. При соединении в треугольник P=3·Uф·Iф·cosфи=3·U·Iф·cosфи. На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник.

Как найти коэффициент мощности трехфазной цепи?

P=U*I*sinφ, где U и I — действующие=эффективные=среднеквадратичные значения напряжения и тока, а φ- сдвиг фаз между ними

Что такое коэффициент Фи?

Коэффициент мощности cos фи (φ) определяется как отношение полезной мощности к полной. Математически это определение часто записывают в виде кВт/кВА, где числитель – активная (действительная) мощность, а знаменатель – кажущаяся (активная + реактивная, полная) мощность.

Как найти коэффициент мощности цепи?

Определение коэффициента мощности PF = P (кВт)/S (кВА), где: P = активная мощность; S = полная мощность. Коэффициент мощности нагрузки, которая может являться электроприемником (ЭП) или совокупностью таких ЭП (например, вся система), задается отношением P/S, т.

Как определяется коэффициент мощности cos φ?

Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра). Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением.

Как определяется коэффициент мощности?

Обозначается чаще всего λ («лямбда»), PF (Power Factor) или по старинке cosφ: THD — Total Harmonic Distortion или КНИ (коэффициент нелинейных искажений) — коэффициент, определяемый отношением действующего значения первой гармоники тока к корню из суммы квадратов высших гармоник.

Как определить коэффициент мощности трансформатора?

Она равна полусумме номинальных мощностей всех обмоток трансформатора, т. е. полусумме произведений наибольшего длительно допустимого в каждой обмотке тока на допустимое напряжение.

Каким образом можно повысить коэффициент мощности?

Увеличения коэффициента мощности (уменьшения угла φ — сдвига фаз тока и напряжения) можно добиться следующими способами:

  1. заменой мало загруженных двигателей двигателями меньшей мощности,
  2. понижением напряжения
  3. выключением двигателей и трансформаторов, работающих на холостом ходу,

Зачем нужно повышать коэффициент мощности?

Повышение коэффициента мощности позволяет уменьшить номинальные значения мощности трансформаторов, распределительных устройств, кабелей, а также сократить потери мощности и ограничить потери напряжения.

Для чего нужен коэффициент мощности?

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей и мощности искажения (собирательное название — неактивная мощность).

Что является причиной низкого коэффициента мощности?

Напомним, что причиной низкого коэффициента мощности являются индуктивные нагрузки, которым нужна реактивная мощность. Увеличение реактивной мощности приводит к увеличению полной мощности, потребляемой от поставщика электроэнергии.

Как найти реактивную мощность?

Поскольку реактивная мощность зависит от угла φ, то для её вычисления применяется формула: Q = UI×sin φ. Единицей измерения реактивной составляющей является вар или кратная ей величина – квар.

Как найти ФИ в электротехнике?

cos фи = P / (U х I), где Р, U, I — показания приборов. где Pw — мощность всей системы, Uл, Iл — линейные напряжение и ток, измеренные вольтметром и амперметром.

Как определить косинус фи у трансформатора?

Косинус фи составляет 0,83.

Когда косинус фи равен 1?

При активной нагрузке (лампа накаливания, электрочайник) косинус фи (cosφ) равен единице, так как угол фи — ноль. При емкостной нагрузке ток будет опережать напряжение, а при индуктивной — отставать.

Какой косинус фи у светодиодных ламп?

Если, например, взять ДРД лампы, то косинус «ФИ» представлен значением 0,5, это говорит о том, что до 50% тратится просто так. Самый высокий показатель у светодиодных светильников. От 0,9 до 1.

Что такое синус фи?

Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя. устройств) указывают активную мощность в Вт и cosφ / или λ /или PF. …

В чем измеряется cos фи?

Реактивная мощность измеряется в вольт-амперах реактивных (Вар, кВАр), а общая мощность измеряется в кВА. Коэффициент мощности, он же cosφ — это отношение активной мощности к полной.

Чему равен тангенс фи?

Тангенс фи – характеристика потерь Это отношение между реактивной и активной составляющими нагрузки. При возрастании доли реактивной составляющей тангенс возрастает, в пределе стремясь к бесконечности. Тангенс угла потерь также используется в электроэнергетике, но более привычным является показатель cos(φ).

Как найти тангенс через косинус?

Тригонометрические формулы

  1. При известном синусе или косинусе числа можно найти его тангенс или котангенс: tg a = sin a/cos a.
  2. Можно найти синус числа, если известен его косинус и наоборот: sin2 a + cos2 a = 1.
  3. Найти тангенс можно через синус при известном косинусе: 1 + tg2 a = 1/cos2 a.

Как можно найти тангенс?

Представляет собой соотношение катетов прямоугольного треугольника. То есть, tg(А)=ВС/АС, где ВС – противолежащий к углу (А) катет, АС – прилежащий катет.

Как найти тангенс если известен косинус на калькуляторе?

Как найти тангенс фи если известен косинус на инженерном калькулятор? Очень нужно для расчета электрических нагрузок Возводишь косинус в квадрат и делишь 1 на полученное значение (на калькуляторе есть кнопка 1/х) . Из полученного значения вычитаешь 1 и из получившегося числа извлекаешь корень квадратный.

Как найти тангенс фи зная косинус фи формула?

Как найти тангенс фи, если известен косинус фи формула: tg φ = (√(1-cos²φ))/cos φ

Как найти косинус какого то числа?

Косинус острого угла можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к гипотенузе. Косинус числа можно определить с помощью числовой окружности – косинус числа равен абсциссе соответствующей точки на ней. Значение косинуса всегда лежит в пределах от (-1) до (1).

Как найти косинус тангенс и котангенс если известен синус?

Тангенс это отношение синуса к косинусу: Tg(a)=Sin(a)/Cos(a). Котангенс это отношение косинуса к синусу: Ctg(a)=Cos(a)/Sin(a).

Давайте рассмотрим и объясним этот косинус, как можно более простыми словами, исключая всякие непонятные научные определения, типа электромагнитная индукция. В двух словах про него конечно не расскажешь, а вот в трех можно попробовать.

Практическое значение

Коэффициент трансформации

В электроэнергетике при проектировании сетей cos коэффициент фи стремятся повысить как можно больше. Соотношение cos угла fi подразумевает, что в случае его малого показателя для обеспечения нужной мощности цепи потребуется использовать электрический ток очень большой силы. Существует корреляция между применением высокого тока и потерями энергии в подводящих кабелях: если показания электросчетчика заметно выше ожидаемых, всегда проверяют правильность расчетов угла фи.

Показатель может быть выяснен с помощью специального прибора – фазометра. При недостаточности коэффициента в дело идут усилители и другие установки, призванные скомпенсировать энергетические потери. Если угол фи рассчитан неправильно, будут иметь место снижение эффективности работы электрооборудования и рост энергопотребления.

Сдвиг фаз между напряжением и током

Коэффициент пульсации

Фазовый сдвиг – показатель, описывающий разность исходных фаз двух параметров, имеющих свойство меняться во времени с одинаковыми скоростями и периодами. Именно сдвиг между силой и напряжением определяет, сколько будет значение угла фи.

В радиотехнической промышленности используются цепочки для получения асинхронного хода. Одна RC-цепь создает 60-градусный сдвиг, для получения 180-градусного для трехфазной структуры организуют последовательное соединение трех цепочек.

При трансформации электродвижущей силы во вторичных обмотках прибора для всех вариаций тока ее значение идентично по фазе таковому для первичной обмотки. Если обмотки трансформатора включить в противофазе, значение напряжения получает обратный знак. Если напряжение идет по синусоиде, происходит сдвиг на 180 градусов.

В простом случае (к примеру, включение электрического чайника) фазы двух показателей совпадают, и они в одно и то же время достигают пиковых значений. Тогда при расчете потребительской мощности применять угол фи не требуется. Когда к переменному току подключен электродвигатель с составной нагрузкой, содержащей активный и индуктивный компоненты (двигатель стиральной машинки и т.д.), напряжение сразу подается на обмотки, а ток отстает вследствие действия индуктивности. Таким образом, между ними возникает сдвиг. Если индуктивный компонент (обмотки) подменен использованием достижений химии в виде емкостного аккумулятора, отстающей величиной, напротив, оказывается напряжение.

Косинус фи не следует путать с другим показателем, рассчитываемым для комплексных нагрузок, – коэффициентом демпфирования. Он широко используется в усилителях мощности и равен частному номинального сопротивлению прибора и выходному – усилка.

Важный показатель

Косинус фи — показатель приборов, работающих от электротока. Это параметр, который характеризует искажения формы переменного тока. Если говорить математическим языком, этот показатель можно охарактеризовать как отношение активной мощности к полной. Чем выше это значение, тем эффективнее устройство расходует электроэнергию.

Для объяснения физического значения коэффициента в пример можно взять расчет других связанных с ним параметров для одного из устройств. Допустим:

  1. В сеть переменного тока был включен идеальный конденсатор.
  2. Поскольку переменное напряжение периодически меняет свою полярность, устройство будет то заряжаться, то вновь возвращать сохраненную энергию к источнику.
  3. В итоге будет происходить циркуляция электронов.

https://youtube.com/watch?v=-MBd7x6GmHU

В электросетях с постоянным током мощность, как и другие ключевые параметры, остается неизменной в течение некоторого периода. Для таких случаев применимо понятие мощности, представляющей собой произведение двух важных параметров тока — его силы и напряжения. Однако это нельзя сказать о токе переменном, ведь его параметры постоянно меняются. Именно поэтому нельзя просто определить значение по той формуле коэффициента мощности, которая используется для ее определения в случае с электросетью с постоянным током. По этой причине было введено такое понятие, как мгновенная мощность.

Треугольник мощностей

Рассматриваемый коэффициент может быть измерен так же, как частное полезного активного значения мощности к общей (S=I*U). Для иллюстрации влияния фазового сдвига на косинус фи применяется прямоугольный треугольник мощностей. Катеты, образующие прямо угол, представляют реактивное и активное значение, гипотенуза – общее. Косинус выделенного угла равен частному активной и общей мощностей, то есть он является коэффициентом, демонстрирующим, какой процент от полной мощности требуется для нагрузки, имеющей место в данный момент. Чем меньший вес имеет реактивный компонент, тем больше полезная мощность.

Важно! Строго говоря, данный параметр полностью соответствует коэффициенту мощности только при идеально синусоидальном движении тока в электросети. Для получения максимально точной цифры требуется анализ искажений нелинейного характера, присущих переменным току и напряжению. В практических подсчетах эти искажения чаще всего игнорируют и полагают показатель cos fi примерно равным требуемому коэффициенту.

Далекий от электротехники, но весьма наглядный пример

Чтобы объяснить, каким образом угол ϕ (а точнее его косинус) влияет на мощность, рассмотрим пример, не имеющий никакого отношения к электротехнике. Допустим нам необходимо передвинуть тележку, стоящую на рельсах. Чтобы удобнее было производить данную операцию, к ее передней части прикрепляем канат.

Тележка на рельсах

Если мы будем тянуть за веревку прямо вперед по направлению движения, то для перемещения тележки нам понадобится приложить достаточно небольшое усилие. Однако если находиться сбоку от рельсов и тянуть за канат в сторону, то для движения тележки с такой же скоростью необходимо будет приложить значительно большее усилие. Причем чем больше угол (ϕ) между направлением движения и прикладываемым усилием, тем больше «мощности» потребуется от нас.

Угол приложения усилий

Вывод! То есть, увеличение угла ϕ ведет к увеличению расходуемой нами энергии (при одной и той же выполненной работе).

Усредненные значения коэффициента мощности

ГОСТы указывают на необходимость корректного указания данной цифры. Для разных типов электроприборов характерные значения находятся в определенных границах:

  • Нагревательные компоненты и лампы накаливания, несмотря на присутствие в составе катушек, рассматриваются как строго активная нагрузка, несущественную индуктивную составляющую в этом случае принято игнорировать. Косинус фи для них берут за единицу.
  • У ударных и обычных дрелей, перфораторов и подобных ручных инструментов, работающих от электричества, индуктивная нагрузка выражена слабо, индикатор примерно равен 0,95-0,97. Обычно эту цифру не указывают в инструкциях из-за очевидного пренебрежимо малого значения индукции.
  • Сварочные трансформаторы, высокомощные двигатели, люминесцентные лампочки несут существенную индуктивную нагрузку. Цифра может иметь значения в диапазоне 0,5-0,85. Ее надо правильно определить и учитывать при эксплуатации, к примеру, при выборе сечения кабелей питания (они не должны перегреваться).

Причины низкого «косинуса фи»

Недозагрузка электродвигателей переменного тока

При недозагрузке электродвигателя потребляемая им активная мощность уменьшается пропорционально нагрузке. В то же время реактивная мощность изменяется меньше. Поэтому чем меньше нагрузка двигателя, тем с меньшим коэффициентом мощности он работает.

Так, например, асинхронный двигатель в 400 кВт при 1000 оборотах в минуту имеет «косинус фи», равный при полной нагрузке 0,83. При ¾ нагрузки тот же двигатель имеет cos φ = 0,8. При ½ нагрузке cos φ = 0,7 и при ¼ нагрузки cos φ = 0,5.

Двигатели, работающие вхолостую, имеют «косинус фи», равный от 0,1 до 0,3 в зависимости от типа, мощности и скорости вращения.

Неправильный выбор типа электродвигателя

Двигатели быстроходные и большой мощности имеют более высокий «косинус фи», чем тихоходные и маломощные двигатели. Двигатели закрытого типа имеют cos φ ниже, чем двигатели открытого типа. Двигатели, неправильно выбранные по типу, мощности и скорости, понижают cos φ.

Повышение напряжения в сети

В часы малых нагрузок, обеденных перерывов и тому подобного напряжение сети на предприятии увеличивается на несколько вольт. Это ведет к увеличению намагничивающего тока индивидуальных потребителей (реактивной составляющей их полного тока), что в свою очередь вызывает уменьшение cos φ предприятия.

Неправильный ремонт двигателя

При перемотке электродвигателей обмотчики вследствие неправильного подбора проводов иногда не заполняют пазы машины тем количеством проводников, которое было в фабричной обмотке. При работе такого двигателя, вышедшего из ремонта, увеличивается магнитный поток рассеяния, что приводит к уменьшению cos φ двигателя.

При сильном износе подшипников ротор двигателя может задевать при вращении за статор. Вместо того чтобы сменить подшипники, обслуживающий персонал иногда идет по неправильному и вредному пути и подвергает ротор обточке.

Увеличение воздушного зазора между ротором и статором вызывает увеличение намагничивающего тока и уменьшение cos φ двигателя.

Способы расчета

Данный параметр можно представить, как отношение мощностей: полезной нагрузочной и общей. В формульном виде это записывается так:

cos fi = P/S,

где:

  • S (полная мощность) = I*U=√P2¯+¯Q¯2¯;
  • Q (реактивная мощность) = I*U*sin fi.

У асинхронного электродвигателя с тремя фазами можно посчитать коэффициент так:

cos fi=P/(U*I*√3).

Помимо этого, для вычисления показателя можно применять мощностный треугольник.

Особенности компенсации реактивной мощности в сетях напряжением 6.3-10.5/0,4 кВ

Целесообразность компенсации реактивной мощности для потребителя можно рассматривать, как в техническом, так и экономическом аспектах. В случае подключения потребителя к распределительной сети 6,3 (10,5) кВ конденсаторные установки могут интегрироваться на подстанции в балансовой принадлежности электросетевой компании и тогда потребитель будет иметь чисто техническую выгоду от качества получаемой электроэнергии. При установке КРМ 6,3 (10,5) кВ (или УКРМ 6,3 (10,5) кВ) на шинах РУ 6,3 (10,5) кВ предприятия, или на шинах РУ цеховых ТП 6-10/0,4 кВ, шинах первичных цеховых РП 0,4 кВ, а также непосредственно у электроприемников, потребитель будет иметь, как техническую, так и экономическую выгоду за счет возможности использования активной мощности в более полном объеме и соответственно снижения затрат на «балластную» реактивную мощность.

Единицы измерения

Иногда встает вопрос, в чем измеряется данный коэффициент, если его описывают, как безразмерную величину. Его обычно указывают в процентах или в сотых долях, во втором случае значения находятся в диапазоне от 0 до 1.

Чтобы приборы, подсоединенные к электрической сети, эксплуатировались возможно более долгий срок, необходимо знать, что такое показатель cos f в электричестве, и как его правильно определять. Его значение нужно учитывать в процессе подключения устройств и их дальнейшей эксплуатации.

Эффективность работы как важный параметр выбора

Еще одним важнейшим параметром работы светодиодного светильника является его энергоэффективность. Определяется он, как соотношение величины его светового потока к потребляемой мощности и задается в Лм/Вт.

На практике эффективность работы лед-прибора характеризует величину яркости при заданной мощности. Например, стандартное его значения для светодиодного источника – порядка 80 Лм/Вт, а для лампы накаливания – всего 11 Лм/Вт. Следовательно, при одинаковом энергопотреблении первый будет светить в 8 раз ярче второго.

Следует знать, что понятие эффективности работы нужно рассматривать раздельно для светодиода и самого светильника. Плафон, материал рассеивателя, система оптики и драйвер вносят свой вклад в потерю этого параметра. Это нужно обязательно учитывать при выборе лед-источника для того или иного типа прибора освещения.

Видео

1305 ₽ Подробнее

435 ₽ Подробнее

Док-станции

Как вычислить коэффициент реактивной мощности sin фи, если известен только коэффициент активной мощности cos фи? Коэффициент мощности режима короткого замыкания cos(fi)=P/(U*I). Как исходя только из этих данных найти sin(fi)? (Для однофазного трансформатора)

 $S=sqrt{P^2+Q^2}$

$Q=Ssinphi$

$P=Scosphi$


$sinphi=frac{Q}{S}=frac{sqrt{S^2-P^2}}{S}=frac{sqrt{S^2-^2cos^2phi}}{S} =sqrt{1-cos^2phi}$

Понравилась статья? Поделить с друзьями:
  • Как найти голубей в парке
  • Как найти песню с телефона на телефоне
  • Как составить логическую формулу в excel с или
  • Найти как пройти кризис
  • Как составить акт купли продажи гаража