Как называются соединения фосфора с металлами составьте

1. Положение фосфора в периодической системе химических элементов
2. Строение атома фосфора
3. Физические свойства и нахождение в природе
4. Строение молекулы
5. Соединения фосфора
6. Способы получения
7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с кислородом
7.1.2. Взаимодействие с галогенами
7.1.3. Взаимодействие с серой 
7.1.4. Взаимодействие с металлами
7.1.5. Взаимодействие с активными металлами
7.1.6. Взаимодействие с водородом
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с окислителями
7.2.2. Взаимодействие с щелочами

Фосфин
1. Строение молекулы и физические свойства 
2. Способы получения
3. Химические свойства
3.1. Основные свойства
3.2. Взаимодействие с кислородом
3.3. Восстановительные свойства

Фосфиды
Способы получения фосфидов
Химические свойства фосфидов

Оксиды фосфора
 1. Оксид фосфора (III) 
 2. Оксид фосфора (V) 

Фосфорная кислота 
 1. Строение молекулы и физические свойства 
 2. Способы получения 
3. Химические свойства 

3.1. Диссоциация фосфорной кислоты
3.2. Кислотные свойства фосфорной кислоты 
3.3. Взаимодействие с солями более слабых кислот
3.4. Разложение при нагревании
3.5. Взаимодействие с металлами
3.6. Качественная реакция на фосфат-ионы

Фосфористая кислота 

Соли фосфорной кислоты

Фосфор

Положение в периодической системе химических элементов

Фосфор расположен в главной подгруппе V группы  (или в 15 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение фосфора

Электронная конфигурация  фосфора в основном состоянии:

Атом фосфора содержит на внешнем энергетическом уровне 3 неспаренных электрона и одну неподеленную электронную пару в основном энергетическом состоянии. Следовательно, атом фосфора может образовывать 3 связи по обменному механизму. Однако, в отличие от азота, за счет вакантной 3d орбитали атом фосфора может переходить в возбужденное энергетическое состояние. 

Электронная конфигурация  фосфора в возбужденном состоянии:

При этом один электрон из неподеленной электронной пары на 3s-орбитали переходит на  переходит на 3d-орбиталь. Для атома фосфора в возбужденном энергетическом состоянии характерна валентность V.

Таким образом, максимальная валентность фосфора в соединениях равна V (в отличие от азота). Также характерная валентность фосфора в соединениях — III.

Степени окисления атома фосфора – от -3 до +5. Характерные степени окисления -3, 0, +1, +3, +5.

Физические свойства и нахождение в природе

Фосфор образует различные простые вещества (аллотропные модификации).

Белый фосфор — это вещество состава P4. Мягкий, бесцветный, ядовитый, имеет характерный чесночный запах. Молекулярная кристаллическая решетка, а следовательно, невысокая температура плавления (44°С), высокая летучесть.  Очень реакционно способен, самовоспламеняется на воздухе.

Белый фосфор:

Покрытие бумаги раствором белого фосфора в сероуглероде. Спустя некоторое время, когда сероуглерод испаряется, фосфор воспламеняет бумагу (процесс лег в основу различных фокусов с самовозгоранием или получением огня из ничего):

Белый фосфор можно расплавить в ёмкости с тёплой водой, поскольку он имеет температуру плавления в 44,15 °C.

Красный фосфор – это модификация с атомной кристаллической решеткой. Формула красного фосфора Pn, это полимер со сложной структурой. Твердое вещество без запаха, красно-бурого цвета, не ядовитое. Это гораздо более устойчивая модификация, чем белый фосфор. В темноте не светится. Образуется из белого фосфора при t=250-300оС без доступа воздуха.

Черный фосфор – то наиболее стабильная термодинамически и химически наименее активная форма элементарного фосфора. Чёрный фосфор — это чёрное вещество с металлическим блеском, жирное на ощупь и весьма похожее на графит, полностью нерастворимое в воде или органических растворителях.

Черный фосфор:

Известны также такие модификации, как желтый фосфор и металлический фосфор. Желтый фосфор – это неочищенный белый фосфор. При очень высоком давлении фосфор переходит в новую модификацию – металлический фосфор, который очень хорошо проводит электрический ток.

В природе фосфор встречается только в виде соединений. В основном это апатиты (например, Ca3(PO4)2), фосфориты и др. Фосфор входит в состав важнейших биологических соединений —фосфолипидов.

Соединения фосфора

Типичные соединения фосфора:

Степень окисления Типичные соединения
+5 оксид фосфора (V) P2O5

ортофосфорная кислота H3PO4

метафосфорная кислота HPO3

пирофосфорная кислота H4P2O7

фосфаты MePO4

Гидрофосфаты MeНРО4

Дигидрофосфаты MeН2РО4

Галогенангидриды: PОCl3, PCl5

+3 Оксид фосфора (III) P2O3

Фосфористая кислота H3PO3

Фосфиты MeHPO3

Галогенангидриды: PCl3

+1 Фосфорноватистая кислота H3PO2

Соли фосфорноватистой кислоты — гипофосфиты:

MeH2PO2

-3 Фосфин PH3

Фосфиды металлов MeP

Способы получения фосфора

1. Белый фосфор получают из природных фосфатов, прокаливая их с коксом и песком в электрической печи:

Ca3(PO4)2    +   3SiO2   +   5C     →  3CaSiO3    +    5CO    +    2P

2. Вместо фосфатов можно использовать другие неорганические соединения фосфора, например, метафосфорную кислоту.

4HPO3   +  10C    →    P4  +  2H2O   +   10 CO

3. Красный и черный фосфор получают из белого фосфора.

Химические свойства фосфора

При нормальных условиях фосфор довольно химически активен.

1. Фосфор проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому фосфор реагирует с металлами и неметаллами.

1.1. При взаимодействии с кислородом воздуха образу

ются оксиды – ангидриды соответствующих кислот:

4P    +   3O2    →  2P2O3

4P    +   5O2    →  2P2O5

Горение белого фосфора:

Горение красного фосфора:

1.2. При взаимодействии фосфора с галогенами образуются галогениды с общей формулой  PHal3 и PHal5:

2P    +   3Cl2    →  2PCl3

2P    +   5Cl2    →  2PCl5

Фосфор реагирует с бромом:

1.3. При взаимодействии фосфора с серой образуются сульфиды:

2P    +   3S   →   P2S3

2P    +   5S   →   P2S5

1.4. При взаимодействии с металлами фосфор проявляет свойства окислителя, продукты реакции называют фосфидами.

Например, кальций и магний реагируют с фосфором с образованием фосфидов кальция и магния:

2P    +   3Ca   →   Ca3P2

2P    +   3Mg   →   Mg3P2

Еще пример: натрий взаимодействует с фосфором с образованием фосфида натрия:

P    +   3Na   →  Na3P

1.5. С водородом фосфор непосредственно не взаимодействует.

2. Со сложными веществами фосфор реагирует, проявляя окислительные и восстановительные свойства. Фосфор диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителями фосфор окисляется до оксида фосфора (V) или до фосфорной кислоты.

Например, азотная кислота окисляет фосфор до фосфорной кислоты:

5HNO3      +    P     →   H3PO4     +   5NO2↑    +    H2O

5HNO3      +    3P     +    2H2O   →    3H3PO4     +   5NO↑

Серная кислота также окисляет фосфор:

2P    +    5H2SO4  →  2H3PO4   +  5SO2 + 2H2O

Соединения хлора, например, бертолетова соль,  также окисляют фосфор:

6P     +   5KClO3    →   3P2O5   +   5KCl

Реакция красного фосфора с бертолетовой солью. Этот процесс заложен в принципе возгорания спички при трении её о шершавую поверхность коробка.

Некоторые металлы-сильные окислители также окисляют фосфор. Например, оксид серебра (I):

2P    +   5Ag2O   →   P2O5    +   10Ag

2.2. При растворении в щелочах фосфор диспропорционирует до гипофосфита и фосфина.

Например, фосфор реагирует с гидроксидом калия:

4P    +   3KOH   +   3H2O   →   3KH2PO2   +   PH3↑   или

P4    +    3KOH    +   3H2O   →   3KH2PO2    +   PH3

Или с гидроксидом кальция:

8P      +    3Ca(OH)  +    6H2O   →   3Ca(H2PO2)2   +   2PH3↑  

Фосфин

Строение молекулы и физические свойства

Фосфин PH3 – это бинарное соединение водорода с фосфором, относится к летучим водородным соединениям. Следовательно, фосфин газ, с неприятным запахом, бесцветный, мало растворимый в воде, химически нестойкий и ядовитый. Водородные связи между молекулами фосфина не образуются. В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы фосфина похожа на структуру аммиака — правильная треугольная пирамида. Но валентный угол H-P-H меньше, чем угол H-N-H в аммиаке и составляет 93,5о.

 У атома фосфора в фосфине на внешнем энергетическом уровне остается неподеленная электронная пара. Эта электронная пара оказывает значительное влияние на свойства фосфина, а также на его структуру. Электронная структура фосфина — тетраэдр , с атомом фосфора в центре.

Способы получения фосфина

В лаборатории фосфин получают водным или кислотным гидролизом фосфидов – бинарных соединений фосфора и металлов.

Например, фосфин образуется при водном гидролизе фосфида кальция:

Ca3P2    +   6H2O  →   3Са(ОН)2    +   2PH3

Или при кислотном гидролизе, например, фосфида магния в соляной кислоте:

Mg3P2      +   6HCl →   3MgCl2    +   2PH3

Еще один лабораторный способ получения фосфина – диспропорционирование фосфора в щелочах.

Например, фосфор реагирует с гидроксидом калия с образованием гипофосфита калия и фосфина:

4P    +   3KOH   +   3H2O   →   3KH2PO2   +   PH3

Химические свойства фосфина

1. В водном растворе фосфин проявляет очень слабые основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H+), он превращается в ион фосфония. Основные свойства фосфина гораздо слабее основных свойств аммиака. Проявляются при взаимодействии с безводными кислотами.

Например, фосфин реагирует с йодоводородной кислотой:

PH3   +   HI   →  PH4I

Соли фосфония неустойчивые, легко гидролизуются.

2. Фосфин PH3 – сильный восстановитель за счет фосфора в степени окисления -3. На воздухе самопроизвольно самовоспламеняется:

2PH3    +   4O2  →   P2O5   +   3H2O

PH3    +   2O2  →   H3PO4

3. Как сильный восстановитель, фосфин легко окисляется под действием окислителей.

Например, азотная кислота окисляет фосфин. При этом фосфор переходит в степень окисления +5 и образует фосфорную кислоту.

PH3    +   8HNO3  →   H3PO4   +    8NO2    +  4H2O

Серная кислота также окисляет фосфин:

PH3    +  3H2SO4      →    H3PO4   +    3SO2    +  3H2O

С фосфином также реагируют другие соединения фосфора, с более высокими степенями окисления фосфора.

Например, хлорид фосфора (III) окисляет фосфин:

2PH3    +   2PCl3    →   4P     +   6HCl 

Фосфиды

Фосфиды  это бинарные соединения фосфора и металлов или некоторых неметаллов.

Способы получения фосфидов

Фосфиды получают при взаимодействии фосфора с металлами. При этом фосфор проявляет свойства окислителя.

Например, фосфор взаимодействует с магнием и кальцием:

2P    +   3Mg   →   Mg3P2

2P    +   3Ca   →   Ca3P2

Фосфор взаимодействует с натрием:

P    +   3Na   →  Na3P

Химические свойства фосфидов

1. Фосфиды легко разлагаются водой или кислотами с образованием фосфина.

Например, фосфид кальция разлагается водой:

Ca3P2    +   6H2O   →  3Са(ОН)2    +   2PH3

Фосфид магния разлагается соляной кислотой:

Mg3P2      +   6HCl   →   3MgCl2    +   2PH3

2. Фосфиды металлов проявляют сильные восстановительные свойства за счет фосфора в степени окисления -3.

Оксиды фосфора

Оксиды азота Цвет  Фаза Характер оксида
P2O3 Оксид фосфора (III), фосфористый ангидрид белый твердый кислотный
P2OОксид фосфора(V), фосфорный ангидрид белый твердый кислотный

Оксид фосфора (III)

Оксид фосфора (III) –  это кислотный оксид. Белые кристаллы при обычных условиях.  Пары состоят из молекул P4O6.

Получить оксид фосфора (III) можно окислением фосфора при недостатке кислорода:

4P    +   3O2    →  2P2O3

Химические свойства оксида фосфора (III):

Оксид фосфора (III) очень ядовит и неустойчив. Для P2O(P4O6) характерны два типа реакций.

1. Поскольку фосфор в оксиде фосфора (III) проявляет промежуточную степень окисления, то он принимает участие в окислительно-восстановительных процессах, повышая либо понижая степень окисления атома фосфора. Характерны для P2O3 реакции диспропорционирования.

Например, оксид фосфора (III) диспропорционирует в горячей воде:

2О3    +   6Н2О (гор.)    →  РН  +   3Н3РО4

2. При взаимодействии с окислителями P2O3 проявляет свойства восстановителя.

Например, N2O окисляется кислородом:

Р2О3    +   О2  →  Р2О5

3. С другой стороны Р2О3  проявляет свойства кислотного оксида (ангидрид фосфористой кислоты), взаимодействуя с водой с образованием  фосфористой кислоты:

Р2О3    +   3Н2О   →   2Н3РО3

а со щелочами – с образованием солей (фосфитов):

Р2О3    +  4KOH   →   2K2HРО3  +   H2O

Оксид фосфора (V)

Оксид фосфора (V) –  это кислотный оксид.  В нормальных условиях образует белые кристаллы. В парах состоит из молекул P4О10. Очень гигроскопичен (используется как осушитель газов и жидкостей).

Способы получения. Оксид фосфора (V) получают сжиганием фосфора в избытке кислорода.

4P    +   5O2    →   2P2O5

Химические свойства.

1. Оксид фосфора (V) – очень гигроскопичное вещество, которое используется для осушения газов. Обладая высоким сродством к воде, оксид фосфора (V) дегидратирует до ангидридов неорганические и органические кислоты.

Например, оксид фосфора (V) дегидратирует серную, азотную и уксусную кислоты:

P2O5  +   H2SO4   → 2HPO3  +   SO3

P2O5   +  2HNO3  →  2HPO3  +  N2O5

P2O5   +   2CH3COOH   →   2HPO3  +   (CH3CO)2O

2. Фосфорный ангидрид  является типичным кислотным оксидом, взаимодействует с водой с образованием фосфорных кислот:

P2O5   +   3H2O   →  2H3PO4 

В зависимости от количества воды и от других условий образуются мета-фосфорная, орто-фосфорная или пиро-фосфорная кислота:

P2O5   +   2H2O   →  2H4P2O7 

P2O5   +  H2O   →  HPO3

Видеоопыт взаимодействия оксида фосфора с водой можно посмотреть здесь. 

3. Как кислотный оксид, оксид фосфора (V) взаимодействует с основными оксидами и основаниями.

Например, оксид фосфора (V) взаимодействует с гидроксидом натрия. При этом образуются средние или кислые соли:

P2O5   +   6NaOH   →   2Na3PO4  +   3H2O

P2O5   +   2NaOH   +   H2O   →  2NaH2PO4 

P2O5   +   4NaOH    →  2Na2HPO4  +   H2O

Еще пример: оксид фосфора взаимодействует с оксидом бария (при сплавлении):

P2O5   +   3BaO    →   Ba3(PO4)2

 Фосфорная кислота

Строение молекулы и физические свойства

Фосфор в степени окисления +5 образует несколько кислот: орто-фосфорную H3PO4, мета-фосфорную HPO3, пиро-фосфорную H4P2O7.

Фосфорная кислота H3PO4 – это кислота средней силы, трехосновная, прочная и нелетучая. При обычных условиях фосфорная кислота – твердое вещество, хорошо растворимое в воде и гигроскопичное.

Валентность фосфора в фосфорной кислоте равна V.

При температуре выше +213 °C орто-фосфорная кислота переходит в пирофосфорную H4P2O7.

При взаимодействии высшего оксида фосфора с водой на холоде образуется метафосфорная кислота HPO3, представляющая собой прозрачную стекловидную массу.

Способы получения

Наибольшее практическое значение из фосфорных кислот имеет орто-фосфорная кислота.

1. Получить орто-фосфорную кислоту можно взаимодействием оксида фосфора (V) с водой:

P2O5   +   3H2O    →    2H3PO4

2. Еще один способ получения фосфорной кислоты — вытеснение фосфорной кислоты из солей (фосфатов, гидрофосфатов и дигидрофосфатов) под действием более сильных кислот (серной, азотной, соляной и др.).

Промышленный способ получения фосфорной кислоты обработка фосфорита концентрированной серной кислотой:

Ca3(PO4)2(тв)    +  3H2SO4(конц)  →   2H3PO4   +   3CaSO4

3. Фосфорную кислоту также можно получить жестким окислением соединений фосфора в водном растворе в присутствии кислот.

Например, концентрированная азотная кислота окисляет фосфор до фосфорной кислоты:

5HNO3      +    P     →   H3PO4     +   5NO2↑    +    H2O

Химические свойства

Фосфорная кислота – это кислота средней силы (по второй и третьей ступени слабая).

1. Фосфорная кислота частично и ступенчато диссоциирует в водном растворе.

H3PO4  ⇄  H+ + H2PO4

H2PO4  ⇄  H+ + HPO42–

 HPO42– ⇄ H+ + PO43–

2. Фосфорная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами

Например, фосфорная кислота взаимодействует с оксидом магния:

2H3PO4    +   3MgO   →   Mg3(PO4)2   +   3H2O

Еще пример: при взаимодействии фосфорной кислоты с гидроксидом калия образуются фосфаты, гидрофосфаты или дигидрофосфаты:

H3PO4    +   КОН     →     KH2РО4  +   H2O

H3PO4    +   2КОН      →     К2НРО4  +   2H2O

H3PO4    +   3КОН     →    К3РО4  +   3H2O

3. Фосфорная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов и др.).  Также фосфорная кислота вступает в обменные реакции с солями.

Например, фосфорная кислота взаимодействует с гидрокарбонатом натрия:

Н3PO4   +   3NaHCO3   →   Na3PO4   +   CO2   +  3H2O

4. При нагревании H3PO4  до 200°С происходит отщепление от нее молекулы воды с образованием пирофосфорной кислоты H2P2O7:

2H3PO4   →  H2P2O7   +   H2O

5. Фосфорная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Например, фосфорная кислота реагирует с магнием:

2H3PO4    +   3Mg   →    Mg3(PO4)2   +   3H2

Фосфорная кислота взаимодействует также с аммиаком с образованием солей аммония:

2H3PO4   +   3NH3    →    NH4H2PO4     +   (NH4)2HPO4

7. Качественная реакция на фосфат-ионы и фосфорную кислоту — взаимодействие с нитратом серебра. При этом образуется ярко-желтый осадок фосфата серебра:

Н3PO4   +    3AgNO3    →   Ag3PO4↓  +   3НNO3

Видеоопыт взаимодействия фосфата натрия и нитрата серебра в растворе  (качественная реакция на фосфат-ион) можно посмотреть здесь.

Фосфористая кислота

Фосфористая кислота H3PO3 — это двухосновная кислородсодержащая кислота. При нормальных условиях бесцветное кристаллическое вещество, хорошо растворимое в воде.

Валентность фосфора в фосфористой кислота равна V, а степень окисления +3.

Получение фосфористой кислоты.

Фосфористую кислоту можно получить гидролизом галогенидов фосфора (III).

Например, гидролизом хлорида фосфора (III):

PCl3   +   3H2O   →    H3PO3   +   3HCl

Фосфористую кислоту можно получить также взаимодействием оксида фосфора (III) с водой:

Р2О3    +   3Н2О   →   2Н3РО3

Химические свойства.

1. Фосфористая кислота H3PO3  в водном растворе — двухосновная кислота средней силы. Взаимодействует с основаниями с образованием солей-фосфитов.

Например, при взаимодействии с гидроксидом натрия фосфористая кислота образует фосфит натрия:

H3PO3  + 2NaOH → Na2HPO3   + 2H2O

2. При нагревании фосфористая кислота разлагается на фосфин (Р-3) и фосфорную кислоту (Р+5):

4H3PO3   →   3H3PO4  + PH3

3. За счет фосфора в степени окисления +3 фосфористая кислота проявляет восстановительные свойства.

Например, H3PO3 окисляется перманганатом калия в кислой среде:

5H3PO3    +   2KMnO4   +   3H2SO4    →  5H3PO4   +   K2SO4    +   2MnSO4   +  3H2O

Еще пример: фосфористая кислота окисляется соединениями ртути (II):

H3PO3   +  HgCl2  + H2O →  H3PO4  + Hg + 2HCl

Соли фосфорной кислоты — фосфаты

Фосфорная кислота образует разные типы солей: средние – фосфаты, кислые – гидрофосфаты, дигидрофосфаты.

1. Качественная реакция на фосфаты — взаимодействие с нитратом серебра. При этом образуется желтый осадок фосфата серебра. 

K3PO4   +    3AgNO3    →   Ag3PO4↓  +   3KNO3

2. Нерастворимые фосфаты растворяются под действием сильных кислот, либо под действием фосфорной кислоты.

Например, фосфат кальция реагирует с фосфорной кислотой с образованием дигидрофосфата кальция:

Ca3(PO4)2    +   4H3PO4    →   3Ca(H2PO4)2

Фосфат кальция растворяется под действием серной кислоты:

Ca3(PO4)2    +  2H2SO4  →   Ca(H2PO4)2   +   2CaSO4

3. За счет фосфора со степенью окисления +5 фосфаты проявляют слабые окислительные свойства и могут взаимодействовать с восстановителями.

Например, фосфат кальция при сплавлении реагирует с углеродом с образованием фосфида кальция и угарного газа:

Ca3(PO4)2    +  8C   →   Ca3P2   +   8CO

Фосфат кальция также восстанавливается алюминием при сплавлении:

3Ca3(PO4)2    +  16Al   →   3Ca3P2   +   8Al2O3

4. Гидрофосфаты могут взаимодействовать и с более сильными кислотами, и с щелочами. Под действием фосфорной кислоты гидрофосфаты переходят в дигидрофосфаты.

Например, гидрофосфат калия взаимодействует с фосфорной кислотой с  образованием дигидрофосфата калия:

K2HPO4    +   H3PO4  →  2KH2PO4

Под действием едкого кали гидрофосфат калия образует более среднюю соль — фосфат калия:

K2HPO4    +   KOH   →  K3PO4  +   H2O

5. Дигидрофосфаты могут взаимодействовать с более сильными кислотами и щелочами, но не реагируют с фосфорной кислотой.

Например, дигидрофосфат натрия взаимодействует с избытком гидроксида натрия с образованием фосфата:

NaH2PO4    +   2NaOH   →  Na3PO4  +   2H2O

 Фосфин (PH3)

Способы получения фосфина

Прямым синтезом PH3 получить нельзя.

  • Фосфин получают путем водного или кислотного гидролиза фосфидов:

Ca3P2 + 6H2O → 3Са(ОН)2 + 2PH3

Mg3P2 + 6HCl → 3MgCl2 + 2PH3

  • Реакция диспропорционирования фосфора в щелочах:

4P + 3KOH + 3H2O → 3KH2PO2 + PH3

  • Разложение солей фосфония (Температура выше 80ºС):

P4I ↔ HI+ PH3

Физические свойства фосфина

При нормальной температуре фосфин является бесцветным газом с резким чесночным запахом. В воде малорастворим, хорошо растворим в органических растворителях

Фосфин — Яд!

Химические свойства фосфина

  • PH3не реагирует с водой, щелочами, аммиаком.

PH3Проявляет свойства сильного восстановителя.

  • Вступает в реакции с кислотами –
    окислителями
    :

PH3 + 8H2SO4(конц) = H3PO4 + 8SO2↑ + 3H2O

PH3 + 8HNO3(конц. гор) = H3PO4 + 8NO2↑ + 4H2O

  • С безводными кислотами образует соли:

HI+ PH3↑ = P4I

  • Окисляется кислородом. При Т ~ 150ºС самовозгорается:

РН3 + 2О2 = P2O5 + H2O (Н3РО4)

Практического значения фосфин не имеет.

Фосфиды

Способы получения

Взаимодействие фосфора с металлами:

2P + 3Mg → Mg3P2

2P + 3Ca → Ca3P2

P + 3Na → Na3P

Физические свойства, строение фосфидов

Фосфиды – представляют собой продукты взаимодействия
фосфора с металлами.

Фосфиды щелочных и щелочноземельных металлов имеют ионное строение.

Химические свойства фосфидов

Фосфиды крайне неустойчивы и легко подвергаются необратимому гидролизу с образованием РН3:

Ca3P2 + 6H2O → 3Са(ОН)2 + 2PH3

Mg3P2 + 6HCl → 3MgCl2 + 2PH3

Оксид фосфора (III), триоксид фосфора (P2O3)

Способы получения оксида фосфора (III)

  • Р2О3 образуется при горении фосфора в недостатке кислорода или его медленном окислении:

4Р + 3О2 = 2Р2О3

Физические свойства оксида фосфора (III)

При комнатной температуре Р2О3 — белая воскообразная масса с неприятным запахом. Легко испаряется, его Тпл = 23,5°С

Пары существует в виде
димеров Р4О6.

!Очень ядовит

Химические свойства оксида фосфора (III)

  • Р2О3 как кислотный оксид при взаимодействии с водой образует фосфористую кислоту:

Р2О3 + ЗН2О =2H3PO3

  • Реакция диспропорционирования происходит очень бурно при растворении Р2О3вгорячей воде:

2О3 + 6Н2О = РН3 + ЗH3PO4

  • При взаимодействии Р2О3 с щелочами образуются соли фосфористой кислоты:

Р2О3 + 4NaOH = 2Na2HPO3 + Н2О

  • При взаимодействии с окислителями P2O3 проявляет восстановительные свойства:

Окисление кислородом воздуха:

Р2О3 + О2 = Р2О5

Окисление галогенами:

Р2О3 + 2Cl2 + 5Н2О = 4HCl + 2H3PO4

Оксид фосфора (V), пентаоксид фосфора, фосфорный ангидрид (Р2О5)

Способы получения фосфорного ангидрида

Сжигание фосфора в избытке воздуха:

4Р + 5О2 = 2Р2О5

Физические свойства фосфорного ангидрида

При комнатной
температуре Р2О5 — белые стеклообразные хлопья без запаха. Существует в виде
димеров Р4О10.

Очень гигроскопична, при
соприкосновении с воздухом расплывается в сиропообразную жидкость (НРO3). Р2О5 — самое эффективное осушающее средство и
водоотнимающий агент. Применяется для осушения нелетучих веществ и газов.

Химические свойства фосфорного ангидрида

Р2О5проявляет кислотные свойства.

Как кислотный оксид Р2О5 взаимодействует:

  • с водой, с образованием различных кислот:

Р2О5 + Н2О = 2HPO3 метафосфорная

Р2О5 + 2Н2О = Н4Р2О7 пирофосфориая
(дифосфорная)

Р2О5 + ЗН2О = 2H3PO4 ортофосфорная

  • с основными оксидами, с образованием фосфатов

Р2О5 + ЗВаО = Ва3(PO4)2

  • с щелочами, с образованием средних и кислых солей

Р2О5 + 6NaOH = 2Na3PO4 + ЗН2О

Р2О5 + 4NaOH = 2Na2HPO4 + Н2О

Р2О5 + 2NaOH = 2NaH2PO4 + Н2О

  • Фосфорный ангидрид способен отнимать у других веществ не только гигроскопическую влагу, но и химически связанную воду. Например, он дегидратирует оксокислоты, что широко используется для получения ангидридов кислот:

Р2О5 + 2HNО3 = 2HPO3 + N2О5

Р2О5 + 2НСlО4 = 2HPO3 + Сl2О7

P2O5 + H2SO4 → 2HPO3 + SO3

P2O5 + 2CH3COOH → 2HPO3 + (CH3CO)2O

Видеоопыт Взаимодействие оксида фосфора с водой

Фосфорные кислоты

Фосфор
образует только 2 устойчивых оксида, в которых он находится в степенях
окисления +5 и +3. Однако существует большое число кислот, в которых фосфор
имеет валентность равную V (пять ковалентных связей) и степени окисления +5,
+4, +3, +1.

Строение
наиболее известных кислот выражается следующими формулами:

фосфорные кислоты

Наибольшее
практическое значение имеют ортофосфорная (фосфорная) и ортофосфористая
(фосфористая) кислоты.

Фосфористая кислота ( H3PO3)

Способы получения фосфористой кислоты

  • Реакция Р2О3 с водой:

Р2О3 + ЗН2О =2H3PO3

  • Гидролиз галогенидов фосфора (III):

PCl3 + ЗН2О = H3PO3+ 3HCl

  • Окисление белого фосфора хлором:

2Р + 3Cl2 + 6Н2О = 2H3PO3+ 6HCl

Физические свойства, строение фосфористой кислоты

Для молекулы фосфористой кислоты H3PO3 известны 2 таутомерные формы. В одной из них 2 атома водорода молекулы связаны с кислородом, а один атом водорода связан непосредственно с атомом фосфора. Такой атом водорода не может быть замещен атомами металлов, поэтому кислота является двухосновной.

В другой
таутомерной форме – все три атома водорода связаны с кислородом.

Формула фосфористой кислоты выглядит следующим образом: Н2[НРО3]

строение фосфористой кислоты

При комнатной
температуре H3PO3 –
кристаллическое вещество без цвета, хорошо растворимое в воде, Тпл =  74°С.

Валентность фосфора
в фосфористой кислота равна V, а степень окисления +3.

Химические свойства фосфористой кислоты

Является
слабой кислотой.

  • Для нее характерны все свойства кислот — взаимодействие с металлами с выделением Н2; с оксидами металлов и с щелочами. При этом образуются одно — или двухзамещенные фосфиты:

Н2[НРО3] + NaOH = NaH[HРО3] + Н2О

Н2[НРО3] + 2NaOH = Na2[HРО3] + 2Н2О

  • Кислота является и окислителем и восстановителем, при нагревании вступая в реакции диспропорционирования:

H2HPO3 + H2HPO3 = H3PO4 + PH3

Кислота и ее соли являются сильными восстановителями:

  • Реагируют с сильными окислителями:

H3PO3 + Cl2 + Н2О = H3PO4 + 2HCl

5H3PO3 + 2KMnO4 + 3H2SO4 → 5H3PO4 + K2SO4 + 2MnSO4 + 3H2O

H3PO3 + HgCl2 + H2O → H3PO4 + Hg + 2HCl

  • Реагируют с более слабыми окислителями:

H3PO3 + 2AgNO3 + Н2О = H3PO4 + 2Ag↓ + 2HNO3

  • В реакции с сильными восстановителями, например, с щелочными и щелочно-земельными металлами, цинковой пылью, кислота восстанавливается до фосфина:

H2HPO3 + 3Zn + 3H2SO4 = 3ZnSO4 + PH3 + 3Н2О

  • При нагревании водного раствора Н3РO3окисляется до H3PO4 с выделением водорода:

H3PO3 + Н2О = H3PO4 + Н2

Соли фосфористой кислоты (Фосфиты)

Способы получения фосфитов

  • Взаимодействие фосфористой кислоты с щелочами:

Н2[НРО3] + NaOH = NaH[HРО3] + Н2О

Н2[НРО3] + 2NaOH = Na2[HРО3] + 2Н2О

  • взаимодействие фосфористой кислоты с металлами с выделением Н2

Н2[НРО3] + Ca = Ca[HРО3] + Н2

  • взаимодействие фосфористой кислоты с оксидами металлов

Н2[НРО3] + CaO = Ca[HРО3] + Н2O

  • диспропорционирование фосфора в горячем, концентрированном растворе щелочи:

P4 + 8NaOH(конц) + 4H2O = Na2[HРО3] + 6H2

  • Взаимодействие трихлорида фосфора с разбавленным раствором щелочи:

PCl3 + 5NaOH(разб) = Na2[HРО3] + 3NaCl + 2H2O

Физические свойства фосфитов

Двухосновная фосфористая кислота образует два типа солей:

а) однозамещенные фосфиты (кислые соли), в молекулах которых атомы металлов связаны с анионами Н2РО3, например: NaH2PO3, Са(H2PO3)

б) двухзамещенные фосфиты (средние соли), в молекулах которых атомы металлов связаны с 2 или 1 анионом HPO3, например: Na2HPO3, СаHPO3.

Хорошо
растворимы в воде только фосфиты щелочных металлов и кальция, остальные фосфиты
плохо растворимы.

Химические свойства фосфитов

Имеют
химические свойства, характерные для солей

Ортофосфорная кислота, фосфорная кислота (Н3РO4)

Способы получения фосфорной кислоты

В промышленности Н3РO4 получают двумя способами:

  • Разложением природного соединения – фосфата кальция Са3(РO4)2 серной кислотой:

Са3(РO4)2 + 3H2SO4 = 2Н3РO4 + 3CaSO4

  • Доменный (термический) 3х-стадийный способ:

1 стадия — восстановление природных фосфоритов коксом

2 стадия – окисление получающихся паров свободного фосфора кислородом воздуха

3 стадия – орошение водой получающейся окиси фосфора:

Получение фосфорной кислоты

Лабораторный способ

  • Н3РO4 получают окислением фосфора азотной кислотой:

ЗР + 5HNO3 + 2Н2О = ЗН3РO4 + 5NO↑

  • Взаимодействием фосфорного ангидрида с водой:

Р2О5 + ЗН2О = 2H3PO4

Физические свойства, строение фосфорной кислоты

При обычной
температуре безводная Н3РO4 – прозрачное, легкоплавкое (Тпл = 42°С)
кристаллическое вещество. Н3РO4 -очень гигроскопичное вещество и смешивается с
водой в любых соотношениях. Н3РO4 с небольшим количеством воды образует
сиропообразную, вязкую жидкость.

Степень
окисления фосфора в фосфорной кислоте равна +5, валентность равна V.

фосфорная кислота_графическая формула

При
нагревании орто-фосфорной кислоты выше +213 °C, она переходит в пирофосфорную H4P2O7.

пирофосфорная кислота

При нагревании выше 700°С переходит в
метафосфорную кислоту HPO3:

строение метафосфорной кислоты

Качественные реакции для обнаружения фосфат-иона

Для обнаружения анионов фосфорной кислоты используют раствор AgNO3, при помощи которого также можно различить мета-, пиро- и ортофосфорные кислоты друг от друга.

При
добавлении AgNO3 к кислотам образуются осадки
различного цвета:

  • метафосфат серебра AgPO3— белый
  • пирофосфат серебра Ag4P2O7 – также белый, но он не свертывает яичного белка
  • ортофосфат серебра Ag3PO4— желтый:

Н3PO4 + 3AgNO3 → Ag3PO4↓ + 3НNO3

фосфат серебра

Видео Качественная реакция на фосфат-ион

Химические свойства фосфорной кислоты

Фосфорная кислота H3PO4 – это электролит средней силы
и представляет собой трехосновную кислоту.

Диссоциация протекает в основном по 1-й ступени:

Н3РO4 → Н+ + Н2РO4

По 2-й и 3-й ступеням диссоциация протекает в ничтожно
малой степени:

Н2РO4 → Н+ + НРO42-

НРO42- → Н+ + РO43-

  • Н3РO4 проявляет все общие свойства кислот — взаимодействует с активными металлами:

3РO4 + 6Na = 2Na3РO4 + 3H2

  •  с основными оксидами:

3РO4 + ЗСаО = Са3(РO4)2 + ЗН2О

2H3PO4 + 3MgO = Mg3(PO4)2 + 3H2O

  • с основаниями образует три ряда солей – одно-, двух- и трехзамещенные (кислые и средние соли):

Н3РO4 + NaOH = NaH2PO4 + Н2О

Н3РO4 + 2NaOH = Na2HPO4 + 2Н2О

Н3РO4 + 3NaOH = Na3PO4 + ЗН2О

  • с аммиаком образует соли аммония:

Н3РO4 + NH3 = NH4H2PO4

Н3РO4 + 2NH3 = (NH4)2HPO4

  • Вытесняет более слабые кислоты из их солей
    (карбонатов, сульфидов и др.). Также вступает в обменные реакции с солями:

Н3PO4 + 3NaHCO3 → Na3PO4 + CO2 + 3H2O

  • При нагревании H3PO4 выше 200°С происходит отщепление молекулы воды с образованием пирофосфорной кислоты H2P2O7:

2H3PO4 → H2P2O7 + H2O

В отличие от
аниона NO3 в азотной
кислоте, анион РO43- окисляющим
действием не обладает.

Соли ортофосфорной кислоты (ортофосфаты, фосфаты)

Способы получения фосфатов

Получают
кислоты с металлами, оксидами металлов, гидроксидами (см. Химические свойства
ортофосфорной кислоты)

Физические свойства фосфатов

Н3РO4 является 3х-основной кислотой, поэтому образует 3 типа солей:

Анион соли Название Растворимость в воде Примеры солей
PO43- Фосфат (ортофосфат) большинство нерастворимы (кроме фосфатов щелочных металлов и аммония) Na3РO4; Са3(РO4)2
HPO42- Гидрофосфат растворимы Na2НРO4; СаНРО4
Н2РO4 Дигидрофосфат очень хорошо растворимы NaH2PO4; Са(Н2РO4)2

Химические свойства фосфатов

  • Имеют свойства, характерные для солей.
  • Соли щелочных металлов подвержены гидролизу:

Na3РO4 + Н2О = Na2HPO4 + NaOH

  • Характерная особенность ортофосфатов – отношение к прокаливанию: однозамещенные соли переходят в метафосфаты, двухзамещенные – в пирофосфаты, из трехзамещенных изменяются только соли аммония:

NaH2PO4 = NaPO3 + H2O

Na2HPO4 = Na4P2O7 +
H2O

(NH4)3PO4 = 3NH3 + H2O

Фосфорные удобрения

Фосфаты и гидрофосфаты кальция и аммония используются в качестве фосфорных удобрений.

При достаточном количестве фосфора растения быстро растут и хорошо плодоносят. Внесение фосфорных удобрений благоприятствует росту корневой системы растения и повышению урожайности. В связи с этим такие удобрения важны при выращивании овощных, зерновых и плодово-ягодных культур.

В таблице ниже приведены основные виды фосфорных удобрений.

Фосфорные удобрения - таблица

Фосфор (греч. phos — свет + phoros — несущий) — химический элемент, принадлежащий к Vа группе и 3 периоду. Простое желтоватое вещество,
легко воспламеняющееся и светящееся.

Фосфор

Основное и возбужденное состояние фосфора

При возбуждении атома фосфора электроны на s-подуровне распариваются и переходят на d-подуровень.

Основное и возбужденное состояние атома фосфора

Природные соединения

В природе фосфор встречается в виде следующих соединений:

  • 3Ca3(PO4)2*CaCO3*Ca(OH,F)2 — фосфорит
  • Ca10(PO4)6(F,Cl,OH)2 — апатит

Фосфорит и апатит

Получение

В промышленности фосфор получают в ходе сплавления фосфата кальция, песка и угля.

Ca3(PO4)2 + SiO2 + C → (t) CaSiO3 + P + CO

Химические свойства

Химическая активность фосфора значительно выше, чем у азота. Активность также определяется аллотропной модификацией: наиболее активен белый
фосфор, излучающий видимый свет из-за окисления кислородом.

В жидком и газообразном состоянии до 800 °C фосфор состоит из молекул P4. Свыше 800 °C молекулы P4 распадаются до
P2.

  • Реакции с неметаллами
  • C неметаллами фосфор часто проявляет себя как восстановитель и окислитель. Легко окисляется кислородом.

    4P + 3O2 → 2P2O3 (недостаток кислорода)

    4P+ 5O2 → 2P2O5 (избыток кислорода)

    Схожим образом происходит взаимодействие фосфора и хлора.

    2P + 3Cl2 → 2PCl3 (недостаток хлора)

    2P + 5Cl2 → 2PCl5 (избыток хлора)

    P + S → P2S3

    Реакции с водородом крайне затруднена. Тем не менее, в ходе разложения фосфидов металлов можно получить ядовитый газ — фосфин — боевое
    отравляющее вещество.

    Ca3P2 + H2O → Ca(OH)2 + PH3

    Фосфин

  • Реакции с металлами
  • 2P + 3Ca → Ca3P2 (фосфид кальция)

  • Реакция с водой
  • При взаимодействии с водой фосфор вступает в реакцию диспропорционирования (так называются реакции, в которых одно и то же вещество
    является и окислителем, и восстановителем).

    P + H2O → (t) PH3 + H3PO4

  • Реакция с щелочами
  • При добавлении фосфора в растворы щелочей также происходит реакция диспропорционирования.

    P + LiOH + H2O → LiH2PO2 + PH3↑ (LiH2PO2 — гипофосфит лития)

  • Восстановительные свойства
  • При поджигании спичек происходит реакция между фосфором и бертолетовой солью, которая выступает в качестве окислителя.

    KClO3 + P → KCl + P2O5

    Реакция при поджигании спички

Оксид фосфора V — P2O5

Кислотный оксид, пары которого имеют формулу P4O10. Твердый оксид характеризуется белым цветом.

Получение

P + O2 → P2O5

Химические свойства

  • Кислотные свойства
  • Активно реагирует с водой с образованием фосфорной кислоты. При недостатке воды образует метафосфорную кислоту.

    P2O5 + 3H2O = 2H3PO4

    P2O5 + H2O = HPO3 (при недостатке воды)

    Реагирует с основными оксидами и основаниями, образуя соли фосфорной кислоты. Какая именно получится соль — определяет соотношение основного
    оксида/основания и кислотного оксида.

    P2O5 + Na2O → Na3PO4

    6KOH + P2O5 = 2K3PO4 + 3H2O (фосфат калия, избыток щелочи — соотношение 6:1)

    4KOH + P2O5 = 2K2HPO4 + H2O (гидрофосфат калия, незначительный избыток кислотного оксида — соотношение 4:1)

    2KOH + P2O5 = 2KH2PO4 + H2O (дигидрофосфат калия, избыток кислотного оксида — соотношение 2:1)

    Фосфат калия

  • Дегидратационные свойства
  • Обладает выраженным водоотнимающим (дегидратационным) свойством: легко извлекает воду из других соединений.

    HClO4 + P2O5 → HPO3 + Cl2O7 (HPO3 — метафосфорная кислота)

    HNO3 + P2O5 → HPO3 + N2O5

Фосфорные кислоты

Существует несколько кислородсодержащих фосфорных кислот:

  • Ортофосфорная кислота — H3PO4 (трехосновная кислота, соли — фосфаты PO43-)
  • Метафосфорная кислота — HPO3 (одноосновная кислота, соли — метафосфаты PO3)
  • Фосфористая — H3PO3 (двухосновная кислота, соли — фосфиты HPO32-)
  • Фосфорноватистая — H3PO2 (одноосновная кислота, соли гипофосфиты — H2PO2 )

Фосфорноватистая кислота способна вытеснять из солей малоактивные металлы, при этом превращаясь в ортофосфорную кислоту.

CuSO4 + H3PO2 + H2O → Cu + H2SO4 + H3PO4

Ортофосфорная кислота

В твердом виде представляет собой кристаллы белого цвета, хорошо растворимые в воде.

Получение

Фосфорную кислоту получают из фосфатов, воздействуя на них серной кислотой. Также известны способы гидролиза пентахлорида фосфора,
взаимодействия оксида фосфора V с водой.

Ca3(PO4)2 + H2SO4 → CaSO4 + H3PO4

P2O5 + H2O → H3PO4

PCl5 + H2O → H3PO4 + HCl

Фосфорная кислота может образоваться при окислении фосфора сильной кислотой:

P + HNO3 + H2O → H3PO4 + NO

Фосфор и азотная кислота

Химические свойства

  • Кислотные свойства
  • За счет кислотных свойств отлично реагирует с основными оксидами, основаниями. При различных соотношениях кислоты и основания получаются различные
    соли (фосфаты, гидрофосфаты и дигидрофосфаты).

    3K2O + H3PO4 = 2K3PO4 + 3H2O

    3KOH + H3PO4 = K3PO4 + 3H2O

    2KOH + H3PO4 = K2HPO4 + H2O

    KOH + H3PO4 = KH2PO4 + H2O

  • Реакции с солями
  • Реакции идут, если выделяется газ, выпадает осадок или образуется слабый электролит (вода). Например, характерный осадок
    желтого цвета — фосфат серебра — образуется в результате реакции с нитратом серебра.

    AgNO3 + H3PO4 → Ag3PO4 + HNO3

    В реакции с карбонатами образуется нестойкая угольная кислота, которая распадается на воду и углекислый газ.

    K2CO3 + H3PO4 → K3PO4 + H2O + CO2

  • Реакции с металлами
  • Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из фосфорной кислоты.

    Mg + H3PO4 → Mg3(PO4)2 + H2

  • Дегидратация
  • При сильном нагревании ортофосфорная кислота теряет воду и переходит в метафосфорную кислоту.

    H3PO4 → (t) HPO3 + H2O

Соли фосфорной кислоты

Соли фосфорной кислоты получаются в ходе реакции ортофосфорной кислоты и оснований.

3Ca(OH)2 + 2H3PO4 = Ca3(PO4)2 + 6H2O

Фосфаты являются хорошими удобрениями, которые повышают урожайность. Перечислим наиболее значимые:

  • Фосфоритная мука — Ca3(PO4)2
  • Простой суперфосфат — смесь Ca(H2PO4)2*H2O и CaSO4
  • Двойной суперфосфат — Ca(H2PO4)2*H2O
  • Преципитат — CaHPO4*2H2O
  • Костная мука — продукт переработки костей домашних животных Ca3(PO4)2
  • Аммофос — в основном состоит из моноаммонийфосфата — NH4H2PO4

Аммофос удобрение

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Фосфор и его соединения

Фосфор,
как и азот – элемент V
A
группы
. Значит, на внешнем энергетическом уровне у него 5
электронов. Атом фосфора в соединениях может проявлять различные степени
окисления: от -3 до +5. Атомы фосфора по сравнению с атомами азота имеют
больший радиус, меньшее значение электроотрицательности. Фосфор чаще проявляет
в соединениях степень окисления +5. 

В природе
фосфор встречается только в виде соединений, важнейшими из которых являются
минералы фосфориты и апатиты, содержащие фосфат кальция – Ca3(PO4)2.

Часть
фосфора в организме человека распределена в мышечной, нервной и мозговой
тканях. В виде производной фосфорной кислоты фосфор входит в состав нуклеиновых
кислот – ДНК и РНК, осуществляющих передачу наследственных свойств
организма. Из фосфора, поступающего в организм человека с пищей, главным
образом с яйцами, мясом, молоком и хлебом, строится АТФ –
аденозинтрифосфорная кислота
.

Фосфор
был открыт
немецким алхимиком Брандом в 1669 году и
получил своё название за  способность светиться в темноте (от
греческого фосфор – светоносный
).

 

Химический
элемент фосфор образует несколько аллотропных модификаций, различающихся
между собой по строению, физическим свойствам и химической активности.

Белый
фосфор
состоит из молекул P4,
имеющих форму тэтраэдра. Молекулярное строение этого вещества
обуславливает его легкоплавкость и летучесть. Этот фосфор не растворим в воде,
но хорошо растворим в сероуглероде. На воздухе легко окисляется, а в
порошкообразном состоянии даже воспламеняется.

Белый
фосфор очень ядовит
. Он светится в темноте и его хранят под
водой.

Красный
фосфор
имеет атомную структуру, в которой каждый атом
фосфора связан с тремя другими  атомами ковалентными связями. При
нагревании красного фосфора в пробирке, закрытой ватным тампоном, он превращается
в белый фосфор.

    
   

Красный
фосфор – порошок тёмно-красного цвета, он неядовит, не растворяется ни в
каких растворителях, нелетуч и в химическом отношении менее активен, чем белый.

При
нагревании под давлением, белый фосфор переходит в чёрный, который имеет
атомную кристаллическую решетку. Чёрный фосфор по своим физическим свойствам похож
на металл
: он проводит электрический ток и блестит. По внешнему виду он
похож на графит и жирен на ощупь.

При
взаимодействии с кислородом фосфор проявляет восстановительные
свойства
, а в реакциях с металламиокислительные. В
реакциях фосфора с металлами образуются соединения – фосфиды. Например,
в реакции  с фосфором образуется фосфид кальция.

В
этой реакции кальций повышает свою степень окисления с 0  до +2, а фосфор
понижает с 0 до -3. Каждый атом кальция отдаёт по 6 электронов молекуле
фосфора. При этом кальция является восстановителем, а фосфор – окислителем.

Белый фосфор
самовоспламеняется на воздухе, а красный горит при поджигании. При этом
образуется оксид фосфора (V).

В
этой реакции фосфор повышает свою степень окисления с 0 до +5, а кислород
понижает с 0 до -2. Фосфор выступает в роли восстановителя, а кислород – в роли
окислителя.

С
водородом фосфор не реагирует, но его водородное соединение – фосфин
PH3
 можно получить из фосфидов действием на них кислот. Например,
при взаимодействии фосфида кальция с соляной кислотой образуется соль – хлорид
кальция и фосфин.

Фосфин
– это ядовитый газ с неприятным запахом
. Он легко
воспламеняется на воздухе.

Появление
блуждающих огней на старых кладбищах и болотах вызвано воспламенением на
воздухе фосфина и других соединений фосфора с водородом. Эти газообразные
вещества образуются при разложении органических соединений, содержащих фосфор.
На воздухе продукты соединения фосфора с водородом самовоспламеняются с
образованием светящегося пламени и капелек фосфорной кислоты – продукта
взаимодействия оксида фосфора (V) с водой. Эти капельки создают размытый контур
«привидения».

Красный
фосфор используют
для производства спичек, фосфорной
кислоты, которая идёт на производство фосфорных удобрений и кормовых добавок
для животных, его применяют для производства ядохимикатов.

Фосфор
образует оксид фосфора (V) и оксид фосфора (III), а также
кислородсодержащие кислоты, среди которых наиболее важное промышленное
применение находит фосфорная кислота.

Оксид
фосфора (V) образуется при
сгорании фосфора в кислороде.

 

При недостатке
кислорода образуется оксид фосфора (III).

 

Оксид
фосфора (
V)
представляет собой белый порошок, энергично поглощает пары воды из воздуха и
постепенно превращается в прозрачную расплывшуюся массу. Благодаря этому свойству
оксид фосфора (V) способен
отнимать воду и у других веществ. Поэтому он широко используется как осушитель.
Многие органические вещества обугливаются при действии на них этого оксида,
кроме того, при попадании на кожу он может вызвать сильные ожоги.

Оксид
фосфора (V)  – типичный кислотный
оксид
, он взаимодействует с основными оксидами и щелочами, образуя соли
фосфорной кислоты – фосфаты.

Так,
в реакции оксида фосфора (V)
 с оксидом кальция образуется соль – фосфат кальция. В реакции оксида
фосфора (V)  с гидроксидом
натрия образуется соль – фосфат натрия и вода.

При
взаимодействии оксида фосфора (V)
 с избытком воды образуется фосфорная кислота.

Фосфорная
кислота
представляет собой твёрдое прозрачное
кристаллическое вещество, хорошо растворимое в воде в любых соотношениях. Это
слабая кислота, поэтому в водном растворе диссоциирует ступенчато: на
первой ступени образуется катион водорода и дигидрофосфат-ион, на второй
ступени опять образуется катион водорода и гидрофосфат-ион, а на третьей
ступени образуется катион водорода и фосфат-ион.

Фосфорная
кислота проявляет свойства, характерные для кислот. Она взаимодействует с
металлами, стоящими в ряду активности до водорода
. Например, в реакции
фосфорной кислоты с цинком, образуется соль – дигидрофосфат цинка и выделяется
газ – водород.

Фосфорная
кислота вступает во взаимодействие с основными оксидами. Так в реакции
оксида лития с фосфорной кислотой образуется соль – фосфат лития и вода.

Фосфорная
кислота реагирует и с основаниями. В реакции гидроксида натрия с
фосфорной кислотой образуется соль – фосфат натрия и вода.

Фосфорная
кислота – трёхосновная кислота, поэтому она может образовывать кроме
средних солей кислые соли
. Например, Ca3(PO4)2
средняя соль, она называется фосфат кальция, CaHPO4
– кислая соль и называется гидрофосфат кальция, Ca(H2PO4)2
тоже кислая соль и называется дигидрофосфат кальция. Фосфаты всех металлов в воде
нерастворимы (исключение – фосфаты щелочных металлов), дигидрофосфаты всех
металлов хорошо растворимы, а гидрофосфаты занимают промежуточное положение.

Качественной
реакцией на фосфат-ион
является реакция с нитратом
серебра, при этом образуется фосфат серебра (I) – осадок жёлтого цвета и соль –
нитрат натрия.

В
природе постоянно происходит круговорот фосфора. Фосфор из почвы
извлекается растениями, а животные получают фосфор с растительной пищей. После
отмирания растительных и животных организмов фосфор снова переходит в почву.

Фосфорная
кислота используется
как катализатор в органическом синтезе,
для производства кормовых добавок, придании кисловатого вкуса безалкогольным
напиткам, осветления сахара. Но основная часть фосфорной кислоты расходуется на
производство фосфатов, использующихся в качестве минеральных удобрений. Фосфаты
применяются и в медицине, для пропитки тканей, древесины и пластмасс с целью
придания им огнестойкости, также при производстве стиральных порошков.

Таким
образом, фосфор является элементом V A
группы.
На внешнем энергетическом уровне у него 5 электронов, для него характерны
степени окисления от -3 до +5, но наиболее типична +5. В природе он встречается
в виде соединений – фосфоритов и апатитов. Фосфор образует несколько
аллотропных модификаций: белый, красный и чёрный фосфор. Наиболее
распространёнными соединениями фосфора являются – оксид фосфора (III), оксид
фосфора (V), фосфин и фосфорная кислота. В реакциях с металлами фосфор
проявляет окислительные свойства, а в реакции с кислородом – восстановительные.
Фосфорная кислота – трёхосновная кислота, которая образует три вида солей:
фосфаты, гидрофосфаты и дигидрофосфаты. Качественным реактивом на фосфат-ион
является нитрат серебра один, потому что в результате взаимодействия образуется
осадок жёлтого цвета. Фосфор и его соединения имею большое значение в
химической промышленности.

Фосфор(от
греч. phosphoros — светоносный; лат. Phosphorus) P,
химический элемент V группы периодической
системы; атомный номер 15, атомная масса
30,97376. Имеет один устойчивыйнуклид31P.
Эффективное сечение захвата
тепловыхнейтронов18
• 10-30м2. Конфигурация
внеш. электронной оболочкиатома3s23p3степени
окисления-3, +3 и +5; энергия
последовательной ионизации при переходе
от Р0до P5+(эВ): 10,486,
19,76, 30,163, 51,36, 65,02; сродство к электрону
0,6 эВ;электроотрицательностьпо
Полингу 2,10;атомный
радиус0,134 нм,ионные
радиусы(в скобках указаны
координационные числа) 0,186 нм для P3-,
0,044 нм (6) для P3+, 0,017 нм (4), 0,029 нм (5),
0,038 нм (6) для P5+.

Среднее
содержание фосфора в земной коре 0,105%
по массе, в водеморей
и океанов 0,07 мг/л. Известно около 200
фосфорныхминералов.
все они представляют собой фосфаты. Из
них важнейший —апатит, который
является основойфосфоритов. Практическое
значение имеют также монацит CePO4,
ксенотим YPO4, амблигонит LiAlPO4(F,
ОН), трифилин Li(Fe, Mn)PO4, торбернит
Cu(UO2)2(PO4)2• 12H2O,
отунит Ca(UO2)2(PO4)2x
x 10H2O, вивианит Fe3(PO4)2
8H2O, пироморфит Рb5(РО4)3С1,
бирюза СuА16(РО4)4(ОН)8
2О.

Свойства. Известно
св. 10 модификаций фосфора, из них важнейшие
— белый, красный и черный фосфор
(технический белый фосфор называют
желтым фосфором). Единой системы
обозначений модификаций фосфора нет.
Некоторые свойства важнейших модификаций
сопоставлены в табл. Термодинамически
устойчив при нормальных условиях
кристаллический черный фосфор (P I). Белый
и красный фосфор метастабильны, но
вследствие малой скорости превращения
могут практически неограниченное время
сохраняться при нормальных условиях.

  Соединения
фосфора с неметаллами

   Фосфор
и водород в виде простых веществ
практически не взаимодействуют.
Водородные производные фосфора получают
косвенным путем, например:

       
Са3Р2+ 6НСl = 3СаСl2+
2РН3

Фосфин
РН3представляет собой бесцветный
сильнотоксичный газ с запахом гнилой
рыбы. Молекулу фосфина можно рассматривать
как молекулу аммиака. Однако угол между
связями Н-Р-Н значительно меньше, чем у
аммиака. Это означает уменьшение доли
участия s-облаков в образовании гибридных
связей в случае фосфина. Связи фосфора
с водородом менее прочны, чем связи
азота с водородом. Донорные свойства у
фосфина выражены слабее, чем у аммиака.
Малая полярность молекулы фосфина, и
слабая активность акцептировать протон
приводят к отсутствию водородных связей
не только в жидком и твердом состояниях,
но и с молекулами воды в растворах, а
также к малой стойкости иона фосфония
РН4+. Самая устойчивая в
твердом состоянии соль фосфония — это
его иодид РН4I. Водой и особенно
щелочными растворами соли фосфония
энергично разлагаются:

       
РН4I + КОН = РН+ КI + Н2О

Фосфин и
соли фосфония являются сильными
восстановителями. На воздухе фосфин
сгорает до фосфорной кислоты:

       
РН+ 2О= Н3РО4  

При разложении
фосфидов активных металлов кислотами
одновременно с фосфином образуется в
качестве примеси дифосфин Р2Н4.
Дифосфин — бесцветная летучая жидкость,
по структуре молекул аналогична
гидразину, но фосфин не проявляет
основных свойств. На воздухе
самовоспламеняется, при хранении на
свету и при нагревании разлагается. В
продуктах его распада присутствуют
фосфор, фосфин и аморфное вещество
желтого цвета. Этот продукт получил
название твердого фосфористого водорода,
и ему приписывается формула Р12Н6.

 С
галогенами фосфор образует три- и
пентагалогениды. Эти производные фосфора
известны для всех аналогов, но практически
важны соединения хлора. РГ3и
РГ5токсичны, получают
непосредственно из простых веществ.

 РГ3
устойчивые экзотермические соединения;
РF3— бесцветный газ, РСl3и
РВr3— бесцветные жидкости, а
РI— красные кристаллы. В твердом
состоянии все тригалогениды образуют
кристаллы с молекулярной структурой.
РГ3и РГ5являются
кислотообразующими соединениями:

      
РI+ 3Н2О = 3НI + Н3РО3

 Известны
оба нитрида фосфора, отвечающие трех-
и пятиковалентному состояниям: РN и
Р2N5. В обоих соединениях
азот трехвалентен. Оба нитрида химически
инертны, устойчивы к действию воды,
кислот и щелочей.

 Расплавленный
фосфор хорошо растворяет серу, но
химическое взаимодействие наступает
при высокой температуре. Из сульфидов
фосфора лучше изучены Р4S3,
Р4S7, Р4S10. Указанные
сульфиды могут быть перекристализованы
в расплаве нафталина и выделены в виде
желтых кристаллов. При нагревании
сульфиды воспламеняются и сгорают с
образованием Р2О5и SО2.
Водой все они медленно разлагаются с
выделением сероводорода и образованием
кислородных кислот фосфора.

     Соединения
фосфора с металлами

   С
активными металлами фосфор образует
солеобразные фосфиды, подчиняющиеся
правилам классической валентности.
р-Металлы, а также металлы подгруппы
цинка дают и нормальные, и анионоизбыточные
фосфиды. Большинство из этих соединений
проявляют полупроводниковые свойства,
т.е. доминирующая связь в них — ковалентная.
Отличие азота от фосфора, обусловленное
размерным и энергетическим факторами,
наиболее характерно проявляется при
взаимодействии этих элементов с
переходными металлами. Для азота при
взаимодействии с последними главным
является образование металлоподобных
нитридов. Фосфор также образует
металлоподобные фосфиды. Многие фосфиды,
особенно с преимущественно ковалентной
связью, тугоплавки. Так, АlР плавится
при 2197 град.С, а фосфид галлия имеет
температуру плавления 1577 град.С. Фосфиды
щелочных и щелочно-земельных металлов
легко разлагаются водой с выделением
фосфина. Многие фосфиды являются не
только полупроводниками (АlР, GаР, InР),
но и ферромагнетиками, например СоР и
3Р.

Фосфи́н(фосфористый
водород
, гидрид фосфора, по номенклатуре
IUPAC — фосфан РН3) — бесцветный,
очень ядовитый, довольно неустойчивый
газ со специфическим запахом гнилой
рыбы.

Бесцветный
газ. Плохо растворяется в воде, не
реагирует с ней. При низких температурах
образует твердый клатрат 8РН3·46Н2О.
Растворим в бензоле, диэтиловом эфире,
сероуглероде. При −133,8 °C образует
кристаллы с гранецентрированной
кубической решёткой.

Молекула
фосфина имеет форму тригональной
пирамиды c молекулярной симметрией
C3v(dPH= 0.142 нм, HPH = 93.5o).
Дипольный момент составляет 0,58 D,
существенно ниже, чем уаммиака.
Водородная связь между молекулами
PH3практически не проявляется
и поэтому фосфин имеет более низкие
температуры плавления и кипения.

Фосфин
сильно отличается от его аналога аммиака.
Его химическая активность выше, чем у
аммиака, он плохо растворим в воде, как
основание значительно слабее аммиака.
Последнее объясняется тем, что связи
H-P поляризованы слабо и активность
неподелённой пары электронов у фосфора
(3s2) ниже, чем у азота (2s2) в
аммиаке.

В отсутствие
кислорода при нагревании разлагается
на элементы:

на воздухе
самопроизвольно воспламеняется (в
присутствии паров дифосфина или при
температуре свыше 100 °C):

Проявляет
сильные восстановительные свойства:

При
взаимодействии с сильными донорами
протонов фосфин может давать соли фосфония,
содержащие ион PH4+(аналогичноаммонию).
Соли фосфония, бесцветные кристаллические
вещества, крайне неустойчивы, легко
гидролизуется.

Как и сам
фосфин, так и его соли являются
сильными восстановителями.

Получают
фосфин при взаимодействии белого фосфора
с горячей щёлочью, например:

Также его
можно получить воздействием воды или
кислот на фосфиды:

Возможен
синтез непосредственно из элементов:

Хлористый
водород при нагревании взаимодействует
с белым фосфором:

Разложение
йодида фосфония:

Разложение
фосфоновой кистоты:

или её
восстановление:

Соседние файлы в предмете Аналитическая химия

  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти европейскую болотную черепаху
  • Как найти косинус между двумя сторонами треугольника
  • Как найти писателя на заказ
  • Как найти звонок во сколько был
  • Hearts of iron 4 paradox crash reporter как исправить