Как по графику первообразной найти решение уравнения

Как по графику первообразной найти решение уравнения

На рисунке изображён график функции y = F(x) — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x) = 0 на отрезке [−2; 4].

По определению первообразной на интервале (−3; 5) справедливо равенство

Следовательно, решениями уравнения f(x)=0 являются точки экстремумов изображенной на рисунке функции F(x) На рисунке точки, в которых выделены красным и синим цветом. Из них на отрезке [−2;4] лежат 10 точек (синие точки). Таким образом, на отрезке [−2;4] уравнение имеет 10 решений.

На рисунке изображён график некоторой функции (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F(x) — одна из первообразных функции f(x).

Разность значений первообразной в точках 8 и 2 равна площади выделенной на рисунке трапеции Поэтому

На рисунке изображён график функции y = f(x). Функция — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.

Площадь выделенной фигуры равна разности значений первообразных, вычисленных в точках и

Приведем другое решение.

Вычисления можно было бы упростить, выделив полный куб:

что позволяет сразу же найти

Приведем ещё одно решение.

Можно было бы найти разность первообразных, используя формулы сокращенного умножения:

Приведем ещё одно решение.

Получим явное выражение для Поскольку

Этот подход можно несколько усовершенствовать. Заметим, что график функции получен сдвигом графика функции на единиц влево вдоль оси абсцисс. Поэтому искомая площадь фигуры равна площади фигуры, ограниченной графиком функции и отрезком оси абсцисс. Имеем:

На рисунке изображён график некоторой функции y = f(x). Функция — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

Найдем формулу, задающую функцию график которой изображён на рисунке.

Следовательно, график функции получен сдвигом графика функции на единиц влево вдоль оси абсцисс. Поэтому искомая площадь фигуры равна площади фигуры, ограниченной графиком функции и отрезком оси абсцисс. Имеем:

Еще несколько способов рассуждений покажем на примере следующей задачи.

Ошибки, конечно, нет, но при таком подходе (сдвиг функции) гораздо легче найти уравнение параболы, проходящей через точки (-1;0), (0;3) и (1;0), а потом вычислить интеграл.

Во-первых, до того как была вычислена производная, мы не знали, является ли изображенный на рисунке график параболой. Во-вторых, на наш взгляд, выделить полный квадрат проще, чем решать систему уравнений с тремя переменными.

Но ведь ясно, что если пер­во­об­раз­ная — мно­го­член тре­тьей степени, то про­из­вод­ная — мно­го­член вто­рой степени.

Согласны, если это объяснено, то всё в порядке.

Ошибки, конечно, нет. Но надо ли так подробно решать? Есть первообразная, есть границы интегрирования. S=F(-8)-F(-10)=4

В конце решения есть фраза «Еще не­сколь­ко спо­со­бов рас­суж­де­ний по­ка­жем на при­ме­ре сле­ду­ю­щей за­да­чи» со ссылкой. Там есть разные варианты решения

На рисунке изображен график некоторой функции Пользуясь рисунком, вычислите определенный интеграл

Определенный интеграл от функции по отрезку дает значение площади подграфика функции на отрезке. Область под графиком разбивается на прямоугольный треугольник, площадь которого и прямоугольник, площадь которого Сумма этих площадей дает искомый интеграл

Первообразная

Первообразной для функции $f(x)$ называется такая функция $F(x)$, для которой выполняется равенство: $F'(x)=f(x)$

Таблица первообразных

Первообразная нуля равна $С$

Функция Первообразная
$f(x)=k$ $F(x)=kx+C$
$f(x)=x^m, m≠-1$ $F(x)=>/+C$
$f(x)=<1>/$ $F(x)=ln|x|+C$
$f(x)=e^x$ $F(x)=e^x+C$
$f(x)=a^x$ $F(x)=/+C$
$f(x)=sinx$ $F(x)-cosx+C$
$f(x)=cosx$ $F(x)=sinx+C$
$f(x)=<1>/$ $F(x)=-ctgx+C$
$f(x)=<1>/$ $F(x)=tgx+C$
$f(x)=√x$ $F(x)=<2x√x>/<3>+C$
$f(x)=<1>/<√x>$ $F(x)=2√x+C$

Если $y=F(x)$ – это первообразная для функции $y=f(x)$ на промежутке $Х$, то $у$ $у=f(x)$ бесконечно много первообразных и все они имеют вид $y=F(x)+C$

Правила вычисления первообразных:

  1. Первообразная суммы равна сумме первообразных. Если $F(x)$ — первообразная для $f(x)$, а $G(x)$ – первообразная для $g(x)$, то $F(x)+G(x)$ — первообразная для $f(x)+g(x)$.
  2. Постоянный множитель выносится за знак первообразной. Если $F(x)$ — первообразная для $f(x)$, а $k$ – постоянная величина, то $k$ $F(x)$ — первообразная для $k$ $f(x)$.
  3. Если $F(x)$ — первообразная для $f(x)$, $а, k, b$ — постоянные величины, причем $k≠0$, то $<1>/$ $F(kx+b)$ — это первообразная для $f(kx+b)$.

Найти первообразную для функции $f(x)=2sin⁡x+<4>/-/<3>$.

Чтобы было проще найти первообразную от функции, выделим коэффициенты каждого слагаемого

Далее, воспользовавшись таблицей первообразных, найдем первообразную для каждой функции, входящих в состав $f(x)$

Для $f_1=sin⁡x$ первообразная равна $F_1=-cos⁡x$

Для $f_2=<1>/$ первообразная равна $F_2=ln⁡|x|$

Для $f_2=cos⁡x$ первообразная равна $F_3=sin⁡x$

По первому правилу вычисления первообразных получаем:

Итак, общий вид первообразной для заданной функции

Задания по теме «Первообразная функции»

Открытый банк заданий по теме первообразная функции. Задания B7 из ЕГЭ по математике (профильный уровень)

Задание №1164

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).

Решение

По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3 .

Её площадь равна frac<4+3><2>cdot 3=10,5.

Ответ

Задание №1158

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x) , определённой на интервале (-5; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-3; 4].

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 4], в которых производная функции F(x) равна нулю. Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 7 (четыре точки минимума и три точки максимума).

Ответ

Задание №1155

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(5)-F(0), где F(x) — одна из первообразных функции f(x).

Решение

По формуле Ньютона-Лейбница разность F(5)-F(0), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=5 и x=0. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 5 и 3 и высотой 3 .

Её площадь равна frac<5+3><2>cdot 3=12.

Ответ

Задание №1149

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 4). Пользуясь рисунком, определите количество решений уравнения f (x)=0 на отрезке (-3; 3].

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 3], в которых производная функции F(x) равна нулю.

Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 5 (две точки минимума и три точки максимума).

Ответ

Задание №1146

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=-x^3+4,5x^2-7 — одна из первообразных функции f(x).

Найдите площадь заштрихованной фигуры.

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной сверху графиком функции y=f(x), прямыми y=0, x=1 и x=3. По формуле Ньютона-Лейбница её площадь S равна разности F(3)-F(1), где F(x) — указанная в условии первообразная функции f(x). Поэтому S= F(3)-F(1)= -3^3 +(4,5)cdot 3^2 -7-(-1^3 +(4,5)cdot 1^2 -7)= 6,5-(-3,5)= 10.

Ответ

Задание №907

Условие

На рисунке изображён график некоторой функции y=f(x). Функция F(x)=x^3+6x^2+13x-5 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

Решение

Заштрихованная фигура является криволинейной трапецией, ограниченной графиком функции y=f(x) и прямыми y=0, x=-4 и x=-1. По формуле Ньютона-Лейбница её площадь S равна разности F(-1)-F(-4), где F(x) — указанная в условии первообразная функции f(x).

Ответ

Задание №307

Условие

На рисунке изображен график некоторой функции y=f(x). Функция F(x)=x^3+18x^2+221x-frac12 — одна из первообразных функции f(x). Найдите площадь заштрихованной фигуры.

Решение

По формуле Ньютона-Лейбница S=F(-1)-F(-5).

F(-1)= (-1)^3+18cdot(-1)^2+221cdot(-1)-frac12= -204-frac12.

F(-5)= (-5)^3+18cdot(-5)^2+221cdot(-5)-frac12= -125+450-1105-frac12= -780-frac12.

F(-1)-F(-5)= -204-frac12-left (-780-frac12right)= 576.

Ответ

Задание №306

Условие

На рисунке изображен график некоторой функции y=f(x). Пользуясь рисунком, вычислите F(9)-F(3), где F(x) — одна из первообразных функции f(x).

Решение

F(9)-F(3)=S , где S — площадь фигуры, ограниченной графиком функции y=f(x), прямыми y=0 и x=3,:x=9 . Рассмотрим рисунок ниже.

Данная фигура — трапеция с основаниями 6 и 1 и высотой 2 . Ее площадь равна frac<6+1><2>cdot2=7.

Ответ

Задание №104

Условие

На координатной плоскости изображен график функции y=f(x) . Одна из первообразных этой функции имеет вид: F(x)=-frac13x^3-frac52x^2-4x+2 . Найдите площадь заштрихованной фигуры.

Решение

На рисунке видно, что заштрихованная фигура ограничена по оси абсцисс точками −4, −1 , а по оси ординат графиком функции: f(x) . Значит площадь фигуры мы можем найти с помощью разности значений первообразных в точках −4 и −1 , по формуле определенного интеграла:

Подставим значение первообразной из условия и получим площадь фигуры:

Ответ

Задание №103

Условие

Первообразная y=F(x) некоторой функции y=f(x) определена на интервале (−16; −2) . Определите сколько решений имеет уравнение f(x) = 0 на отрезке [−10; −5] .

Решение

Формула первообразной имеет следующий вид:

По условию задачи нужно найти точки, в которых функция f(x) равна нулю. Принимая во внимание формулу первообразной, это значит, что, нужно найти точки, в которых F'(x) = 0 , то есть те точки, в которых производная от первообразной равна нулю.

Мы знаем, что производная равна нулю в точках локального экстремума, т.е. функция имеет решения в тех точках, в которых возрастание F(x) сменяется убыванием и наоборот.

На отрезке [−10; −5] видно что это точки: −9; −7; −6 . Значит уравнение f(x) = 0 имеет 3 решения.

источники:

http://examer.ru/ege_po_matematike/teoriya/pervoobraznaya

http://academyege.ru/theme/pervoobraznaya-funkcii.html


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

На рисунке изображён график функции y  =  F(x)  — одной из первообразных функции f(x), определённой на интервале (−3; 5). Найдите количество решений уравнения f(x)  =  0 на отрезке [−2; 4].


2

На рисунке изображён график некоторой функции y=f левая круглая скобка x правая круглая скобка (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) − F(2), где F(x)  — одна из первообразных функции f(x).


3

На рисунке изображён график функции y = f(x). Функция F левая круглая скобка x правая круглая скобка =x в кубе плюс 30x в квадрате плюс 302x минус дробь: числитель: 15, знаменатель: 8 конец дроби   — одна из первообразных функции y = f(x). Найдите площадь закрашенной фигуры.


4

На рисунке изображён график некоторой функции y = f(x). Функция F левая круглая скобка x правая круглая скобка = минус x в кубе минус 27x в квадрате минус 240x минус 8  — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.


Пройти тестирование по этим заданиям

04
Фев 2013

06 Задание (2022)ПРОИЗВОДНАЯ

Первообразная.

Задачи на первообразную, которых ждали, появились в Открытом банке заданий для подготовки к ЕГЭ  по математике  Давайте и мы вспомним теорию и рассмотрим решение задач по этой теме.

Функцию y=F(x) называют первообразной для функции y=f(x) на заданном промежутке X, если для любого x из этого промежутка выполняется равенство F{prime}(x)=f(x).

Операция нахождения первообразной функции называется интегрированием.  Интегрирование — математическое действие, обратное дифференцированию, то есть нахождению производной. Интегрирование позволяет по производной функции найти саму функцию.

Множество всех первообразных называют неопределенным интегралом от функции y=f(x) и обозначают

{f(x)dx}=F(x)+C

Рассмотрим пример решения задачи из  Задания В8 из  Открытого банка заданий для подготовки к ЕГЭ  по математике:

Прототип задания B8 (№ 323077)

На рисунке изображён график функции y=F(x), одной из первообразных некоторой функции f(x), определённой на интервале (-3;5) . Пользуясь рисунком, определите количество решений уравненияf(x)=0  на отрезке [-2;4].

перв

Поскольку F(x) — первообразная функции f(x) — это функция, производная которой равна f(x):F{prime}(x)=f(x) — исходную задачу можно переформулировать так: по графику функции найти количество точек, принадлежащих отрезку [-2;4], в которых производная функции равна нулю.

Как мы знаем, производная равна нулю в точках экстремума. (Замечу, что обратно неверно — если производная равна нулю, то это не обязательно тока экстремума.)

Отметим на рисунке сам отрезок и точки экстремума на графике функции:

инт

Точки экстремума («холмики» и «впадинки») выделены красным цветом. На отрезке [-2;4] их 10.

Ответ: 10.

И.В. Фельдман, репетитор по математике.

Для вас другие записи этой рубрики:

  • Исследование функции. Задание В14 (2014)
  • Видеолекция 11. «Производная. Касательная. Применение производной к исследованию функции. Задание В8»
  • Исследование функции и построение графика
  • Наибольшее и наименьшее значение функции. Задание В15 (2014)
  • Касательная к графику функции. Задача с параметром.
  • Видеолекция «Производная. Касательная. Применение производной к исследованию функции. Задание 7»

Первообразная.

Первообразной для функции $f(x)$ называется такая функция $F(x)$, для которой выполняется равенство: $F'(x)=f(x)$

Таблица первообразных

Первообразная нуля равна $С$

Функция Первообразная
$f(x)=k$ $F(x)=kx+C$
$f(x)=x^m, m≠-1$ $F(x)={x^{m+1}}/{m+1}+C$
$f(x)={1}/{x}$ $F(x)=ln|x|+C$
$f(x)=e^x$ $F(x)=e^x+C$
$f(x)=a^x$ $F(x)={a^x}/{lna}+C$
$f(x)=sinx$ $F(x)-cosx+C$
$f(x)=cosx$ $F(x)=sinx+C$
$f(x)={1}/{sin^2x}$ $F(x)=-ctgx+C$
$f(x)={1}/{cos^2x}$ $F(x)=tgx+C$
$f(x)=√x$ $F(x)={2x√x}/{3}+C$
$f(x)={1}/{√x}$ $F(x)=2√x+C$

Если $y=F(x)$ – это первообразная для функции $y=f(x)$ на промежутке $Х$, то $у$ $у=f(x)$ бесконечно много первообразных и все они имеют вид $y=F(x)+C$

Правила вычисления первообразных:

  1. Первообразная суммы равна сумме первообразных. Если $F(x)$ — первообразная для $f(x)$, а $G(x)$ – первообразная для $g(x)$, то $F(x)+G(x)$ — первообразная для $f(x)+g(x)$.
  2. Постоянный множитель выносится за знак первообразной. Если $F(x)$ — первообразная для $f(x)$, а $k$ – постоянная величина, то $k$ $F(x)$ — первообразная для $k$ $f(x)$.
  3. Если $F(x)$ — первообразная для $f(x)$, $а, k, b$ — постоянные величины, причем $k≠0$, то ${1}/{k}$ $F(kx+b)$ — это первообразная для $f(kx+b)$.

Пример:

Найти первообразную для функции $f(x)=2sin⁡x+{4}/{x}-{cos⁡x}/{3}$.

Решение:

Чтобы было проще найти первообразную от функции, выделим коэффициенты каждого слагаемого

$f(x)=2sin⁡x+{4}/{x}-{cos⁡x}/{3}=2∙sin⁡x+4∙{1}/{x}-{1/3}∙cos⁡x$

Далее, воспользовавшись таблицей первообразных, найдем первообразную для каждой функции, входящих в состав $f(x)$

$f_1=sin⁡x$

$f_2={1}/{x}$

$f_3=cos⁡x$

Для $f_1=sin⁡x$ первообразная равна $F_1=-cos⁡x$

Для $f_2={1}/{x}$ первообразная равна $F_2=ln⁡|x|$

Для $f_2=cos⁡x$ первообразная равна $F_3=sin⁡x$

По первому правилу вычисления первообразных получаем:

$F(x)=2F_1+4F_2-{1}/{3}F_3=2∙(-cos⁡x)+4∙ln⁡|x|-{1}/{3}∙sin⁡x$

Итак, общий вид первообразной для заданной функции

$F(x)=-2cos⁡x+4ln⁡|x|-{sin x}/{3}+C$

Связь между графиками функции и ее первообразной:

  1. Если график функции $f (x) > 0$ на промежутке, то график ее первообразной $F(x)$ возрастает на этом промежутке.
  2. Если график функции $f (x) < 0$ на промежутке, то график ее первообразной $F(x)$ убывает на этом промежутке.
  3. Если $f(x)=0$, то график ее первообразной $F(x)$ в этой точке меняется с возрастающего на убывающий (или наоборот).

Пример:

На рисунке изображен график функции $y=F(x)$ – одной из первообразных некоторой функции $f(x)$, определенной на интервале $(-3;5)$. Пользуясь рисунком, определите количество решений $f(x)=0$ на отрезке $(-2;2]$

Если $f(x)=0$, то график ее первообразной $F(x)$ в этой точке меняется с возрастающего на убывающий(или наоборот).

Выделим отрезок $(-2;2]$ и отметим на нем экстремумы.

У нас получилось $6$ таких точек.

Ответ: $6$

Неопределенный интеграл

Если функция $у=f(x)$ имеет на промежутке $Х$ первообразную $у=F(x)$, то множество всех первообразных $у=F(x)+С$, называют неопределенным интегралом функции $у=f(x)$ и записывают:

$∫f(x)dx$

Определенный интеграл – это интеграл с пределами интегрирования (на отрезке)

$∫_a^bf(x)dx$, где $a,b$ — пределы интегрирования

Площадь криволинейной трапеции или геометрический смысл первообразной

Площадь $S$ фигуры, ограниченной осью $Oх$, прямыми $х=а$ и $х=b$ и графиком неотрицательной функции $у=f(x)$ на отрезке $[a;b]$, находится по формуле

$S=∫_a^bf(x)dx$ 

Формула Ньютона — Лейбница

Если функция $у=f(x)$ непрерывна на отрезке $[a;b]$, то справедливо равенство

$∫_a^bf(x)dx=F(x)|_a^b=F(b)-F(a)$, где $F(x)$ — первообразная для $f(x)$

Пример:

На рисунке изображен график некоторой функции $у=f(x)$. Одна из первообразных этой функции равна $F(x)={2х^3}/{3}-2х^2-1$. Найдите площадь заштрихованной фигуры.

Решение:

Площадь выделенной фигуры равна разности значений первообразных, вычисленных в точках $1$ и $-2$

$S=F(1)-F(-2)$

Первообразная нам известна, следовательно, осталось только подставить в нее значения и вычислить

$F(1)={2∙1}/{3}-2∙1-1={2}/{3}-2-1={2}/{3}-3$

$F(-2)={2(-2)^3}/{3}-2(-2)^2-1={2∙(-8)}/{3}-8-1=-{16}/{3}-9$

$S={2}/{3}-3-(-{16}/{3}-9)={2}/{3}-3+{16}/{3}+9={18}/{3}+6=6+6=12$

Ответ: $12$

Разделы презентаций


  • Разное
  • Английский язык
  • Астрономия
  • Алгебра
  • Биология
  • География
  • Геометрия
  • Детские презентации
  • Информатика
  • История
  • Литература
  • Математика
  • Медицина
  • Менеджмент
  • Музыка
  • МХК
  • Немецкий язык
  • ОБЖ
  • Обществознание
  • Окружающий мир
  • Педагогика
  • Русский язык
  • Технология
  • Физика
  • Философия
  • Химия
  • Шаблоны, картинки для презентаций
  • Экология
  • Экономика
  • Юриспруденция

Содержание

  • 1.

    Нахождение решений уравнения f(x)=0 по графику первообразной № 7 ЕГЭ

  • 2.

    На рисунке изображён график функции

  • 3.

    На рисунке изображён график функции

  • 4.

    На рисунке изображён график функции

  • 5.

    На рисунке изображён график функции

  • 6.
    Скачать презентанцию

На рисунке изображён график функции y=F(x) – одной из первообразных некоторой функции y=f(x) на интервале (-3;5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-2;4].xyОтвет: 10.№1. Нахождение решений

Слайды и текст этой презентации

Слайд 1
Нахождение решений
уравнения f(x)=0
по графику первообразной

№7 ЕГЭ

Ольга

Ивановна Чикунова,
agol_08@mail.ru, oliv@shadrinsk.net
тел. 8-908-83-30-277
https://vk.com/sam_sebe_repetitor
ПРОТОТИПЫ ЕГЭ

Нахождение решений  уравнения f(x)=0  по графику первообразной  №7  ЕГЭ  Ольга Ивановна


Слайд 2 На рисунке изображён график функции y=F(x) – одной

из первообразных некоторой функции y=f(x) на интервале (-3;5).
Пользуясь рисунком,

определите количество решений уравнения
f(x)=0 на отрезке [-2;4].

x

y

Ответ: 10.

№1. Нахождение решений уравнения f(x)=0
по графику первообразной

-3

5

y=F(x)

Т.к. F′(x)=f(x), то y= f(x) –производная функции y=F(x).

Требуется найти количество точек, в которых производная равна нулю.

Это точки экстремума данной функции y=F(x).

-2

4

На рисунке изображён график функции y=F(x) – одной из первообразных некоторой функции y=f(x) на интервале


Слайд 3 На рисунке изображён график функции y=F(x) – одной

из первообразных некоторой функции y=f(x) на интервале (-2;6).
Пользуясь рисунком,

определите количество решений уравнения
f(x)=0 на отрезке [-1;5].

x

y

Ответ: 9.

№2. Нахождение решений уравнения f(x)=0
по графику первообразной

-2

6

y=F(x)

На рисунке изображён график функции y=F(x) – одной из первообразных некоторой функции y=f(x) на интервале


Слайд 4 На рисунке изображён график функции y=F(x) – одной

из первообразных некоторой функции y=f(x) на интервале (-7;1).
Пользуясь рисунком,

определите количество решений уравнения
f(x)=0 на отрезке [-6;-1].

x

y

Ответ: 6.

№3. Нахождение решений уравнения f(x)=0
по графику первообразной

-7

1

y=F(x)

На рисунке изображён график функции y=F(x) – одной из первообразных некоторой функции y=f(x) на интервале


Слайд 5 На рисунке изображён график функции y=F(x) – одной

из первообразных некоторой функции y=f(x) на интервале (-5;3).
Пользуясь рисунком,

определите количество решений уравнения
f(x)=0 на отрезке [-3;1].

x

y

Ответ: 7.

№4. Нахождение решений уравнения f(x)=0
по графику первообразной

-5

3

y=F(x)

На рисунке изображён график функции y=F(x) – одной из первообразных некоторой функции y=f(x) на интервале


Понравилась статья? Поделить с друзьями:
  • Виндовс оригинала как найти
  • Как исправить скисшее вино
  • Как найти фильм хоббит
  • Как найти угол через длину нити
  • Как составить портфель работ