Как по сумме углов найти количество сторон

Количество сторон правильного многоугольника при заданной сумме внутренних углов Калькулятор

Search
Дом математика ↺
математика Геометрия ↺
Геометрия Правильный многоугольник ↺
Правильный многоугольник 2D геометрия ↺
2D геометрия Другие формулы правильного многоугольника ↺

Сумма внутренних углов правильного многоугольника равна сумме всех внутренних углов многоугольника.Сумма внутренних углов правильного многоугольника [Sum∠Interior]

+10%

-10%

Количество сторон правильного многоугольника обозначает общее количество сторон многоугольника. Количество сторон используется для классификации типов многоугольников.Количество сторон правильного многоугольника при заданной сумме внутренних углов [NS]

⎘ копия

Количество сторон правильного многоугольника при заданной сумме внутренних углов Решение

ШАГ 0: Сводка предварительного расчета

ШАГ 1. Преобразование входов в базовый блок

Сумма внутренних углов правильного многоугольника: 1080 степень —> 18.8495559215352 Радиан (Проверьте преобразование здесь)

ШАГ 2: Оцените формулу

ШАГ 3: Преобразуйте результат в единицу вывода

7.99999999999887 —> Конверсия не требуется




2 Другие формулы правильного многоугольника Калькуляторы

Количество сторон правильного многоугольника при заданной сумме внутренних углов формула

Количество сторон правильного многоугольника = (Сумма внутренних углов правильного многоугольника/pi)+2

NS = (Sum∠Interior/pi)+2

Что такое правильный многоугольник?

Правильный многоугольник имеет стороны одинаковой длины и равные углы между сторонами. Правильный n-сторонний многоугольник имеет вращательную симметрию порядка n и также известен как вписанный многоугольник. Все вершины правильного многоугольника лежат на описанной окружности.

Сумма внутренних углов правильного [выпуклого] n-угольника равна s=pi*(n-2) или, в градусах, S = 180*(n-2). Отсюда можно выразить n как

n = 2 + S/180.

Критерием существования полигона будет делимость суммы градусных мер внутренних углов на 180=(2^2)*(3^2)*5 и, с этой точки зрения, при S=2160=(2^4)*(3^3)*5­, т.к. это число делится на 180, многоугольник существует и имеет n = 2 + 2160/180 = 2+12 = 14 углов = 14 сторон.

А вот число S=2290=2*5*229 на 180 не делится и с такой суммой углов правильный выпуклый полигон не существует.

Ответ:

  • Полигон с суммой градусных мер углов, равной 2160 [градусам], имеет, формально, по формуле, 14 сторон;
  • Полигон с суммой углов, равной 2290 [градусам], не существует (по рекомендациям из условия задачи, этот случай формально приравнивается к случаю n=0).

A polygon by definition is any geometric shape that is enclosed by a number of straight sides, and a polygon is considered regular if each side is equal in length. Polygons are classified by their number of sides. For example, a six-sided polygon is a hexagon, and a three-sided one is a triangle.

Regular Polygons

The number of sides of a regular polygon can be calculated by using the interior and exterior angles, which are, respectively, the inside and outside angles created by the connecting sides of the polygon. For a regular polygon the measure of each interior angle and each exterior angle is congruent. For example, a regular octagon has interior angles each equal to 125 degrees.

These relationships only hold true for convex polygons where the measure of each interior angle does not exceed 180 degrees.

Using Interior Angles

Subtract the interior angle from 180; then divide 360 by the difference of the angle and 180 degrees. For example, if the interior angle was 165, subtracting it from 180 would yield 15, and 360 divided by 15 equals 24, which is the number of sides of the polygon. Here is the general formula (it is important to note that this only works for the ‌interior‌ angles of a regular polygon):

text{# of sides}=frac{360^circ}{180^circ-text{interior angle}}

Using Exterior Angles

Divide 360 by the amount of the exterior angle to also find the number of sides of the polygon. For example, if the measurement of the exterior angle is 60 degrees, then dividing 360 by 60 yields 6. Six is the number of sides that the polygon has. This is a hexagon, so we can check this reasoning by finding the interior angle to be 120 degrees, which is the measure of the interior angle of a hexagon.

The general formula using the ‌exterior‌ angles of a regular polygon follows:

text{# of sides}=frac{360}{text{exterior angle}}

Tips

  • Subtracting the interior angle from 180 gives the exterior angle, and subtracting the exterior angle from 180 gives the interior angle because these angles are adjacent.

Irregular Polygons

Not all polygons have congruent angles and sides. The measure of the internal angles can vary depending on the measures of each side. Regardless of the polygon shape, the sum of exterior angles will always be 360 degrees. We can use this relationship to reason out a formula for an n-sided polygon with any side lengths.

The sum of the interior angles of a polygon can be related to the the number of sides through the polygon formula:

text{# of sides} = frac{text{sum of interior angles}}{180} + 2

We can try this formula with any quadrilateral. We know that the sum of the interior angles of any four sided polygon (like a square, rhombus, parallelogram, or trapezoid) is 360 degrees. Plugging this into the formula we can prove this known relationship:

text{# of sides} = frac{text{360}}{180} + 2 = 4 text{ sides}

Tips

  • This formula for any polygon works for either a convex or concave polygon.

Terminology of Polygons

As a helpful guide for reporting calculations, these are the general conventions for discussing polygons in geometry and trigonometry.

  • Line segments‌ make up each side of a polygon. They are straight lines of determined length.
  • An‌ ‌apothem‌ is a straight line from the center of a regular polygon to any side that forms a right angle with that side.

Naming polygons (3 — 10 sides):

  • 3 sides – triangle
  • 4 sides – square
  • 5 sides – pentagon
  • 6 sides – hexagon
  • 7 sides – heptagon
  • 8 sides – octagon
  • 9 sides – nonagon
  • 10 sides – decagon

Содержание

  1. Определение правильного многоугольника
  2. Элементы правильного многоугольника
  3. Диагонали n — угольника
  4. Внешний угол многоугольника
  5. Сумма внутренних углов
  6. Сумма внешних углов
  7. Виды правильных многоугольников
  8. Основные свойства правильного многоугольника
  9. Свойство 1
  10. Свойство 2
  11. Свойство 3
  12. Свойство 4
  13. Свойство 5
  14. Свойство 6
  15. Доказательства свойств углов многоугольника
  16. Правильный n-угольник — формулы
  17. Формулы длины стороны правильного n-угольника
  18. Формула радиуса вписанной окружности правильного n-угольника
  19. Формула радиуса описанной окружности правильного n-угольника
  20. Формулы площади правильного n-угольника
  21. Формула периметра правильного многоугольника:
  22. Формула определения угла между сторонами правильного многоугольника:
  23. Формулы правильного треугольника:
  24. Формулы правильного четырехугольника:
  25. Формулы правильного шестиугольника:
  26. Формулы правильного восьмиугольника:
  27. Сторона правильного многоугольника через радиус описанной вокруг него окружности
  28. Шаг 1
  29. Шаг 2
  30. Шаг 3

Определение правильного многоугольника

Правильный многоугольник – это выпуклый многоугольник, у которого равны все стороны и углы.

Правильный шестиугольник

Признаки правильного n-угольника

  • a1 = a2 = a3 = … an-1 = an
  • α1 = α2 = α3 = … αn-1 = αn

Примечание: n – количество сторон/углов фигуры.

Элементы правильного многоугольника

Для рисунка выше:

  • a – сторона/ребро;
  • α – угол между смежными сторонами;
  • O – центр фигуры/масс (совпадает с центрами описанной и вписанной окружностей);
  • β – центральный угол описанной окружности, опирающийся на сторону многоугольника.

Диагонали n — угольника

Фигура Рисунок Описание
Диагональ
многоугольника
диагонали многоугольника Диагональю многоугольника называют отрезок, соединяющий две несоседние вершины многоугольника
Диагонали
n – угольника, выходящие из одной вершины
диагонали многоугольника Диагонали, выходящие из одной вершины
n – угольника, делят n – угольник на
n – 2 треугольника
Все диагонали
n – угольника
диагонали многоугольника Число диагоналейn – угольника равно
Диагональ многоугольника
диагонали многоугольника

Диагональю многоугольника называют отрезок, соединяющий две несоседние вершины многоугольника

Диагонали n – угольника, выходящие из одной вершины
диагонали многоугольника

Диагонали, выходящие из одной вершины n – угольника, делят n – угольник на n – 2 треугольника

Все диагонали n – угольника
диагонали многоугольника

Число диагоналей n – угольника равно

Внешний угол многоугольника

Определение 5 . Два угла называют смежными, если они имеют общую сторону, и их сумма равна 180° (рис.1).

Внешний угол многоугольника смежные углы

Рис.1

Определение 6 . Внешним углом многоугольника называют угол, смежный с внутренним углом многоугольника (рис.2).

Внешний угол многоугольника смежные углы

Рис.2

Замечание. Мы рассматриваем только выпуклые многоугольники выпуклые многоугольники .

Сумма внутренних углов

Сумма внутренних углов выпуклого многоугольника равна произведению  180°  и количеству сторон без двух.

s = 2d(n — 2),

где  s  — это сумма углов,  2d  — два прямых угла (то есть  2 · 90 = 180°),  а  n  — количество сторон.

Если мы проведём из вершины  A  многоугольника  ABCDEF  все возможные диагонали, то разделим его на треугольники, количество которых будет на два меньше, чем сторон многоугольника:

сумма внутренних углов многоугольника

Следовательно, сумма углов многоугольника будет равна сумме углов всех получившихся треугольников. Так как сумма углов каждого треугольника равна  180°  (2d),  то сумма углов всех треугольников будет равна произведению  2d  на их количество:

s = 2d(n — 2) = 180 · 4 = 720°.

Из этой формулы следует, что сумма внутренних углов является постоянной величиной и зависит от количества сторон многоугольника.

Сумма внешних углов

Сумма внешних углов выпуклого многоугольника равна  360°  (или  4d).

s = 4d,

где  s  — это сумма внешних углов,  4d  — четыре прямых угла (то есть 4 · 90 = 360°).

Сумма внешнего и внутреннего угла при каждой вершине многоугольника равна  180°  (2d),  так как они являются смежными углами. Например,  ∠1  и  ∠2:

Сумма внешних углов многоугольника

Следовательно, если многоугольник имеет  n  сторон (и  n  вершин), то сумма внешних и внутренних углов при всех  n  вершинах будет равна  2dn.  Чтобы из этой суммы  2dn  получить только сумму внешних углов, надо из неё вычесть сумму внутренних углов, то есть  2d(n — 2):

s = 2dn — 2d(n — 2) = 2dn — 2dn + 4d = 4d.

Виды правильных многоугольников

  1. Правильный (равносторонний) треугольник
  2. Правильный четырехугольник (квадрат)
  3. Правильный пяти-, шести-, n-угольник

Основные свойства правильного многоугольника

  • Все стороны равны:
    a1 = a2 = a3 = … = an-1 = an2. Все углы равны:
    α1 = α2 = α3 = … = αn-1 = αn3. Центр вписанной окружности Oв совпадает з центром описанной окружности Oо, что и образуют центр многоугольника O4. Сумма всех углов n-угольника равна:

180° · (n — 2)

  • Сумма всех внешних углов n-угольника равна 360°:

β1 + β2 + β3 + … + βn-1 + βn = 360°

  • Количество диагоналей (Dn) n-угольника равна половине произведения количества вершин на количество диагоналей, выходящих из каждой вершины:
  • В любой многоугольник можно вписать окружность и описать круг при этом площадь кольца, образованная этими окружностями, зависит только от длины стороны многоугольника:
  • Все биссектрисы углов между сторонами равны и проходят через центр правильного многоугольника O

Свойство 1

Внутренние углы в правильном многоугольнике (α) равны между собой и могут быть рассчитаны по формуле:

Формула расчета внутреннего угла правильного многоугольника

где n – число сторон фигуры.

Свойство 2

Сумма всех углов правильного n-угольника равняется: 180° · (n-2).

Свойство 3

Количество диагоналей (Dn) правильного n-угольника зависит от количества его сторон (n) и определяется следующим образом:

Формула расчета количества диагоналей правильного многоугольника

Свойство 4

В любой правильный многоугольник можно вписать круг и описать окружность около него, причем их центры будут совпадать, в том числе, с центром самого многоугольника.

В качестве примера на рисунке ниже изображен правильный шестиугольник (гексагон) с центром в точке O.

Площадь (S) образованного окружностями кольца вычисляется через длину стороны (a) фигуры по формуле:

Формула расчета площади кольца, образованного описанной и вписанной в правильный многоугольник окружностями

Между радиусами вписанной (r) и описанной (R) окружностей существует зависимость:

Зависимость между радиусами описанной и вписанной в правильный многоугольник окружностей

Свойство 5

Зная длину стороны (a) правильного многоугольника можно рассчитать следующие, относящиеся к нему величины:

  • Площадь (S):

Формула расчета площади правильного многоугольника через длину его стороны

  • Периметр (P):Формула расчета периметра правильного многоугольника через длину его стороны
  • Радиус описанной окружности (R):

Формула расчета радиуса описанной около правильного многоугольника окружности через длину его стороны

  • Радиус вписанной окружности (r):

Формула расчета радиуса вписанной в правильный многоугольник окружности через длину его стороны

Свойство 6

Площадь (S) правильного многоугольника можно выразить через радиус описанной/вписанной окружности:

Формула расчета площади правильного многоугольника через радиус вписанной в него окружности

Формула расчета площади правильного многоугольника через радиус описанной около него окружности

Доказательства свойств углов многоугольника

Теорема 1. В любом треугольнике сумма углов равна 180°.

Доказательство. Проведем, например, через вершину B произвольного треугольника ABC прямую DE, параллельную прямой AC, и рассмотрим полученные углы с вершиной в точке B (рис. 3).

Свойства углов треугольника доказательство

Рис.3

Углы ABD и BAC равны как внутренние накрест лежащие. По той же причине равны углы ACB и CBE. Поскольку углы ABD, ABC и CBE в сумме составляют развёрнутый угол, то и сумма углов треугольника ABC равна 180°. Теорема доказана.

Теорема 2. Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

Доказательство. Проведём через вершину C прямую CE, параллельную прямой AB, и продолжим отрезок AC за точку C (рис.4).

Свойства углов треугольника доказательство
Свойства углов треугольника доказательство

Рис.4

Углы ABC и BCE равны как внутренние накрест лежащие. Углы BAC и ECD равны как соответственные равны как соответственные . Поэтому внешний угол BCD равен сумме углов BAC и ABC. Теорема доказана.

Замечание. Теорема 1 является следствием теоремы 2.

Теорема 3. Сумма углов  – угольникаn равна

Доказательство. Выберем внутри n – угольника произвольную точку O и соединим её со всеми вершинами n – угольника (рис. 5).

Свойства углов многоугольника

Рис.5

Получим n треугольников:

OA1A2,  OA2A3,  …  OAnA1

Сумма углов всех этих треугольников равна сумме всех внутренних углов n – угольника плюс сумма всех углов с вершиной в точке O. Поэтому сумма всех углов n – угольника равна

что и требовалось доказать.

Теорема 4. Сумма внешних углов  – угольникаn , взятых по одному у каждой вершины, равна 360°.

Доказательство. Рассмотрим рисунок 6.

Свойства углов многоугольника

Рис.6

В соответствии рисунком 6 справедливы равенства

Теорема доказана.

Правильный n-угольник — формулы

Формулы длины стороны правильного n-угольника

  • Формула стороны правильного n-угольника через радиус вписанной окружности:
  • Формула стороны правильного n-угольника через радиус описанной окружности:

Формула радиуса вписанной окружности правильного n-угольника

Формула радиуса вписанной окружности n-угольника через длину стороны:

Формула радиуса описанной окружности правильного n-угольника

Формула радиуса описанной окружности n-угольника через длину стороны:

Формулы площади правильного n-угольника

  • Формула площади n-угольника через длину стороны:
  • Формула площади n-угольника через радиус вписанной окружности:
  • Формула площади n-угольника через радиус описанной окружности:

Формула периметра правильного многоугольника:

Формула периметра правильного n-угольника:

P = na

Формула определения угла между сторонами правильного многоугольника:

Формула угла между сторонами правильного n-угольника:

Изображение правильного треугольника с обозначениями
Рис.3

Формулы правильного треугольника:

  • Формула стороны правильного треугольника через радиус вписанной окружности:

a = 2r √3

  • Формула стороны правильного треугольника через радиус описанной окружности:

a = R√3

  • Формула радиуса вписанной окружности правильного треугольника через длину стороны:
  • Формула радиуса описанной окружности правильного треугольника через длину стороны:
  • Формула площади правильного треугольника через длину стороны:
  • Формула площади правильного треугольника через радиус вписанной окружности:

S = r2 3√3

  • Формула площади правильного треугольника через радиус описанной окружности:
  • Угол между сторонами правильного треугольника:

α = 60°

Изображение правильного четырехугольнику с обозначениями
Рис.4

Формулы правильного четырехугольника:

  • Формула стороны правильного четырехугольника через радиус вписанной окружности:

a = 2r

  • Формула стороны правильного четырехугольника через радиус описанной окружности:

a = R√2

  • Формула радиуса вписанной окружности правильного четырехугольника через длину стороны:
  • Формула радиуса описанной окружности правильного четырехугольника через длину стороны:
  • Формула площади правильного четырехугольника через длину стороны:

S = a2

  • Формула площади правильного четырехугольника через радиус вписанной окружности:

S = 4 r2

  • Формула площади правильного четырехугольника через радиус описанной окружности:

S =  2 R2

  • Угол между сторонами правильного четырехугольника:

α = 90°

Формулы правильного шестиугольника:

Формула стороны правильного шестиугольника через радиус вписанной окружности:

Формула стороны правильного шестиугольника через радиус описанной окружности:

a = R

Формула радиуса вписанной окружности правильного шестиугольника через длину стороны:

Формула радиуса описанной окружности правильного шестиугольника через длину стороны:

R = a

Формула площади правильного шестиугольника через длину стороны:

Формула площади правильного шестиугольника через радиус вписанной окружности:

S = r2 2√3

Формула площади правильного шестиугольника через радиус описанной окружности:

8. Угол между сторонами правильного шестиугольника:

α = 120°

Формулы правильного восьмиугольника:

Формула стороны правильного восьмиугольника через радиус вписанной окружности:

a = 2r · (√2 — 1)

Формула стороны правильного восьмиугольника через радиус описанной окружности:

a = R√2 — √2

Формула радиуса вписанной окружности правильного восьмиугольника через длину стороны:

Формула радиуса описанной окружности правильного восьмиугольника через длину стороны:

Формула площади правильного восьмиугольника через длину стороны:

S = a2 2(√2 + 1)

Формула площади правильного восьмиугольника через радиус вписанной окружности:

S = r2 8(√2 — 1)

Формула площади правильного восьмиугольника через радиус описанной окружности:

S = R2 2√2

Угол между сторонами правильного восьмиугольника:

α = 135°

Сторона правильного многоугольника через радиус описанной вокруг него окружности

Сторону правильного многоугольника через радиус описанной вокруг него окружности можно найти по формуле

Где:

a – длина его стороны;

R – радиус описанной окружности;

n – число сторон многоугольника.

Формула стороны правильного многоугольника

Шаг 1

Рассмотрим правильный многоугольник А1А2А3…Аn.

Пусть его сторона будет равна a.

Опишем вокруг этого многоугольника окружность с центром в точке О и радиусом R.

Вывод формулы стороны правильного многоугольника.

Шаг 2

Соединим точку О с его вершинами. А1А2А3…Аn.

Рассмотрим треугольник ОА1А2.

Рассматриваемый треугольник будет равнобедренным, так как его стороны А1О и А2О – радиусы описанной окружности.

Проведем в треугольнике А1ОА2 высоту ОК.

Так как треугольник А1ОА2 равнобедренный, то высота будет медианой:

Вывод формулы стороны правильного многоугольника.

Шаг 3

Рассмотрим треугольник А1КО.

Этот треугольник прямоугольный, так как ОК – высота по построению.

Так как точка О – центр правильного многоугольника, то отрезки АnO являются биссектрисами углов этого многоугольника.

Таким образом, если углы многоугольника обозначим буквой α, то угол ОА1К будет равен:

По свойству углов правильного многоугольника, каждый угол равен:

Тогда угол ОА1К будет равен:

Из определения косинуса угла получим:

Отсюда:

Подставим в формулу значения, полученные выше и на шаге 2:

Умножим обе части уравнения на 2:

Воспользуемся формулами приведения

Так как А1О является радиусом описанной окружности, то сторона правильного многоугольника может быть найдена по формуле:

Вывод формулы стороны правильного многоугольника.

Как найти число сторон выпуклого правильного многоугольника по сумме углов? Ответьте пожалуйста

Определи число сторон выпуклого правильного многоугольника или сделай вывод, что такой многоугольник не существует, если дана сумма всех внутренних углов (если многоугольник не существует, то вместо числа сторон пиши 0):<
2) Если сумма углов равна 2290, то многоугольник [не существует


Сумма внутренних углов правильного [выпуклого] n-угольника равна s=pi*(n-2) или, в градусах, S = 180*(n-2). Отсюда можно выразить n как

n = 2 + Sli>

  • Полигон с суммой углов, равной 2290 [градусам], не существует (по рекомендациям из условия задачи, этот случай формально приравнивается к случаю n=0).
  • Понравилась статья? Поделить с друзьями:
  • Как я нашла работу на английском
  • Мужчина близнец как найти к нему подход
  • Как найти все образующие элементы группы
  • Как найти скорость через время физика
  • Как составить задачу по уголовному кодексу