Как подбором найти корни уравнения 8 класс

  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Квадратные уравнения (8 класс)

    Уравнение называют квадратным, если его можно записать в виде (ax^2+bx+c=0), где (x) неизвестная, (a), (b) и (с) коэффициенты (то есть, некоторые числа, причем (a≠0)).

    В первом примере (a=3), (b=-26), (c=5). В двух других (a),(b) и (c) не выражены явно. Но если эти уравнения преобразовать к виду (ax^2+bx+c=0), они обязательно появятся.

    Коэффициент (a) называют первым или старшим коэффициентом, (b) – вторым коэффициентом, (c) – свободным членом уравнения.

    Виды квадратных уравнений

    Если в квадратном уравнении присутствуют все три его члена, его называют полным. В ином случае уравнение называется неполным.

    Как решать квадратные уравнения

    В данной статье мы рассмотрим вопрос решения полных квадратных уравнений. Про решение неполных — смотрите здесь .

    Итак, стандартный алгоритм решения полного квадратного уравнения:

    Преобразовать уравнение к виду (ax^2+bx+c=0).

    Выписать значения коэффициентов (a), (b) и (c).
    Пока не отработали решение квадратных уравнений до автоматизма, не пропускайте этот этап! Особенно обратите внимание, что знак перед членом берется в коэффициент. То есть, для уравнения (2x^2-3x+5=0), коэффициент (b=-3), а не (3).

    Вычислить значение дискриминанта по формуле (D=b^2-4ac).

    Решите квадратное уравнение (2x(1+x)=3(x+5))
    Решение:

    Теперь переносим все слагаемые влево, меняя знак.

    Уравнение приняло нужный нам вид. Выпишем коэффициенты.

    Найдем дискриминант по формуле (D=b^2-4ac).

    Найдем корни уравнения по формулам (x_1=frac<-b + sqrt><2a>) и (x_2=frac<-b — sqrt><2a>).

    Решите квадратное уравнение (x^2+9=6x)
    Решение:

    Тождественными преобразованиями приведем уравнение к виду (ax^2+bx+c=0).

    Найдем дискриминант по формуле (D=b^2-4ac).

    Найдем корни уравнения по формулам (x_1=frac<-b + sqrt><2a>) и (x_1=frac<-b — sqrt><2a>).

    В обоих корнях получилось одинаковое значение. Нет смысла писать его в ответ два раза.

    Решите квадратное уравнение (3x^2+x+2=0)
    Решение:

    Уравнение сразу дано в виде (ax^2+bx+c=0), преобразования не нужны. Выписываем коэффициенты.

    Найдем дискриминант по формуле (D=b^2-4ac).

    Найдем корни уравнения по формулам (x_1=frac<-b + sqrt><2a>) и (x_1=frac<-b — sqrt><2a>).

    Оба корня невычислимы, так как арифметический квадратный корень из отрицательного числа не извлекается.

    Обратите внимание, в первом уравнении у нас два корня, во втором – один, а в третьем – вообще нет корней. Это связано со знаком дискриминанта (подробнее смотри тут ).

    Также многие квадратные уравнения могут быть решены с помощью обратной теоремы Виета . Это быстрее, но требует определенного навыка.

    Пример. Решить уравнение (x^2-7x+6=0).
    Решение: Согласно обратной теореме Виета, корнями уравнения будут такие числа, которые в произведении дадут (6), а в сумме (7). Простым подбором получаем, что эти числа: (1) и (6). Это и есть наши корни (можете проверить решением через дискриминант).
    Ответ: (x_1=1), (x_2=6).

    Данную теорему удобно использовать с приведенными квадратными уравнениями, имеющими целые коэффициенты (b) и (c).

    Please wait.

    We are checking your browser. mathvox.ru

    Why do I have to complete a CAPTCHA?

    Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

    What can I do to prevent this in the future?

    If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

    If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

    Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

    Cloudflare Ray ID: 6e1af820ed733a83 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

    источники:

    http://cos-cos.ru/math/121/

    http://mathvox.ru/algebra/uravneniya-reshenie-uravnenii/glava-5-kvadratnie-uravneniya/podbor-kornei-kvadratnogo-uravneniya-pri-pomoschi-teoremi-vieta-primer-1/

    План урока:

    Целое уравнение и его степень

    Решение уравнений методом подбора корня

    Решение уравнений с помощью разложения многочлена на множители

    Графический метод решения уравнений

    Решение дробно-рациональных уравнений

    Целое уравнение и его степень

    Ранее мы уже изучали понятие целого выражения. Так называют любое выражение с переменной, в котором могут использоваться любые арифметические операции, а также возведение в степень. Однако есть важное ограничение – в целом выражении переменная НЕ может находиться в знаменателе какой-нибудь дроби или быть частью делителя. Также переменная не может находиться под знаком корня. Для наглядности приведем примеры целых выражений:

    х – 5;

    3 + 6а)(а – 5а2);

    (n3 + 7)/5 (в знаменателе находится только число, без переменной);

    1ytrty

    А вот примеры нецелых выражений:

    2fdfg

    Отличительной особенностью целых выражений является то, что в них переменная может принимать любое значение. В нецелых же выражениях возникают ограничения на значения переменной, ведь знаменатель дроби не должен равняться нулю, в выражение под знаком корня не должно быть отрицательным.

    Введем понятие целого уравнения.

    3gfdg

    Приведем примеры целых ур-ний:

    0,75х7 + 0,53х6 – 45х = 18

    4ffddsf

    Напомним, что в математике существует понятие равносильных уравнений.

    5gfdfg

    Когда мы решаем ур-ния, мы в каждой новой строчке записываем ур-ние, равносильное предыдущему. Для этого используются равносильные преобразования (перенос слагаемых через знак «=» с противоположным знаком, деление обоих частей равенства на одинаковые числа и т. д.).

    Можно доказать (мы этого делать не будем), что любое целое ур-ние можно возможно преобразовать так, чтобы получилось иное, равносильное ему ур-ние, где в левой части будет находиться многочлен, а справа – ноль. Для этого надо лишь раскрыть скобки и умножить ур-ние на какое-нибудь число, чтобы избавиться от дробей.

    Пример. Преобразуйте целое ур-ние

    6gfdg

    так, чтобы слева стоял многочлен, а справа – ноль.

    Решение. В ур-нии есть дроби со знаменателями 5 и 4. Если умножить обе части на 20 (это наименьшее общее кратное чисел 5 и 4), то дроби исчезнут:

    7hgfgh

    Теперь раскроем скобки:

    4(5х3 – 3х4 + 45х – 27х2) – 40 = 10х2 + 5х + 35

    20х3 – 12х4 + 180х – 108х2 – 40 = 10х2 + 5х + 35

    Осталось перенести все слагаемые влево и привести подобные слагаемые:

    20х3 – 12х4 + 180х – 108х2 – 40 – 10х2 – 5х – 35 = 0

    – 12х4 + 20х3 – 118х2 + 175х – 75 = 0

    Получили ур-ние в той форме, которую и надо было найти по условию.

    Ответ:– 12х4 + 20х3 – 118х2 + 175х – 75 = 0

    В математике любой полином можно обозначить как Р(х). Если ур-ние привели к тому виду, когда в одной части многочлен, а в другой ноль, то говорят, что получили ур-ние вида Р(х) = 0.

    8hgfh

    Получается, что решение целого уравнения всегда можно свести к решению равносильного ему ур-ния Р(х) = 0. Именно поэтому многочлены играют такую большую роль в математике

    Напомним, что степенью многочлена называется максимальная степень входящего в его состав одночлена. Это же число является и степенью целого уравнения Р(х) = 0, а также степенью любого равносильного ему целого ур-ния.

    9dfg

    Пример. Определите степень ур-ния

    3 – 5)(2х + 7) = 2х4 + 9

    Решение. Приведем ур-ние к виду Р(х) = 0. Для этого раскроем скобки:

    3 – 5)(2х + 7) = 2х4 + 9

    4 + 7х3 – 10х – 35 = 2х4 + 9

    Перенесем все слагаемые влево и приведем подобные слагаемые:

    4 + 7х3 – 10х – 35 – 2х4 – 9 = 0

    3 – 10х – 44 = 0

    Получили в левой части многочлен 3-ей степени. Следовательно, и исходное ур-ние имело такую же степень

    Ответ: 3

    Приведем примеры ур-ний первой степени:

    5х + 8 = 0

    9z– 6 = 0

    5,4568у + 0,0002145 = 0

    Все они являются линейными ур-ниями, метод их решения изучался ранее. Они имеют 1 корень.

    Приведем примеры ур-ний второй степени:

    6t2 + 98t – 52 = 0

    54у + 23у = 0

    12x2– 65 = 0

    Это квадратные ур-ния. У них не более двух действительных корней. Для их нахождения в общем случае надо вычислить дискриминант и использовать формулу

    10gdfgfdg

    Квадратные и линейные ур-ния умели решать ещё в Древнем Вавилоне 4 тысячи лет назад! А вот с ур-ния 3-ей степени (их ещё называют кубическими уравнениями) оказались значительно сложнее. Приведем их примеры:

    3 + 4х2 – 19х + 17 = 0

    у3 – 5у + 7 = 0

    Лишь в 1545 году итальянец Джералимо Кардано опубликовал книгу, в которой описывался общий алгоритм решения кубических ур-ний. Он достаточно сложный и не входит в школьный курс математики. Его ученик, Лодовико Феррари, предложил метод решения ур-ний четвертой степени. В качестве примера такого ур-ния можно привести:

    4 + 6х3 – 2х2 – 10х + 1 = 0

    Лишь в XIX веке было доказано, что для ур-ний более высоких степеней (5-ой, 6-ой и т. д.) не существует универсальных формул, с помощью которых можно было бы найти их корни.

    Отметим, что если степень целого ур-ния равна n, то у него не более корней (но их число может быть и меньше). Так, количество корней кубического уравнения не превышает трех, а у ур-ния 4-ой степени их не более 4.

    9 2 2

    Чтобы доказать это утверждение, сначала покажем способ составления уравнения Р(х) = 0, имеющего заранее заданные корни. Пусть требуется составить ур-ние, имеющее корни k1, k2,k3,…kn. Приравняем к нулю следующее произведение скобок:

    (х – k1)(х – k2)(х – k3)…(х – kn) = 0

    Составленное ур-ние имеет все требуемые корни и никаких других корней. Действительно, произведение множителей может равняться нулю только в случае, если хотя бы один из множителей нулевой. Поэтому для решения ур-ния

    (х – k1)(х – k2)(х – k3)…(х – kn) = 0

    надо каждую скобку приравнять к нулю:

    х – k1 = 0 или х – k2 = 0 или х – k3 = 0 или…х – kn = 0

    Перенесем второе слагаемое вправо в каждом равенстве и получим:

    х = k1 или х = kили х = k3 или…х = kn

    Чтобы вместо произведения скобок слева стоял многочлен, надо просто раскрыть скобки.

    Пример. Составьте уравнение в виде Р(х) = 0, имеющее корни 1, 2, 3 и 4.

    Запишем целое ур-ние, имеющее требуемые корни:

    (х – 1)(х – 2)(х – 3)(х – 4) = 0

    Будем поочередно раскрывать скобки, умножая 1-ую скобку на 2-ую, полученный результат на 3-ю и т.д.:

    2 – 3х + 2)(х – 3)(х – 4) = 0

    3 – 6х2 + 11х – 6)(х – 4) = 0

    х4 – 10х3 + 35х2 – 50х +24 = 0

    Получили ур-ние вида Р(х) = 0. Для проверки вычислений можно подставить в него числа 1, 2, 3 и 4 и убедиться, что они обращают ур-ние в верное равенство.

    Ответ: х4 – 10х3 + 35х2 – 50х +24 = 0

    Заметим, что в рассмотренном примере, когда мы перемножали многочлены, мы получали новый полином, чья степень увеличивалась на единицу. Мы перемножили 4 скобки (х – k1), а потому получили полином 4 степени. Если бы мы перемножали, скажем, 10 таких скобок, то и многочлен бы получился 10-ой степени. Именно поэтому ур-ние n-ой степени не более n корней.

    Действительно, предположим, что какое-то ур-ние n-ой степени имеет хотя бы (n + 1) корень. Обозначим эти корни как k1, k2,k3,…kn, kn+1 и запишем уравнение:

    (х – k1)(х – k2)(х – k3)…(х – kn)(х – kn+1) = 0

    Оно, по определению, равносильно исходному ур-нию, ведь оно имеет тот же набор корней. Слева записаны (n + 1) скобок, поэтому при их раскрытии мы получим полином степени (n + 1). Значит, и исходное ур-ние на самом деле имеет степень n + 1, а не n. Получили противоречие, которое означает, что на самом деле у уравнения n-ой степени не более n корней.

    Особо акцентируем внимание на том факте, что если корнями уравнения являются некоторые числа k1, k2,k3,…kn, то этому ур-нию равносильна запись (х – k1)(х – k2)(х – k3)…(х – kn) = 0

    12bgfhfgh

    Этот факт будет использован далее при решении ур-ний.

    Решение уравнений методом подбора корня

    Необязательно преобразовывать ур-ние, чтобы найти его корни. Одним из приемов решения целых уравнений является метод подбора корня. Ведь если надо доказать, что какое-то число – это корень ур-ния, достаточно просто подставить это число в ур-ние и получить справедливое равенство!

    Пример. Докажите, что корнями ур-ния

    х3 – 2х2 – х + 2 = 0

    являются только числа (– 1), 1 и 2.

    Решение. Подставим в ур-ние каждую из предполагаемых корней и получим справедливое равенство. При х = – 1 имеем:

    (– 1)3 – 2(– 1)2 – (– 1) + 2 = 0

    –1 – 2 + 1 + 2 = 0

    0 = 0

    При х = 1 получаем:

    13 – 2•12 – 1 + 2 = 0

    1 – 2 – 1 + 2 = 0

    0 = 0

    Наконец, рассмотрим случай, когда х = 2

    23 – 2•22 – 2 + 2 = 0

    8 – 8 – 2 + 2 = 0

    0 = 0

    Исходное ур-ние имеет 3-ю степень, поэтому у него не более 3 корней. То есть других корней, кроме (– 1), 1 и 2 , у него нет.

    Конечно, просто так подобрать корни довольно тяжело. Однако есть некоторые правила, которые помогают в этом. Для начала введем понятие коэффициентов уравнения.

    Понятно, что ур-ние Р(х) = 0 в общем виде можно записать так:

    а0xn + a1xn–1 + … + аn–1х + аn = 0

    Числа а0, а1, а2,…аnи называют коэффициентами уравнений.

    Например, для уравнения

    4 – 7х3 + 9х2 – х + 12 = 0

    коэффициенты равны

    а0 = 5

    а1 = – 7

    а2 = 9

    а3 = – 1

    а4 = + 12

    Если одна из слагаемых «пропущено» в уравнении, то считают, что коэффициент перед ним равен нулю. Например, в ур-нии

    х3 + 2х – 15 = 0

    нет слагаемого с буквенной частью х2. Можно считать, что ур-ние равносильно записи

    х3 + 0х2 + 2х – 15 = 0

    где слагаемое х2 есть, но перед ним стоит ноль. Тогда коэффициент а1 = 0.

    Для обозначения первого коэффициента а0 может использоваться термин старший коэффициент, а для последнего коэффициента аn – термин «свободный член» или «свободный коэффициент».

    Изучение коэффициентов ур-ния помогает быстрее подобрать корень. Существует следующая теорема:

    9 2 1

    Докажем это утверждение. Пусть m – это целый корень уравнения с целыми коэффициентами

    а0xn + a1xn–1 + … + аn–1х + аn = 0

    Тогда можно подставить туда число m и получить верное равенство:

    а0mn + a1mn–1 + … + аn–1m + аn = 0

    Поделим обе его части на m и получим

    а0mn–1 + a1mn–2 + … + аn–1 + аn/m = 0

    Справа – целое число (ноль), значит, и сумма чисел слева также целая. Все числа а0mn–1, a1mn–2, аn–1, очевидно, целые (так как и целыми являются и m, и все коэффициенты). Значит, и число аn/m должно быть целым. Но это возможно лишь в том случае, если m является делителем числа аn.

    Из доказанной теоремы следует, что при подборе корней ур-ния достаточно рассматривать только те из них, которые являются делителями свободного члена. При этом следует учитывать и отрицательные делители.

    Пример. Найдите целые корни уравнения

    4 – х3 – 9х2 + 4х + 4 = 0

    Решение. Все коэффициенты ур-ния – целые, а потому целый корень должен быть делителем свободного члена, то есть числа 4. Делителями четверки являются 1 и (– 1), 2 и (– 2), 4 и (– 4). Подставляя каждое из этих чисел в ур-ние, получим верные равенства только для чисел 1, 2 и (– 2):

    2•14 – 13 – 9•12 + 4•1 + 4 = 2 – 1 – 9 + 4 + 4 = 0

    2•24 – 23 – 9•22 + 4•2 + 4 = 32 – 8 – 36 + 8 + 4 = 0

    2•(– 2)4 – (– 2)3 – 9•(– 2)2 + 4(– 2) + 4 = 32 + 8 – 36 – 8 + 4 = 0

    Таким образом, только эти числа и могут быть целыми корнями ур-ния. Так как мы рассматриваем ур-ние 4 степени, то, возможно, у него помимо 3 целых корней есть ещё один дробный.

    Ответ: 1; 2; (– 2).

    Пример. Решите ур-ние

    0,5х3 + 0,5х + 5 = 0

    Решение. У ур-ния дробные коэффициенты. Умножим обе части равенства на 2 и получим ур-ние с целыми коэффициентами:

    0,5х3 + 0,5х + 5 = 0

    (0,5х3 + 0,5х + 5)•2 = 0•2

    х3 + х + 10 = 0

    Попытаемся подобрать целый корень ур-ния. Он должен быть делителем свободного члена, то есть десятки. Возможными кандидатами являются числа 1 и (– 1), 2 и (– 2), 5 и (– 5), 10 и (– 10). Подходит только корень х = – 2:

    (– 2)3 + (– 2) + 10 = – 8 – 2 + 10 = 0

    Обратим внимание, что в левой части ур-ния стоит сумма функций, возрастающих на всей числовой прямой: у = х3 и у = х + 10. Значит, и вся левая часть х3 + х + 10 монотонно возрастает. Это значит, что у ур-ния есть только один корень, и мы его нашли ранее подбором.

    Ответ: – 2

    Ещё быстрее можно узнать, является ли единица корнем уравнения.

    14gffdgdfg

    Докажем это. Подставим в ур-ние

    а0xn + a1xn–1 + … + аn–1х + аn = 0

    значение х = 1. Так как единица в любой степени равна самой единице, то получим:

    а01n + a11n–1 + … + аn–11 + аn = 0

    а0 + a1 + … + аn–1 + аn = 0

    Получили равенство, в котором слева стоит сумма коэффициентов, в справа – ноль. Если сумма коэффициентов действительно равна нулю, то равенство верное, а, значит, единица является корнем ур-ния.

    Пример. Укажите хотя бы 1 корень ур-ния

    499х10 – 9990х7 + 501х6 – 10х5 + 10000х4 – 1000 = 0

    Решение. Заметим, что при сложении коэффициентов ур-ния получается 0:

    499 – 9990 + 501 – 10 + 10000 – 1000 = (499 + 501 – 1000) + (10000 – 9990 – 10) = 0 + 0 = 0

    Следовательно, единица является его корнем.

    Ответ: 1.

    Решение уравнений с помощью разложения многочлена на множители

    Если в уравнении вида P(x) = 0в левой части удается выполнить разложение многочлена на множители, то дальше каждый из множителей можно отдельно приравнять к нулю.

    Пример. Решите ур-ние

    х4 – 16 = 0

    Решение. Степень х4 можно представить как (х2)2, а 16 – как 42. Получается, что слева стоит разность квадратов, которую можно разложить на множители по известной формуле:

    х4 – 16 = 0

    2 – 4)(х2 + 4) = 0

    Приравняем каждую скобку к нулю и получим два квадратных ур-ния:

    х2 – 4 = 0 или х2 + 4 = 0

    х2 = 4 или х2 = – 4

    Первое ур-ние имеет два противоположных корня: 2 и (– 2). Второе ур-ние корней не имеет.

    Ответ: 2 и (– 2).

    Предположим, что у ур-ния 3-ей степени есть 3 корня, и подбором мы нашли один из них. Как найти оставшиеся корни? Здесь помогает процедура, известная как «деление многочленов в столбик». Продемонстрируем ее на примере. Пусть надо решить ур-ние

    100х3 – 210х2 + 134х – 24 = 0

    Можно заметить, сумма всех коэффициентов ур-ния равна нулю:

    100 – 210 + 134 – 24 = 0

    Следовательно, первый корень – это 1.

    Предположим, что у исходного ур-нияР(х) = 0 есть 3 корня, k1, k2и k3. Тогда ему равносильно другое ур-ние

    (х – k1)(х – k2)(х – k3) = 0

    Мы нашли, что первый корень k1 = 1, то есть

    (х – 1)(х – k2)(х – k3) = 0

    Обозначим как P1(x) = 0 ещё одно ур-ние, корнями которого будут только числа kи k3. Очевидно, что корнями ур-ния

    (х – 1)•P1(x) = 0

    Будут числа 1, kи k3. Его корни совпадают с корнями исходного ур-ния, а потому запишем

    (х – 1)•P1(x) = 100х3 – 210х2 + 134х – 24

    Поделим обе части на (х – 1):

    15gfdfg

    Итак, если «поделить» исходное ур-ние на х – 1, то получим какой-то многочлен Р1(х), причем решением уравнения P1(x) = 0 будут оставшиеся два корня, k2и k3. Деление можно выполнить в столбик. Для этого сначала запишем «делимое» и «делитель», как и при делении чисел:

    16gfdg

    Смотрим на первое слагаемое делимого. Это 100х3. На какой одночлен нужно умножить делитель (х – 1), чтобы получился полином со слагаемым 100х3? Это 100х2. Действительно, (х – 1)100х2 = 100х3 – 100х2. Запишем слагаемое 100х2 в результат деления, а результат его умножения на делитель, то есть 100х3 – 100х2, вычтем из делимого:

    17ggfh

    18gfh

    Теперь вычтем из делимого то выражение, которое мы записали под ним. Слагаемые 100х3, естественно, сократятся:

    (100х3 – 210х2) – (100х3 – 100х2) = 100х3 – 210х2 – 100х3 + 100х2 = – 110х2

    19dfg

    Далее снесем слагаемое 134х вниз:

    20gdfg

    На какое слагаемое нужно умножить (х – 1), что получился полином со слагаемым (– 110х2). Очевидно, на (– 110х):

    (х – 1)(– 110х2) = –110х2 + 110х

    Запишем в поле «ответа» слагаемое (– 110х2), а под делимый многочлен – результат его умножения на (х – 1):

    21gfdg

    При вычитании из (–110х2 + 134х) полинома (–110х2 + 110х) остается 24х. Далее сносим последнее слагаемое делимого многочлена вниз:

    22gfgty

    Выражение х – 1 нужно умножить на 24, чтобы получить 24х – 24. Запишем в поле «ответа» число 24, а в столбике произведение 24(х –1) = 24х – 24:

    23gdfg

    В результате в остатке получился ноль. Значит, всё сделано правильно. С помощью деления столбиком мы смогли разложить полином 100х3 – 210х2 + 134х – 24 на множители:

    100х3 – 210х2 + 134х – 24 = (х – 1)(100х2 – 110х + 24)

    Теперь перепишем исходное ур-ние с учетом этого разложения:

    100х3 – 210х2 + 134х – 24 = 0

    (х – 1)(100х2 – 110х + 24) = 0

    Теперь каждую отдельную скобку можно приравнять нулю. Получим ур-ние х – 1 = 0, корень которого, равный единице, мы уже нашли подбором. Приравняв к нулю вторую скобку, получим квадратное ур-ние:

    100х2 – 110х + 24 = 0

    D =b2 – 4ас = (– 110)2 – 4•100•24 = 12100 – 9600 = 2500

    24gdfg

    Итак, мы нашли три корня ур-ния: 1; 0,3 и 0,8.

    В данном случае мы воспользовались следующим правилом:

    25gdfg

    Пример. Решите уравнение

    3 – 8х2 + 16 = 0

    Решение. Все коэффициенты целые, а потому, если у уравнения есть целый корень, то он должен быть делителем 16. Перечислим эти делители: 1, – 1, 2, – 2, 4, – 4, 8, – 8, 16, – 16. Из всех них подходит только двойка:

    2•23 – 8•22 + 16 = 16 – 32 + 16 = 0

    Итак, первый корень равен 2. Это значит, что исходный многочлен можно разложить на множители, один из которых – это (х – 2). Второй множитель найдем делением в столбик. Так как в многочлене 2х3 – 8х2 + 16 нет слагаемого с буквенной часть х, то искусственно добавим её:

    3 – 8х2 + 16 = 2х3 – 8х2 + 0х + 16

    Теперь возможно деление:

    26gfdfg

    Получили, что 2х3 – 8х2 + 16 = (х – 2)(2х – 4х – 8)

    С учетом этого перепишем исходное ур-ние:

    3 – 8х2 + 16 = 0

    (х – 2)(2х – 4х – 8) = 0

    х – 2 = 0 или 2х – 4х – 8 = 0

    Решим квадратное ур-ние

    D =b2 – 4ас = (– 4)2 – 4•2•(– 8) = 16 + 64 = 80

    27hgfgh

    В 8 классе мы узнали, что если у квадратного ур-ния ах2 + bx + c = 0 есть два корня, то многочлен ах2 + bx + c можно разложить на множители по формуле

    ах2 + bx + c = а(х – k1)(х – k2)

    где kи k2– корни квадратного ур-ния. Оказывается, такое же действие можно выполнять с многочленами и более высоких степеней. В частности, если у кубического ур-ния есть 3 корня k1, kи k3, то его можно разложить на множители по формуле

    ах3 +bx2 + cx + d = a(х – k1)(х – k2)(х – k3)

    Пример. Разложите на множители многочлен 2х3 – 4х2 – 2х + 4.

    Решение. Целые корни этого многочлена (если они есть), должны быть делителем четверки. Из всех таких делителей подходят три: 1, (– 1) и 2:

    2•13 – 4•12 – 2•1 + 4 = 2 – 4 – 2 + 4 = 0

    2•(– 1)3 – 4•(– 1)2 – 2•(– 1) + 4 = – 2 – 4 + 2 + 4 = 0

    2•23 – 4•22 – 2•2 + 4 = 16 – 16 – 4 + 4 = 0

    Значит, многочлен можно разложить на множители:

    3 – 4х2 – 2х + 4 = 2(х + 1)(х – 1)(х – 2)

    Возникает вопрос – почему перед скобками нужна двойка? Попробуем сначала перемножить скобки без ее использования:

    (х + 1)(х – 1)(х – 2) = (х2 – 1)(х – 2) = х3 – 2х2 – х + 2

    Получили не тот многочлен, который стоит в условии. Однако ур-ние

    х3 – 2х2 – х + 2 = 0

    имеет те же корни (1, 2 и (– 1)), что и ур-ние

    3 – 4х2 – 2х + 4 = 0

    Дело в том, что это равносильные ур-ния, причем второе получено умножением первого на два:

    2•(х3 – 2х2 – х + 2) = 2х3 – 4х2 – 2х + 4

    Надо понимать, что хотя ур-ния 2х3 – 4х2 – 2х + 4 = 0 и х3 – 2х2 – х + 2 = 0, по сути, одинаковы, многочлены в их левой части различны. Заметим, что при перемножении скобок (х – k1), (х – k2), (х – k3) и т.д. всегда будет получаться полином, у которого старший коэффициент равен единице. Поэтому, чтобы учесть этот самый коэффициент, надо домножить произведение скобок на него:

    3 – 4х2 – 2х + 4= 2•(х3 – 2х2 – х + 2) = 2(х + 1)(х – 1)(х – 2)

    Ответ: 2(х + 1)(х – 1)(х – 2).

    Графический метод решения уравнений

    Любое ур-ние с одной переменной можно представить в виде равенства

    у(х) = g(x)

    где у(х) и g(x) – некоторые функции от аргумента х.

    Построив графики этих функций, можно примерно найти точки их пересечений. Они и будут соответствовать корням уравнения.

    Пример. Решите графически уравнение

    х3 – х2 – 1 = 0

    Решение. Строить график уравнения х3 – х2 – 1 = 0 довольно сложно, поэтому перенесем слагаемое (– х2 – 1) вправо:

    х3 – х2 – 1 = 0

    х3 = х2 + 1

    Построим графики у = х3 и у = х2 + 1 (второй можно получить переносом параболы у = х2 на единицу вверх):

    28hgfgh

    Видно, они пересекаются в точке, примерно соответствующей значению х ≈ 1,4. Если построить графики уравнения более точно (с помощью компьютера), то можно найти, что х ≈ 1,46557.

    Ответ: х ≈ 1,46557

    Конечно, графический метод решения уравнений не является абсолютно точным, однако он помогает быстро найти примерное положение корня. Также с его помощью можно определить количество корней уравнения. В рассмотренном примере был только 1 корень.

    Пример. Определите количество корней уравнений

    а)х3 – х – 3 = 0

    б) х3 – 2х + 0,5 = 0

    Решение. Перенесем два последних слагаемых вправо в каждом ур-нии:

    а) х3 = х + 3

    б) х3 = 2х – 0,5

    Построим графики функций у = х3, у = х + 3 и у = 2х – 0,5:

    29gfdg

    30gfdg

    Видно, что прямая у = х + 3 пересекает график у = х3 в одной точке, поэтому у первого ур-ния будет 1 решение.Прямая у = 2х – 0,5 пересекает кубическую параболу в трех точках, а потому у второго ур-ния 3 корня.

    Ответ: а) один корень; б) три корня.

    Решение дробно-рациональных уравнений

    До этого мы рассматривали только целые ур-ния, где переменная НЕ находится в знаменателе какого-нибудь выражения. Однако, если в ур-нии есть выр-ние, содержащее переменную в знаменателе, или присутствует деление на выр-ние с переменной, то его называют дробно-рациональным уравнением.

    Приведем несколько примеров ур-ний, считающихся дробно-рациональными:

    31gfdgf

    С помощью равносильных преобразований любое дробно-рациональное ур-ние возможно записать в виде отношения двух полиномов:

    32gfdfg

    Дробь равна нулю лишь тогда, когда ее числитель равен нулю, а знаменатель – не равен. Таким образом, нужно сначала решить ур-ние Р(х) = 0 и потом проверить, что полученные корни не обращают полином Q(x) в ноль.

    Обычно для решения дробно-рациональных уравнений используют такой алгоритм:

    1) Приводят все дроби к единому знаменателю, умножают на него ур-ние и получают целое ур-ние.

    2) Решают полученное целое ур-ние.

    3) Исключают из числа корней те, которые обращают знаменатель хотя бы одной из дробей в ноль.

    Пример. Решите ур-ние

    33gfdhg

    Решение.

    Умножим обе части равенства на знаменатель 1-ой дроби:

    2 – 3х – 2 = х2(х – 2)

    Раскроем скобки и перенесем все слагаемые в одну сторону:

    2 – 3х – 2 = х3– 2х2

    х3 – 2х2 – 2х2 + 3х + 2 = 0

    х3 – 4х2 + 3х + 2 = 0

    У ур-ния могут быть только те целые корни, которые являются делителями двойки. Из кандидатов 1, – 1, 2 и – 2 подходит только двойка:

    23 – 4•22 + 3•2 + 2 = 8 – 16 + 6 + 2 = 0

    Нашли один корень, а потому исходный многочлен можно поделить в столбик на (х – 2):

    34gfdfg

    Получили, что х3 – 4х2 + 3х + 2 = (х – 2)(х2 – 2х – 1)

    Тогда ур-ние примет вид:

    (х – 2)(х2 – 2х – 1) = 0

    х – 2 = 0 или х2 – 2х – 1 = 0

    Решим квадратное ур-ние:

    D =b2 – 4ас = (– 2)2 – 4•1•(– 1) = 4 + 4 = 8

    35gfdfg

    Мы нашли все 3 корня кубического ур-ния. Теперь надо проверить, не обращают ли какие-нибудь из них знаменатели дроби в исходном ур-нии

    36gfdg

    в ноль. Очевидно, что при х = 2 знаменатель (х – 2) превратится в ноль:

    х – 2 = 2 – 2 = 0

    Это значит, что этот корень надо исключить из списка решений. Такой корень называют посторонним корнем ур-ния.

    Также ясно, что два остальных корня не обращают знаменатель в ноль, а потому они НЕ должны быть исключены из ответа:

    37sdfsdf

    Пример. Найдите все корни ур-ния

    38bfgh

    Решение. Если сразу привести выражение слева к общему знаменателю 4(х2 + х – 2)(х2 + х – 20), то получится очень длинное и неудобное выражение. Однако знаменатели довольно схожи, поэтому можно провести замену. Обозначим х2 + х как у:

    у = х2 + х

    Тогда уравнение примет вид

    39gdfg

    Приведем дроби к общему знаменателю 4(у – 2)(у – 20):

    40ffdg

    Знаменатель должен равняться нулю:

    4(у – 20) + 28(у – 2) + (у – 2)(у – 20) = 0

    4у – 80 + 28у – 56 + у2 – 20у – 2у + 40 = 0

    у2 + 10у – 96 = 0

    Решаем квадратное ур-ние:

    D =b2 – 4ас = (10)2 – 4•1•(– 96) = 100 + 384 = 484

    41gfdfg

    Получили, что у1 = – 16, а у2 = 6. Произведем обратную замену:

    у = х2 + х

    х2 + х = – 16 или х2 + х = 6

    х2 + х + 16 = 0 или х2 + х – 6 = 0

    Дискриминант 1-ого ур-ния отрицателен:

    D =b2 – 4ас = (1)2 – 4•1•(16) = 1– 64 = – 63

    А потому оно не имеет решений. Решим 2-ое ур-ние:

    D = b2 – 4ас = (1)2 – 4•1•(– 6) = 1+ 24 = 25

    42gfdg

    Нашли два корня: 2 и (– 3). Осталось проверить, не обращают ли они знаменатели дробей в ур-нии

    43gfdfg

    в ноль. Подстановкой можно убедиться, что не обращают.

    Ответ: – 3 и 2.

    При решении дробно-рациональных ур-ний может использоваться и графический метод.

    Пример. Сколько корней имеет уравнение

    44gfgh

    Решение. Построим графики функций у = х2 – 4 и у = 2/х:

    45gfdfg

    Видно, что графики пересекаются в 3 точках, поэтому ур-ние имеет 3 корня.

    Ответ: 3 корня.

    После того, как вы внимательно изучите, как решать квадратные уравнения обычным образом с помощью
    формулы для корней
    можно рассмотреть другой способ решения квадратных уравнений — с помощью теоремы Виета.

    Перед тем, как изучить теорему Виета, хорошо потренируйтесь в
    определении коэффициентов
    «a», «b» и «с» в квадратных уравнениях.
    Без этого вам будет трудно применить теорему Виета.

    Когда можно применить теорему Виета

    Не ко всем квадратным уравнениям имеет смысл использовать эту теорему.
    Применять теорему Виета имеет смысл только к приведённым квадратным уравнениям.

    Запомните!
    !

    Приведенное квадратное уравнение — это уравнение, в котором старший
    коэффициент «a = 1».
    В общем виде приведенное квадратное уравнение выглядит следующим образом:

    x2 + px + q = 0

    Обратите внимание, что разница с обычным общим видом
    квадратного уравнения «ax2 + bx + c = 0» в том, что в
    приведённом уравнении «x2 + px + q = 0» коэффициент
    «а = 1».

    Если сравнить приведенное квадратное уравнение «x2 + px + q = 0» с обычным общим видом квадратного
    уравнения «ax2 + bx + c = 0», то становится видно,
    что
    «p = b», а «q = c».

    Теперь давайте на примерах разберем, к каким уравнениям можно применять теорему Виета, а где это не целесообразно.

    Уравнение Коэффициенты Вывод
    x2 − 7x + 1 = 0
    • a = 1
    • p = −7
    • q = 1

    Так как «a = 1» можно использовать теорему Виета.

    3x2 − 1 + x = 0

    Приведем уравнение к общему виду:

    3x2 + x − 1 = 0

    • a = 3
    • p = 1
    • q = −1

    Так как «a = 3» не следует использовать теорему Виета.

    −x2 = −3 + 2x

    Приведем уравнение к общему виду:

    −x2 + 3 − 2x = 0
    −x2 − 2x + 3 = 0

    • a = −1
    • p = −2
    • q = 3

    Так как «a = −1» не следует использовать теорему Виета.

    Как использовать теорему Виета

    Теперь мы готовы перейти к самому методу Виета для решения квадратных уравнений.

    Запомните!
    !

    Теорема Виета для приведённых квадратных уравнений «x2 + px + q = 0» гласит
    что справедливо следующее:

    , где «x1» и «x2» — корни этого уравнения.

    Чтобы было проще запомнить формулу Виета, следует запомнить:
    «Коэффициент «p» —
    значит плохой, поэтому он берется со знаком минус».


    Рассмотрим пример.

    x2 + 4x − 5 = 0

    Так как в этом уравнении «a = 1», квадратное уравнение
    считается приведённым, значит, можно
    использовать метод Виета.
    Выпишем коэффициенты «p» и «q».

    • p = 4
    • q = −5

    Запишем теорему Виета для квадратного уравнения.

    x1 + x2 = 4
    x1 · x2 = −5

    Методом подбора мы приходим к тому, что корни уравнения
    «x1 = −5» и «x2 = 1». Запишем ответ.

    Ответ: x1 = −5; x2 = 1


    Рассмотрим другой пример.

    x2 + x − 6 = 0

    Старший коэффициент «a = 1» поэтому можно применять теорему Виета.

    x1 + x2 = 1
    x1 · x2 = −6

    Методом подбора получим, что корни уравнения
    «x1 = −3» и «x2 = 2». Запишем ответ.

    Ответ: x1 = −3; x2 = 2

    Важно!
    Галка

    Если у вас не получается решить уравнение с помощью теоремы Виета, не отчаивайтесь.
    Вы всегда можете решить любое квадратное уравнение, используя
    формулу для нахождения корней.


    Деление уравнение на первый коэффициент

    Рассмотрим уравнение, которое по заданию требуется решить, используя теорему Виета.

    2x2 − 16x − 18 = 0

    Сейчас в уравнении «a = 2»,
    поэтому перед тем, как использовать теорему Виета нужно сделать так, чтобы «a = 1».

    Для этого достаточно разделить все уравнение на «2».
    Таким образом, мы сделаем квадратное уравнение приведённым.

    2x2 − 16x − 18 = 0            | (:2)
    2x2(:2) − 16x(:2) − 18(:2) = 0
    x2 − 8x − 9 = 0

    Теперь «a = 1» и можно смело записывать формулу Виета и находить корни методом подбора.

    x1 + x2 = (−8)
    x1 · x2 = −9

    Методом подбора получим, что корни уравнения
    «x1 = 9» и «x2 = −1». Запишем ответ.

    Ответ: x1 = 9; x2 = −1


    Бывают задачи, где требуется найти не только корни уравнения, но и коэффициенты самого уравнения. Например, как в такой задаче.

    Корни «x1» и
    «x2» квадратного уравнения
    «x2 + px + 3 = 0» удовлетворяют
    условию «x2 = 3x1».
    Найти «p», «x1»,
    «x2»
    .

    Запишем теорему Виета для этого уравнения.

    По условию дано, что
    «x2 = 3x1».
    Подставим это выражение в систему вместо «x2».

    x1 + 3x1 = −p
    x1 · 3x1 = 3

    Решим полученное квадратное уравнение «x12 = 1»
    методом подбора и найдем «x1».

       x12 = 1

    • (Первый корень) x1 = 1
    • (Второй корень) x1 = −1

    Мы получили два значения «x1».
    Для каждого из полученных значений найдем «p» и запишем все полученные результаты в ответ.

    (Первый корень) x1 = 1

    Найдем
    «x2»


    x1 · x2 = 3
    1 · x2 = 3
    x2 = 3


    Найдем «p»


    x1 + x2 = −p
    1 + 3 = −p
    4 = −p
    p = −4;

    (Второй корень) x1 = −1

    Найдем «x2»


    x1 · x2 = 3
    −1 · x2 = 3
                     −x2 = 3         | ·(−1)
    x2 = −3

    Найдем «p»


    x1 + x2 = −p
    −1 + −3 = −p
    −4 = −p
    p = 4

    Ответ: (x1 = 1; x2 = 3; p = −4)     и    
    (x1 = −1; x2 = −3; p = 4)


    Теорема Виета в общем виде

    В школьном курсе математики теорему Виета используют только для приведённых уравнений,
    где старший коэффициент «a = 1», но, на самом деле, теорему Виета можно применить к любому квадратному уравнению.

    В общем виде теорема Виета для квадратного уравнения выглядит так:

    Убедимся в правильности этой теоремы на примере. Рассмотрим неприведённое квадратное уравнение.

    3x2 + 3x − 18 = 0

    Используем для него теорему Виета в общем виде.

    x1 + x2 = −1
    x1 · x2 = −6

    Методом подбора получим, что корни уравнения
    «x1 = −3» и «x2 = 2». Запишем ответ.

    Ответ: x1 = −3; x2 = 2

    В заданиях школьной математики мы не рекомендуем использовать теорему Виета в общем виде.

    Другими словами, реальную пользу теорема Виета приносит только для приведённых квадратных уравнений, в
    которых «a = 1».
    Именно в таких случаях она не усложняет жизнь, а позволят без дополнительных расчетов быстро найти корни.


    Ваши комментарии

    Важно!
    Галка

    Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

    «ВКонтакте».

    Пришелец пожимает плечами

    Оставить комментарий:


    Решение квадратных уравнений

    6 июля 2011

    Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

    Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

    Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

    1. Не имеют корней;
    2. Имеют ровно один корень;
    3. Имеют два различных корня.

    В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

    Дискриминант

    Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

    Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

    1. Если D < 0, корней нет;
    2. Если D = 0, есть ровно один корень;
    3. Если D > 0, корней будет два.

    Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

    Задача. Сколько корней имеют квадратные уравнения:

    1. x2 − 8x + 12 = 0;
    2. 5x2 + 3x + 7 = 0;
    3. x2 − 6x + 9 = 0.

    Выпишем коэффициенты для первого уравнения и найдем дискриминант:
    a = 1, b = −8, c = 12;
    D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

    Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
    a = 5; b = 3; c = 7;
    D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

    Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
    a = 1; b = −6; c = 9;
    D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

    Дискриминант равен нулю — корень будет один.

    Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

    Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

    Корни квадратного уравнения

    Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

    Формула корней квадратного уравнения

    Основная формула корней квадратного уравнения

    Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

    Задача. Решить квадратные уравнения:

    1. x2 − 2x − 3 = 0;
    2. 15 − 2xx2 = 0;
    3. x2 + 12x + 36 = 0.

    Первое уравнение:
    x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
    D = (−2)2 − 4 · 1 · (−3) = 16.

    D > 0 ⇒ уравнение имеет два корня. Найдем их:

    Решение простого квадратного уравнения

    Второе уравнение:
    15 − 2xx2 = 0 ⇒ a = −1; b = −2; c = 15;
    D = (−2)2 − 4 · (−1) · 15 = 64.

    D > 0 ⇒ уравнение снова имеет два корня. Найдем их

    [begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]

    Наконец, третье уравнение:
    x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
    D = 122 − 4 · 1 · 36 = 0.

    D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

    [x=frac{-12+sqrt{0}}{2cdot 1}=-6]

    Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

    Неполные квадратные уравнения

    Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

    1. x2 + 9x = 0;
    2. x2 − 16 = 0.

    Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

    Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

    Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

    Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

    Решение неполного квадратного уравнения

    Решение неполного квадратного уравнения

    Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

    1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
    2. Если же (−c/a) < 0, корней нет.

    Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

    Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

    Разложение уравнения на множители

    Вынесение общего множителя за скобку

    Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

    Задача. Решить квадратные уравнения:

    1. x2 − 7x = 0;
    2. 5x2 + 30 = 0;
    3. 4x2 − 9 = 0.

    x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

    5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

    4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

    Смотрите также:

    1. Теорема Виета
    2. Следствия из теоремы Виета
    3. Тест на тему «Значащая часть числа»
    4. Метод коэффициентов, часть 1
    5. Однородные тригонометрические уравнения: общая схема решения
    6. Задача B4: строительные бригады

             Теорема Виета в квадратных уравнениях — штука простая и очень-очень важная. Позволяет делать массу полезных вещей буквально в уме. Имеет смысл познакомиться и освоить, правда? Тем более это совсем просто. Сомневаетесь? Напрасно.) Сами увидите. Читаем дальше.

    Что такое приведённое квадратное уравнение? Складываем и перемножаем корни…

            Знакомство наше начнём с безобидного уравнения:

            

            Обычное квадратное уравнение, ничего выдающегося. Коэффициенты a, b и c здесь следующие:

            a = 1; b = -4; c = 3

            Решаем тоже как обычно, безо всяких фокусов, через дискриминант и получаем два корня:

            

            Уравнение как уравнение — и что с того? Ничего, сейчас интересно будет!)

            Первым делом я возьму корни нашего уравнения и… сложу их.) Зачем? Так надо!

            Итак:

            

            Теперь проделаю ещё одну бесполезную (казалось бы!) штуку. Перемножу корни:

            

            Ну сложил, ну перемножил — и что? Спокойствие и терпение!

            Выпишем ещё разок само уравнение, а прямо под ним напишем сумму и произведение корней:

            

            И посмотрим на нашу запись. Внимательно посмотрим… Ничего не бросается в глаза? Ведь многие важные открытия в математике совершались на основе хорошей наблюдательности, между прочим! Не видите…

            А вот так?)

            

            Да! Сумма корней нашего квадратного уравнения равна коэффициенту b. Но, обратите внимание, не просто b, а с противоположным знаком! В уравнении коэффициент при икс (а это и есть буковка b) равен минус четыре. Сумма же корней даёт плюс четыре. То есть, b.

            А произведение корней даёт нам свободный член! Т.е. буковку c. Даёт со своим знаком! Как была в уравнении тройка (с=3), так в произведении корней тройкой же и осталась.)

            Теперь я немного изменю уравнение. Поменяю в нём свободный член с тройки на четвёрку. Вот такое уравнение теперь решим:

            

            Решаем точно так же, через дискриминант (здесь он равен нулю), и получаем единственное решение x=2.

            Но мы с вами люди уже достаточно взрослые и понимаем, что это не один корень, а два одинаковых:

            x1,2 = 2

            Поэтому снова сосчитаем сумму и произведение корней:

            

            И опять в сумме мы получили b (-b=+4), а в произведении с (c=+4)!

            А вот это уже крайне важно! Оказывается, такая забавная штука будет получаться всегда для любого квадратного уравнения! Если оно имеет корни, разумеется.) Правда, уравнения не какого попало, а такого, где квадрат икса чистый (т.е. коэффициент a=1). В математике такие квадратные уравнения имеют своё особое название — приведённые квадратные уравнения.

            Запоминаем:

            Квадратное уравнение, в котором коэффициент при х2 равен единице (а=1), называется приведённым квадратным уравнением. Весьма важная штука!    

            Как оно выглядит в общем виде? Очень просто. Подставим в общий вид квадратного уравнения

            

            единичку вместо а и получим общий вид приведённого квадратного уравнения:

            

            В некоторых учебниках коэффициенты b и с переобозначают другими буквами (чаще всего p и q) и получают вот такой общий вид

            

            Но суть та же самая. Как говорится, хоть горшком назови… Лично я предпочитаю использовать традиционные буквы b и с. Для универсальности.)

            Ну и что из этого? — спросите вы. Чем приведённые квадратные уравнения так выделяются на фоне остальных квадратных, неприведённых? А дело вот в чём.

    Что такое теорема Виета?

            Итак, мы выяснили, что в приведённом квадратном уравнении (любом!) сумма коэффициентов равна b, а произведение равно с. Всегда. Ясное дело, если дискриминант неотрицательный и корни у уравнения имеются.

            Математически эта фишка записывается вот так:

            

            Этот любопытный факт — и есть теорема Виета! Собственной персоной.

            А словами она звучит вот как:

            Теорема Виета:

            Если ПРИВЕДЁННОЕ квадратное уравнение имеет корни, то их сумма равна коэффициенту при икс, взятому с противоположным знаком (b), а их произведение равно свободному члену (c).

            Вот и всё, никаких премудростей.)

            Хотите строгое доказательство? Пожалуйста! Флаг вам в руки!) Распишите общую формулу корней квадратного уравнения для a=1, составьте сумму и произведение корней в общем виде. Т.е. через буквы. И упростите. Попробуйте! Весьма полезно и познавательно, между прочим.)

            Верна также и обратная теорема:

            Если числа х1 и х2 таковы, что их сумма равна –b, а произведение равно c, то эти числа являются корнями приведённого квадратного уравнения x2 + bx + c = 0.

            А по секрету скажу вам, что, на самом деле, именно обратной теоремой вы и пользуетесь, так умело подбирая в уме корни уравнения по сумме и произведению! Об этом подборе как раз дальше будет.)

    Зачем нужна теорема Виета?

            Полезная вещь первая — подбираем корни в уме!

            Теорема Виета (обратная форма) позволяет искать корни многих квадратных уравнений гораздо быстрее и проще, чем традиционным путём через дискриминант. В буквальном смысле устно!

            Вернёмся к нашему уравнению:

            

            Теперь, вооружившись глубокими познаниями, прямо по теореме Виета, записываем системку для наших искомых корней:

            

            Вопрос на сообразительность: какие же такие два числа в сумме дают четвёрку, а в произведении — тройку? Немного подумав головой, можно довольно быстро догадаться, что это чиселки 1 и 3.

            Значит, можно смело записать:

            x1 = 1

            x2 = 3

            Вот и всё. Это и будут корни нашего уравнения. Оба подходят.) Здорово, правда? И не нужно считать никаких дискриминантов, возиться с общей формулой корней. В которой, между прочим, можно и ошибок наляпать… Сразу, в уме, получен верный ответ!

            Возможно, кто-то уже приготовил мне вопрос. Очень грамотный вопрос, кстати. А всегда ли в случае приведённого квадратного уравнения можно вот так красиво и легко подобрать корни?

            К сожалению, нет. Далеко не всегда. Например, я снова изменю в исходном уравнении свободный член, только вместо четвёрки напишу двойку. Вот такое уравнение пусть будет:

            

            Уравнение приведённое, коэффициент а равен единичке, вроде бы, всё нормально. Пишем теорему Виета:

            

            И снова пробуем подобрать иксы так, чтобы оба равенства сработали!

            Гм… Что-то не подбирается, правда? Какие бы целые числа вы бы ни подбирали, ничего не выйдет.

            Тут выход только один — решать через дискриминант. Ибо дискриминант — штука универсальная. Спасает всегда — и в приведённых уравнениях, и в обычных. Попробуйте. И вы убедитесь, что корни этого уравнения получаются иррациональными. Естественно, такие корни подобрать в уме несколько затруднительно, да…

            Догадываюсь, что вы сейчас спросите: Зачем же нам тогда городить огород, пробовать подобрать корни, если дискриминант всё равно надёжнее и с ним-то уж точно всё решится?

            Да, надёжнее, но… Не всё так просто, как кажется!

            Дело всё в том, что квадратные уравнения изучаются в 8-м классе, где народ тренируется на простых (иногда — совсем примитивных) задачках. И… привыкает к простоте.) Затем, в старших классах и особенно в институте, при изучении высшей математики, квадратные уравнения представляются как нечто само собой разумеющееся. Но при этом в коэффициентах зачастую возникают такие большие числа, что работать с ними большинство учеников… просто не готовы!

            Попадётся вам, к примеру, такая задачка:

            Из пункта А в пункт В, расстояние между которыми 75 км, одновременно выехали автомобилист и велосипедист. Известно, что в час автомобилист проезжает на 82 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 3 часа 25 минут позже автомобилиста. Ответ дайте в км/ч.

            Это не моя разыгравшаяся фантазия, а вполне реальная задачка из ЕГЭ, между прочим.)

            Кто в курсе, как решать текстовые задачи на движение, тот без труда составит вот такое уравнение:

            

            Классическое дробно-рациональное уравнение. Здесь х — скорость велосипедиста. Немного повозившись с ним (избавившись от дробей и упростив всё до упора), получим вот такое квадратное уравнение:

            

            Если начать решать это уравнение по-рабочекрестьянски, то получим, что дискриминант у него равен аж 13924! И… что? Как нам из такого здоровенного числа корень извлекать? Без калькулятора! Слабо? То-то…

            Зато через теорему Виета это злое уравнение решается практически устно! Не верите? Что ж, смотрите сами…

            Записываем сумму и произведение корней:

            

            Осталось лишь догадаться, какие же числа дают в сумме минус 82, а в произведении минус 1800. Совсем чуточку подумав, довольно быстро получим, что:

            

            Минус сто, ясное дело, нас не интересует (скорость не бывает отрицательной), а вот 18 км/ч — вполне себе правдоподобная велосипедная скорость.)

            Вот и все дела.) И без долгих и утомительных вычислений, связанных с извлечением корня из пятизначного числа! Здорово, правда?

            Посему, первые практические советы:    

            1. Если перед вами квадратное уравнение приведённого вида, то первым делом пробуем найти корни подбором. По теореме, ОБРАТНОЙ теореме Виета. В подавляющем большинстве заданий это срабатывает.

            2. Не боимся уравнений с большими коэффициентами! Самое главное — не бросаемся считать дискриминант! Как правило, корни таких уравнений также довольно легко ищутся подбором.

            Может, конечно, и не повезти, но зачем же такой шанс упускать, правда?)

            Но есть у меня для вас хорошая новость.) Составители большинства заданий — люди гуманные.) И стараются составить уравнение так, чтобы корни являлись целыми числами и их легко можно было бы подобрать. Пробуем делать это!

            Переходим к следующей полезной вещи.

            Полезная вещь вторая — проверяем корни!

            Теорему Виета можно применять не только для подбора корней, но и для проверки корней, найденных другим способом (через дискриминант, например). Решили уравнение — проверьте сумму и произведение корней! Всё срослось — значит, верно. Нет — значит, где-то накосячили. Ищите ошибку.)

            Например, такое уравнение:

            

            Дело нехитрое. Решаем себе через дискриминант, всё чин-чином, получаем корни:

            x1 = -7

            x2 = -3

            Не бросаемся сразу же радостно писать ответ! Знаете поговорку доверяй, но проверяй?) Вот и не ленимся. Первым делом сложим наши корни:

            

            Получили -10. Обратите внимание, не десять, а минус десять! Коэффициент b с противоположным знаком. Так уж теорема Виета устроена.)

            Последняя (и окончательная) проверка — перемножим корни. Должен получиться свободный член:

            

            Вот теперь всё хорошо.)

            Более того, с этой благородной целью (проверка корней) теорему Виета можно применять и для неприведённых квадратных уравнений. Для любых. Да-да, я не шучу! Но эту фишку я оставлю на конец урока. На десерт.)

            И что, думаете, только для подбора и проверки корней теорема Виета и нужна? Вовсе нет!

            Полезная вещь третья — когда корни считать… не надо!

            Вы спросите, а разве можно обойтись и вовсе без вычисления корней? Можно! Ещё как!)

            Дискриминант — штука, безусловно, удобная, простая и понятная. С ним, как правило, всё легко и предсказуемо. Но… Может получиться какой-нибудь дурацкий дискриминант: 17 там, скажем, или 20. Что неизбежно приводит к появлению иррациональных корней, да…) А уж если в задании надо ещё что-то делать с корнями, то выражения с радикалами, даже для опытного ученика, могут перерасти в большую проблему. А для неопытного — вообще превратиться в полный ахтунг.

            Но теорема Виета иногда способна на настоящие чудеса!

            Например, такое задание:

            Дано квадратное уравнение:

            

            Найдите сумму квадратов корней, не находя самих корней.

            Если сейчас начать решать это задание «в лоб» — считать дискриминант и искать корни уравнения по общей формуле, то получим вот таких двух красавцев:

            

            Нам нужна сумма их квадратов. И что нам теперь с такими лохматыми числами делать?! Возводить в квадрат, складывать… Нет, возвести и сложить можно, конечно, но… не каждый ученик дорешает до конца это задание без ошибок!

            Не отчаиваемся и читаем ещё раз условие. Обратите внимание, нам вообще НЕ сказано «решать уравнение», НЕ сказано «находить корни». Более того, нам прямым текстом говорится: «Найти сумму квадратов корней, не находя самих корней«.

            Что делать? Как выкручиваться без поиска корней?

            Посмотрим ещё раз на уравнение. Приведённое, между прочим.) Раз так, то, стало быть, для него справедлива теорема Виета!

            Можно смело записать:

            

            Вот так. Сумма корней — тройка, а произведение — единичка. Мы не знаем, чему равны сами эти корни, но у нас это и не спрашивают. Нас просят найти только сумму их квадратов.)

            А вот теперь ключевой вопрос: А можно ли как-то расписать нужную нам сумму квадратов корней через сумму и произведение корней?

            Да, можно! Кто на «ты» с формулами сокращённого умножения (а именно — с формулой квадрата суммы), тот, скорее всего, даже не заметит проблем.

            Пишем:

            

            Как я додумался до этого равенства? Очень просто. Вспомнил, что в формуле квадрата суммы сидят сумма квадратов и удвоенное произведение:

            

            И выразил нужную величину (сумму квадратов) через остальные — сумму (т.е. квадрат суммы) и произведение (удвоенное).

            Вот и всё, практически. Осталось лишь подставить тройку вместо суммы и единицу вместо произведения корней, да и посчитать, что получится:

            

            Ответ: 7  

            И все дела.) И корни не понадобились! Вообще.) Мощная штука — теорема Виета! Ну и формулы сокращённого умножения, само собой.)

            Этот приём — выражение какой-то сложной конструкции через сумму и произведение корней — очень популярен в заданиях на теорему Виета! Я уж молчу про более серьёзные задания. Например, задачи с параметрами, там этот финт ушами используется на полную катушку.)

            Запоминаем:

            В серьёзных заданиях на сумму и произведение корней пользуемся формулами сокращённого умножения и алгеброй 7-го класса! Здорово помогает.)

            Как работать с неприведёнными уравнениями?

            Как известно, самое сладкое — в конце трапезы. Обещанный десерт.)

            Во всех примерах этого урока мы работали лишь с приведёнными квадратными уравнениями. Такими, у которых коэффициент при квадрате икса — единичка. А если уравнение не является приведённым? Т.е. а≠1? Что тогда? Про теорему Виета можно забыть?

            Нет, забывать мы не будем. Мы поступим мудро и красиво. Раз уравнение не является приведённым, то мы его… сделаем! Как? Очень просто! Берём квадратное уравнение в общем виде:

            

            и… делим обе части на «а»! Очищаем квадрат икса от коэффициента. Можно ли так делать? Конечно! Мы ведь с вами уже в курсе, что a никогда не бывает равно нулю (а≠0). Иначе уравнение будет не квадратным, а линейным. Вот и делим смело. Это совершенно безопасно. Естественно, все остальные слагаемые тоже придётся поделить на а, от этого никак не отвертишься.

            Получим:

            

            Вот и всё. Уравнение стало приведённым. Коэффициенты, правда, дробными стали, но тут уж ничего не поделать, да…) В этом новом уравнении в роли нового «b« выступает дробь b/a, а в роли нового свободного члена — дробь c/a. Можно записывать теорему Виета:

            

            Вот так. Такая модифицированная запись теоремы Виета — более общая. Для любых квадратных уравнений годится — как приведённых (а=1), так и обычных (а≠1). С той лишь разницей, что при а=1 знаменатели исчезают — и теорема обретает свой привычный вид.

            Имеет смысл запомнить эту общую форму записи: и для банальной проверки корней пригодится, и, опять же, для более солидных заданий на квадратные уравнения.

            Например, надо решить уравнение:

            

            Решаем, получаем корни:

            

            Предположим, вам захотелось проверить, правильно ли вы нашли ваши иксы. Для этого, знамо дело, их надо подставить в исходное уравнение и посчитать результат. Но корни — дробные. Подставлять да считать долго и муторно…

            Как проверить корни быстро и с минимумом вычислений? Не проблема! Записываем обобщённую теорему Виета для а=6:

            

            И работаем. Складываем корни:

            

            Так, по сумме всё проходит. Осталось перемножить:

            

            И тут полный порядок! Значит, всё правильно.)

            Очередной практический совет:

            Найденные корни стараемся проверять! По сумме и произведению. Это здорово уменьшает количество ошибок при решении квадратных уравнений. Если уравнение не является приведённым, то для проверки пользуемся соответствующей модифицированной теоремой Виета.

            Итак, мы с вами выяснили, что теорема Виета — штука простая. И очень полезная. И это не только трафаретное решение квадратных уравнений! В ВУЗе, при работе со всякими там пределами, интегралами, дифференциальными уравнениями и прочими прелестями высшей математики, вы ещё не раз вспомните добрым словом знаменитого французского математика с его теоремой.)

            Ну что, порешаем?

            1. Найдите подбором корни уравнений:

            

            Ответы (в беспорядке):

            

            2. Сумма катетов прямоугольного треугольника равна 23 см, а гипотенуза равна 17 см. Найдите больший катет треугольника.

            3. Разность корней уравнения 2х2 — 5х + с = 0  равна 1,5. Найдите с.

            4. Дано уравнение: x2 — 6x + 4 = 0. Не решая уравнения, найдите сумму кубов его корней.

            5. Известно, что х1 и х2 — корни уравнения х2-18х+11 = 0.

            Найдите значение выражения:

            

            Ответы (в беспорядке):

            144; 15; -1; 1

            Всё сошлось? Рад за вас! Значит, отныне теорема Виета — не ваша очередная головная боль, а новый надёжный друг и помощник при решении уравнений (и не только квадратных, между прочим!).

            Задания 4 и 5 не идут? Корни иррациональные получаются? Это специально.) Да и не нужны они вам… Да, есть там одна загвоздочка. Но алгебра седьмого класса и действия с дробями вам помогут! И этот урок, само собой. И всё получится.)

    Понравилась статья? Поделить с друзьями:
  • Как найти орган статистики по инн
  • Как исправить ошибку видео карты
  • Как найти все четные числа в экселе
  • Как найти потерянный телефон apple
  • Как исправить злого мужа