Как решить по периметру параллелограмма найти диагональ

Есть параллелограмм ABCD. Его периметр 50. Провели диагональ BD. Угол ADB прямой. Разность сторон AB и BC равна 3. Найти диагональ BD параллелограмма ABCD.

формула 1

$ AB-BC=3 $

рисунок 1

рисунок 1

Оцените сложность задачи:

0 голосов, средняя сложность: 0.0000

Решения задачи

Данные задачи: параллелограмм ABCD

Периметр P 50
Угол ADB прямой
Разность сторон AB и BC 3
Диагональ BD ?

Периметр параллелограмма ABCD

$ P = 2 AB +2 BC $

Но

$ AB — BC = 3 $

Откуда

$ AB = 3 + BC $

Тогда

$ P = 2 (3 + BC) + 2BC = 50 $

Откуда

$ BC = frac{50-6}{4} = frac{27}{2} $

и

$ AB = 3 + BC = 3 + frac{27}{2} = frac{33}{2} $

Из треугольника ABD по теореме Пифагора находим

$ BD = sqrt{(AB)^{2}-(BC)^{2}} = 3sqrt{10} $

Чтобы предложить решение пожалуйста войдите или зарегистрируйтесь

Найди верный ответ на вопрос ✅ «Как найти диагональ параллелограмма если известен периметр параллелограма и периметр треугольника периметр параллелограма-10 см периметр …» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Главная » Математика » Как найти диагональ параллелограмма если известен периметр параллелограма и периметр треугольника периметр параллелограма-10 см периметр треугольника-8 см найти диогональ

Вася Иванов

Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

3. Геометрия на плоскости (планиметрия). Часть I


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Параллелограмм и его свойства

Сумма внутренних углов любого четырехугольника равна (360^circ).

Свойства параллелограмма:

(blacktriangleright) Противоположные стороны попарно равны;

(blacktriangleright) Диагонали точкой пересечения делятся пополам;

(blacktriangleright) Противоположные углы попарно равны, а сумма соседних равна (180^circ).

Признаки параллелограмма.
Если для выпуклого четырехугольника выполнено одно из следующих условий, то это – параллелограмм:

(blacktriangleright) если противоположные стороны попарно равны;

(blacktriangleright) если две стороны равны и параллельны;

(blacktriangleright) если диагонали точкой пересечения делятся пополам;

(blacktriangleright) если противоположные углы попарно равны.

Площадь параллелограмма

Площадь параллелограмма равна произведению высоты на основание, к которому проведена эта высота.


Задание
1

#1783

Уровень задания: Легче ЕГЭ

Периметр параллелограмма равен (100), его большая сторона равна (32). Найдите меньшую сторону параллелограмма.

Так как у параллелограмма противоположные стороны равны, то его периметр равен удвоенной сумме его непараллельных сторон, тогда сумма большей и меньшей сторон равна (100 : 2 = 50), значит, меньшая сторона параллелограмма равна (50 — 32 = 18).

Ответ: 18


Задание
2

#1784

Уровень задания: Равен ЕГЭ

Периметр параллелограмма равен (15). При этом одна сторона этого параллелограмма на (5) больше другой. Найдите меньшую сторону параллелограмма.

У параллелограмма противоположные стороны равны. Пусть (BC = AB +
5)
, тогда периметр параллелограмма (ABCD) равен (AB + BC + CD + AD =
AB + AB + 5 + AB + AB + 5 = 4cdot AB + 10 = 15)
, откуда находим (AB
= 1,25)
. Тогда меньшая сторона параллелограмма равна (1,25).

Ответ: 1,25


Задание
3

#273

Уровень задания: Равен ЕГЭ

В параллелограмме (ABCD): (BE) – высота, (BE = ED = 5). Площадь параллелограмма (ABCD) равна 35. Найдите длину (AE).

Площадь параллелограмма равна произведению основания на высоту, проведённую к этому основанию, тогда (35 = BE cdot AD = 5cdot(5 + AE)), откуда находим (AE = 2).

Ответ: 2


Задание
4

#1785

Уровень задания: Равен ЕГЭ

Из точки (C) параллелограмма (ABCD) опустили перпендикуляр на продолжение стороны (AD) за точку (D). Этот перпендикуляр пересёк прямую (AD) в точке (E), причём (CE = DE). Найдите (angle B) параллелограмма (ABCD). Ответ дайте в градусах.

В равнобедренном треугольнике углы при основании равны, тогда (angle EDC = angle DCE). Так как (angle DEC = 90^{circ}), а сумма углов треугольника равна (180^{circ}), то (angle EDC =
45^{circ})
, тогда (angle ADC = 180^{circ} — 45^{circ} =
135^{circ})
. Так как в параллелограмме противоположные углы равны, то (angle B = angle ADC = 135^{circ}).

Ответ: 135


Задание
5

#1686

Уровень задания: Равен ЕГЭ

Диагональ (BD) параллелограмма (ABCD) перпендикулярна стороне (DC) и равна (4). Найдите площадь параллелограмма (ABCD), если (AD=5).

По теореме Пифагора находим: (AB^2=AD^2 — BD^2 = 25 — 16 = 9) (Rightarrow) (AB = 3). (S_{ABCD} = 4cdot3 = 12).

Ответ: 12


Задание
6

#1685

Уровень задания: Равен ЕГЭ

В параллелограмме (ABCD): (P_{triangle AOB} = 8) , (P_{triangle AOD} = 9), а сумма смежных сторон равна (7). Найдите произведение этих сторон параллелограмма (ABCD).

(P_{triangle AOB} = AO + OB + AB), (P_{triangle AOD} = AO + OD + AD), (BO = OD) (Rightarrow) (P_{triangle AOD} — P_{triangle AOB} = AD — AB = 1), но (AD + AB = 7) (Rightarrow) (AD = 4), (AB = 3) (Rightarrow) (ADcdot AB = 12).

Ответ: 12


Задание
7

#3617

Уровень задания: Равен ЕГЭ

Стороны параллелограмма равны (9) и (15). Высота, опущенная на первую сторону, равна (10). Найдите высоту, опущенную на вторую сторону параллелограмма.

Площадь параллелограмма равна произведению высоты на сторону, к которой высота проведена. Следовательно, с одной стороны, площадь (S=9cdot 10), с другой стороны, (S=15cdot h), где (h) – высота, которую нужно найти.
Следовательно, [9cdot 10=15cdot hquadLeftrightarrowquad h=6]

Ответ: 6

Задачи из раздела «Геометрия на плоскости» являются обязательной частью аттестационного экзамена у выпускников средней школы. Теме «Параллелограмм и его свойства» в ЕГЭ традиционно отводится сразу несколько заданий. Они могут требовать от школьника как краткого, так и развернутого ответа с построением чертежа. Поэтому если одним из ваших слабых мест являются именно задачи на вычисление площадей параллелограмма или его сторон и углов, то вам непременно стоит повторить или вновь разобраться в материале.

Сделать это легко и эффективно вам поможет образовательный портал «Школково». Наши опытные специалисты подготовили необходимый теоретический материал, изложив его таким образом, чтобы школьники с любым уровнем подготовки смогли восполнить пробелы в знаниях и легко решить задачи ЕГЭ на вычисление площадей, сторон, углов или свойства биссектрисы параллелограмма. Найти базовую информацию вы можете в разделе «Теоретическая справка».

Чтобы успешно решить задачи ЕГЭ по теме «Параллелограмм и его свойства», предлагаем попрактиковаться в выполнении соответствующих упражнений. Большая подборка заданий представлена в блоке «Каталог». Специалисты портала «Школково» регулярно дополняют и обновляют данный раздел.

Последовательно выполнять упражнения учащиеся из Москвы и других городов могут в режиме онлайн. При необходимости любое задание можно сохранить в разделе «Избранное» и в дальнейшем вернуться к нему, чтобы обсудить с преподавателем.

УСТАЛ? Просто отдохни

Хоть задача и простая и решается без рисунка, но все же для понимания смотрим рисунок

1) Периметр 50 см, а в параллелограмме стороны попарно равны, то сумма двух смежных сторон равна 50/2 = 25.

2) Поскольку сумма 25, а разность 1, то это 12 см и 13 см.

Ну если устно не ясно, то одна сторона х, другая х+1 и получаем х+х+1 = 25; х=12

3) Диагональ, поскольку высота, образует с этими сторонами прямоугольный треугольник и по теорем Пифагора: = √13²-12² = √25 = 5 см

Ответ: 5 см

Понравилась статья? Поделить с друзьями:
  • Как найти радость в повседневности
  • Ворд склеивает слова как исправить
  • Как найти аттестат аккредитации по номеру
  • Как составить структурную формулу изомеров декана
  • Как найти работу для моряка