Как с помощью интеграла найти площадь треугольника

1.8. Как вычислить площадь с помощью определённого интеграла?

Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:

Пример 10
Вычислить площадь фигуры, ограниченной линиями .

И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потомпараболы, гиперболы, графики других функций.

В нашей задаче: прямая определяет ось , прямые параллельны оси и парабола симметрична относительно оси , для неё находим несколько опорных точек:

Искомую фигуру желательно штриховать:

Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке график функции расположен над осью , поэтому искомая площадь:

Ответ:

После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.

И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 11
Вычислить площадь фигуры, ограниченной линиями и осью

Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью :

Пример 12
Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение: найдём несколько опорных точек для построения экспоненты:

и выполним чертёж, получая фигуру площадью около двух клеток:

Если криволинейная трапеция расположена не выше оси , то её площадь можно найти по формуле: .
В данном случае:

Ответ: – ну что же, очень и очень похоже на правду.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:

Пример 13
Найти площадь плоской фигуры, ограниченной линиями , .

Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы и прямой , поскольку здесь будут находиться пределы интегрирования. Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:

таким образом:

Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».

С прямой всё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
– именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:

Выполним чертеж:

А теперь рабочая формула: если на отрезке некоторая непрерывная функция больше либо равна непрерывной функции , то площадь фигуры, ограниченной графиками этих функций и отрезками прямых , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.

В нашем примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из нужно вычесть

Завершение решения может выглядеть так:

На отрезке : , по соответствующей формуле:

Ответ:

Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы . Поскольку ось задаётся уравнением , то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу либо

А сейчас пара типовых задач для самостоятельного решения

Пример 14
Найти площадь фигур, ограниченных линиями:

а) , .

б) , ,

Решение с чертежами и краткими комментариями в конце книги

В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:

Пример 15
Вычислить площадь фигуры, ограниченной линиями

Решение: выполним бесхитростный чертёж,

хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую можно недочертить до оси , и тогда мы вовсе не увидим нужную фигуру.

Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:

1) на отрезке над осью расположен график прямой ;
2) на отрезке над осью расположен график гиперболы .

Совершенно понятно, что площади можно (и нужно) сложить:

Ответ:

И познавательный пример для самостоятельного решения:

Пример 16
Вычислить площадь фигуры, ограниченной линиями , , и координатными осями.

Итак, систематизируем важные моменты этой задачи:

На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс зачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.

Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.

Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой и прямой , где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:

и находим его корни:
нижний предел интегрирования, – верхний предел.

Во-вторых, не всегда понятен «внешний вид» линии, и функция (Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html

После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.

Составляем определённый интеграл или несколько интегралов по формуле , все основные вариации мы разобрали выше.

Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.

Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!

Полную и свежую версию данного курса в pdf-формате ,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Нахождение площади фигуры, ограниченной линиями y=f(x), x=g(y)

В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:

S ( G ) = ∫ a b f ( x ) d x для непрерывной и неотрицательной функции y = f ( x ) на отрезке [ a ; b ] ,

S ( G ) = — ∫ a b f ( x ) d x для непрерывной и неположительной функции y = f ( x ) на отрезке [ a ; b ] .

Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y = f ( x ) или x = g ( y ) .

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Пусть функции y = f 1 ( x ) и y = f 2 ( x ) определены и непрерывны на отрезке [ a ; b ] , причем f 1 ( x ) ≤ f 2 ( x ) для любого значения x из [ a ; b ] . Тогда формула для вычисления площади фигуры G , ограниченной линиями x = a , x = b , y = f 1 ( x ) и y = f 2 ( x ) будет иметь вид S ( G ) = ∫ a b f 2 ( x ) — f 1 ( x ) d x .

Похожая формула будет применима для площади фигуры, ограниченной линиями y = c , y = d , x = g 1 ( y ) и x = g 2 ( y ) : S ( G ) = ∫ c d ( g 2 ( y ) — g 1 ( y ) d y .

Разберем три случая, для которых формула будет справедлива.

В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G 1 равна площади фигуры G 2 . Это значит, что

Поэтому, S ( G ) = S ( G 2 ) — S ( G 1 ) = ∫ a b f 2 ( x ) d x — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x .

Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.

Во втором случае справедливо равенство: S ( G ) = S ( G 2 ) + S ( G 1 ) = ∫ a b f 2 ( x ) d x + — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x

Графическая иллюстрация будет иметь вид:

Если обе функции неположительные, получаем: S ( G ) = S ( G 2 ) — S ( G 1 ) = — ∫ a b f 2 ( x ) d x — — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x . Графическая иллюстрация будет иметь вид:

Перейдем к рассмотрению общего случая, когда y = f 1 ( x ) и y = f 2 ( x ) пересекают ось O x .

Точки пересечения мы обозначим как x i , i = 1 , 2 , . . . , n — 1 . Эти точки разбивают отрезок [ a ; b ] на n частей x i — 1 ; x i , i = 1 , 2 , . . . , n , где α = x 0 x 1 x 2 . . . x n — 1 x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S ( G i ) = ∫ x i — 1 x i ( f 2 ( x ) — f 1 ( x ) ) d x , i = 1 , 2 , . . . , n

S ( G ) = ∑ i = 1 n S ( G i ) = ∑ i = 1 n ∫ x i x i f 2 ( x ) — f 1 ( x ) ) d x = = ∫ x 0 x n ( f 2 ( x ) — f ( x ) ) d x = ∫ a b f 2 ( x ) — f 1 ( x ) d x

Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.

Проиллюстрируем на графике общий случай.

Формулу S ( G ) = ∫ a b f 2 ( x ) — f 1 ( x ) d x можно считать доказанной.

А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y = f ( x ) и x = g ( y ) .

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.

Необходимо определить площадь фигуры, которая ограничена параболой y = — x 2 + 6 x — 5 и прямыми линиями y = — 1 3 x — 1 2 , x = 1 , x = 4 .

Решение

Изобразим линии на графике в декартовой системе координат.

На отрезке [ 1 ; 4 ] график параболы y = — x 2 + 6 x — 5 расположен выше прямой y = — 1 3 x — 1 2 . В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по формуле Ньютона-Лейбница:

S ( G ) = ∫ 1 4 — x 2 + 6 x — 5 — — 1 3 x — 1 2 d x = = ∫ 1 4 — x 2 + 19 3 x — 9 2 d x = — 1 3 x 3 + 19 6 x 2 — 9 2 x 1 4 = = — 1 3 · 4 3 + 19 6 · 4 2 — 9 2 · 4 — — 1 3 · 1 3 + 19 6 · 1 2 — 9 2 · 1 = = — 64 3 + 152 3 — 18 + 1 3 — 19 6 + 9 2 = 13

Ответ: S ( G ) = 13

Рассмотрим более сложный пример.

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x + 2 , y = x , x = 7 .

Решение

В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x = 7 . Это требует от нас найти второй предел интегрирования самостоятельно.

Построим график и нанесем на него линии, данные в условии задачи.

Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y = x и полу параболы y = x + 2 . Для нахождения абсциссы используем равенства:

y = x + 2 О Д З : x ≥ — 2 x 2 = x + 2 2 x 2 — x — 2 = 0 D = ( — 1 ) 2 — 4 · 1 · ( — 2 ) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 — 9 2 = — 1 ∉ О Д З

Получается, что абсциссой точки пересечения является x = 2 .

Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y = x + 2 , y = x пересекаются в точке ( 2 ; 2 ) , поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.

На интервале [ 2 ; 7 ] график функции y = x расположен выше графика функции y = x + 2 . Применим формулу для вычисления площади:

S ( G ) = ∫ 2 7 ( x — x + 2 ) d x = x 2 2 — 2 3 · ( x + 2 ) 3 2 2 7 = = 7 2 2 — 2 3 · ( 7 + 2 ) 3 2 — 2 2 2 — 2 3 · 2 + 2 3 2 = = 49 2 — 18 — 2 + 16 3 = 59 6

Ответ: S ( G ) = 59 6

Необходимо вычислить площадь фигуры, которая ограничена графиками функций y = 1 x и y = — x 2 + 4 x — 2 .

Решение

Нанесем линии на график.

Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1 x и — x 2 + 4 x — 2 . При условии, что x не равно нулю, равенство 1 x = — x 2 + 4 x — 2 становится эквивалентным уравнению третьей степени — x 3 + 4 x 2 — 2 x — 1 = 0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».

Корнем этого уравнения является х = 1 : — 1 3 + 4 · 1 2 — 2 · 1 — 1 = 0 .

Разделив выражение — x 3 + 4 x 2 — 2 x — 1 на двучлен x — 1 , получаем: — x 3 + 4 x 2 — 2 x — 1 ⇔ — ( x — 1 ) ( x 2 — 3 x — 1 ) = 0

Оставшиеся корни мы можем найти из уравнения x 2 — 3 x — 1 = 0 :

x 2 — 3 x — 1 = 0 D = ( — 3 ) 2 — 4 · 1 · ( — 1 ) = 13 x 1 = 3 + 13 2 ≈ 3 . 3 ; x 2 = 3 — 13 2 ≈ — 0 . 3

Мы нашли интервал x ∈ 1 ; 3 + 13 2 , на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:

S ( G ) = ∫ 1 3 + 13 2 — x 2 + 4 x — 2 — 1 x d x = — x 3 3 + 2 x 2 — 2 x — ln x 1 3 + 13 2 = = — 3 + 13 2 3 3 + 2 · 3 + 13 2 2 — 2 · 3 + 13 2 — ln 3 + 13 2 — — — 1 3 3 + 2 · 1 2 — 2 · 1 — ln 1 = 7 + 13 3 — ln 3 + 13 2

Ответ: S ( G ) = 7 + 13 3 — ln 3 + 13 2

Необходимо вычислить площадь фигуры, которая ограничена кривыми y = x 3 , y = — log 2 x + 1 и осью абсцисс.

Решение

Нанесем все линии на график. Мы можем получить график функции y = — log 2 x + 1 из графика y = log 2 x , если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у = 0 .

Обозначим точки пересечения линий.

Как видно из рисунка, графики функций y = x 3 и y = 0 пересекаются в точке ( 0 ; 0 ) . Так получается потому, что х = 0 является единственным действительным корнем уравнения x 3 = 0 .

x = 2 является единственным корнем уравнения — log 2 x + 1 = 0 , поэтому графики функций y = — log 2 x + 1 и y = 0 пересекаются в точке ( 2 ; 0 ) .

x = 1 является единственным корнем уравнения x 3 = — log 2 x + 1 . В связи с этим графики функций y = x 3 и y = — log 2 x + 1 пересекаются в точке ( 1 ; 1 ) . Последнее утверждение может быть неочевидным, но уравнение x 3 = — log 2 x + 1 не может иметь более одного корня, так как функция y = x 3 является строго возрастающей, а функция y = — log 2 x + 1 строго убывающей.

Дальнейшее решение предполагает несколько вариантов.

Вариант №1

Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x ∈ 0 ; 1 , а вторая ниже красной линии на отрезке x ∈ 1 ; 2 . Это значит, что площадь будет равна S ( G ) = ∫ 0 1 x 3 d x + ∫ 1 2 ( — log 2 x + 1 ) d x .

Вариант №2

Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x ∈ 0 ; 2 , а вторая между красной и синей линиями на отрезке x ∈ 1 ; 2 . Это позволяет нам найти площадь следующим образом:

S ( G ) = ∫ 0 2 x 3 d x — ∫ 1 2 x 3 — ( — log 2 x + 1 ) d x

В этом случае для нахождения площади придется использовать формулу вида S ( G ) = ∫ c d ( g 2 ( y ) — g 1 ( y ) ) d y . Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y .

Разрешим уравнения y = x 3 и — log 2 x + 1 относительно x :

y = x 3 ⇒ x = y 3 y = — log 2 x + 1 ⇒ log 2 x = 1 — y ⇒ x = 2 1 — y

Получим искомую площадь:

S ( G ) = ∫ 0 1 ( 2 1 — y — y 3 ) d y = — 2 1 — y ln 2 — y 4 4 0 1 = = — 2 1 — 1 ln 2 — 1 4 4 — — 2 1 — 0 ln 2 — 0 4 4 = — 1 ln 2 — 1 4 + 2 ln 2 = 1 ln 2 — 1 4

Ответ: S ( G ) = 1 ln 2 — 1 4

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x , y = 2 3 x — 3 , y = — 1 2 x + 4 .

Решение

Красной линией нанесем на график линию, заданную функцией y = x . Синим цветом нанесем линию y = — 1 2 x + 4 , черным цветом обозначим линию y = 2 3 x — 3 .

Отметим точки пересечения.

Найдем точки пересечения графиков функций y = x и y = — 1 2 x + 4 :

x = — 1 2 x + 4 О Д З : x ≥ 0 x = — 1 2 x + 4 2 ⇒ x = 1 4 x 2 — 4 x + 16 ⇔ x 2 — 20 x + 64 = 0 D = ( — 20 ) 2 — 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 — 144 2 = 4 П р о в е р к а : x 1 = 16 = 4 , — 1 2 x 1 + 4 = — 1 2 · 16 + 4 = — 4 ⇒ x 1 = 16 н е я в л я е т с я р е ш е н и е м у р а в н е н и я x 2 = 4 = 2 , — 1 2 x 2 + 4 = — 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н и е м у р а в н и н и я ⇒ ( 4 ; 2 ) т о ч к а п е р е с е ч е н и я y = x и y = — 1 2 x + 4

Найдем точку пересечения графиков функций y = x и y = 2 3 x — 3 :

x = 2 3 x — 3 О Д З : x ≥ 0 x = 2 3 x — 3 2 ⇔ x = 4 9 x 2 — 4 x + 9 ⇔ 4 x 2 — 45 x + 81 = 0 D = ( — 45 ) 2 — 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 — 729 8 = 9 4 П р о в е р к а : x 1 = 9 = 3 , 2 3 x 1 — 3 = 2 3 · 9 — 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н и е м у р а в н е н и я ⇒ ( 9 ; 3 ) т о ч к а п е р е с е ч а н и я y = x и y = 2 3 x — 3 x 2 = 9 4 = 3 2 , 2 3 x 1 — 3 = 2 3 · 9 4 — 3 = — 3 2 ⇒ x 2 = 9 4 н е я в л я е т с я р е ш е н и е м у р а в н е н и я

Найдем точку пересечения линий y = — 1 2 x + 4 и y = 2 3 x — 3 :

— 1 2 x + 4 = 2 3 x — 3 ⇔ — 3 x + 24 = 4 x — 18 ⇔ 7 x = 42 ⇔ x = 6 — 1 2 · 6 + 4 = 2 3 · 6 — 3 = 1 ⇒ ( 6 ; 1 ) т о ч к а п е р е с е ч е н и я y = — 1 2 x + 4 и y = 2 3 x — 3

Дальше мы можем продолжить вычисления двумя способами.

Способ №1

Представим площадь искомой фигуры как сумму площадей отдельных фигур.

Тогда площадь фигуры равна:

S ( G ) = ∫ 4 6 x — — 1 2 x + 4 d x + ∫ 6 9 x — 2 3 x — 3 d x = = 2 3 x 3 2 + x 2 4 — 4 x 4 6 + 2 3 x 3 2 — x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 — 4 · 6 — 2 3 · 4 3 2 + 4 2 4 — 4 · 4 + + 2 3 · 9 3 2 — 9 2 3 + 3 · 9 — 2 3 · 6 3 2 — 6 2 3 + 3 · 6 = = — 25 3 + 4 6 + — 4 6 + 12 = 11 3

Способ №2

Площадь исходной фигуры можно представить как сумму двух других фигур.

Тогда решим уравнение линии относительно x , а только после этого применим формулу вычисления площади фигуры.

y = x ⇒ x = y 2 к р а с н а я л и н и я y = 2 3 x — 3 ⇒ x = 3 2 y + 9 2 ч е р н а я л и н и я y = — 1 2 x + 4 ⇒ x = — 2 y + 8 с и н я я л и н и я

Таким образом, площадь равна:

S ( G ) = ∫ 1 2 3 2 y + 9 2 — — 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 — y 2 d y = = ∫ 1 2 7 2 y — 7 2 d y + ∫ 2 3 3 2 y + 9 2 — y 2 d y = = 7 4 y 2 — 7 4 y 1 2 + — y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 — 7 4 · 2 — 7 4 · 1 2 — 7 4 · 1 + + — 3 3 3 + 3 · 3 2 4 + 9 2 · 3 — — 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3

Как видите, значения совпадают.

Ответ: S ( G ) = 11 3

Итоги

Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.

Геометрические приложения определенного интеграла

Формулы для вычисления площадей фигур на плоскости, длин дуг кривых на плоскости, площадей поверхностей тел вращения и объемов тел с помощью определенного интеграла

В данном разделе справочника приведена таблица, содержащая формулы, с помощью которых можно вычислить:

Площади криволинейных трапеций различного вида (площади фигур, ограниченных графиками функций);

Длины дуг кривых на плоскости;

Объемы тел, если известны площади их поперечных сечений;

Объемы тел, полученных при вращении криволинейных трапеций вокруг оси абсцисс Ox ;

Площади поверхностей тел, полученных при вращении графиков функций вокруг оси абсцисс Ox .

a Ox ,
а с боков – отрезками прямых

Площадь криволинейной трапеции, ограниченной сверху осью Ox , снизу – графиком функции

a Ox ,
а с боков – отрезками прямых

Объем тела, полученного при вращении криволинейной трапеции, ограниченной сверху графиком функции

a Ox ,
а с боков – отрезками прямых

вокруг оси Ox

Площадь поверхности тела, полученного при вращении графика функции

y = f (x), f (x) > 0, ,

вокруг оси Ox

a Ox ,
а с боков – отрезками прямых

Площадь криволинейной трапеции, ограниченной сверху осью Ox , снизу – графиком функции

a Ox ,
а с боков – отрезками прямых

a S (x) , .

Плоскость каждого поперечного сечения перпендикулярна оси Ox

Объем тела, полученного при вращении криволинейной трапеции, ограниченной сверху графиком функции

a Ox ,
а с боков – отрезками прямых

вокруг оси Ox

Площадь поверхности тела, полученного при вращении графика функции

y = f (x), f (x) > 0, ,

вокруг оси Ox .

Применение формул, перечисленных в таблице, проиллюстрировано на примерах, содержащих, в частности, вывод формулы объема пирамиды, формул объема шара и площади сферы.

Примеры решения задач на вычисление площадей фигур на плоскости

Пример 1 . Найти площадь фигуры, ограниченной линиями

Решение . Рассматриваемая фигура (рис. 1) состоит из двух частей: треугольника OAB и криволинейной трапеции ABCD.

Пример 2 . Найти площадь криволинейной трапеции, изображенной на рисунке 2

Решение . Площадь криволинейной трапеции ABCD вычисляется с помощью формулы для площади криволинейной трапеции с f (x)

.

Ответ . .

Пример решения задачи на вычисление длины дуги кривой на плоскости

Пример 3 . Найти длину дуги графика функции

, 8 .

Решение . График рассматриваемой функции изображен на рисунке 3

Для вычисления длины дуги AB нужно, в соответствии с формулой для длины дуги графика функции, вычислить определенный интеграл

Рисунок Формула Описание
(1)

Подставим найденную производную в формулу (1), а затем вычислим полученные интегралы при помощи таблицы неопределенных интегралов и формулы Ньютона — Лейбница:

Ответ .

Вывод формул для объема пирамиды и для объема шара

Решение . Рассмотрим произвольную n — угольную пирамиду BA1A2 . An с вершиной B, высота BK которой равна H, а площадь основания A1A2 . An равна S. Обозначим через S (x) площадь сечения этой пирамиды плоскостью, параллельной параллельной основанию пирамиды и находящейся на расстоянии расстоянии x от вершины пирамиды B (рис. 4).

Поскольку многоугольники и A1A2 . An подобны с коэффициентом подобия , то площади этих многоугольников удовлетворяют равенству

(2)

Рассмотрим теперь в пространстве систему координат Oxyz и расположим нашу пирамиду BA1A2 . An так, чтобы ее вершина B совпала с началом координат O, а высота пирамиды BK оказалась лежащей на оси Ox (рис. 5).

Тогда сечение пирамиды и будет поперечным сечением, поскольку его плоскость перпендикулярна оси Ox.

Итак, мы получили формулу для объема пирамиды

котрой пользовались в различных разделах справочника.

Замечание . Совершенно аналогично выводится формула для объема конуса. Формулы для объема прямой призмы объема прямой призмы и для объема цилиндра вывести таким способом еще проще, поскольку у них все сечения, перпендикулярные высоте, равны между собой. Мы рекомендуем провести эти выводы читателю самостоятельно в качестве полезного упражнения.

Пример 5 . Вывести формулу для объема шара радиуса R, воспользовавшись формулой для вычисления объема тела вращения.

(3)

графиком которой является верхняя полуокружность радиуса R с центром в начале координат O. Шар радиуса R получается в результате вращения вокруг оси Ox криволинейной трапеции, ограниченной сверху графиком функции (3) и ограниченной снизу отрезкомоси Ox (рис. 6).

что и должно было получиться.

Вывод формулы для площади сферы

Решение . Снова рассмотрим функцию

(4)

графиком которой является верхняя полуокружность радиуса R с центром в начале координат O (рис. 7).

Поскольку сфера радиуса R получается в результате вращения вокруг оси Ox графика функции (4), то в соответствии с формулой для вычисления площади поверхности тела вращения получаем

Подставим найденную производную в выражение, стоящее под знаком квадратного корня:

Таким образом, подынтегральная функция принимает вид:

источники:

http://zaochnik.com/spravochnik/matematika/integraly-integrirovanie/nahozhdenie-ploschadi-figury-ogranichennoj-linijam/

http://www.resolventa.ru/spr/matan/integral_application.htm



Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:

Пример 10
Вычислить площадь фигуры, ограниченной линиями .

И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потомпараболы, гиперболы, графики других функций.

В нашей задаче: прямая  определяет ось , прямые  параллельны оси  и парабола  симметрична относительно оси , для неё находим несколько опорных точек:

Искомую фигуру желательно штриховать:

Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке   график функции  расположен над осью , поэтому искомая площадь:

Ответ:

После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.

И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 11
Вычислить площадь фигуры, ограниченной линиями  и осью

Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью :

Пример 12
Вычислить площадь фигуры, ограниченной линиями ,  и координатными осями.

Решение: найдём несколько опорных точек для построения экспоненты:

и выполним чертёж, получая фигуру площадью около двух клеток:

Если криволинейная трапеция расположена не выше оси , то её площадь можно найти по формуле: .
В данном случае:

Ответ:  – ну что же, очень и очень похоже на правду.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:

Пример 13
Найти площадь плоской фигуры, ограниченной линиями , .

Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы  и прямой , поскольку здесь будут находиться пределы интегрирования.  Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:

таким образом:

Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».

С прямой  всё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
 – именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:

Выполним чертеж:

А теперь рабочая формула: если на отрезке  некоторая непрерывная функция  больше либо равна непрерывной функции , то площадь фигуры, ограниченной графиками этих функций и отрезками прямых , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.

В нашем примере очевидно, что на отрезке  парабола располагается выше прямой, а поэтому из  нужно вычесть

Завершение решения может выглядеть так:

На отрезке : , по соответствующей формуле:

Ответ:

Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы . Поскольку ось  задаётся уравнением , то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу  либо

А сейчас пара типовых задач для самостоятельного решения

Пример 14
Найти площадь фигур, ограниченных линиями:

а) , .

б) , ,

Решение с чертежами и краткими комментариями в конце книги

В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:

Пример 15
Вычислить площадь фигуры, ограниченной линиями

Решение: выполним бесхитростный чертёж,

хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую  можно недочертить до оси , и тогда мы вовсе не увидим нужную фигуру.

Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:

1) на отрезке  над осью  расположен график прямой ;
2) на отрезке  над осью  расположен график гиперболы .

Совершенно понятно, что площади можно (и нужно) сложить:

Ответ:

И познавательный пример для самостоятельного решения:

Пример 16
Вычислить площадь фигуры, ограниченной линиями , ,  и координатными осями.

Итак, систематизируем важные моменты этой задачи:

На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс  зачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.

Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.

Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой  и прямой , где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:

и находим его корни:
 – нижний предел интегрирования,  – верхний предел.

Во-вторых, не всегда понятен «внешний вид» линии, и функция  (Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html

После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.

Составляем определённый интеграл или несколько интегралов по формуле , все основные вариации мы разобрали выше.

Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.

Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!

1.9. Объём тела вращения

1.7. Геометрический смысл определённого интеграла

| Оглавление |



Полную и свежую версию данного курса в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Главная » Математика » Площадь треугольника и объем пирамиды через интеграл

§ Площадь треугольника

Сегодня пойдет разговор про вычисление различного рода объемов, площадей через интегралы. Мне показалась эта тема достаточно интересной и любопытной, и я захотел ее просто так рассмотреть, хотя никакого практического смысла она не имеет.

Для начала рассмотрю классический треугольник и как подсчитать площадь через формулу вычисления площади прямоугольных треугольников

Есть высота

h

и основание

a

. Треугольник состоит из двух прямоугольных треугольников с катетами

a_1

,

a_2

и

h

. Формула вычисления площади прямоугольного треугольника простая

S=frac{ab}{2}

. Подставим нужные значения

S_1 = frac{a_1h}{2}

и

S_2 = frac{a_2h}{2}

. Сложим

S = S_1 + S_2 = frac{1}{2}(a_1 + a_2)h = frac{1}{2}ah

. Все доказано, собственно. Другим словами, получается что вычисление площади любого треугольника — это умножение его основания на высоту и деление на 2, т.е. тоже самое что вычисление площади прямоугольного треугольника.

А теперь рассчитаю через интеграл. Определенный интеграл — это площадь функции от

a

до

b

. Поскольку считаем треугольник, то считать будет прямоугольный треугольник, как ранее и было выведено. То есть, в точке

x = 0

будет 0, а в точке

x = h

значение должно быть

a

(основание). Будет взят определенный интеграл

int_{0}^{h} f(x) dx

. Функция, которую будем считать это

f(x) = frac{ax}{h}

. Действительно, если

x = 0

то

f(0) = frac{a 0}{h} = 0

, и

f(h) = frac{ah}{h} = a

. Условия соблюдены.

S = int_{0}^{h} frac{ax}{h} dx = frac{ax^2}{2h} |_{0}^{h} = frac{ah^2}{2h} = frac{1}{2}ah

Вот и все, что надо было знать про треугольники.

§ Объем прямоугольной пирамиды

На самом деле, объем пирамиды считается точно тем же самым способом, что и считается площадь треугольника, просто изменяется функция подсчета. Для пирамиды в ее вершине, как и треугольнике, должна быть

f(0) = 0

, но в основании функция должна принять вид

f(h) = a^2

, т.е. площадь квадрата. Но функция получается не совсем линейная. В точке

x = frac{h}{2}

функция должна описывать

S(frac{h}{2})

, т.е. получается что

f(x) = S(x)

на самом-то деле. Значит, получается так

S(x) = x^2

. Но нам нужно сделать так, чтобы в

x = h

было

S(h) = a^2

, поэтому итоговой функцией будет

f(x) = frac{(ax)^2}{h^2}

. Проверим. Очевидно что в

x = 0

будет 0. Теперь проверим, что будет при

x = h

:

f(x) = frac{(ah)^2}{h^2} = frac{a^2h^2}{h^2} = a^2

Все верно. Считаем интеграл:

V = int_{0}^{h} frac{(ax)^2}{h^2} dx = frac{a^2x^3}{3h^2} |_{0}^{h} = frac{a^2h^3}{3h^2} = frac{1}{3}a^2h

Причем тут

a^2

— это именно основание пирамиды, и оно может быть вообще любым. Так что можно переписать следующим образом и это будет правильно:

V = frac{1}{3}Sh

23 июн, 2020

© 2007-2023 Все киты ништяково переколочены

1. Основная формула для вычисления площади плоских фигур с помощью определенного интеграла

Рассмотрим постановку задачи о площади криволинейной трапеции.

Вычислить площадь криволинейной трапеции, ограниченной линиями (рис. 1).

.

Рис. 1. Площадь криволинейной трапеции

Как мы пытались ее решить:

Первый способ.

Разбили отрезок на  одинаковых отрезков, заменили искомую площадь площадью поступенчастой линии, легко ее сосчитали и получили приближенное решение нашей задачи. Далее устремили  в пределе и

получили искомую площадь S. Ввели обозначение .

Это определенный интеграл. Вот таким образом мы пытались решить задачу. Мы знаем теперь, как приближенно ее решить, знаем обозначения для точного решения, но точного решения еще не знаем.

Затем мы получили точное решение задачи следующим образом: рис. 2:

Рис. 2. Функция S (x)

Ввели функцию . Каждому площадь под соответствующей частью кривой . Так, введенная функция удовлетворяет единственному закону, а именно:

Каждому  соответствует единственное значение .

Мы доказали, что производная этой же функции  и доказали, что точная площадь вычисляется следующим образом. Надо найти любую первообразную от функциии взять приращение этих первообразных. То есть взять первообразную в точке  и отнять первообразную в точке  И в результате мы получили формулу, которой мы будем пользоваться для вычисления площадей.

 .

2. Методика нахождения площади на примере

Методику нахождения площади рассмотрим сначала на относительно простом примере.

Пример 1.

Найти площадь фигуры, ограниченной линиями

Решение.

Вот искомая площадь:

Рис. 3. Площадь

Вот формула:

Это общая формула. Конкретно к нашему случаю она применима так:

Пределы интегрирования .

=.

Вычислили площадь криволинейной фигуры.

Ответ:

В следующей задаче площадь искомой фигуры образовывается с помощью  А именно:

3. Пример 2

Найти площадь фигуры, ограниченной линиями

Решение.

Посмотрим, как выглядит фигура (рис. 4).

Рис. 4. Фигура, ограниченная линиями

Формула та же самая:

В нашем случае . Итак, надо найти определенный интеграл

=-(-1)+1=1+1=2.

Искомая площадь найдена, и ответ получен.

Ответ: 2

4. Пример 3

Найти площадь фигуры, ограниченной линиями

Решение.

Рис. 5. Площадь фигуры, ограниченной линиями

Формула для площади та же самая:

В нашем случае .

Ответ:

В следующем примере ищется площадь под параболой.

5. Пример 4

Найти площадь фигуры, ограниченной линиями

Решение.

Схематически изобразим параболу  Корни

Рис. 6. Парабола

Применим известную формулу

И применим ее для данной функции  и пределов интегрирования

 

Искомая площадь найдена.

Ответ:

В предыдущих задачах площадь образовывалась с помощью разных кривых, но эта площадь находилась над осью . В следующей задаче наоборот.

6. Пример 5. Случай, если фигура находится под осью

Найти площадь фигуры, ограниченной линиями.

Решение.

Посмотрим, что это за фигура. График в пределах от Π до 2Π расположен под осью Ox (рис. 7).

Рис. 7. График в пределах от Π до 2Π

Ясно, что если возьмем определенный интеграл, то мы получим отрицательное число.

Вычисляем.

1. Сначала вычисляем определенный интеграл от π до 2π от подынтегральной функции

Надо найти первообразную.

По таблице первообразных: .

=-1-1=-2.

2. Для того чтобы найти площадь, надо взять модуль =2.

Ответ: 2.

7. Пример. Общий случай для нахождения площади плоской фигуры, ограниченной двумя кривыми. Выводы

Следующее усложнение – искомая площадь расположена между двумя кривыми.

А именно:

Найти площадь фигуры, ограниченной линиями (рис. 8)

Рис. 8. Площадь фигуры, ограниченной линиями

Решение.

Итак, площадь образуют 2 кривые, одна из них может находиться под осью .

Каким образом мы будем решать эту задачу?

Во-первых, мы можем сдвинуть фигуру на такое положительное , что площадь находится над осью . Рис. 9.

Рис. 9. Сдвиг фигуры

Затем мы возьмем соответствующий определенный интеграл и найдем площадь. Искомая площадь равна разности двух площадей.

Площадь под верхней кривой  минус площадь под нижней кривой .

Каждую из площадей мы умеем находить.

Таким образом, в общем виде была поставлена задача, в общем виде получен ответ.

Ответ:

Обсудим и постановку задачи, и полученный важный результат.

Нам надо было найти площадь фигуры, ограниченной линиями

 .

Мы использовали известный прием: эту площадь подняли на некоторое , и это  Так вот, эту площадь теперь можно считать без введения . Правило следующее:

Площадь фигуры, ограниченной прямыми линиями  непрерывных на отрезке  и таких, что для всех  из отрезка  вычисляется по формуле, которую мы вывели:

Рассмотрим первый конкретный пример на нахождение площади между двумя линиями.

8. Пример 6

Найти площадь фигуры, ограниченную линиями

 .

Решение. Для начала построим графики этих линий и поймем, где та площадь, которую нам надо искать.

График квадратичной функции – парабола. Корни – 0, 4, ветви вниз. График

 – биссектриса первого координатного угла. Вот площадь, которую надо найти:

Рис. 10. Искомая площадь

Но для этого сначала надо найти точки пересечения и решить стандартную задачу.

1. Находим точки пересечения. Для этого решаем систему: .

Отсюда получаем квадратное уравнение относительно :

Мы нашли , то есть, пределы интегрирования. Это первое важное действие.

Теперь стандартное действие:

2. =  =()

Искомая площадь равна 4,5

Ответ: 4,5

9. Пример 7. Случай, когда часть площади плоской фигуры лежит под осью

Во втором примере часть площади находится под осью , но на методику это не влияет.

Пример 6.

Итак, требуется найти площадь фигуры, ограниченной линиями

Решение.

Сначала построим графики, посмотрим, какую площадь нам нужно найти. Рис. 11.

Первая функция – парабола, ветви вниз. График второй функции – прямая линия.

Есть две точки пересечения, их придется найти, а именно взять пределы интегрирования, и тогда будем решать задачу по знакомому нам плану.

Рис. 11. Площадь фигуры, ограниченной линиями

Первое действие – найти пределы интегрирования и второе – найти площадь.

Пределы интегрирования найдем из системы.

То есть, пределы интегрирования найдены.

= ()

Ответ:

Итак, мы показали, каким образом можно вычислять площади плоских фигур с помощью определенного интеграла.

Список литературы

  1. Мордкович А.Г. Алгебра и начала математического анализа. – М.: Мнемозина.
  2. Муравин Г.К., Муравина О.В. Алгебра и начала математического анализа. – М.: Дрофа.
  3. Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала математического анализа. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Ru.scribd.com (Источник).
  2. Math4you.ru (Источник).
  3. Dok.opredelim.com (Источник).

Домашнее задание

  1. Найти площадь фигуры, ограниченной линиями , , ,
  2. Найти площадь фигуры, ограниченной линиями 
  3. Алгебра и начала анализа, Мордкович А.Г.: № 1030, 1033, 1037, 1038.

Понравилась статья? Поделить с друзьями:
  • Как найти название текста по картинке
  • Как найти точку возврата
  • Как исправить пересушенное мясо на сковороде
  • Как найти список групп в контакте
  • Как составить налоговую декларацию своими руками