Как с помощью косинуса найти угол треугольника

Найти угол, зная косинус угла: примеры решения

Автор статьи

Евгений Николаевич Беляев

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Имея на руках значение косинуса угла, выяснить угол, которому он принадлежит, совсем не сложно.

Существует специальная тригонометрическая функция, которой можно воспользоваться для этого и называется она арккосинусом (записывается как $arccos$).

Замечание 1

Для того чтобы воспользоваться ей и узнать значение угла, можно применить специальную расширенную таблицу со значениями углов и соответствующих им тригонометрических функций. Эта таблица называется таблицей Брадиса.

Также наиболее часто встречающиеся значения углов и соответствующих им синусов-косинусов собраны в небольшую таблицу внизу:

Зная косинус или синус, найти угол. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Зная косинус или синус, найти угол. Автор24 — интернет-биржа студенческих работ

Но есть и другой, более современный вариант нахождения угла по значению косинуса: достаточно включить режим Scientific (Научный) и найти кнопку переключения функций на калькуляторе.

В Windows 10 она обозначается стрелкой как показано на рисунке. При её нажатии кнопка $sin$ поменяется на $sin^{-1}$, а $cos$ на $cos^{-1}$. Теперь для того чтобы узнать значение угла по косинусу — просто набираете значение функции и жмёте кнопку $cos^{-1}$. Не забудьте выбрать нужную единицу измерения — градусы или радианы.

Как узнать угол, зная косинус угла. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Как узнать угол, зная косинус угла. Автор24 — интернет-биржа студенческих работ

Пример 1

Найдите, чему равен $arccos 0,456$.

Решение:

Воспользуемся калькулятором в Научном режиме, на рисунке представлен калькулятор Mac OC, кнопка переключения между $sin$ и $sin^{-1}$ обведена красным:

Как по косинусу угла найти угол. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Как по косинусу угла найти угол. Автор24 — интернет-биржа студенческих работ

После нажатия кнопки мы получили значение $α = 27,129°$.

Пример 2

Определите, чему равен угол, если известен его косинус, и он равен $0,95$.

Решение:

Воспользуемся вновь калькулятором и получим, что $α = 18,19°$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 07.05.2023


Загрузить PDF


Загрузить PDF

Теорема косинусов широко применяется в тригонометрии. Ее используют при работе с неправильными треугольниками, чтобы находить неизвестные величины, например стороны и углы. Теорема схожа с теорема Пифагора, и ее довольно легко запомнить. Теорема косинусов гласит, что в любом треугольнике c^{{2}}=a^{{2}}+b^{{2}}-2abcos {C}.

  1. Изображение с названием Use the Cosine Rule Step 1

    1

    Запишите известные величины. Чтобы найти неизвестную сторону треугольника, нужно знать две другие стороны и угол между ними.[1]

    • Например, дан треугольник XYZ. Сторона YX равна 5 см, сторона YZ равна 9 см, а угол Y равен 89°. Чему равна сторона XZ?
  2. Изображение с названием Use the Cosine Rule Step 2

    2

    Запишите формулу теоремы косинусов. Формула: c^{{2}}=a^{{2}}+b^{{2}}-2abcos {C}, где c — неизвестная сторона, cos {C} — косинус угла, противоположного неизвестной стороне, a и b — две известные стороны.[2]

  3. Изображение с названием Use the Cosine Rule Step 3

    3

  4. Изображение с названием Use the Cosine Rule Step 4

    4

    Найдите косинус известного угла. Сделайте это с помощью калькулятора. Введите значение угла, а затем нажмите кнопку COS. Если у вас нет научного калькулятора, найдите онлайн-таблицу значений косинусов, например, здесь.[4]
    Также в Яндексе можно ввести «косинус Х градусов» (вместо X подставьте значение угла), и поисковая система отобразит косинус угла.

    • Например, косинус 89° ≈ 0,01745. Итак: c^{{2}}=5^{{2}}+9^{{2}}-2(5)(9)(0,01745).
  5. Изображение с названием Use the Cosine Rule Step 5

    5

    Перемножьте числа. Умножьте 2ab на косинус известного угла.

  6. Изображение с названием Use the Cosine Rule Step 6

    6

    Сложите квадраты известных сторон. Помните, чтобы возвести число в квадрат, его нужно умножить на само себя. Сначала возведите в квадрат соответствующие числа, а затем сложите полученные значения.

  7. Изображение с названием Use the Cosine Rule Step 7

    7

    Вычтите два числа. Вы найдете c^{{2}}.

  8. Изображение с названием Use the Cosine Rule Step 8

    8

    Извлеките квадратный корень из полученного значения. Для этого воспользуйтесь калькулятором. Так вы найдете неизвестную сторону.[5]

    Реклама

  1. Изображение с названием Use the Cosine Rule Step 9

    1

    Запишите известные величины. Чтобы найти неизвестный угол треугольника, нужно знать все три стороны треугольника.[6]

    • Например, дан треугольник RST. Сторона СР = 8 см, ST = 10 см, РТ = 12 см. Найдите значение угла S.
  2. Изображение с названием Use the Cosine Rule Step 10

    2

    Запишите формулу теоремы косинусов. Формула: c^{{2}}=a^{{2}}+b^{{2}}-2abcos {C}, где cos {C} — косинус неизвестного угла, c — известная сторона, противолежащая неизвестному углу, a и b — две другие известные стороны. [7]

  3. Изображение с названием Use the Cosine Rule Step 11

    3

  4. Изображение с названием Use the Cosine Rule Step 12

    4

    Перемножьте числа. Умножьте 2ab на косинус неизвестного угла.

    • Например, 12^{{2}}=8^{{2}}+10^{{2}}-160cos {C}.
  5. Изображение с названием Use the Cosine Rule Step 13

    5

    Возведите c в квадрат. То есть умножьте число само себя.

    • Например, 144=8^{{2}}+10^{{2}}-160cos {C}
  6. Изображение с названием Use the Cosine Rule Step 14

    6

    Сложите квадраты a и b. Но сначала возведите соответствующие числа в квадрат.

  7. Изображение с названием Use the Cosine Rule Step 15

    7

    Изолируйте косинус неизвестного угла. Для этого вычтите сумму a^{{2}} и b^{{2}} из обеих частей уравнения. Затем разделите каждую часть уравнения на коэффициент (множитель) при косинусе неизвестного угла.

  8. Изображение с названием Use the Cosine Rule Step 16

    8

    Вычислите арккосинус. Так вы найдете значение неизвестного угла.[9]
    На калькуляторе функция арккосинуса обозначается COS^{{-1}}.

    • Например, арккосинус 0,0125 равен 82,8192. Итак, угол S равен 82,8192°.

    Реклама

  1. Изображение с названием Use the Cosine Rule Step 17

    1

    Найдите неизвестную сторону треугольника. Известные стороны равны 20 см и 17 см, а угол между ними равен 68°.

  2. Изображение с названием Use the Cosine Rule Step 18

    2

    Найдите угол H в треугольнике GHI. Две стороны, прилегающие к углу Н, равны 22 и 16 см. Сторона, противоположная углу H, равна 13 см.

  3. Изображение с названием Use the Cosine Rule Step 19

    3

    Найдите длину тропы. Речная, Холмистая и Болотная тропы образуют треугольник. Длина Речной тропы — 3 км, длина Холмистой тропы — 5 км; эти тропы пересекаются друг с другом под углом 135°. Болотная тропа соединяет два конца других троп. Найдите длину Болотной тропы.

    Реклама

Советы

  • Проще пользоваться теоремой синусов. Поэтому сначала выясните, можно ли применить ее к данной задаче.

Реклама

Об этой статье

Эту страницу просматривали 5483 раза.

Была ли эта статья полезной?

Страница содержит полную информацию о теореме косинусов, а также калькулятор, с помощью которого можно найти стороны и угол треугольника и формулу теоремы косинусов.

Теорема косинусов обобщает теорему Пифагора на произвольные плоские треугольники и устанавливает соотношение между сторонами треугольника и его углами.

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов

Теорема косинусов

{a^2 = b^2 + c^2-2bc cos (alpha)}
{b^2 = a^2 + c^2-2ac cos (beta)}
{c^2 = a^2 + b^2-2ab cos (gamma)}

a, b, c — стороны треугольника,

α, β, γ — углы треугольника.

Содержание:

Теорема синусов, теорема косинусов:

Теорема синусов

Вы уже знаете, что в треугольнике против большей стороны лежит больший угол, а против большего угла — большая сторона. Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Отношение стороны треугольника к синусу противолежащего угла равно удвоенному радиусу окружности, описан­ной около треугольника, т. е.
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Пусть дан треугольник АВС, ВС = Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения — радиус его описанной окружности. Угол а может быть острым, тупым или прямым. Рассмотрим эти случаи отдельно.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

1) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения острый (рис. 152, а). Проведя диаметр BD и отрезок DC, получим прямоугольный треугольник BCD, в котором Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения как вписанный угол, опирающийся на диаметр. Заметим, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения как вписанные углы, опирающиеся на одну и ту же дугу ВС. Из прямоугольного треугольника BCD находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решеният. е. Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

2) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения тупой (рис. 152, б). Проведем диаметр BD и отрезок DC. В четырехугольнике ABDC по свойству вписанного четырехугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Из прямоугольного треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения как вписанный угол, опирающийся на диаметр) Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Поскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

3) Для Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения справедливость равенства Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения докажите самостоятельно, В силу доказанного Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема доказана.

Теорема синусов дает возможность решать широкий круг задач.
Так, пропорция Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения позволяет решить две следующие задачи:

  • зная две стороны треугольника и угол, противолежащий одной из них, найти синус угла, противолежащего другой стороне;
  • зная два угла треугольника и сторону, противолежащую одному из этих углов, найти сторону, противолежащую другому углу.

С помощью формулы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияможно решить еще три задачи (рис. 153): 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

  • зная сторону треугольника и противолежащий ей угол, найти радиус окружности, описанной около треугольника;
  • зная угол треугольника и радиус описанной окружности, найти сторону треугольника, противолежащую данному углу;
  • зная сторону треугольника и радиус его описанной окружности, найти синус угла, противолежащего данной стороне.

Повторение

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Пример:

В остроугольном треугольнике известны стороны Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения и угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найти два других угла Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения округлив их значения до 1°, и третью сторону треугольника, округлив ее длину до 0,1.

Решение:

По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения При помощи калькулятора (таблиц). находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Замечание. Если бы по условию треугольник был тупоугольным с тупым углом Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то, зная Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения вначале мы нашли бы острый угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения А за­тем, используя формулу Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения получили бы, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример:

Доказать справедливость формулы площади треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — его стороны, R — радиус описанной окружности.

Доказательство:

Воспользуемся известной формулой площади треугольника: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Что и требовалось доказать.

Замечание. Выведенная формула позволяет найти радиус описанной окружности треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример:

Найти радиус R окружности, описанной около равнобедренного треугольника АВС с основанием АС = 10 и боковой стороной ВС =13 (рис. 154).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Способ 1. Из формулы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найдем Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения. Для этого в треугольнике АВС проведем высоту ВК, которая будет и медианой, откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияпо теореме Пифагора Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Способ 2. Используем формулу Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения из которой Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТак как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениято Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Замечание*. Напомним, что в главе II мы находили радиус R описанной окружности равнобедренного треугольника, проводя серединные перпендикуляры к его сторонам и используя подобие полученных прямоугольных треугольников. Также мы могли использовать формулу Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — боковая сторона, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — высота, проведенная к основанию Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения 

Заменив Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения в формуле Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения получим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — формулу радиуса описанной окружности для произвольного треугольника. Итак, мы имеем четыре формулы для нахождения радиуса R описанной окружности треугольника:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема косинусов

Теорема косинусов позволяет выразить длину любой стороны треугольника через длины двух других его сторон и косинус угла между ними (например, длину стороны Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения треугольника АВС (рис. 165) через длины сторон Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения). Теорему косинусов можно назвать самой «работающей» в геометрии. Она имеет многочисленные следствия, которые часто используются при решении задач.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема косинусов. Квадрат любой стороны треугольника равен сум­ме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними, т. е. 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Докажем теорему для случая, когда в треугольнике АВС угол А и угол С острые (рис. 166).
Проведем высоту ВН к стороне АС. Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме Пифагора Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

По основному тригонометрическому тождеству Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Справедливость теоремы для случаев, когда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения или Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения тупой или прямой, докажите самостоятельно. Теорема доказана.
Для сторон Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения теорема косинусов запишется так:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Замечание. Если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения, то по теореме Пифагора Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Таким образом, теорема Пифагора — частный случай теоремы косинусов.
С помощью теоремы косинусов можно решить следующие задачи:

• зная две стороны и угол между ними, найти третью сторону треугольника;

• зная две стороны и угол, противолежащий одной из этих сторон, найти третью сторону (рис. 167) (в этом случае возможны два решения).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Рассмотрим следствия из теоремы косинусов, которые дают возможность решить еще целый ряд задач.

Следствие:

Теорема косинусов позволяет, зная три стороны треугольника, най­ти его углы (косинусы углов). Из равенства Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует формула

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Для углов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияполучим:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Пример:

В треугольнике АВС стороны АВ = 8, ВС = 5, АС = 7. Найдем ZB (рис. 168).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

По теореме косинусов

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Используя записанную выше формулу, можно сра­зу получить: 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Следствие:

С помощью теоремы косинусов можно по трем сторонам определить вид треугольника: остроугольный, прямоугольный или тупоугольный.
 

Так, из формулы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения с учетом того, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует:

  1. если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения острый;
  2. если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения тупой;
  3. если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения прямой.

При определении вида треугольника достаточно найти знак косинуса угла, лежащего против большей стороны, поскольку только больший угол треугольника может быть прямым или тупым.
 

Пример:

Выясним, каким является треугольник со сторонами a = 2, 6 = 3 и с = 4. Для этого найдем знак косинуса угла у, лежащего против большей стороны с. Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения тупой и данный треугольник тупоугольный.

Сформулируем правило определения вида треугольника (относительно углов). Треугольник является:

  1. остроугольным, если квадрат его большей стороны меньше суммы квадратов двух других его сторон: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  2. тупоугольным, если квадрат его большей стороны больше суммы квадратов двух других его сторон:Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  3. прямоугольным, если квадрат его большей стороны равен сумме квадратов двух других его сторон: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Следствие:

Сумма квадратов диагоналей параллелограмма равна сумме квадра­тов всех его сторон: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Пусть в параллелограмме ABCD Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения— острый, откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — тупой (рис. 169). По теореме косинусов из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения                                     (1)
Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Поскольку cos Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения                                   (2)

Сложив почленно равенство (1) и равенство (2), получим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения что и требовалось доказать.

Данная формула дает возможность:

  • • зная две соседние стороны и одну из диагоналей параллелограмма, найти другую диагональ;
  • • зная две диагонали и одну из сторон параллелограмма, найти соседнюю с ней сторону.

Следствие:

Медиану Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения треугольника со сторонами а, b и с можно найти по фор­муле Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

 Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Рассмотрим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения — медиана треугольника (рис. 170). Продлим медиану AM за точку М на ее длину: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Проведем отрезки BD и DC. Так как у четырехугольника ABDC диагонали AD и ВС точкой пересечения делятся пополам, то он — параллелограмм. По свойству диагоналей параллелограмма Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Отсюда следует, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Утверждение доказано.

Аналогично: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Формула медианы позволяет:

  • зная три стороны треугольника, найти любую из его медиан;
  • зная две стороны и медиану, проведенную к третьей стороне, найти третью сторону;
  • зная три медианы, найти любую из сторон треугольника.

Пример:

а) Дан треугольник АВС, а = 5, 5 = 3, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найти сторону с. б) Дан треугольник АВС, а = 7, с = 8, а = 60°. Найти сторону Ь.

Решение:

а) По теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Отсюда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения б) Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то есть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Отсюда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения или Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения так как для наборов длин отрезков 7, 3, 8 и 7, 5, 8 выполняется неравенство треугольника.
Ответ: а) 7; б) 3 или 5.

Пример:

Две стороны треугольника равны 6 и 10, его площадь — Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Найти третью сторону треугольника при условии, что противолежащий ей угол — тупой.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Пусть в Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениястороны АВ = 6, ВС = 10 и Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 171).
Поскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и по условию Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — тупой, то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения. Для нахождения стороны АС применим теорему косинусов:Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Ответ: 14.

Пример:

Найти площадь треугольника, две стороны которого равны 6 и 8, а медиана, проведенная к третьей стороне, равна 5.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Обозначим стороны треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — медиана (рис. 172).
По формуле медианы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения По обратной теореме Пифагора данный треугольник со сторонами 6, 8 и 10 — прямоугольный, его площадь равна половине произведения катетов:Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: 24.

Формула Герона

Мы знаем, как найти площадь треугольника по основанию и высоте, проведенной к этому основанию: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения а также по двум сторонам и углу между ними: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теперь мы выведем формулу нахождения площади треугольника по трем сторонам.

Теорема (формула Герона).

Площадь треугольника со сторонами Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения можно найти по формуле Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения— полупериметр треугольника.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 183). Из основ­ного тригонометрического тождества Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Для Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения синус положительный. Поэтому Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияИз теоремы косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Так какТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема доказана.

Решение треугольников

Решением треугольника называется нахождение его неизвестных сторон и углов (иногда других элементов) по данным, определяющим треугольник.

Такая задача часто встречается на практике, например в геодезии, астрономии, строительстве, навигации.

Рассмотрим алгоритмы решения трех задач.
 

Пример №1 (решение треугольника по двум сторонам и углу между ними). 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Дано: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения(рис. 184).

Найти : Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Решение:

Рис. 184
1) По теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

2) По следствию из теоремы косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

3) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим при помощи калькулятора или таблиц.

4) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Замечание. Нахождение угла Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениятребует выяснения того, острый или тупой угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример №2 (решение треугольника по стороне и двум  прилежащим к ней углам).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Дано: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения(рис. 185).

Найти: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

1) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

2) По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения(sin Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и sin Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим при помощи калькулятора или таблиц).

3) Сторону с можно найти с помощью теоремы косинусов или теоре­мы синусов: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияили Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения(cos Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и sin Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениянаходим при помощи калькулятора или таблиц).

Пример №3 (решение треугольника по трем сторонам).

Дано: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 186).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Найти: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияи радиус R описанной окружности.

Решение:

1) По следствию из теоремы косинусов

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

2) Зная Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим при помощи калькулятора или таблиц.

3) Аналогично находим угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

 4) Угол Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

 5) Радиус R описанной окружности треугольника можно найти по фор­муле Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Замечание*. Вторым способом нахождения R будет нахождение косинуса любого угла при помощи теоремы косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения затем нахождение по косинусу угла его синуса Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и, наконец, использование теоремы синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решениядля нахождения R.

Пример №4

Найти площадь S и радиус R описанной окружности треугольника со сторонами 9, 12 и 15.

Решение:

Способ 1. Воспользуемся формулой Герона. Обозначим а = 9, b = 12, с = 15. Получим: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Радиус R описанной окруж­ности найдем из формулы Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Имеем: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Способ 2. Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияпоскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то треугольник — прямоугольный по обратной теореме Пифагора. Его площадь равна половине произведения катетов: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения а радиус описанной окружности равен половине гипотенузы: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример №5

Найти площадь трапеции с основаниями, равными 5 и 14, и боковыми сторонами, равными 10 и 17.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Пусть в трапеции ABCD основания AD = 14 и ВС = 5, боковые стороны АВ = 10 и Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Проведем Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 187). Так как АВСК — параллелограмм, то СК = АВ = 10, АК = ВС = 5, откуда KD = AD — АК = 9. Найдем высоту СН треугольника KCD, которая равна высоте трапеции. Площадь треугольника KCD найдем по формуле Герона, обозначив его стороны а = 10, b = 17, с = 9. Получим:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияСН = 8. Площадь трапеции Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Ответ: 76.
 

Примеры решения задач с использованием теоремы синусов и теоремы косинусов

Пример:

Внутри угла А, равного 60°, взята точка М, которая находится на расстоянии 1 от одной стороны угла и на расстоянии 2 от другой стороны. Найти расстояние от точки М до вершины угла А (рис. 189, а).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найдем
длину отрезка AM. Сумма углов четырехугольника АВМС равна 360°.
Поэтому Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Так как в четырехугольнике АВМС Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения, то около него можно описать окружность по признаку вписанного четырехугольника (рис. 189, б). Поскольку прямой вписанный угол опирается на диаметр, то отрезок AM — диаметр этой окружности, т. е. Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения где R — радиус. Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Замечание. Вторым способом решения будет продление отрезка ВМ до пересечения с лучом АС и использование свойств полученных прямоугольных треуголь­ников. Рассмотрите этот способ самостоятельно.

Пример №6

В прямоугольном треугольнике АВС известно: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения высота СН = 2 (рис. 190). Найти гипотенузу АВ.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Построим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения симметричный Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения относительно прямой АВ (см. рис. 190).
Поскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то вокруг четырехугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения можно описать окруж­ность, где АВ — диаметр этой окружности (прямой вписанный угол опирается на диаметр). Треугольник Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения вписан в эту окруж­ность, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме синусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: 8.

Пример №7

Дан прямоугольный треугольник АВС с катетами ВС = а и АС = Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения На гипотенузе АВ как на стороне построен квадрат ADFB (рис. 191). Найти расстояние от центра О этого квадрата до вершины С прямого угла, т. е. отрезок СО.

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Способ 1. Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (диагона­ли квадрата ADFB взаимно перпендикулярны), то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения поэтому четырехугольник АОВС является вписанным в окружность, ее диа­метр Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Пусть СО = х. По теореме косинусов из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

По свойству вписанного четырехугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Поскольку Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияоткуда находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения.

 Способ 2. Используем теорему Птолемея, которая гласит: «Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон». Для нашей задачи получаем (см. рис. 191):

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Способ 3. Достроим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения до квадрата CMNK, как показано на рисунке 192. Можно показать, что центр квадрата CMNK совпадет с центром квадрата ADFB, т. е. с точкой О (точки В и D симметричны относительно центров обоих квадратов). Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Ответ: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
 

Пример №8

Точка О — центр окружности, вписанной в треуголь­ник АВС, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Найти стороны треугольника (см. задачу 232*).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Решение:

Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — радиус вписанной окружности (рис. 193).
Тогда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Отсюда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Применим формулу Герона:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

С другой стороны, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Из уравнения Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения находим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения = 2. Откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (см), Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (см), Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (см).
Ответ: 15 см; 20 см; 7 см.

Теорема Стюарта

Следующая теорема позволяет найти длину отрезка, соединяющего вершину треугольника с точкой на противоположной стороне.
 

Теорема Стюарта. «Если а, b и с — стороны треугольника и отре­зок d делит сторону с на отрезки, равные х и у (рис. 194), то справедлива формула

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

По теореме косинусов из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияи Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (см. рис. 194) следует:

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения                                     (1)

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения              (2)

Умножим обе части равенства (1) на у, равенства (2) — на Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Сложим почленно полученные равенства:
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Из последнего равенства выразим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема доказана.

Следствие:

Биссектрису треугольника можно найти по формуле (рис. 195)

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

По свойству биссектрисы треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Разделив сторону Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияс в отношении Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения получим: 

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения По теореме Стюарта Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Пример №9

Доказать, что если в треугольнике две биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера—Лемуса).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Пусть дан треугольник АВС, Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — биссектрисы, проведенные к сторонам ВС = а и АС = b соответственно, и Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 196). Нужно доказать, что Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Выразим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и через Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения и приравняем полученные выражения. Биссектриса делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Поэтому Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения откуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

По формуле биссектрисы треугольника Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Из условия Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения следует: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Перенеся слагаемые в одну сторону равенства и разложив на множители (проделайте это самостоятельно), получим: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения Отсюда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (второй множитель при положительных Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения больше нуля). Утверждение доказано.

Теорема Птолемея о вписанном четырехугольнике

Произведение диагоналей вписанного четырехугольника равно сумме произведений его противоположных сторон, т. е.Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (рис. 197).

Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения

Доказательство:

Из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения по теореме косинусов Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Так как Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения (по свойству вписанного четырехугольника) и Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияоткуда Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
Аналогично из Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения получим Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТогда  Теорема синусов и  теорема косинусов - определение и вычисление с примерами решенияТеорема синусов и  теорема косинусов - определение и вычисление с примерами решения Теорема доказана.

Запомните:

  1. Теорема синусов. Стороны треугольника пропорциональны синусам про­тиволежащих углов. Отношение стороны треугольника к синусу проти­волежащего угла равно удвоенному радиусу его описанной окружности:Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  2. Радиус описанной окружности треугольника можно найти, используя формулы: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  3. Теорема косинусов. Квадрат любой стороны треугольника равен сумме ква­дратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  4. Пусть Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения — стороны треугольника и с — большая сторона. Если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения, то треугольник тупоугольный, если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения то треугольник остроугольный, если Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения, то треугольник прямоугольный.
  5. Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  6. Формула Герона: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  7. Формула медианы: Теорема синусов и  теорема косинусов - определение и вычисление с примерами решения
  • Параллельность прямых и плоскостей
  • Перпендикулярность прямой и плоскости
  • Взаимное расположение прямых в пространстве, прямой и плоскости
  • Перпендикулярность прямых и плоскостей в пространстве
  • Углы и расстояния в пространстве
  • Подобие треугольников
  • Решение прямоугольных треугольников
  • Параллелограмм

Нахождение углов треугольника по заданным сторонам

Нахождение углов треугольника по заданным сторонам с использованием теоремы косинусов.

От нашего пользователя поступил запрос на создание калькулятора, рассчитывающего углы треугольника по заданным сторонам — Расчет углов треугольника.

Для треугольника, в отличие от, скажем, четырехугольника, эта задача имеет решение, ибо треугольник можно однозначно определить по трем сторонам (а также по двум сторонам и углу между ними, и по стороне и двум прилежащим углам).

Стороны в треугольнике, кстати сказать, должны следовать неравенству треугольника, то есть, сумма любых двух сторон должна быть больше третьей стороны.
Математически (см. рисунок) это выражается системой
c» />
a» />
b» />

В случае невыполнения хотя бы одного из условий треугольник называют вырожденным. Собственно, это и не треугольник уже.

Идем дальше — при известных сторонах углы проще всего определить, пользуясь теоремой косинусов, частным случаем которой является теорема Пифагора (см. рисунок)

Калькулятор ниже рассчитывает углы по введенным длинам сторон. Если треугольник вырожденный, то в результате будут нули.

Теорема косинусов и синусов

О чем эта статья:

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формула Теоремы Пифагора:

a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

a 2 = b 2 + c 2 — 2bc cos α

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

cos 2 α + sin 2 α = 1основное тригонометрическое тождество.

BC 2 = a 2 = (b cos α — c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α — 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) — 2bc cos α + c 2

Что и требовалось доказать.

Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.

С помощью теоремы косинусов можно найти косинус угла треугольника:

  • Когда b 2 + c 2 — a 2 > 0, угол α будет острым.
  • Когда b 2 + c 2 — a 2 = 0, угол α будет прямым.
  • Когда b 2 + c 2 — a 2

Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

  • AD = b × cos α,
  • DB = c – b × cos α.

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

  • h 2 = b 2 — (b × cos α) 2
  • h 2 = a 2 — (c – b × cos α) 2

Приравниваем правые части уравнений:

  • b 2 — (b × cos α) 2 = a 2 — (c — b × cos α) 2
  • a 2 = b 2 + c 2 — 2bc × cos α

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

  • b 2 = a 2 + c 2 — 2ac × cos β;
  • c 2 = a 2 + b 2 — 2ab × cos γ.

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

a 2 = b 2 + c 2 — 2bc cos α

b 2 = c 2 + a 2 — 2ca cos β

c 2 = a 2 + b 2 — 2ab cos γ

Теорема косинусов может быть использована для любого вида треугольника.

Косинусы углов треугольника

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

    Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
    Из треугольника АВС найдем cos B:

Из треугольника СМВ по теореме косинусов найдём СМ:

Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.

  • Если c 2 2 + b 2 , то ∠C — острый.

Косинус по сторонам треугольника

Теорема косинусов и синусов

О чем эта статья:

Формулировка и доказательство теоремы косинусов

Для начала вспомним теорему Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Формула Теоремы Пифагора:

a 2 > + b 2 > = c 2 >, где a, b — катеты, с — гипотенуза.

Теорема косинусов звучит так: квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Формула теоремы косинусов:

a 2 = b 2 + c 2 — 2bc cos α

В доказательстве теоремы косинусов используем формулу длины отрезка в координатах. Рассмотрим данную формулу:

В доказательстве теоремы косинусов BC — это сторона треугольника АВС, которая обозначена буквой а. Введем удобную систему координат и найдем координаты нужных нам точек. У точки В координаты (с; 0).
Координаты точки С — (b cos α; b sin α) при α ∈ (0° ; 180°).

BC 2 = a 2 = (b cos α — c) 2 + b 2 sin 2 α = b 2 cos 2 α + b 2 sin 2 α — 2bc cos α + c 2 = b 2 (cos 2 α + sin 2 α) — 2bc cos α + c 2

cos 2 α + sin 2 α = 1основное тригонометрическое тождество.

Что и требовалось доказать.

Совет: чтобы быстрее разобраться в сложной теме, запишитесь на онлайн-курсы по математике для детей и подростков.

С помощью теоремы косинусов можно найти косинус угла треугольника:

  • Когда b 2 + c 2 — a 2 > 0, угол α будет острым.
  • Когда b 2 + c 2 — a 2 = 0, угол α будет прямым.
  • Когда b 2 + c 2 — a 2

Сформулируем еще одно доказательство теоремы косинусов.

Пусть нам дан треугольник ABC, в котором из вершины C на сторону AB опустили высоту CD. Это значит:

  • AD = b × cos α,
  • DB = c – b × cos α.

Запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

  • h 2 = b 2 — (b × cos α) 2
  • h 2 = a 2 — (c – b × cos α) 2

Приравниваем правые части уравнений:

  • b 2 — (b × cos α) 2 = a 2 — (c — b × cos α) 2
  • a 2 = b 2 + c 2 — 2bc × cos α

Если один из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определим стороны b и c:

  • b 2 = a 2 + c 2 — 2ac × cos β;
  • c 2 = a 2 + b 2 — 2ab × cos γ.

Формулировка теоремы для каждой из сторон треугольника

Теорема косинусов справедлива для всех сторон треугольника, то есть:

a 2 = b 2 + c 2 — 2bc cos α

b 2 = c 2 + a 2 — 2ca cos β

c 2 = a 2 + b 2 — 2ab cos γ

Теорема косинусов может быть использована для любого вида треугольника.

Косинусы углов треугольника

Теорема косинусов позволяет найти как косинус, так и угол треугольника. Найдём косинусы углов:

Определение угла с помощью косинуса

А теперь обратим внимание на углы.

Как мы уже знаем, косинус угла из промежутка (0°; 180°) определяет угол (в отличие от его синуса).

Пусть нам дана единичная полуокружность. Если нам задан cos α, то нам задана точка на верхней полуокружности и задан угол α. Следовательно, cos α однозначно определяет точку М(cos α; sin α), и однозначно определяется угол ∠AOM.

Рассмотрение пределов изменения cos α и sin α

Рассмотрим пределы изменения синуса и косинуса α. Вспомним, что если α — угол треугольника, то он лежит в пределах от 0° до 180°.

Предел изменения косинуса: -1 0, то α ∈ (0°;90°)
Если cos α

Примеры решения задач

При помощи теоремы косинусов можно решать задачки по геометрии. Рассмотрим интересные случаи.

Пример 1. Дан треугольник АВС. Найти длину СМ.

∠C = 90°, АВ = 9, ВС = 3, AM/MB = 1/2, где М — точка на гипотенузе АВ.

    Так как АМ + МВ = 9, а AM/MB = 1/2, то АМ = 3, МВ = 6.
    Из треугольника АВС найдем cos B:

Из треугольника СМВ по теореме косинусов найдём СМ:

Пример 2. Дан треугольник АВС, в котором a2+ b22 + b 2 2 , то cos C 2 = a 2 + b 2 , то ∠C = 90°.

  • Если c 2 2 + b 2 , то ∠C — острый.

Теорема косинусов

Теорема косинусов — в любом треугольнике квадрат одной стороны равен сумме квадратов двух других сторон минус удвоенное произведение этих двух сторон на косинус угла между ними.

  • a² = b² + c² – 2b.c.cosα
  • b² = a² + c² – 2a.c.cosβ
  • c² = a² + b² – 2a.b.cosγ

Например:

Одна сторона треугольника равна 12 см, другая — 8 см, между ними образовался угол 120º. Найдите длину третьей стороны.

Решение по формуле a² = b² + c² – 2b.c.cosα:

cos α = cos 120º = — 1/2 (это значение можно найти в таблицах)

a² = 12² + 8² – 2×12×8×(- 1/2)

Длина третьей стороны — примерно 17,436 см.

Следствия

Следствие косинуса угла треугольника

При помощи теоремы косинусов можно найти косинус угла треугольника.

Используйте теорему косинусов, чтобы найти угол β.

Решение:

Будем использовать эту версию формулы:

cos β = (6² + 8² − 7²) / 2×6×8

Следствие верхней части формулы cos α

Чтобы узнать, если угол α острый, прямой или тупой, нужно вычислить b²+c²−a² (это верхняя часть формулы для cos α):

  • b²+c²−a² 0, значит угол α — острый.

Доказательство теоремы косинусов

Нужно доказать, что c² = a² + b² − 2a.b.cos C

1. Из определения косинуса известно, что в прямоугольном треугольнике BCD: cos C = CD/a CD = a.cos C.

2. Вычитаем это из стороны b, так мы получим DA:

3. Мы знаем из определения синуса, что в том же треугольнике BCD:

sin C = BD/a BD = a.sinC.

4. Применяем теорему Пифагора в треугольнике ADB: c² = BD² + DA²

5. Заменим BD и DA из пунктов 2) и 3), получится выражение: c²= (a. sin C)²+(b−a.cos C)²

6. Раскрываем скобки: c² = a² sin ²C + b² − 2a.b.cosC + a².cos²C

6.1. Поменяем их местами (a²cos²C поставим на второе место): c² = a² sin ²C + a²cos²C + b² − 2a.b.cosC

7. Выносим за скобки «a²»: c² = a² (sin²C+cos²C) + b² − 2a.b.cosC

8. В скобках получилось основное тригонометрическим тождество (sin²α + cos²α = 1), значит его можно сократить т. к. умножение на единицу ничего не меняет, получилось: c² = a² + b² − 2a.b.cos C

Теорема косинусов для равнобедренного треугольника

В равнобедренном треугольнике:

  • две его стороны равны;
  • углы при основании равны.

Используем формулу теоремы косинусов

a² = b² + c² – 2b.c.cosα

Подставляем все известные:

x² = 8² + 8² – 2×8×8×cos140º

x² = 64 + 64 – 128 × (-0,766)

Теорема синусов

Теорема синусов гласит, что отношение стороны треугольника к синусу угла, противолежащего данной стороне, одинаково для всех сторон и углов в данном треугольнике:

Теорема косинусов. Доказательство теоремы косинусов.

Теорема косинусов — теорема евклидовой геометрии, которая обобщающает теорему Пифагора.

Теорема косинусов:

Для плоского треугольника, у которого стороны a, b, c и угол α, который противолежит стороне a, справедливо соотношение:

Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Следствие из теоремы косинусов.

  • Теорема косинусов используется для определения cos угла треугольника:

h 2 = a 2 — (c – b cos α) 2 (2)

Приравниваем правые части уравнений (1) и (2):

b 2 — (b cos α) 2 = a 2 — (c — b cos α) 2

a 2 = b 2 + c 2 — 2bc cos α.

Если 1-н из углов при основании тупой (высота упирается в продолжение основания), полностью аналогичен рассмотренному выше.

Определить стороны b и c:

источники:

http://skysmart.ru/articles/mathematic/teorema-kosinusov-i-sinusov

http://b4.cooksy.ru/articles/kosinus-po-storonam-treugolnika

Понравилась статья? Поделить с друзьями:
  • Как найти плотника для домашних работ
  • Как добавить кнопку меня можно найти
  • Как составить план оврага
  • Как составить путевые заметки
  • Как найти подпространство решение онлайн