Как составить алгоритм вычисления по информатике

Исключительно важно использовать язык блок-схем при разработке алгоритма решения задачи. Решение одной и той же задачи может быть реализовано с помощью различных алгоритмов, отличающихся друг от друга как по времени счета и объему вычислений, так и по своей сложности. Запись этих алгоритмов с помощью блок-схем позволяет сравнивать их, выбирать наилучший алгоритм, упрощать, находить и устранять ошибки.

Отказ от языка блок-схем при разработке алгоритма и разработка алгоритма сразу на языке программирования приводит к значительным потерям времени, к выбору неоптимального алгоритма. Поэтому необходимо изначально разработать алгоритм решения задачи на языке блок-схем, после чего алгоритм перевести на язык программирования.

При разработке алгоритма сложной задачи используется метод пошаговой детализации. На первом шаге продумывается общая структура алгоритма без детальной проработки отдельных его частей. Блоки, требующие детализации, обводятся пунктирной линией и на последующих шагах разработки алгоритма продумываются и детализируются.

В процессе разработки алгоритма решения задачи можно выделить следующие этапы:

  • Этап 1 . Математическое описание решения задачи.
  • Этап 2 . Определение входных и выходных данных.
  • Этап 3 . Разработка алгоритма решения задачи.

Базовые алгоритмические конструкции

В теории программирования доказано, что для записи любого, сколь угодно сложного алгоритма достаточно трех базовых структур:

  • следование (линейный алгоритм);
  • ветвление (разветвляющийся алгоритм);
  • цикл-пока (циклический алгоритм).

Линейные алгоритмы

Линейный алгоритм образуется из последовательности действий, следующих одно за другим. Например, для определения площади прямоугольника необходимо сначала задать длину первой стороны, затем задать длину второй стороны, а уже затем по формуле вычислить его площадь.

alt

Пример

ЗАДАЧА. Разработать алгоритм вычисления гипотенузы прямоугольного треугольника по известным значениям длин его катетов a и b.

На примере данной задачи рассмотрим все три этапа разработки алгоритма решения задачи:

Этап 1. Математическое описание решения задачи.

Математическим решением задачи является известная формула:

Формула,

где с-длина гипотенузы, a, b – длины катетов.

Этап 2. Определение входных и выходных данных.

Входными данными являются значения катетов a и b. Выходными данными является длина гипотенузы – c.

Этап 3. Разработка алгоритма решения задачи.

Словесное описание алгоритма Запись алгоритма на языке блок-схем
  1. Начало алгоритма.
  2. Ввод значений длин катетов a и b.
  3. Вычисление длины гипотенузы с по формуле Формула
  4. Вывод значения длины гипотенузы.
  5. Конец алгоритма

На данной схеме цифрами указаны номера элементов алгоритма, которые соответствуют номерам пунктов словесного описания алгоритма.

Блок-схема

Разветвляющиеся алгоритмы

Алгоритм ветвления содержит условие, в зависимости от которого выполняется та или иная последовательность действий.

Алгоритм ветвления

Пример

ЗАДАЧА. Разработать алгоритм вычисления наибольшего числа из двух чисел x и y.

Этап 1. Математическое описание решения задачи.

Из курса математики известно, если x > y, то наибольшее число x, если x < y, то наибольшее число y, если x = y, то число x равно числу y.

Этап 2. Определение входных и выходных данных.

Входными данными являются значения чисел x и y. Выходным данными являются:

  • наибольшее число
  • любое из чисел, если числа равны

Для решения задачи нам необходимо знать значения x и y.

Этап 3. Разработка алгоритма решения задачи.

Словесное описание алгоритма Запись алгоритма на языке блок-схем
  1. Начало алгоритма.
  2. Ввод значений x и y.
  3. Сравниваем x и y. Если x = y, то переход к шагу 4, иначе к шагу 5.
  4. Вывод информации: числа x и y равны. Переход к шагу 8.
  5. Сравниваем x и y. Если x > y, то переход к шагу 6, иначе к шагу 7.
  6. Вывод информации: число x больше y. Переход к шагу 8.
  7. Вывод информации: число y больше x. Переход к шагу 8.
  8. Конец алгоритма.

блок-схема

В схеме алгоритма решения задачи цифрами указаны номера элементов алгоритма, которые соответствуют номерам шагов словесного описания алгоритма

В рассматриваемом алгоритме (рис.3) имеются три ветви решения задачи:

  • первая: это элементы 1, 2, 3, 4, 8.
  • вторая: это элементы 1, 2, 3, 5, 6, 8
  • третья: это элементы 1, 2, 3, 5, 7, 8.

Выбор ветви определяется значениями x и y в элементах 3 и 5, которые являются условиями, определяющими порядок выполнения элементов алгоритма. Если условие (равенство), записанное внутри символа «решение», выполняется при введенных значениях x и y, то следующими выполняется элементы 4 и 8. Это следует из того, что они соединены линией с надписью «да» и направление (последовательность) вычислений обозначена стрелочкой.

Если условие в элементе 3 не выполняется, то следующим выполняется элемент 5. Он соединен с элементом 3 линией с надписью «нет». Если условие, записанное в элементе 5, выполняется, то выполняется элементы 6 и 8, в противном случае выполняются элементы 7 и 8.

Циклические алгоритмы

Циклический алгоритм определяет повторение некоторой части действий (операций), пока не будет нарушено условие, выполнение которого проверяется в начале цикла. Совокупность операций, выполняемых многократно, называется телом цикла.

Циклический алгоритм

Алгоритмы, отдельные действия в которых многократно повторяются, называются циклическими алгоритмами, Совокупность действий, связанную с повторениями, называют циклом.

При разработке алгоритма циклической структуры выделяют следующие понятия:

  • параметр цикла – величина, с изменением значения которой связано многократное выполнение цикла;
  • начальное и конечное значения параметров цикла;
  • шаг цикла – значение, на которое изменяется параметр цикла при каждом повторении.

Цикл организован по определенным правилам. Циклический алгоритм состоит из подготовки цикла, тела цикла и условия продолжения цикла.

 Циклический алгоритм

В подготовку цикла входят действия, связанные с заданием исходных значений для параметров цикла:

  • начальные значения цикла;
  • конечные значения цикла;
  • шаг цикла.

В тело цикла входят:

  • многократно повторяющиеся действия для вычисления искомых величин;
  • подготовка следующего значения параметра цикла;
  • подготовка других значений, необходимых для повторного выполнения действий в теле цикла.

В условии продолжения цикла определяется допустимость выполнения повторяющихся действий. Если параметр цикла равен или превысил конечное значение цикла, то выполнение цикла должно быть прекращено.

 Пример

ЗАДАЧА. Разработать алгоритм вычисления суммы натуральных чисел от 1 до 100.

Этап 1. Математическое описание решения задачи.

Обозначим сумму натуральных чисел через S. Тогда формула вычисления суммы натуральных чисел от 1 до 100 может быть записана так:

сумма натуральных чисел

где Xi – натуральное число X c номером i, который изменяется от 1 до n, n=100 – количество натуральных чисел.

Этап 2. Определение входных и выходных данных.

Входными данными являются натуральные числа: 1, 2, 3, 4, 5, …, 98, 99, 100.

Выходные данные – значение суммы членов последовательности натуральных чисел.

Параметр циклавеличина, определяющая количество повторений цикла. В нашем случае i – номер натурального числа.

Подготовка цикла заключается в задании начального и конечного значений параметра цикла.

  • начальное значение параметра цикла равно 1,
  • конечное значение параметра цикла равно n,
  • шаг цикла равен 1.

Для корректного суммирования необходимо предварительно задать начальное значение суммы, равное 0.

Тело цикла. В теле цикла будет выполняться накопление значения суммы чисел, а также вычисляться следующее значение параметра цикла по формулам:

S=S+i;              I=I+1;

Условие продолжения цикла: цикл должен повторяться до тех пор, пока не будет добавлен последний член последовательности натуральных чисел, т.е. пока параметр цикла будет меньше или равен конечному значению параметра цикла.

Этап 3. Разработка алгоритма решения задачи.

Введем обозначения: S – сумма последовательности, i – значение натурального числа.

Начальное значение цикла i=1, конечное значение цикла i =100, шаг цикла 1.

Словесное описание алгоритма Запись алгоритма на языке блок-схем
  1. Начало алгоритма.
  2. Подготовка цикла: S:=0; i=1; n= 100;
  3. Проверка условия. Если i <=n , то перейти к шагу 4, иначе к шагу 6.
  4. Накопление суммы: S:=S+i;
  5. Вычисление следующего значения параметра цикла: i:=i+1;
  6. Вывод информации: сумма натуральных чисел – S.
  7. Конец алгоритма.

В схеме алгоритма решения задачи цифрами указаны номера элементов алгоритма. Номера элементов соответствуют номерам шагов словесного описания алгоритма.

Блок-схема

Содержание

  1. Линейный алгоритм
  2. Структура программы на языке Паскаль
  3. Заголовок программы
  4. Раздел описания переменных
  5. Тело программы
  6. Команды в Паскаль для ввода и вывода данных
  7. Команда Read
  8. Команда Write
  9. Примеры программ на паскале — задания на линейные алгоритмы

Линейный алгоритм

Линейным называется алгоритм, в котором команды выполняются последовательно друг за другом. Это самая простая конструкция. Программирование линейных алгоритмов освоить очень легко. Для написания простых программ на паскале разберем основные правила записи кода, основные команды и операторы Паскаль.

Структура программы на языке Паскаль

Прежде чем самостоятельно писать программы, разберем ее структуру на примере. Ниже приведен код программы, которая вычисляет сумму двух чисел и выводит ее на экран.

program primer1;    
var х,у,z:integer; { описание переменных }
begin	{ начало программы }
  х := 3;	{ установка значения х }
  у := 5;	{ установка значения у }
  z := х + у;	{ вычисление суммы }
  write(z);	{вывод результата вычисления на экран }
end.	{ конец программы }

как составить программу паскаль структура программы Паскаль

Заголовок программы

Текст программы начинается со слова program. После него записывается имя программы. Данная строка носит информативный характер и ее можно не писать.

Раздел подключения модулей начинается со служебного слова uses, за которым следует список имен модулей, перечисляемых через запятую.

Раздел описаний может включать разделы описания переменных, констант, меток, типов, процедур и функций, которые следуют друг за другом в произвольном порядке. Раздел подключения модулей и раздел описаний меток, констант и др. могут отсутствовать.

Раздел описания переменных

Раздел программы, обозначенный служебным словом var,  содержит описание переменных с указанием их типов. Они используются для хранения исходных данных, результатов вычисления и промежуточных результатов.

Комментарии в программе можно записывать внутри фигурных скобок. Они игнорируются во время выполнения программы. Эти пояснения вы пишите только для себя.

В нашем примере переменные с именами X и Y используются для хранения исходных данных. Переменная с именем Z используется для хранения результата вычислений.

Имя переменной может записываться большими или маленькими латинскими буквами. Имя может содержать цифры, знак подчеркивания и не должно начинаться с цифры. Прописные и строчные символы считаются одинаковыми. В качестве имени нельзя использовать служебное слово языка Pascal.

Переменные одного типа можно указать в одной строке через запятую. После ставится двоеточие и указывается тип, к которому принадлежат переменные. Тип определяет допустимый диапазон значений.

Принадлежность переменной к типу integer означает, что она может хранить только целые числа. Если требуется хранить действительные (дробные) числа, тогда используется тип real.

Тело программы

Все что находится между служебными словами Begin и end — тело программы. Здесь записываются основные команды.

Оператор присваивания значений переменным имеет следующую структуру: переменная := выражение

Значок : = (двоеточие, равно) читается как «присвоить».
Умножение обозначается символом * (звездочка),  деление — символом / (слеш).

Вывод результата выполняет команда write или print.

линейные алгоритмы паскаль примеры

Каждая строка содержащая команду на языке Паскаль обязательно заканчивается символом «точка с запятой«.

Команды в Паскаль для ввода и вывода данных

Команда Read

В первом примере мы присвоили значения переменным непосредственно в тексте программы. Но так как программа пишется для решения множества однотипных задач, то удобнее задавать значения переменным во время ее работы. Для этого применяется команда read, которая позволяет ввести текстовые или числовые данные с клавиатуры.

Модифицируем код программы из примера выше.

program primer1;    
var х,у,z:integer; { описание переменных }
begin	{ начало программы }
  read(x,y);	{ ввод значений х и y с клавиатуры }
  z := х + у;	{ вычисление суммы }
  write(z);	{вывод результата вычисления на экран }
end.	{ конец программы }

Теперь ввод значений переменных Х и У будет осуществляться по запросу работающей программы. В этот момент нужно будет с клавиатуры ввести два числа через пробел и нажать клавишу Enter, чтобы продолжить выполнение программы.

линейные алгоритмы паскаль

При работающей программе в системе программирования PascalABC появится строка ввода данных. Там и пишутся значения переменных.

Команда Write

В предыдущем примере, при работе программы, не совсем понятно, что нужно вводить и что за числа появляются на экране по завершению работы программы. Поэтому изменим код программы, чтобы у нее появился минимальный пользовательский интерфейс. Для этого задействуем уже знакомую нам команду  Write.

program primer1;    
var х,у,z:integer; { описание переменных }
begin	{ начало программы }
  writeln('Вычисление суммы двух чисел');  
  write('Введите два целых числа через пробел'); 
  readln(x,y);	{ ввод значений х и y с клавиатуры }
  z := х + у;	{ вычисление суммы }
  write('Сумма = ',z);	{вывод результата вычисления на экран }
end.	{ конец программы }

Теперь посмотрите, как добавленные строки повлияли на работу программы.

линейные алгоритмы паскаль задачи с решением
У нас появились подсказки. Посмотрите на команду write. В качестве ее аргумента был использован текст, заключенный в апострофы. И еще, появилось окончание ln у оператора write. Именно оно заставляет последующий вывод информации делать с новой строки. Это же окончание можно использовать совместно с оператором read.

Readln и Writeln в паскале — это модифицированные команды Read и Write. В командах добавлено окончание ln (line new — новая строка). Такая форма операторов делает последующий вывод информации, при работе программы, с новой строки.

линейные алгоритмы на паскаль

Также поменялся вывод результата. Здесь тоже появилась подсказка.

Примеры программ на паскале — задания на линейные алгоритмы

Задание 1. Модифицировать программу так, чтобы она вычисляла и выводила на экран сумму и произведение трех целых чисел.

Решение:

program zadanie1;    
var х,у,k,z,p:integer; { описание переменных }
begin	{ начало программы }
  writeln('Вычисление суммы и произведения трех чисел');  
  write('Введите три целых числа через пробел'); 
  readln(x,y,k);	{ ввод значений х,y,k с клавиатуры }
  z := x + y + k;	{ вычисление суммы }
  p := x * y * k;       { вычисление произведения }
  write('Сумма = ',z);	{вывод результата сложения на экран }
  write('Произведение = ',p);	{вывод результата произведения на экран }
end.	{ конец программы }

Задание 2. Дана длина ребра куба а. Найти объем куба V=a3  и площадь его поверхности S=6a2.

Решение:

program zadanie2;    
var a,v,s:real; { описание переменных }
begin	{ начало программы }
  writeln('Вычисление объема и площади поверхности куба');  
  write('Введите длину ребра куба'); 
  readln(a);	{ ввод значения a с клавиатуры }
  v := a * a * a;	{ вычисление объема }
  s := 6 * a * a;       { вычисление площади }
  write('Объем куба = ',v);	{вывод результата объем куба }
  write('Площадь поверхности = ',s);	{вывод результата площадь поверхности }
end.	{ конец программы }

Посмотрите еще примеры линейных алгоритмов.

Дополнительные задания:

Lin1 Введите значения для двух переменных. Обменяйте их значения, используя третью (буферную) переменную.

кнопка Код программы

Хотите подробнее узнать о системе PascalABC и начать писать в ней свои первые программы, тогда статья «Знакомство с PascalABC» для вас.

Следующая тема для изучения Условный оператор

Тест «Линейный алгоритм»

Проверь свои знания по теме «Линейный алгоритм»

Видеоурок 1: Разбор заданий ЕГЭ на алгоритмы

Видеоурок 2: Разбор задания ЕГЭ на циклы

Лекция: Построение алгоритмов и практические вычисления

Циклы

Составим блок-схему алгоритма вычисления суммы знакопеременного ряда:

с заданной точностью ε.

Необходимо представить алгоритм в виде псевдокода.

Для решения данной задачи используем обозначения:

S — частичная сумма ряда (стартовое значение равно 0);

ε — точность вычисления;

i — номер очередного слагаемого;

m — значение очередного слагаемого;

p — числитель очередного слагаемого.

Требуемая точность вычисления будет достигнута в случае, когда очередное слагаемое станет по абсолютной величине меньше ε. Составим блок-схему алгоритма:

На псевдокоде запись алгоритма будет выглядеть следующим образом:

алг Сумма (арг вещ х, ε рез вещ S)
        дано  l  0<х<1

надо  l  S=x-x2/2+x3/3+x4/4+…

нач цел i, вещ m, p

вводх, ε

        S := 0;   i :=1
        m :=1;   p := -1
нц покаabc(m)>ε

Р := -p*x

            m := p/i
            S := S+m  

            i := i+1
        кц

        вывод S

кон

Массивы

Массивы – это множество элементов, значение которых относится к одному типу. 

Все значения массива являются упорядоченными и имеют свой индекс.

Индекс позволяет присвоить элементу массива свое место.

 Именно поэтому найти некий элемент в массиве можно с помощью его имени и индекса.

Максимальное количество элементов данного массива – это его размерность.

Если массив состоит из некоторого ряда элементов, то он называется векторным или одномерным, если же он состоит из нескольких рядов, то он называется матричным или многомерным массивом.

Пример 1

. В массиве а каждый элемент равен 0 или 1. Заменить все нули единицами и наоборот.

Решение. Достаточно одного оператора присваивания в теле цикла:

a[i] := 1 — a[i]

Пример 2

. В массиве каждый элемент равен 0,1 или 2. Переставить элементы массива так, чтобы сначала располагались все 0, затем все 1 и, наконец, все 2. Дополнительный массив не использовать.

Решение. Можно не переставлять элементы массива, а подсчитать количество 0,1,2 и заново заполнить массив требуемым образом.

алг Сумма (арг цел n, рез арг вещ таб А[1:n] )
        дано  l  массив А содержит нули, единицы и двойки

надо  l  упорядочить массив по возрастанию

нач цел i, k1, k2

                   k1 := 0;  k2 :=0

нц дляот 1 до n

                         если А[i] =0
                             
то  k1 := k1+1; всё

                          если А[i] =1
                              
то  
k2 := k2+1всё

                   кц
нц дляот 1 до k1

                         А[i] =0
                   
кц   

                   нц для от k1+1 до k2+2
                         
А[i] =1
                   
кц  

                   нц для i от k1+k2 до n
                         
А[i] =2
                   
кц       

кон

Пример 3

. Даны два n-элементных массива x и Y одного типа. Поменять местами все xi и Yi, (i=1…n) не используя промежуточные величины.

Решение. Обмен можно выполнить в цикле для всех от 1 до с помощью серии из трех операторов присваивания:

x[i] := x[i] + y[i]

y[i] := x[i] — y[i]

x[i] := x[i] — y[i]

Пример 4

. Найти сумму элементов одномерного массива А(n).

Решение. Для суммирования положительных элементов массива вместо оператора S := S+А[i] необходимо записать:

   если А[i]>0

       то S := S+А[i]

       всё

На псевдокоде алгоритм расчета суммы выглядит следующим образом:

алг Сумма (арг цел n, арг вещ таб А[1:n], рез вещ S )
        дано  l  массив А  

надо  l  найти сумму элементов массива

нач

             цел i

             S := 0

             нц для от 1 до n

                    S := S+А[i]

             кц

кон

Действия над массивом

Данные в массиве можно искать или же сортировать. 

Основным действием, которое производится над массивом, называется поиск

Именно он лежит в основе множества других возможных манипуляций с массивами. В зависимости от того упорядочен массив или нет, поиск выполняется различным образом.

Если массив не упорядочен, то для поиска определенного элемента необходимо просмотреть каждое значение, имеющееся в массиве. Такой вид поиска называется линейным. Если же массив упорядочен, то используют метод половинного деления или бинарный.

Сортировка – это действие, которое приводит к изменению положения элементов в заданном массиве, согласно поставленным условиям.

Сортировка производится перед поиском для более быстрого его завершения.

Существует большое разнообразие способов сортировки. Давайте рассмотрим некоторые из них:

1. Сортировка с помощью обмена

Данный способ сортировки предусматривает сравнение элемента с соседними и в случае необходимости смена их местами. Подобные перемещения элементов массива относительно друг друга производятся до тех пор, пока массив не будет упорядочен. В литературе данный метод можно так же встретить под названием «метод пузырьков» или «пузырьковая сортировка». Элементы в массиве передвигаются на свое место подобно пузырькам, которые поднимается на высоту, согласно собственному размеру.

Пример сортировки массива с помощью псевдокода:

алг Обменная_сортировка (арг цел n, арг рез вещ таб А[1:n] )
        дано  l  А — массив размерности n

надо  l  упорядочить массив по возрастанию

нач

цел i, j

вещ Tmp

нц дляiот2доn

нц дляjотnдо1

еслиА[j]<А[j-1]

тоTmp :=А[j];  А[j] :=А[j-1];

А[j-1] :=Tmp

всё

            кц

           кц

          кон

2. Метод сортировки прямым включением

В данном случае все элементы делятся на два массива – один уже отсортированный, а второй произвольный. Постепенно из неотсортированного массива берется элемент и вставляется на свое место в отсортированный массив. То есть программа ищет позицию необходимого элемента и вставляет его. Следует помнить, что это приводит к сдвигу всех остальных элементов.

Пример алгоритма методом сортировки прямым включением:

алг Сортировка_вставкой (арг цел n, арг рез вещ таб А[1:n] )
        дано  l  А — массив размерности n

надо  l  упорядочить массив по возрастанию

нач

цел i, j

вещ Tmp

нц дляiот2доn

Tmp :=А[j];  j :=i-1;

нц покаj>= 1 и А[j]>Tmp

А[j+1] :=А[j]

j :=i-1

 кц

            А[j+1] :=Tmp

          кц

кон

3. Метод сортировки прямым выбором

Данный способ заключается в поиске элемента, который будет самым большим (меньшим), после чего он ставится в начало массива. И так до тех пор, пока сортировка не будет выполнена полностью.

Пример алгоритма сортировки методом прямого выбора:

алг Сортировка_выбором (арг цел n, арг рез вещ таб А[1:n] )
        дано  l  А — массив размерности n

надо  l  упорядочить массив по возрастанию

нач

цел i, k

вещ Min

нц дляiот1доn-1

Min :=А[j];  k :=i

нц дляот i+1 до n

еслиMin > А[j]

тоMin :=А[j]; k :=j

       всё

          кц

          А[k] :=А[i]; А[i] :=Min

кц

кон

Процедуры и функции

Подпрограмма – это готовый алгоритм, который можно использовать многократно в различных программах. 

Подпрограммы включают в основной алгоритм более сложной программы. Они делятся на функции и процедуры.

Функция — выражение, используемое для вычислений, которому присваивается идентификатор функции.

Процедура – это некое действие, которое не позволяет вернуть исходное значение переменных.

Подпрограммы делятся на стандартные и пользовательские. 

Стандартные программы изначально встроены в язык программирования, который вы используете. Их еще называют встроенными.

Любой язык программирования имеет библиотеки, в которых изначально забиты стандартные программы, пользоваться которыми можно с помощью идентификатора.

Если же некая стандартная программа была написана вами, и вы сохраняете её в библиотеку, то она называется пользовательской.

Каждый человек на протяжении своей жизни решает множество задач разной сложности. Но даже самые простые из задач выполняются последовательно, то есть за несколько шагов. Эту последовательность можно назвать алгоритмом. Последовательности бывают разные, но начинать их изучение лучше всего с линейных.

Algo_970x90-20219-0c5b45.png

Прежде чем приступить к рассмотрению основной темы статьи, следует сделать краткое отступление и сказать несколько слов про алгоритмический язык.

Алгоритмический язык

Представьте, что человеку, работающему за компьютером, поставлена некая вычислительная задача. В языке программирования решение этой задачи выполняется с помощью алгоритмизации. Решение предполагает:
— разбиение на этапы;
— разработку алгоритма;
— составление программы решения на алгоритмическом языке;
— ввод данных;
— отладку программы (возможны ошибки — их надо исправить);
— выполнение на ПК;
— анализ результатов.

Алгоритмический язык является средством описания алгоритмов, а уже алгоритм, в свою очередь, представляет собой чёткое описание определённой последовательности действий, направленных на решение необходимой задачи.

Свойства алгоритма

Их несколько:
конечность. Любой алгоритм должен быть завершённым, а окончание наступает после выполнения определённого числа шагов;
однозначность, понятность. Не допускается разных толкований, неопределённости и двусмысленности — всё должно быть чётко и ясно, а также понятно исполнителю — и правила выполнения действий линейного алгоритма, и сами действия;
результативность. Итог работы — результат, полученный за конечное число шагов;
универсальность, массовость. Качественный алгоритм способен решать не одну задачу, а целый класс задач, имеющих схожую постановку/структуру.

Линейная структура

Любой алгоритм составляется из ряда базовых структур. Простейшей базовой структурой является следование — структура с линейными характеристиками. Из этого можно сформулировать определение.

Линейный алгоритм — это алгоритм, образуемый командами, которые выполняются однократно и именно в той последовательности, в которой записаны. Линейная структура, по сути, проста. Записать её можно как в текстовой, так и в графической форме.

Представим, что у нас стоит задача пропылесосить ковёр в комнате. В текстовой форме алгоритм будет следующим:
— принести пылесос к месту уборки;
— включить;
— пропылесосить;
— выключить;
— унести пылесос.

И каждый раз, когда нам надо будет пылесосить, мы будем выполнять один и тот же алгоритм.

Теперь поговорим про графическую форму представления.

Algo_970x90-20219-0c5b45.png

Блок-схема

Для изображения алгоритма графически используют блок-схемы. Они представляют собой геометрические фигуры (блоки), соединённые стрелками. Стрелки показывают связь между этапами и последовательность их выполнения. Каждый блок сопровождается надписью.

Рассмотрим фигуры, которые используются при визуализации типичной линейной последовательности.

Блок начала-конца:

Screenshot_1-1801-a35d16.png

Блок ввода-вывода данных (отображает список вводимых и выводимых переменных):

Screenshot_2-1801-52cab0.png

Арифметический блок (отображает арифметическую операцию/группу операций):

Screenshot_3-1801-df500e.png

Условный блок (позволяет описать условие). Алгоритмы с таким блоком используются при графической визуализации алгоритмов с ветвлением:

Screenshot_4-1801-3103cc.png

Условного блока нет в классическом линейном алгоритме, так как в нём, как уже было сказано ранее, все операции выполняются последовательно, то есть одна за другой. В линейном алгоритме размещение блоков выглядит следующим образом:

Screenshot_5-1801-f1511b.png

А вот, как решается задача по нахождению площади треугольника по формуле Герона. Здесь a, b, c – это длины сторон, S – площадь треугольника, P – периметр.

Screenshot_6-1801-c010e2.png

Следует обратить внимание, что запись «=» — это не математическое равенство, а операция присваивания. В результате этой операции переменная, стоящая слева от оператора, получает значение, которое указано справа. Значение не обязательно должно быть сразу определено (a = 3) — оно может вычисляться посредством выражения (a = b + z), где b = 1, a z = 2.

Примеры линейных алгоритмов

Если рассмотреть примеры решения на языке Pascal (именно этот язык до сих пор используется для изучения основ алгоритмизации и программирования), то можно увидеть следующую картину:

Screenshot_7-1801-f9ba66.png

И, соответственно, блок-схема программы линейной структуры будет выглядеть следующим образом:

Screenshot_8-1801-8a0c1b.png

Как составить программу линейной структуры?

Порядок следующий:
— определите, что именно относится к исходным данными, а также каков типы/класс этих данных, выберите имена переменных;
— определите, каков тип данных будет у искомого результата, выберите название переменных (переменной);
— определите, какие математические формулы связывают результат и исходные данные;
— если требуется наличие промежуточных данных, определите класс/типы этих данных и выберите имена;
— опишите все используемые переменные;
— запишите окончательный алгоритм. Он должен включать в себя ввод данных, вычисления, вывод результатов.

На этом всё, в следующий раз рассмотрим на примерах программу разветвлённой структуры. Если же вас интересует тема алгоритмизации в контексте разработки программного обеспечения, ждём вас на профессиональном курсе OTUS!

Algo_970x550-20219-265dfd.png

Источники:
• https://inep.sfedu.ru/wp-content/uploads/2018/05/25/lection_27.pdf;
• https://www.sites.google.com/site/415ict/textbooks/prog-9/02-linejnyj-algoritm.

Конспект

Составление линейных алгоритмов

 На предыдущих уроках мы узнали, что такое алгоритм, какие бывают виды алгоритмов, и кто их исполняет.

Сегодня мы попрактикуемся в составлении алгоритмов. Это очень важные навыки. Мы уже неоднократно отмечали, что составить алгоритм, то есть объяснить другому, как выполнять те или иные задачи так, чтобы это было понятно каждому, — очень тяжело. Наша задача – научиться составлять алгоритмы для различных примеров, чтобы впоследствии, когда вы столкнётесь с необходимостью составлять алгоритмы для написания различных программ, это не составляло для вас особого труда.

 Начнём мы с самых простых алгоритмов – линейных. Их составление, обычно, не вызывает особого труда. Однако, навыки составления таких алгоритмов чрезвычайно важны.

Пример 1. Составить алгоритм запуска программы Paint в ОС Windows 7.

Решение:

Вспомним из курса информатики 5 класса порядок действий для запуска программы Paint.

  1. Войти в меню «Пуск».
  2. Войти в пункт «Все программы».
  3. Войти в пункт «Стандартные».
  4. Выбрать программу «Paint».

Данный алгоритм в виде блок-схемы имеет следующий вид:

 

Рис. 1. Блок-схема к примеру 1.

Составление алгоритмов с ветвлениями

Рассмотрим пример на составление алгоритмов с ветвлениями.

 Пример 2. Составьте алгоритм для перехода дороги на светофоре.

Рис. 2. Светофор (Источник).

Решение:

Возможны следующие ситуации: в тот момент, когда мы подошли к дороге горел красный или зелёный свет. Если горел зелёный свет, то можно переходить дорогу. Если же горел красный свет, то необходимо дождаться зелёного – и уже тогда переходить дорогу.

Таким образом, алгоритм имеет следующий вид:

  1. Подойти к светофору.
  2. Посмотреть на его свет.
  3. Если горит зелёный, то перейти дорогу.
  4. Если горит красный, то подождать, пока загорится зелёный, и уже тогда перейти дорогу.

Блок-схема данного алгоритма имеет вид:

Рис. 3. Блок-схема к примеру 2.

Составление циклических алгоритмов

Рассмотрим пример на составление циклического алгоритма. Мы уже несколько раз обсуждали перевод чисел из десятичной системы в двоичную. Теперь пришло время чётко сформулировать этот алгоритм.

Напомним, что его принцип состоит в делении числа на 2 и записей остатков, получающихся при делении.

Пример 3. Составить алгоритм перевода чисел из десятичной системы в двоичную.

Решение:

То есть, алгоритм будет выглядеть так:

  1. Если число равно 0 или 1, то это и будет его двоичное представление.
  2. Если число больше 1, то мы делим его на 2.
  3. Полученный остаток от деления записываем в последний разряд двоичного представления числа.
  4. Если полученное частное равно 1, то его дописываем в первый разряд двоичного представления числа и прекращаем вычисления.
  5. Если же полученное частное больше 1, то мы заменяем исходное число на него и возвращаемся в пункт 2).

Блок-схема этого алгоритма выглядит следующим образом:

Рис. 4. Блок-схема к примеру 3.

Примечание: подумайте, можно ли как-то упростить приведенную блок-схему.

«Чтение» алгоритмов

Пример 4. По заданной блок-схеме выполнить действия алгоритма для числа 23.

Рис. 5. Блок-схема к примеру 4.

Решение:

  1. a=23
  2. 23+5=28
  3. 28<35
  4. 28+5=33
  5. 33<35
  6. 33+5=38
  7. 38>35
  8. 76 – двузначное число
  9. 76-50=26.

Ответ: 26.

На этом уроке мы разобрали примеры составления алгоритмов, а также пример «чтения алгоритма» по готовой блок-схеме.

На следующем уроке мы обсудим игры и выигрышные стратегии.

Как убить Кощея?

Наверное, все помнят из детства сказку, в которой рассказывается о местонахождении смерти Кощея Бессмертного: «Смерть моя – на конце иглы, которая в яйце, яйцо – в утке, утка – в зайце, заяц в сундуке сидит, сундук на крепкий замок закрыт и закопан под самым большим дубом на острове Буяне, посреди моря-океяна …»

Рис. 6. Кощей Бессмертный и Василиса Премудрая (Источник).

Предположим, вместо Ивана-царевича бороться с Кощеем был брошен Иван-дурак. Давайте поможем Василисе Премудрой составить такой алгоритм, чтобы даже Иван-дурак смог убить Кощея.

  1. Конечно же, сначала необходимо разыскать остров Буян (на такие вещи, будем считать, Иван-дурак способен).
  2. Поскольку сундук закопан под самым большим дубом, то сначала необходимо найти самый большой дуб на острове.
  3. Затем нужно выкопать сам сундук.
  4. Прежде чем доставать зайца, необходимо сломать крепкий замок.
  5. Теперь уже можно достать зайца.
  6. Из зайца нужно достать утку.
  7. Из утки достать яйцо.
  8. Разбить яйцо и достать иголку.
  9. Иголку поломать.

Это тоже линейный алгоритм, хотя и более длинный, чем алгоритм запуска программы Paint.

Его блок-схема выглядит так:

Рис. 7. Блок-схема.

На распутье…

И снова обратимся к сказочным персонажам в поисках примеров различных алгоритмов. Когда речь идёт об алгоритмах с ветвлениями, то, конечно, нельзя не вспомнить о богатыре, стоящем на распутье возле камня.

Рис. 8. Богатырь на распутье (Источник).

На камне написано:

«Направо пойдёшь – коня потеряешь, себя спасёшь; налево пойдёшь – себя потеряешь, коня спасёшь; прямо пойдёшь – и себя и коня потеряешь».

Попробуем составить алгоритм действий, который составил автор надписи на камне для путников?

  1. Если мы пойдём направо, то потеряем коня. Если же мы не пойдём направо, то у нас остаётся два варианта (мы считаем, что назад возвращаться путник не будет): пойти прямо и налево.
  2. В случае, если мы пойдём налево, то потеряем себя, а коня спасём.
  3. Если же мы пойдём прямо, то потеряем и себя, и коня.

Блок-схема этого алгоритма выглядит так:

Рис. 9. Блок-схема.

Репка

Русские народные сказки не оставили нас и без циклического алгоритма. И, как ни странно, спрятался он в одной из самых незамысловатых сказок – «Репке».

Рис. 10. Репка.

Вспомним сюжет сказки: дед тянет-потянет – вытянуть не может. Затем на помощь к деду по очереди подходят новые персонажи – и так до тех пор, пока не приходит мышка.

Попытаемся составить алгоритм действий всех персонажей сказки для того, чтобы они всё-таки смогли вытянуть Репку.

  1. Изначально к Репке подошёл дед и попытался вытянуть.
  2. Поскольку вытянуть Репку не получилось, то понадобилась помощь следующего персонажа.
  3. И так происходит до тех пор, пока не появилась мышка (или, другими словами, до тех пор, пока Репку не вытащили).

В виде блок-схемы этот алгоритм выглядит следующим образом:

Рис. 11. Блок-схема.

Список рекомендованной литературы

  1. Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса. – М.: БИНОМ. Лаборатория знаний, 2012
  2. Босова Л.Л. Информатика: Рабочая тетрадь для 6 класса. – М.: БИНОМ. Лаборатория знаний, 2010.
  3. Босова Л.Л., Босова А.Ю. Уроки информатики в 5-6 классах: Методическое пособие. – М.: БИНОМ. Лаборатория знаний, 2010.

 Рекомендованные ссылки на ресурсы интернет

  1. Интернет портал «Сообщество взаимопомощи учителей» (Источник).
  2. Интернет портал «Nsportal.ru» (Источник).
  3. Интернет портал «Фестиваль педагогических идей» (Источник).

 Рекомендованное домашнее задание

  1. §3.3, 3.4 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса);
  2. Постарайся самостоятельно составить линейный алгоритм из 5-6 фигур;
  3. Составь блок-схему циклического алгоритма выполнения домашнего задания;

Понравилась статья? Поделить с друзьями:
  • Как найти фото для ютуба
  • Как найти радиус если известна длина сектора
  • Как найти среднее арифметическое чисел статистика
  • Как найти tpr в экономике
  • Как составить уравнение по прямоугольному треугольнику