Как составить анкету выборку

1 июля 2011

Elitarium.ru, 1 июля 2011г.

Предисловие редакции HT.ru:

Данная статья адресована, в первую очередь, маркетологам и социологам, которые занимаются проведением массовых опросов и исследований. Но нам бы хотелось, чтобы с этим материалом были знакомы наши hr-ы. Даже если Вы еще никогда не занимались проведением опросов в своей организации, поверьте, Вам предстоит когда-нибудь столкнуться с этой интереснейшей областью работы. И одной из первых проблем, которая встанет перед Вами, будет вопрос «Кого привлекать к опросу?». Скажем так, данная статья не даст простого и четкого ответа на этот, в действительности, непростой вопрос. Но, прочитав ее, Вы сможете по-новому, осмысленнее и более профессионально взглянуть на тот фронт работ, который представляет собой проведение опросов. Например, Вы сможете предугадать, чьи ответы Вы получите в случае, когда опрос в организации будут проходить «все желающие».

Редакция HT.ru

Автор статьи: Игopь Cтанислaвович Бepeзин, консультант по маркетинговым стратегиям, президент Гильдии мapкетoлoгов (г. Моcква).

Опрос и анкетирование являются ведущими, универсальными методами проведения социологических и маркетинговых исследований. Чаше всего, когда говорят о маркетинговом исследовании — сборе первичной информации, имеют в виду именно опрос или анкетирование, предполагающие прямое выяснение, непредвзятого мнения достаточно многочисленной группы респондентов.

Массовым считается опрос, в ходе которого путем личной беседы сотрудника исследовательской компании — интервьюера с носителями информации (респондентами), состоящей из нескольких десятков коротких вопросов, изучаются мнения нескольких сотен (тысяч) человек. Под анкетированием понимают безличную форму общения исследователей с носителями информации, при которой респонденты самостоятельно отвечают на вопросы анкеты, следуя содержащейся в ней инструкции и не вступая в непосредственный контакт с интервьюерами.

Конечной целью анкетирования и массового опроса является получение данных, характеризующих так называемую генеральную совокупность. Генеральная совокупность — это все представители какой-либо группы, носители какого-либо важного признака, например:

  • все российские избиратели;

  • все потенциальные потребители пива, проживающие в Перми;

  • все подростки (12-16 лет) Поволжского региона;

  • все учителя физики и химии, работающие в средних школах;

  • все домохозяйства, имеющие доход от 500 до 1 500 долл. в месяц;

  • все компании, занимающиеся розничной торговлей в Самаре и т. д. и т. п.

Для того чтобы опросить десятки или сотни тысяч, а тем более — миллионы человек (компаний), из которых может состоять генеральная совокупность, нужны сотни или даже тысячи интервьюеров. На проведение подобного исследования могут понадобиться десятки, если не сотни миллионов долларов и не менее полугода напряженной работы. Такое возможно только при переписи населения (проводящейся не чаще одного раза в 10 лет).

Однако в маркетинге этого и не требуется. Достаточно того, чтобы относительно небольшая выборка (от нескольких сотен до нескольких тысяч представителей) репрезентировала (выразила) мнение генеральной совокупности. Как такое возможно? На каком основании можно распространять данные, полученные от небольшой группы людей, на существенно (в десятки и сотни раз) большую группу? На основании гипотезы о том, что на поведение, знания, отношение потребителей к компании, товару, услуге или отдельных их компонентов оказывают влияние социально-демографические характеристики самих потребителей.

Иными словами, большинство представителей четко определенной социально-демографический группы будут сходным образом реагировать на внешние, в данном случае — рыночные стимулы: товар, цену, упаковку, рекламу и т. д. и т. п. И нет никакой необходимости опрашивать всех представителей этой группы, поскольку ее мнение (с допустимой погрешностью) может представить (репрезентировать) небольшая выборка из ее представителей.

Способы построения выборки

Существуют две группы методов построения выборки, в той или иной степени реализующих репрезентацию мнений и позиций генеральной совокупности: вероятностные и детерминированные.

Первая группа методов (вероятностные) базируется на использовании теории вероятности. В основе ее применения лежит постулат, что репрезентация будет достигнута в случае, если каждой единице генеральной совокупности обеспечено равновероятное попадание в выборку. Например, если генеральной совокупностью является все взрослое (16-85 лет) население города (200 тыс. человек), то каждому жителю должна быть обеспечена вероятность стать участником исследования(попасть в выборку), равная 1 / 200 000. В противном случае выборка будет не случайной, а смещенной, т. е. менее репрезентативной.

Реализовать это можно в случае, если все элементы генеральной совокупности могут быть тем или иным образом пронумерованы, а затем эти номера будут выбраны в определенной последовательности — «по воле случая». Например, в Москве около 2 500 средних школ, каждаяиз которых имеет свой номер. Мы могли бы выбрать наугад 100 номеров и провести опрос 100 директоров (завучей, учителей физики, классных руководителей 11-х классов и т. п.) в этих школах.

Эти 100 номеров мы можем выбрать с помощью таблицы или «генератора случайных чисел» (есть такая специальная компьютерная программа), а также с помощью «барабана» но принципу того, как это делается при проведении лотереи. Такие способы построения выборки называются «простой случайной выборкой». Каждый ее элемент отбирается независимо и имеет равную вероятность попасть в выборку.

Мы могли бы выбрать наугад любое число от 1 до 25, например— 12, а затем взять в выборку школы с номерами: 12, 37, 62, 87, 112, 137 и т. д. Такой метод построения называемся «систематической выборкой», первый элемент которой выбирается произвольно, а затем выбирают каждый i-й элемент.

Мы также могли бы сначала разделить эти школы на несколько страт (возможно, и пересекающихся), например, на школы физико-математические, спортивные, лингвистические и гуманитарные, а затем произвести случайную или систематическую выборку (по 20-30 школ) из каждой страты. Такой метод построения называется «стратифицированной выборкой».

Разновидностью стратифицированной выборки является «маршрутная выборка», суть реализации которой состоит в следующем. Город делится на 20-40 «секторов» по числу интервьюеров, задействованных и исследовании. Каждый интервьюер получает один сектор, маршрут обследования «своего» сектора и инструкцию по реализации простой случайной выборки. Например такую: «Начать обход с улицы Баумана, с дома № 2, третьего подъезда, второго этажа сверху, первой квартиры слева. Затем — дом № 4, второй подъезд, третий этаж, вторая квартира справа… Потом — переулок Комсомольский, нечетная сторона… Потом — тупик Коммунизма… и т. д.»

Наконец, мы могли бы разделить генеральную совокупность на непересекающиеся кластеры, к примеру, по муниципальным районам (их в Москве 125, и в каждом в среднем по 20 школ). Затем случайным образом выбрать пять районов и произвести обследование всех школ данного муниципального района. Такой метод построения называется «кластерной выборкой».

Тем не менее у вероятностных методов построения выборки есть один весьма существенный недостаток. Каждый из них исходит из предположения о том, что все элементы генеральной совокупности являются равнодоступными: и в «техническом» смысле (у всех есть телефон для телефонного опроса или доступ в Интернет), и в «психологическом», т. е. все респонденты с примерно равной вероятностью согласятся или откажутся принимать участие в исследовании. Однако это не так.

Граждане с относительно высокими доходами менее доступны для исследователей, чем те, чьи доходы невысоки. И нет никакой силы, которая могла бы заставить этих люден отвечать им вопросы социологов или маркетологов. Поэтому все выборки всегда смещены в сторону средне- и малообеспеченных групп населения. Во всех без исключения странах мира.

Менее образованные граждане идут на контакт с социологами менее охотно, чем лица с высшим образованием. Поэтому в большинстве выборок доля хорошо образованных граждан как правило существенно выше, чем в генеральной совокупности.

Никто из сотрудников исследовательских компаний не желает общаться с бомжами, алкоголиками, наркоманами, психо- и социопатами и прочими маргиналами. И у руководителя исследования нет решительно никаких возможностей заставить своих сотрудников делать это. А между прочим, к этим группам в России по взвешенным оценкам относится от 12 до 15% жителей Следовательно, любая выборка смещена в сторону «вменяемых» граждан.

Некоторые граждане боятся отвечать на вопросы, даже самые невинные. Таких людей немного, но они есть. А вот способов заставить их участвовать в опросе нет.

Наконец, есть люди, которые просто не желают участвовать в исследовании. У них есть время, они ничего не боятся, они все понимают, но на вопросы отвечать отказываются. И точка.

Таким образом, все выборки в маркетинге и социологии являются смещенными в сторону средне- и малообеспеченных, более образованных, контактных и вменяемых граждан. Они и репрезентируют общее мнение генеральной совокупности. И все исследователи рынка прекрасно это знают.

Преодолеть наложенные выше проблемы можно с помощью метода «квот», относящегося к детерминированным методам, при котором априори обеспечивается пропорциональное представительство носителей существенных признаков (пол, возраст, доход, образование и т. п.) генеральной совокупности в выборке.

Это наиболее эффективный, на наш взгляд, метод проведения массовых опросов. При его использовании существенно облегчается задача поиска корреляционных связей, сравнения различных типов (групп) потребителей между собой и экстраполяции выявленных закономерностей на генеральную совокупность.

Единственная, но весьма существенная трудность при реализации него метода состоит в том, что не всегда доподлинно известно распределение всех важных параметров в самой генеральной совокупности. В этом случае исследователь или консультант исследовательского проекта должен взять на себя смелость распределить квоты по своему усмотрению, в соответствии со своим видением, пониманием рынка.

Задача достижения строгой репрезентативности не всегда является важной. Иногда целесообразно воспользоваться существенно более простыми в реализации детерминированными методами:

  • нерепрезентативным, или произвольным, когда опрашивают того, кто «попался под руку» интервьюеру и согласился участвовать в опросе. Естественно, этот метод дает крайне ненадежные результаты. А вдруг под руку попадется рота солдат или команда баскетболисток! Однако его использование допустимо в исследованиях, носящих поисковый характер, не требующих большой точности, при проведении «пилотажа» анкеты. «Произвольность» можно компенсировать большим объемом выборки, из которой затем можно будет попробовать отобрать необходимое число «подходящих» анкет и составить уже из них репрезентативную в каких-то отношениях выборку;

  • поверхностным — когда отбор осуществляется по самым общим признакам, задаваемым исследователем интервьюерам в виде не очень строгого задания;

  • « воронки» — когда сначала отбираются наиболее «контактные», а затем среди них — наиболее «компетентные», подходящие респонденты;

  • « концентрации» — на представителях отдельных, сопоставимых сегментов рынка, среди которых проводят «сплошной» опрос. Например, школьный 11 «А» класс может представлять всех старшеклассников школы или даже города как «обычный», «типичный класс»;

  • «снежного кома» — когда начальная группа подбирается случайным образом, а дальнейший отбор ведется из кандидатов, указанных первыми респондентами, и т. д.

Достоверность и погрешности измерений

Под «достоверностью», уровнем достоверности понимают показатель вероятности того, что истинное значение изучаемого параметра генеральной совокупности попадет в доверительный интервал. Чем выше задаваемый уровень достоверности, тем больше должна быть выборка. Под доверительным интервалом понимают диапазон, в который попадет истинное значение изучаемого параметра генеральной совокупности при данном уровне достоверности. Чем он меньше, тем больше должна быть выборка.

К примеру, общероссийская городская выборка (14-65 лет) в 1 200 респондентов имеет доверительный интервал 4 процентных пункта при уровне достоверности 0,95. При ее проведении 15% участников опроса заявили, что за последние три месяца были в кинотеатре хотя бы один раз.

Эти данные позволяют нам утверждать с заданным уровнем достоверности, что от 11 до 19% жителей российских городов в возрасте от 14 до 65 лет были в кинотеатре хотя бы один раз за последние три месяца. Иными словами, можно сказать, что все значения между 11 и 19% в данном случае находятся в пределах «допустимой статистической погрешности». Если бы мы хотели задать доверительный интервал в 2 процентных пункта, то выборку (при прочих равных условиях) пришлось бы увеличить примерно в четыре раза.

Со стороны уровня достоверности эти данные означают, что если бы было проведено 100 независимых измерении (опросов) по 1200 респондентов в каждом, то в 95 из них значение доли ответов на вопрос о посещении кинотеатра не вышло бы за пределы доверительного интервала (в этом конкретном случае — 11-19%). А в пяти исследованиях или бы получены значения, выходящие за пределы доверительного интервала. Если бы нас устраивала достоверность на уровне 0,9, то опросить можно было бы 200 человек. Если нам нужна достоверность на уровне 0,99, то пришлось бы опросить более 10 тыс. человек.

Оптимальный размер выборки

Вот одна из формул расчета необходимого объема выборки, используемая при известном среднем отклонении (дисперсии) и заданных уровнях достоверности и точности:

N = (g2 * z2) / d2

где: N — искомый объем выборки; g — дисперсия признака, ожидаемое среднее отклонение получаемых результатов от ожидаемого среднего значения; z — коэффициент уровня достоверности (2 — для 0,95, 3 — для 0,99); d — уровень точности.

Допустим, мы изучаем поведение покупателей в продовольственном магазине, в частности, мы хотим определить среднюю сумму чека. Из бесед с владельцем магазина мы узнаем, что она может быть в районе 500-700 руб., а среднее отклонение (g) может составить 200 руб. В ходе опроса мы хотели бы определить среднее значение с точностью (d) до 20 руб. при уровне достоверности (z) в 0,95. Подставляем значения формулу и получаем:

40000 * 4 / 400 = 400.

То есть нам достаточно опросить 400 покупателей. Если бы мы хотели узнать среднюю сумму чека с точностью до 10 руб.. то нам пришлось бы опросить 1600 покупателей. Если бы при этом мы хотели получить уровень достоверности в 0,99, то количество покупателей, которых необходимо опросить, составило бы 3 500 человек. И наоборот: если нас устроила бы точность ±50 руб., то нам достаточно было бы опросить в заданных условиях всего 65 человек.

Практическое использование этой и других формул, которые здесь не будут приводиться, весьма затруднено следующими обстоятельствами:

  • Что делать, если мы не знаем даже приблизительно «ожидаемую среднюю» и среднюю дисперсию признака?

  • Что делать, если в анкете у нас 10 вопросов, по которым ожидаются различные средние, с различными средними дисперсиями?

  • Как быть в случае использования номинальных шкал?

  • Как быть в случае, если один вопрос предполагает два или три варианта ответа и т. д. и т. п.?

  • Для простых альтернативных вопросов по принципу «да/нет» используются одни формулы, для более сложных — другие.

  • Формулы необходимо корректировать в зависимости от количества столбцов в таблице «факторных распределении», а также в зависимости от распределения ответов (10 на 90 — это одно, а 45 на 55 — совсем другое дело).

  • Одни формулы учитывают размер генеральной совокупности, а другие (как приведенная выше) — нет. Есть много иных нюансов.

На практике сначала определяют количество респондентов, которое исследователи предполагают опросить с учетом временных и финансовых ограничений, задают уровень достоверности (обычно — 0,95), а затем уже рассчитывают доверительный интервал.

Определение необходимого и достаточного объема выборки происходит на основе опыта и неформальных «конвенций» исследователей между собой. Считается, и это многократно проверено на практике, что опрос 30-50 представителей конкретной, «узкой» социально-демографической группы населения, например «ярославских замужних женщин в возрасте 30-45 лет, имеющих одного ребенка, высшее образование и совокупный семейный доход в пределах от 1 500 до 3 000 долл. в месяц», можно распространять на всю эту группу, и допустимая ошибка (доверительный интервал) не превысит 4 процентных пунктов при уровне достоверности около 0,95.

Однако полученные данные нельзя распространять, например, на незамужних женщин того же возраста, имеющих такой же доход и уровень образования. А также на женщин, имеющих иной доход, возраст или уровень образования. И уж тем более — на мужчин.

Таким образом, если в задачу исследователя входит получение информации о мнениях, знаниях, поведении или отношении к некой проблеме всех ярославских женщин, и при этом все перечисленные выше социально-демографические факторы являются значимыми, необходимо построить такую выборку, в которой были бы представлены все «узко определенные» группы. В данном случае — две группы по семейному положению, три — по наличию и количеству детей, три возрастные, три доходные, две образовательные. Итого 108 групп, в каждой из которых должно быть не менее 30 представительниц. Всего — более 3 000 респондентов.

На самом деле едва ли найдется вопрос или проблема, на которые все пять факторов будут оказывать взаимное перекрестное воздействие. В большинстве случаев вполне можно было бы обойтись опросом 400-600 респонденток, а затем провести попарный (а не перекрестный) факторный анализ. То есть отдельно исследовать влияние факторов «возраст», «образование», «доход», «семейное положение», «дети». При этом выборка каждый раз разбивалась бы на две-три группы, наполнение которых было бы не меньше 100-150 респондентов.

Репрезентативная выборка, представляющая все население России, должна состоять из 3 600-9 000 человек и 180 групп (два пола, три возраста, два образовательных уровня, три доходные группы, пять типов поселений). Доверительный интервал будет в пределах ±3 процентных пункта. Это означает, что, к примеру, если 30% (12% или 45%) наших респондентов заявили, что регулярно употребляют в пищу майонез, то долю потребителей майонеза в России можно оценить в 27-33% (9-15 или 42-48% соответственно).

Размер выборки практически не зависит от размера генеральной совокупности. И в мегаполисе с населением более миллиона человек, и в уездном городе с населением в 35 тыс. человек для построения выборки, репрезентативной по одинаковому числу параметров, потребуется опросить одинаковое число респондентов.

От чего действительно зависит размер выборки — так это от числа параметров, по которым мы желаем добиться репрезентативности. Если нас устраивает репрезентативность только по полу и возрасту, то выборки в 400 человек в одном населенном пункте будет более чем достаточно. Если параметров три, количество респондентов придется увеличить до 600. Добиться репрезентативности выборки одновременно по пяти параметрам: полу, возрасту, доходу, образованию, сфере профессиональной деятельности — можно лишь на выборке из 1 000-1 200 человек в одном населенном пункте.

В вашей почте раз в неделю. А еще: новости, акции и мероприятия для HR.

Команда AskUsers

Недостаток информации о потенциальных клиентах – проблема, с которой сталкиваются многие компании. Запустить успешный продукт, не зная потребностей и мнения целевой аудитории, невозможно. Протестировать идею, доработать предложение, найти боли, выявить триггеры – всё это может сделать правильно проведённый опрос.

Выборка респондентов.jpg

Самое сложное в организации исследования – добиться точности. Некорректные данные, полученные в результате обработки ответов, искажают картину и снижают эффективность будущих рекламных кампаний. Ошибки совершают даже учёные, посвятившие десятки лет изучению социальных процессов. Никто не застрахован от недочётов, но минимизировать их поможет глубокая проработка анкеты и корректно составленная выборка респондентов.

Виды выборок

Респонденты отбираются в зависимости от задач опроса. В первую очередь необходимо понять, чьё мнение сможет упростить решение проблемы, а после – определить тип выборки, подходящей для этой цели. В научных исследованиях распространены вероятностные методы:

  • случайный отбор: используется при однородной генеральной совокупности – респонденты выбираются из общего списка рандомным образом;
  • механический: логика та же, но список для выбора упорядочен по определённому критерию;
  • стратифицированный: вся аудитория разбивается на несколько страт, из которых опрашивают по несколько человек;
  • серийный: по смыслу похож на предыдущий метод, но здесь для анкетирования отбираются не отдельные люди, а целые группы.

Описанные виды выборки чаще используются в научных исследованиях. Для маркетинговых целей участников фильтруют по субъективным критериям. Самый популярный тип – отбор людей по квотам. В рамках этого метода людей разбивают на группы по социально-демографическим характеристикам. В каждой из них устанавливается требование по количеству релевантных респондентов.

Широко распространён и стихийный вид. Его логика заключается в том, что на вопросы отвечают все те, кто может это сделать. Для поиска труднодоступных категорий людей используется метод снежного кома, который в процессе анкетирования предполагает сбор контактов знакомых, подходящих под цели опроса.

Мало респондентов — много вопросов

Перед проведением опроса исследователь рынка сталкивается с двумя задачами: составлением выборки и созданием анкеты. Многие ошибочно думают, что результат целиком зависит от количественных факторов, стараясь задать как можно больше вопросов и опросить максимальное количество людей. В реальности всё зависит от содержательных параметров.

За качество отобранной аудитории отвечает репрезентативность. Этот параметр показывает, насколько корректно генеральная совокупность представлена в выбранной группе респондентов. Для создания репрезентативной выборки необходимо выделить важные для исследования характеристики людей и сегментировать ЦА по этим параметрам. Проведя эту работу, можно оценить, сколько человек необходимо опросить для получения объективных показателей.

Длина анкеты также не отражает её эффективность. Одни виды опроса предполагают большой список вопросов, а данные для других можно получить с помощью 2-3-х развёрнутых ответов.

Нужно ли много респондентов

Много респондентов.jpg

Какое количество респондентов для опроса считать правильным? Этот вопрос вызывает сложности у многих исследователей рынка, поскольку от него зависят стоимость работы и результаты исследований. Многие убеждены, что масштабы выборки должны быть пропорциональны общей численности группы. На деле размер зависит от двух параметров:

  • допустимой статистической погрешности;
  • количества сегментов аудитории.

Результаты с точностью 90% дают репрезентативные группы в размере 100 человек. Свыше тысячи респондентов набирают крупные аналитические центры для проведения опросов по всей России. Таких масштабов требует только социологическое исследование, для маркетинговых целей разумнее сокращать количество для экономии бюджета. Увеличивать размеры опрашиваемой аудитории имеет смысл, когда сегменты сильно отличаются по социально-демографическим характеристикам.

Важные рекомендации

Чтобы анкетирование участников принесло пользу компании, необходимо поставить чёткие задачи исследования. Полученная информация должна помогать в достижении маркетинговых целей, поэтому при подготовке подробно опишите портреты клиентов, а затем переходите к организационной работе.

Проанализируйте:

  • каким параметрам должны соответствовать респонденты, чтобы минимизировать случайные ошибки;
  • где найти эту аудиторию и нужно ли делить её на группы;
  • сколько человек требуется для воссоздания реальной картины;
  • как убедить людей участвовать в опросе.

На последнем пункте часто совершаются ошибки. Нередко потенциальным участникам предлагается вознаграждение за заполнение анкеты. Однако этот подход не даёт объективных данных. Другая сложность, с которой сталкиваются организаторы – труднодоступная выборка. Достучаться до такой аудитории сложнее, поэтому при подготовке нужно подумать над мотивационными стимулами и продумать ситуацию, в которой объясняется необходимость их участия.

Как привлечь нужных людей

Анализ ЦА – полезный инструмент проработки мотивации для респондентов. Каждой группе нужна своя легенда, которая вовлечёт их и поможет получить честные ответы. Для сбора релевантных людей можно использовать соответствующие их характеристикам способы:

Привлечение ЦА.jpg

  • Демонстрация важности: работает для рациональной аудитории, которой нужен смысл. Задача – объяснить необходимость опроса.
  • Нацеленность на результат: человеку нужно понимать, в чём заключается цель исследования и для чего нужны его ответы. Задача – рассказать, какую проблему решает анкетирование.
  • Нематериальное вознаграждение: здесь работает логика взаимопомощи – вы даёте что-то взамен. Задача – пообещать полезный бонус за честные ответы.

Процесс привлечения и мотивации определяет метод выборки. К каждому типу группы нужен свой подход. Для упрощения задачи сокращайте количество вопросов в анкете и говорите время, которое нужно потратить на ее заполнение. Если задача займёт всего 5-10 минут, то и возражений от респондентов будет меньше.

Распространённые ошибки

Правильная организация опроса не исключает ошибок в сборе аудитории, которые можно разбить на две категории: систематические и случайные.

Первый тип наиболее опасен, поскольку искажает результат. Обычно это происходит, когда вместо соответствующих целям исследования людей опрашиваются наиболее доступные респонденты. При таком способе происходит смещение выборки. Главная причина этой ошибки – способ проведения анкетирования. Например, вместо общего среза водителей опрашиваются только владельцы дорогих машин. Второй тип вызван статистической погрешностью. Её вероятность снижается с увеличением количества опрошенных людей.

Ошибки можно разделить также по источникам их возникновения:

  • концептуальные – связаны с неверной гипотезой;
  • процедурные – происходят от неправильной модели отбора;
  • организационные – появляются на стадии реализации в результате работы исполнителей.

Для сокращения количества недочётов необходимо проводить опрос под строгим наблюдением. Исполнители должны быть заинтересованы в получении объективных данных.

Опрос.jpg

Заключение

Корректно собранная выборка – это единственная гарантия точных результатов опроса. При этом главную роль играет содержательная работа, потому что корректность данных зависит не от количества участников, а от метода сбора информации. За отбором респондентов должен быть глубокий анализ аудитории, соответствующей маркетинговой задаче.

Узнайте, как увеличить конверсию на 41%!

Всего 3 шага и 5 минут вашего времени на пути к росту.

Выберите
ваш сайт

Укажите сайт и получите 7 точек роста.

Рассчитайте
стоимость

Контролируйте стоимость и состав услуги. Авторизуйтесь и выбирайте только то, что нужно вам.

Получите результат
и сопровождение

После оплаты и выполнения задания продолжайте получать регулярные советы и рост конверсий.

Понравилась статья? Жмите лайк или подписывайтесь на рассылку.

А также, поделитесь статьей с друзьями в соцсети.

Подписаться

8

В каждой профессии есть свой набор любимых вопросов. Для исследователей рынка этот список возглавляет, безусловно, вопрос о размере выборки. Обычно его формулируют так:

  • Мы хотели бы заказать исследование по посетителям московских торговых центров. Какая нам нужна выборка?
  • Наша целевая аудитория – примерно 300 000 человек. Сколько людей нам нужно опросить, чтобы было репрезентативно? А если целевая аудитория будет 3 млн?
  • Нам нужно оценить потенциал продаж квартир в Санкт-Петербурге жителям северных городов России. Какую сделать выборку?

Размер выборки действительно важен, потому что определяет стоимость будущего исследования, не говоря уже о качестве итоговых результатов и выводов. В этой статье мы расскажем о том, как рассчитать оптимальный размер выборки массового опроса. Наш материал будет полезен всем, кто так или иначе сталкивается с необходимостью проведения маркетинговых исследований своими силами или заказывает их у специализированного агентства.

Главное заблуждение о размере выборки

Многие уверены, что чем больше размер целевой группы, тем больше должен быть размер выборки. Поэтому, якобы, чтобы узнать мнение жителей маленького города, достаточно опросить человек 200-300, ну а для выяснения мнения по России в целом и 5000 будет мало.

Между тем, этот стереотип не имеет ничего общего с реальностью. Размер выборки не зависит от численности целевой группы (на языке статистики она называется «генеральной совокупностью») и определяется двумя совершенно другими факторами. Единственное исключение из этого правила – случаи, когда генеральная совокупность очень маленькая, например, 1-2 тысячи человек, но такие ситуации в реальной практике маркетинговых исследований встречаются редко.

Два фактора, от которых зависит размер выборки

Размер выборки массового опроса зависит от двух факторов:

  1. Точности данных, которые нужно получить на выходе – это та самая «статистическая погрешность». Для выборки в 100 респондентов она будет в пределах плюс-минус 10%, а для выборки в 1000 респондентов – в пределах плюс-минус 3,1%. Более подробно об этом – ниже.
  2. Количества и размера подгрупп, на которые нужно разбивать выборку при анализе. Например, если проводится электоральное исследование, то в основном нас будет интересовать ядро активных избирателей. Как правило, доля «ядра» редко превышает 20-25% от всего населения. Поэтому размер выборки нужно рассчитывать так, чтобы одна четверть от ее общего объема позволяла проводить полноценный статистический анализ.

Вопреки расхожему мнению, качество выборки определяется не ее размером, а репрезентативностью. Репрезентативность – это соответствие между выборкой и генеральной совокупности по ключевым параметрам. Чаще всего, в качестве таких «реперных точек» используют легко измеряемые социально-демографические показатели: пол, возраст, образование, род занятий и место жительства.

pic1.png

Две разновидности ошибки выборки

Любое выборочное наблюдение (то есть когда мы опрашиваем не всех подряд, а делаем случайный отбор из генеральной совокупности) сопряжено с погрешностью данных. Эту погрешность обычно называют «ошибкой выборки». Она может быть двух видов:

  1. Систематическая – связана с ошибками проектирования выборки. Оценить ее размер, направление и степень смещения очень сложно, чаще всего – невозможно. Например, если вопросы респондентам будут задавать представители маргинальных социальных слоев, это повлияет на готовность участвовать в исследовании со стороны представителей более обеспеченных групп населения. В итоге это приведет к крайне трудно оцениваемой систематической ошибке и искажению данных.
  2. Случайная – связана с действием законов статистики. Ее размер легко рассчитывается по формулам математической статистики и теории вероятности. Они позволяют делать обоснованные выводы о доверительном интервале признака. Например, если статистическая погрешность составляет плюс-минус 10%, а полученное значение показателя оказалось равно 25%, то доверительный интервал равен от 15% до 35%.

pic2.png

Задача исследователя – собрать данные так, чтобы минимизировать систематическую ошибку выборки. Тогда можно будет свести статпогрешность лишь к случайной ошибке, которую можно рассчитать по формулам.

Как рассчитать размер случайной ошибки выборки

Случайная ошибка выборки зависит не только от объема выборки, но и от дисперсии, то есть степени однородности данных. Чем однороднее данные (т.е. чем меньше разброс полученных значений, или дисперсия), тем меньше ошибка выборки.

Существует формула расчета случайной ошибки выборки, однако для удобства рекомендуем пользоваться онлайн-калькуляторами, например, вот этим. Он позволяет легко провести два вида расчета:

  • рассчитать величину статистической погрешности на основе размера выборки и предполагаемой дисперсии;
  • определить размер выборки, требуемый для получения оценки нужной степени точности.

Вот так выглядит его рабочее окно:

pic3.png

В качестве параметра доверительной надежности (одно из полей в калькуляторе) обычно используется значение в 95%. Это означает, что в 95% случаев распределение признака в генеральной совокупности попадет в рассчитанный доверительный интервал (т.е. само значение признака в выборке плюс-минус размер статистической погрешности). Реже используется значение надежности в 97% или 99% – оно, соответственно, означает, что подобное попадание произойдет в 97% или 99% случаев. В данном случае надежность выборки повышается, но увеличивается размер выборки.

Самое сложное при определении размера выборки – поиск компромисса между требуемой точностью и стоимостью сбора данных. Этот процесс усложняется тем, что увеличение размера выборки в четыре раза приводит к увеличению точности лишь в два раза (соответствует квадратному корню от величины прироста выборки).

Кейс: определение размера выборки для оценки потенциала рынка продаж столичной недвижимости покупателям из регионов

В ноябре-декабре 2016 года мы провели исследование спроса на квартиры в новостройках Москвы и Санкт-Петербурга со стороны жителей разных городов России. Исследование включало в себя три метода сбора данных: массовый репрезентативный опрос населения в возрасте от 20 до 60 лет (проводился с использованием технологии CATI), а также серию экспертных интервью с риэлторами и глубинных интервью с потенциальными покупателями квартир.

Исследование охватывало 33 города, отличающихся повышенным спросом на петербургскую и московскую недвижимость. Плановая выборка исследования, рассчитанная по формулам, составила 21 500 респондентов. Этот объем значительно больше «стандартного» объема выборки, используемого в маркетинговых исследованиях. С чем же связан такой большой размер выборки?

Все дело в том, что клиенту были нужны оценки отдельно по каждому городу, а не просто «в целом по стране». Фактически мы работаем не с 1 выборкой, а с 33 отдельными выборками по каждому городу. Доля людей, заинтересованных в покупке квартиры в Санкт-Петербурге или Москве, была экспертно определена в рамках 5% от числа жителей опрашиваемых городов.

В зависимости от важности города для заказчика, руководитель проекта со стороны Агентства определил допустимую статистическую погрешность, в которую должны укладываться итоговые результаты. Для этого мы использовали специальный макрос в MS Excel, но эти расчеты можно также выполнить с помощью калькулятора выборки. В результате размер выборки варьировал от 500 до 1000 респондентов по каждому из городов исследования, что в сумме и дало заявленные 21 500 человек.

Резюме

Чтобы рассчитать выборку маркетингового исследования, используйте следующий алгоритм:

  1. Определите структуру целевой группы. Планируете ли вы анализировать отдельные подгруппы или достаточно будет анализа по выборке в целом?
  2. Определите желаемую точность данных. Например, если нужно оценить динамику рыночной доли за год, подставьте в специальный калькулятор примерное значение доли и «поиграйте» с разными объемами выборки.
  3. Найдите баланс между стоимостью сбора данных (прямо пропорциональна объему выборки) и требуемой точностью.

Социальные исследования 2 (2017) 60-75

Журнал «Социальные исследования»

Алгоритмы формирования выборки социологического опроса Фархад Назипович Ильясов *

3 Независимый исследователь, кандидат философских наук по специальности «прикладная социология»

О СТАТЬЕ

АННОТАЦИЯ

Прохождение статьи: Поступила: 21.11.2017 Принята: 14.12.2017 Опубликована онлайн: 28.12.2017_

Ключевые слова:

виды выборки; алгоритмы

отбора; репрезентативность

В статье уточняются термины, связанные с понятиями выборки и репрезентативности. Описывается классификация выборок, принятая в социологии. Предлагается и описывается классификация выборок по месту нахождения респондента и по методу контакта с ним.

1. Введение

Проблема выборки в социальных обследованиях имеет очень большое значение, тем не менее, эта тема остается не в полной мере разработанной и проясненной. Особенно это касается не-вероятностных, рандомных выборок (англ. random sample). Ред Бейкер с коллегами отмечают: «В отличие от вероятностной выборки, нет единого основания, которое позволило бы адекватно классифицировать и описать все виды не-вероятностных выборок. Невероятностные выборки представляет собой набор, коллекцию методов, и трудно, если не невозможно, описать особенности и алгоритмы, применяемые во всех видах не-вероятностных выборок» [Baker et al., 2013: 3].

#

E-mail: iliassov.farkhad@yahoo.com

© 2017 Автор ISSN 2500-0020

Journal of Social Research

Целью настоящей статьи является уточнение имеющихся классификаций и описаний алгоритмов отбора в социальных исследованиях.

2. Уточнение понятий

Генеральная совокупность — группа, выбранная в качестве объекта исследования. В соответствии с задачами исследования, генеральная совокупность выбирается по двум и более признакам. Однако, даже, если для выделения группы выбраны два «целевых» признака, например: 1. «все население определенной страны», 2. «в возрасте 18+», то выделяются еще и дополнительные репрезентирующие признаки. Это могут быть пол, возраст, образование, социальное положение, национальность, место расположения, детность, брачность, религиозность и т.д.

Генеральные совокупности, формируемые респондентами — это совокупности респондентов, находящихся по своей воле, и в силу сходной детерминации поведения, в определенных местах или осуществляющих определенные онлайн-контакты. Это могут быть:

■ торговые центры, зрелищные заведения, точки общепита;

■ место работы, учебы;

■ лечебные учреждения;

■ контакты через базы данных, панели, онлайн-опросных компаний;

■ аудитории определенных сайтов.

Выборка, выборочная совокупность — часть генеральной совокупности, отобранная для первичных измерений. Первичные измерения в социологии это измерение свойств первичного объекта измерения — отдельных респондентов, через измерение свойств которых измеряются свойства изучаемой группы (выборки). Конечный объект измерения в отдельном социологическом исследовании — это специфическая группа, выборка или генеральная совокупность.

Репрезентативность выборки — это её свойства точно отражать исследуемые характеристики генеральной совокупности. Строго говоря, репрезентативность -это не единое, общее свойство всей выборочной совокупности, а это характер распределения ответов на тот или иной конкретный вопрос анкеты. То есть репрезентативным являются распределение ответов на определенный вопрос.

Характер рассеяния разных свойств респондентов в генеральной совокупности может быть различным, оттого в одном опросе уровень репрезентативности ответов может быть различным по разным вопросам. Порой используют не совсем корректное выражение «репрезентативный опрос», на самом деле имея в виду репрезентативность выборки, либо репрезентативность результатов опроса, тогда как сам опрос — это процесс сбора эмпирической информации.

Иногда репрезентативной называют выборку, которая по социально-демографическим характеристикам опрошенных воспроизводит генеральную совокупность, при этом репрезентативность ответов на содержательные вопросы может оставаться неизвестной. Порой под репрезентативной понимают выборку, которая с точки зрения теории математической статистики, «должна быть» репрезентативной. Однако в данном случае речь идет только о гипотезе, которая, как правило, сохраняет статус непроверяемой.

Репрезентативность выборки может определяться только эмпирически:

■ сравнением социально-демографических параметров выборки и генеральной совокупности;

■ сравнением с результатами повторного опроса;

■ измерением репрезентативности результатов массового опроса методом анализа повторных подвыборок, подробнее см.: [Ильясов, 2011].

Параметры выборки — определение объема выборки и того, какие параметры генеральной совокупности должна репрезентировать выборка. Это могут быть пол, возраст, доход, профессия, социальное положение, обладание определенными предметами, потребление определенных товаров и т.д.

Проектирование выборки — разработка алгоритма отбора и определение количества опрашиваемых респондентов.

Формирование выборки — реализация алгоритма отбора. Целью формирования выборки часто является создание репрезентативной выборки.

Ошибка выборки. Как отмечал Геннадий Батыгин: «Практически ошибка выборки определяется путем сравнения известных характеристик генеральной совокупности с выборочными средними. …В качестве контрольных параметров обычно применяются социально-демографические признаки» [Батыгин, 2008: 149]. Важно указать — показатель «статистическая погрешность», описываемый в

терминах доверительного интервала и уровня доверия, является теоретическим понятием математической статистики и никак не характеризует реальную выборочную совокупность. О доверительном интервале и статистической погрешности подробнее см., например: [Антонов, 2013]. Также некорректными следует признать построения, основанные на идее нормального распределения, т.к. нет социологического свойства, относительного которого были бы получены достоверные эмпирические данные, подтверждающие нормальное распределение величин его свойств.

Удобная выборка (англ. convenience sampling) — это виды выборок, в которых отбор осуществляется в генеральных совокупностях, формируемых респондентами.

Размер, объем выборки — количество отбираемых респондентов. Как указывается в известном издании: «Выборочный метод не дает универсального решения относительно необходимого в каждом конкретном случае объема выборки, обязательного соотношения объемов генеральной и выборочной совокупностей» [Рабочая книга…, 1977: 266]. На практике размер выборки определяется эмпирически, исходя из результатов анализа ранее проведенных опросов. Следует указать, что, как известно, так называемый «расчет объема выборки по специальной формуле», основанный на показателе дисперсии величин некоторого свойства (признака), возможен только при известности дисперсии в генеральной совокупности, однако если дисперсия известна, опрос проводить не имеет смысла.

Квотное задание — сформулированное для конкретного интервьюера на основе параметров выборки, задание опросить конкретное число лиц с определенными свойствами, признаками. Это может быть, например, число женщин и число мужчин заданного возраста.

Тип отбора респондентов — при самом общем подходе можно выделить следующие типы отборов:

1. рандомный (называемый также вероятностным или случайным);

2. эмпирический, основанный на опыте предыдущих отборов;

3. стихийный, отбор первого попавшегося респондента, номера телефона и т.д.

4. произвольный, отбор по «эмоциональному основанию».

В первом случае отбор основан на строгом алгоритме с использованием основы выборки, таблицы или генератора случайных чисел. Во втором случае речь

идет об использовании алгоритмов отбора, эмпирически показавших свою возможность обеспечивать репрезентативность выборки. В третьем и четвертом случаях строго алгоритма отбора нет, и вопрос репрезентативности может оставаться открытым.

В настоящем тексте используется термин «рандомная», чтобы не применять многозначное слово «случайная» и не совсем точное «вероятностная» (отбор основан на вероятности, однако производится случайным образом).

Шаг, ступень выборки — элемент алгоритма отбора.

3. Виды выборок

Выражение «виды выборки» используется в разных смыслах, например:

1. техническое задание на отбор респондентов, параметры отбора, квотное задание;

2. метод, алгоритм, критерий, стратегия отбора;

3. этап, шаг отбора.

Соответственно, классификации выборок отражают многозначный характер этого понятия, описывая, как правило, один или два ключевых критерия, подхода, алгоритма.

В литературе выделяются, в частности, следующие виды выборок:

■ гнездовая;

■ квотная (пропорциональная);

■ кластерная;

■ удобная (конформная1);

■ маршрутная;

■ «уличный отбор»

■ районированная (типическая);

■ серийная;

■ снежного кома2;

■ стратифицированная (расслоенная), и др.

1 Подробнее см.: [Рогозин, 2008].

2 Модификацией является «выборка, направляемая респондентом».

Более подробно о классификации видов выборок см., например: [Рабочая книга…, 1977: 258-297; Могильчак, 2015; ДМ, 2016].

Понятия «квотная, кластерная, районированная, стратифицированная» являются в определенной мере сходными и обозначают выделение некоторых непересекающихся групп, страт по отдельным основаниям, определяемым исследователем.

Иногда стратами называют разные подвыборки, формируемые в рамках одного исследования из двух или более сравниваемых генеральных совокупностей, к их числу относятся:

■ группы, имеющие существенные социальные различия, например, сельское и городское население;

■ группы, различающие по однородности распределения, дисперсии исследуемого показателя, подробнее см., например: [Чуриков, 2007].

Сходными являются также понятия гнездовой и серийной выборки, они обозначают процесс выбора групп (семья, школьный класс, подразделение в организации), подлежащих сплошному опросу.

Не во всех случаях термин выборка обозначает алгоритм отбора респондентов. А в тех случаях, когда речь идет об алгоритмах отбора, указывается, как правило, лишь один или два алгоритма, в соответствии с которыми виду выборки дается наименование. По сути, указание вида выборки, обычно представляет собой лишь маркирование, обозначение некоторого концепта. Основная проблема в понимании вида выборки — это нередкое отсутствие описания полного алгоритма отбора. В виду указанного обстоятельства названия видов выборок в большей мере представляют собой метафоры, в которые исследователи вкладывает некоторое, порой не до конца раскрываемое содержание.

4. Рандомный, случайный отбор

С точки зрения теории статистики, случайный выбор — это выбор одного варианта из нескольких равновозможных. Рандомный, статистически случайный отбор — это алгоритм отбора респондентов, при котором каждая из единиц генеральной совокупности имеет равные шансы, одинаковую вероятность, попасть в выборку. При рандомном отборе есть возможность посчитать теоретическую

вероятность попадания каждого респондента в выборку, потому она называется также вероятностной. Более подробно о рандомных (вероятностных, случайных) выборках см., например: [Чуриков, 2007].

Надо заметить, использование рандомного, вероятностного отбора не гарантирует репрезентативность выборки. Репрезентативность в данном случае -это просто предположение, вытекающее из теории математической статистики, некоторая априорная предпосылка, которая может реализоваться в конкретном отборе, а может и не реализоваться.

Рандомной может считаться, например, выборка, в которой основой выборки является полный список всех единиц генеральной совокупности. Это может быть список избирателей, список адресов, список работников организации и т.д. В соответствии с принятым объемом выборки, отбор может осуществляться через определенный интервал, шаг выборки. Рандомный отбор может быть осуществлен с помощью компьютерной программы, с использованием генератора случайных чисел. В программу вносятся два показателя — размер генеральной совокупности и размер выборки. Эта процедура реализуема и с использованием известных статистических пакетов.

В варианте с территориальной выборкой рандомность обеспечивается случайным выбором каждого элемента на каждом шаге выборки.

Из выборок, которые могут считаться рандомными, довольно распространенными становятся выборки с использованием таких основ выборки как списки стационарных и мобильных, домашних и корпоративных телефонов.

5. Эмпирические выборки

На практике алгоритм строго рандомного отбора реализовать сложно. Потому все чаще используются так называемые «эмпирические» выборки, под которыми понимаются различные совокупности алгоритмов рандомного и «стихийного», «произвольного» отбора, которые, как ожидается исследователем, обеспечивают репрезентативность. Эмпирическими они называются потому, что оптимальный алгоритм отбора в них определяется эмпирически, через апробацию тех или иных алгоритмов и нахождения наиболее точного, оптимального.

Эмпирические выборки также называют не-вероятностными, неслучайными. Однако они называются не-вероятностными, строго говоря, не потому, что не

осуществляется рандомный отбор, а лишь потому, что вероятность попадания каждой единицы отбора в выборку неизвестна.

Иногда эмпирические выборки оценивают как не имеющие теоретического обоснования. Например, Ред Бейкер с коллегами отмечают: «Мы полагаем неприемлемыми для формулирования статистических выводов и предположений, используемые без теоретического обоснования методы сбора данных и сформулированные на их основе оценки» [Baker et al., 2013]. Однако теория лишь обобщает экспериментальные данные, а именно эмпирические данные являются основой позитивной науки. Критерием научности, как известно, является совпадение результатов повторяемых, воспроизводимых эмпирических процедур. Если проводится некая эмпирическая процедура, с хорошо прописанными алгоритмами действий, в итоге которой получается воспроизводимый и повторяемый результат, то этот результат может считаться научным. Например, феномен времени в физике не имеет признанного теоретического обоснования, однако это не делает неприемлемыми эмпирические данные и оценки, полученные на основе измерения времени (длительности).

Большинство выборок представляют собой некий алгоритм -последовательность определенных действий, шагов (ступеней), направленных на нахождение и отбор респондентов. Такие выборки называются многоступенчатыми. При этом нередко выборка представляет собой комбинацию различных видов отбора, такая выборка называется комбинированной. Значительная часть эмпирических выборок содержат в себе элементы рандомного и стихийного отбора.

Таким образом, в реальности эмпирическая выборка часто представляет собой алгоритм, состоящий из нескольких неоднородных, последовательных процедур отбора, имеющих рандомный, не строго рандомный и «стихийный» характер. Иными словами, на практике часто используется многоступенчатая, комбинированная выборка, использующая рандомные и стихийные принципы отбора.

Как представляется акцент на количестве ступеней и на комбинации методов отбора, как классифицирующих признаках, в некоторой степени заслоняет собой основную цель выборки — нахождение и отбор респондентов.

Каждая из эмпирических выборок представляет собой алгоритм отбора, состоящий из двух элементов:

1. алгоритм поиска локации респондента, либо выбор способа контакта с ним;

2. алгоритм отбора респондентов по заданным признакам в месте локации, либо через выбранный способ контакта.

Соответственно, можно выделить два основания для классификации видов выборок, алгоритмов отбора:

1. если контакт очный, непосредственный — это отбор по месту расположения, локация респондента;

2. если контакт опосредованный, дистанционный — это отбор по способу контакта с респондентом.

6. Эмпирические виды выборок по месту нахождения респондента

По основанию локации респондентов можно выделить следующие основные эмпирические виды выборок:

1. По месту жительства, см. рис. 1;

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2. По место работы или учебы, см. рис. 2;

3. По локации в городе — на улице, площади;

4. По месту приобретения товаров и услуг.

Объектом исследования в случае выборки по месту жительства могут являться генеральные совокупности — территориальные общности разного уровня: страна, область, город, район. Построение выборки начинается с локации нужного масштаба. Определяется размер и параметры выборки. Алгоритм формирования выборки по месту жительства респондента приведен на рис. 1. На первых пяти ступенях отбора, от региона до наименования улицы, отбор может производиться либо рандомным образом, либо отбираются типичные на взгляд исследователя локации, соответствующие целям изучения.

Для каждой из ступеней отбора могут формироваться свои квоты. Они могут быть пропорциональными — отражать социально-демографические и иные

пропорции генеральной совокупности, т.е. воспроизводить структуру генеральной совокупности.

Квоты могут быть «аналитическими», т.е. соответствовать аналитическому плану исследования. Они создаются таким образом, чтобы минимальная, запланированная для анализа группа, была не менее 30-40 респондентов. Например, это может быть группа: женщины, возраст 40-45 лет, доход средний, с определенным видом поведения. Различные случаи выделения квот, страт, см., например:[Могильчак, 2015: 39-53].

Рис. 1. Алгоритм формирования выборки по месту жительства респондентов

Свойства

Локации

респондента

1. Регион Респондент

Ф Л

2. Район в регионе 13. Потребление

Ф Л

3. Поселение 12. Поведение

Ф Л

4. Район в поселении 11. Образование

Ф Л

5. Название улицы 10. Доход

Ф Л

6. № дома 9. Возраст

Ф Л

7. № квартиры 8. Пол

До интервьюера эти квоты доводятся в виде квотного задания, в котором указывается, сколько человек с определенными социально-демографическими и иными свойствами он должен опросить.

В случае отбора по месту жительства, см. рис. 1, внутри последней ступени локации (домохозяйства) в начале опроса может производиться рандомный выбор респондента (например, по ближайшему дню рождения) между двумя или более респондентами, соответствующими квотному заданию. После выполнения квотного задания по отдельным позициям, далее отбор производится только в соответствии с квотным заданием.

Рис. 2. Алгоритм формирования выборки по месту работы респондентов

Свойства респондента

1. Отрасль экономики Респондент

Ф Ф

2. Регион 11. Зарплата

Ф Ф

3. Населенный пункт 10. Возраст

Ф Ф

4. Организация 9. Пол

Ф Ф

5. Управление, цех 8. Квалификация

Ф Ф

6. Отдел, бригада 7. Профессия

Алгоритм уличного отбора во многом совпадает с алгоритмом отбора по месту жительства, только здесь конечной, опросной точкой является место на улице. Как

Локации и структуры

правило, уличный опрос проводится на основе квотных заданий. На первом этапе, до выбора квот, респонденту дается задание отбирать для опроса проводящих мимо респондентов через определенный шаг, например, каждого пятого. Этот этап отбора можно считать рандомным. На втором этапе респондент отбирает в соответствии с недобранными квотами, например, только мужчин среднего возраста. Этот этап отбора можно полагать стихийным.

Опыт проведения уличных опросов показывает, что, при правильной организации, они могут обеспечивать высокий уровень репрезентативности.

Аналогичным алгоритму отбора по месту работы, см. рис. 2, является алгоритм отбора по месту учебы.

Выборки по месту приобретения товаров и услуг обычно формируются в рамках исследований потребительского поведения, измерения продвинутости брендов и т.д. Такая выборка может считаться частным случаем выборки по локации в городе. В данном случае речь идет о генеральных совокупностях, формируемых респондентами. Подобные выборки репрезентируют то место скопления потребителей, где проводится опрос. В этих условиях может решаться обратная задача выборки, см., пример: [Ильясов, 2016].

8. Выборки по способу контакта с респондентом

По основанию типа дистанционного контакта с респондентом можно выделить следующие основные виды выборок:

1. рандомный или стихийный отбор респондентов из списка номеров стационарных и мобильных телефонов в домохозяйствах и организациях;

2. само-отбор (англ. self-selection sampling) — участие в опросе респондентов по собственной инициативе, в ответ на предложение принять участие в онлайн опросе, размещенное на определенных сайтах.

3. рандомный отбор респондентов в опросных веб-панелях (англ. web panels), в базах данных лиц, выразивших ранее желание принимать участие в опросах;

4. отбор из основы выборки (базы данных) респондентов для рассылки анкет обычной или электронной почтой.

В случае выборки, создаваемой на основе списка телефонов, она может быть репрезентативной при соблюдении следующих условий:

■ генеральная совокупность имеет высокий охват телефонной связью;

■ список является полным;

■ производится рандомный отбор.

В случае выборки само-отбора, осуществляемой посетителями сайтов, выборка может рассматриваться как репрезентативная только относительно аудитории этих сайтов. Выборка само-отбора имеет признаки стихийной. Однако, она может рассматриваться как эмпирическая, в случае, если результаты онлайн опроса согласуются с результатами другого опроса, определенными как репрезентативные. Подробнее о выборке само-отбора см., например: [Bethlehem, 2008].

Упорядоченным вариантом выборки само-отбора является выборки из вэб-панелей, состав которых формируется за счет предшествующего само-отбора. Респонденты сами откликаются на объявления с предложениями включиться в панель, регистрируются на соответствующем сайте, указывает свои соц-дем характеристики, потребительские и иные особенности. Веб-панели создаются организациями, специализированными на формировании этих панелей и проводящих интернет опросы с оплатой ответов респондентам.

Организация, для которой проводится опрос, формулирует техническое задание на опрос, в котором указываются свойства, признаки и квоты (пропорции), по которым должна формироваться выборка. В этом случае выборка может быть репрезентативной относительно самой веб-панели. Репрезентативность же самой веб-панели может быть неизвестной. Она может быть проверена с помощью контрольных вопросов, использованных ранее в опросах, репрезентативность которых является достоверной.

Существуют также репрезентативные веб панели, например, голландская веб панель LISS (www.lissdata.nl) состоит из 5 000 домашних хозяйств, состоящих из 8 000 человек. Панель основана на реальной рандомной (вероятностной) выборке домохозяйств, взятых из реестра населения Статистического управления Нидерландов [Stoop et al., 2012: 17].

Репрезентативность почтового опроса зависит от репрезентативности основы выборки. Популярность этого вида отбора (и опроса) в последнее время уменьшается.

Литература

Антонов Г. В. Выборочный метод в социологических исследованиях // Научный диалог. 2013. №11. С. 96-109.

Батыгин Г. С. Лекции по методологии социологических исследований. М.: РУДН. 2008. — 368 с.

Ильясов Ф. Н. Репрезентативность результатов опроса в маркетинговом исследовании // Социологические исследования. 2011. № 3. С. 112-116.

Ильясов Ф. Н. Обратная задача выборки и мотивация на рынке Форекс // Социальные исследования. 2016. №2. С. 49-59.

Могильчак Елена Львовна Выборочный метод в эмпирическом социологическом исследовании. Екатеринбург: УрФУ. 2015. — 120 с.

Рабочая книга социолога. М.: Наука. 1977. — 511 с.

Рогозин Д. М. Конформная выборка в торговых центрах // Социологический журнал. 2008. №1. С. 22-48.

Чуриков А. Случайные и неслучайные выборки в социологических исследованиях // Социальная реальность. 2007. №4. С. 89-109.

Alvi, Mohsin Hassan. A Manual for Selecting Sampling Techniques in Research. MPRA Paper No. 70218, posted 25 March 2016. Available online: https://mpra.ub.uni-muenchen.de/70218/ (Accessed: 2017.12.02)

Baker R., Brick J. M., Bates N. A., Battaglia M., Couper M. P., Dever J. A., Gile K. J., Tourangeau R. Report of the AAPOR task force on non-probability sampling. June 2013. Available online: http://www.aapor.org/AAPOR Main/media/MainSiteFiles/NPS TF Report Final 7 revised FNL 6 22 13.pdf (Accessed: 2017.12.02)

Bethlehem, Jelke. How accurate are self-selection web surveys. The Hague/Heerlen: Statistics Netherlands. 2008. Available online: https://peilingpraktijken.nl/wp-

content/uploads/2014/06/bethlehem04.pdf (Accessed: 2017.12.02)

Stoop, Ineke and Harrison, Eric. Classification of Surveys. In: Handbook of Survey Methodology for the Social Sciences. Ed. Gideon L. New York: Springer Science + Business Media. 2012. P. 7-21.

Algorithms for sampling a sociological survey

Farkhad Nazipovich Iliassov *

* — An independent researcher. PhD in «Applied Sociology» Email : iliassov.farkhad@yahoo.com

Abstract

The article clarifies the terms associated with the concepts of sampling and representativeness. The classification of samplings, adopted in sociology, is described. The classification of samplings according to the location of the respondent and the method of contact with him is proposed and described.

Keywords: types of sample; sampling algorithms, representativeness

References

Antonov G. V. Vyborochnyi metod v sotsiologicheskikh issledovaniyakh. Nauchnyi dialog. 2013. No. 11. P. 96-109.

Batygin G. S. Lektsii po metodologii sotsiologicheskikh issledovanii [Lectures on the methodology of sociological research], Moscow: RUDN. 2008. 368 p.

Iliassov F. N. Reprezentativnost’ rezul’tatov oprosa v marketingovom issledovanii. Sotsiologicheskie issledovaniya [Sotsiologicheskie Issledovaniia]. 2011. No. 3. P. 112-116.

Iliassov F. N. Obratnaya zadacha vyborki i motivatsiya na rynke Foreks. Sotsial’nye issledovaniya [Journal of Social Research]. 2016. No.2. P. 49-59.

Mogil’chak Elena L’vovna Vyborochnyi metod v empiricheskom sotsiologicheskom issledovanii [Sampling method in an empirical sociological study], Ekaterinburg: UrFU. 2015. 120 p.

Rabochaya kniga sotsiologa [Working book of a sociologist], Moscow: Nauka. 1977. 511 p.

Rogozin D. M. Konformnaya vyborka v torgovykh tsentrakh. Sotsiologicheskii zhurnal. 2008. No. 1. P. 22-48.

Churikov A. Sluchainye i nesluchainye vyborki v sotsiologicheskikh issledovaniyakh. Sotsial’naya real’nost’. 2007. No. 4. P. 89-109.

Alvi, Mohsin Hassan. A Manual for Selecting Sampling Techniques in Research. MPRA Paper No. 70218, posted 25 March 2016. Available online: https://mpra.ub.uni-muenchen.de/70218/ (Accessed: 2017.12.02)

Baker R., Brick J. M., Bates N. A., Battaglia M., Couper M. P., Dever J. A., Gile K. J., Tourangeau R. Report of the AAPOR task force on non-probability sampling. June 2013. Available online: http://www.aapor.org/AAPOR Main/media/MainSiteFiles/NPS TF Report Final 7 revised FNL 6 22 13.pdf (Accessed: 2017.12.02)

Bethlehem, Jelke. How accurate are self-selection web surveys. The Hague /Heerlen: Statistics Netherlands. 2008. Available online: https://peilingpraktijken.nl/wp-

content/uploads/2014/06/bethlehem04.pdf (Accessed: 2017.12.02)

Stoop, Ineke and Harrison, Eric. Classification of Surveys. In: Handbook of Survey Methodology for the Social Sciences. Ed. Gideon L. New York: Springer Science + Business Media. 2012. P. 7-21.

survey sampling

Допустим, вы хотите провести исследование в Европе. Опросить каждого человека в этом регионе — это ведь невозможно, верно? Даже если бы все ответили «да», проведение опроса в разных странах, на разных языках и в разных часовых поясах, сбор и обработка всех результатов заняли бы много времени и были бы очень дорогостоящими. Данные можно собрать быстрее и значительно сэкономить время благодаря выборочному опросу.

Выборочный опрос — это процесс, в ходе которого исследователи собирают данные по репрезентативной выборке населения или участников исследования. Репрезентативная выборка — это выборка, которая является репрезентативной для населения в целом — она включает достаточное количество людей, представляющих целевую группу населения, чтобы предоставить достоверную информацию о том, что они думают или во что верят. Другими словами, если вы подсчитаете всех людей в вашей стране и спросите их мнение по определенной теме, вы не будете знать, являются ли они представителями всех жителей страны, потому что не все смогут ответить на ваши вопросы (поскольку у них может не быть доступа к Интернету).

Что такое выборка для опроса?

Выборка для опроса — это процедура в рамках разработки исследования, в ходе которой данные собираются с помощью таких инструментов, как анкеты или опросы.

Выборка очень помогает в исследованиях. В исследованиях выборка означает, как мы отбираем представителей населения для участия в исследовании. От этого зависит точность результатов исследования/опроса.

Принцип выборочных опросов заключается в том, чтобы наблюдать не за всем изучаемым населением, а за правильно отобранным подмножеством, называемым выборкой.

Зачем исследователям нужна выборка для опроса?

Обычно эта выборка намного меньше, чем рассматриваемое население. Это преимущество значительно упрощает работу с ней, чем при исчерпывающем опросе.

Для получения более быстрых результатов при значительно меньших затратах и лучшего качества данных можно гораздо более тщательно собирать данные, имея дело с небольшим числом субъектов, чем при опросе и/или изучении всего населения.

Типы выборочных исследований:

В распоряжении исследователей имеются различные типы выборочных исследований, каждый из которых обладает особыми характеристиками, позволяющими адаптировать его к конкретным обстоятельствам. Ниже мы приводим наиболее популярные из них, чтобы вы могли определить, какой из них может быть использован в вашем следующем крупном исследовательском проекте.

  • Вероятностные методы выборки

Невероятностная процедура выборки — это метод отбора членов популяции, при котором каждый член популяции не имеет равных шансов быть выбранным.

Это более распространенный метод отбора, чем непропорциональная выборка, поскольку он позволяет делать значимые выводы об изучаемой совокупности с помощью статистического анализа.

  • Простая случайная выборка

Простая случайная выборка — это способ отбора выборки, которая имеет такую же вероятность быть выбранной, как и любой другой член или набор членов в популяции. Не имеет значения, сколько раз вы будете использовать этот метод для отбора выборки — каждый раз вы будете получать один и тот же результат.

  • Кластерная выборка

Кластерная выборка — это метод отбора респондентов, который предполагает выбор групп, а не отдельных единиц целевой совокупности. Группы могут быть уже существующими, например, жители определенных почтовых индексов или студенты, относящиеся к одному учебному году.

Кластерная выборка обычно используется, когда трудно или невозможно получить информацию об отдельных представителях целевой группы. Например, если вы хотите изучить благосостояние старшеклассников, но можете собрать данные только об их школах, кластерная выборка подойдет для вашего исследования.

  • Непредсказуемые методы выборки

Непредсказуемая выборка обычно используется, когда у вас нет конкретной целевой группы населения. Вы ищете любой тип данных, которые помогут вам в вашем исследовании или проекте, но не имеете в виду конкретную популяцию.

В этом случае важно убедиться, что ваша выборка репрезентативна для более широкой группы, которую вы пытаетесь представить. Вы хотите, чтобы ваша выборка была как можно более разнообразной и разнородной, чтобы результаты исследования можно было обобщить на большую группу.

  • Квотная выборка

Неслучайный метод является противоположностью случайного метода. При случайном методе исследователь не уточняет, каких людей или ключевые факторы нужно отобрать, тогда как при неслучайном методе исследователь четко определяет, кто или что будет включено в выборку.

  • Выборка снежного кома

При этом подходе людей, набранных для участия в выборке, просят пригласить к участию тех, кого они знают, которых затем просят пригласить своих друзей и родственников и так далее.

предлагает самое мощное на рынке программное обеспечение для проведения онлайн-опросов, позволяющее выбирать метод выборки, размер выборки и продолжительность опроса. Это программное обеспечение для проведения опросов позволяет выбирать из различных методов выборки.

Одним из наиболее важных аспектов проведения опроса является обеспечение репрезентативности данной выборки для всего населения. Очень важно набрать респондентов, которые точно представляют основные демографические характеристики вашей целевой группы населения. С каждым опросом вы можете провести анализ анкеты, чтобы убедиться, что ваша выборка репрезентативна для целевой группы населения.

Как использовать выборку для опроса

В заключение можно сказать, что использование выборки в исследованиях экономит в основном деньги и время; если используется подходящая стратегия выборки, выбирается соответствующий размер выборки. Принимаются необходимые меры предосторожности для снижения ошибок выборки и измерений, и тогда выборка должна давать валидную и надежную информацию.

Кроме того, исследователь должен убедиться, что выборка репрезентативна для населения, из которого она была взята. Этого можно добиться путем применения соответствующих методов выборки, которые обеспечивают подходящую меру репрезентативности для каждой измеряемой переменной.

Теперь, когда вы знаете, кто является участниками вашего опроса, следующим шагом будет поиск людей, отвечающих необходимым критериям, которые соответствуют профилю и необходимой плате для подтверждения результатов вашего исследования. Такие платформы, как , предлагают услуги, с помощью которых вы можете легко получить доступ к более чем +123 000 миллионов человек и сегментировать их в соответствии с потребностями вашего исследования.

СМОТРИТЕ БЕСПЛАТНО СЕЙЧАС!

Понравилась статья? Поделить с друзьями:
  • Как найти стрелу прогиба
  • Как найти достойную партию
  • Как найти номера телефонов в гугл почте
  • Как найти джинсы бананы
  • Как составить бизнес план для авто бизнеса