Как составить блок схему алгоритма пример

Схемаэто абстракция какого-либо процесса или системы, наглядно отображающая наиболее значимые части. Схемы широко применяются с древних времен до настоящего времени — чертежи древних пирамид, карты земель, принципиальные электрические схемы. Очевидно, древние мореплаватели хотели обмениваться картами и поэтому выработали единую систему обозначений и правил их выполнения. Аналогичные соглашения выработаны для изображения схем-алгоритмов и закреплены ГОСТ и международными стандартами.

На территории Российской Федерации действует единая система программной документации (ЕСПД), частью которой является Государственный стандарт — ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем» [1]. Не смотря на то, что описанные в стандарте обозначения могут использоваться для изображения схем ресурсов системы, схем взаимодействия программ и т.п., в настоящей статье описана лишь разработка схем алгоритмов программ.

Рассматриваемый ГОСТ практически полностью соответствует международному стандарту ISO 5807:1985.

Содержание:

  1. Элементы блок-схем алгоритмов
  2. Примеры блок-схем
  3. Нужны ли блок-схемы? Альтернативы

Элементы блок-схем алгоритмов

Блок-схема представляет собой совокупность символов, соответствующих этапам работы алгоритма и соединяющих их линий. Пунктирная линия используется для соединения символа с комментарием. Сплошная линия отражает зависимости по управлению между символами и может снабжаться стрелкой. Стрелку можно не указывать при направлении дуги слева направо и сверху вниз. Согласно п. 4.2.4, линии должны подходить к символу слева, либо сверху, а исходить снизу, либо справа.

Есть и другие типы линий, используемые, например, для изображения блок-схем параллельных алгоритмов, но в текущей статье они, как и ряд специфических символов, не рассматриваются. Рассмотрены лишь основные символы, которых всегда достаточно студентам.

flowcharts_terminator
Терминатор начала и конца работы функции
Терминатором начинается и заканчивается любая функция. Тип возвращаемого значения и аргументов функции обычно указывается в комментариях к блоку терминатора.
flowcharts_data
Операции ввода и вывода данных
В ГОСТ определено множество символов ввода/вывода, например вывод на магнитные ленты, дисплеи и т.п. Если источник данных не принципиален, обычно используется символ параллелограмма. Подробности ввода/вывода могут быть указаны в комментариях.
flowcharts_process
Выполнение операций над данными
В блоке операций обычно размещают одно или несколько (ГОСТ не запрещает) операций присваивания, не требующих вызова внешних функций.
flowcharts_solution
Блок, иллюстрирующий ветвление алгоритма
Блок в виде ромба имеет один вход и несколько подписанных выходов. В случае, если блок имеет 2 выхода (соответствует оператору ветвления), на них подписывается результат сравнения — «да/нет». Если из блока выходит большее число линий (оператор выбора), внутри него записывается имя переменной, а на выходящих дугах — значения этой переменной.
flowcharts_procedure
Вызов внешней процедуры
Вызов внешних процедур и функций помещается в прямоугольник с дополнительными вертикальными линиями.
flowcharts_loop
Начало и конец цикла
Символы начала и конца цикла содержат имя и условие. Условие может отсутствовать в одном из символов пары. Расположение условия, определяет тип оператора, соответствующего символам на языке высокого уровня — оператор с предусловием (while) или постусловием (do … while).
flowcharts_preprocess
Подготовка данных
Символ «подготовка данных» в произвольной форме (в ГОСТ нет ни пояснений, ни примеров), задает входные значения. Используется обычно для задания циклов со счетчиком.
flowcharts_connector
Соединитель
В случае, если блок-схема не умещается на лист, используется символ соединителя, отражающий переход потока управления между листами. Символ может использоваться и на одном листе, если по каким-либо причинам тянуть линию не удобно.
flowcharts_comment
Комментарий
Комментарий может быть соединен как с одним блоком, так и группой. Группа блоков выделяется на схеме пунктирной линией.

Примеры блок-схем

В качестве примеров, построены блок-схемы очень простых алгоритмов сортировки, при этом акцент сделан на различные реализации циклов, т.к. у студенты делают наибольшее число ошибок именно в этой части.

Сортировка вставками

Массив в алгоритме сортировки вставками разделяется на отсортированную и еще не обработанную части. Изначально отсортированная часть состоит из одного элемента, и постепенно увеличивается.

На каждом шаге алгоритма выбирается первый элемент необработанной части массива и вставляется в отсортированную так, чтобы в ней сохранялся требуемый порядок следования элементов. Вставка может выполняться как в конец массива, так и в середину. При вставке в середину необходимо сдвинуть все элементы, расположенные «правее» позиции вставки на один элемент вправо. В алгоритме используется два цикла — в первом выбираются элементы необработанной части, а во втором осуществляется вставка.

insertsort_flowchart

Блок-схема алгоритма сортировки вставками

В приведенной блок-схеме для организации цикла используется символ ветвления. В главном цикле (i < n) перебираются элементы необработанной части массива. Если все элементы обработаны — алгоритм завершает работу, в противном случае выполняется поиск позиции для вставки i-того элемента. Искомая позиция будет сохранена в переменной j в результате выполнения внутреннего цикла, осуществляющем сдвиг элементов до тех пор, пока не будет найден элемент, значение которого меньше i-того.

На блок-схеме показано каким образом может использоваться символ перехода — его можно использовать не только для соединения частей схем, размещенных на разных листах, но и для сокращения количества линий. В ряде случаев это позволяет избежать пересечения линий и упрощает восприятие алгоритма.

Сортировка пузырьком

Сортировка пузырьком, как и сортировка вставками, использует два цикла. Во вложенном цикле выполняется попарное сравнение элементов и, в случае нарушения порядка их следования, перестановка. В результате выполнения одной итерации внутреннего цикла, максимальный элемент гарантированно будет смещен в конец массива. Внешний цикл выполняется до тех пор, пока весь массив не будет отсортирован.

bubblesort_flowchart

Блок-схема алгоритма сортировки пузырьком

На блок-схеме показано использование символов начала и конца цикла. Условие внешнего цикла (А) проверяется в конце (с постусловием), он работает до тех пор, пока переменная hasSwapped имеет значение true. Внутренний цикл использует предусловие для перебора пар сравниваемых элементов. В случае, если элементы расположены в неправильном порядке, выполняется их перестановка посредством вызова внешней процедуры (swap). Для того, чтобы было понятно назначение внешней процедуры и порядок следования ее аргументов, необходимо писать комментарии. В случае, если функция возвращает значение, комментарий может быть написан к символу терминатору конца.

Сортировка выбором

В сортировке выбором массив разделяется на отсортированную и необработанную части. Изначально отсортированная часть пустая, но постепенно она увеличивается. Алгоритм производит поиск минимального элемента необработанной части и меняет его местами с первым элементом той же части, после чего считается, что первый элемент обработан (отсортированная часть увеличивается).

selectsort_flowchart

Блок-схема сортировки выбором

На блок-схеме приведен пример использования блока «подготовка», а также показано, что в ряде случаев можно описывать алгоритм более «укрупнённо» (не вдаваясь в детали). К сортировке выбором не имеют отношения детали реализации поиска индекса минимального элемента массива, поэтому они могут быть описаны символом вызова внешней процедуры. Если блок-схема алгоритма внешней процедуры отсутствует, не помешает написать к символу вызова комментарий, исключением могут быть функции с говорящими названиями типа swap, sort, … .

На блоге можно найти другие примеры блок-схем:

  • блок-схема проверки правильности расстановки скобок арифметического выражения [2];
  • блок-схемы алгоритмов быстрой сортировки и сортировки слиянием [3].

Часть студентов традиционно пытается рисовать блок-схемы в Microsoft Word, но это оказывается сложно и не удобно. Например, в MS Word нет стандартного блока для терминатора начала и конца алгоритма (прямоугольник со скругленными краями, а не овал). Наиболее удобными, на мой взгляд, являются утилиты MS Visio и yEd [5], обе они позволяют гораздо больше, чем строить блок-схемы (например рисовать диаграммы UML), но первая является платной и работает только под Windows, вторая бесплатная и кроссплатфомренная. Все блок-схемы в этой статье выполнены с использованием yEd.

Частные конторы никакие блок-схемы не используют, в книжках по алгоритмам [6] вместо них применяют словесное описание (псевдокод) как более краткую форму. Возможно блок-схемы применяют на государственных предприятиях, которые должны оформлять документацию согласно требованиям ЕСПД, но есть сомнения — даже для регистрации программы в Государственном реестре программ для ЭВМ никаких блок-схем не требуется.

Тем не менее, рисовать блок-схемы заставляют школьников (примеры из учебников ГОСТ не соответствуют) — выносят вопросы на государственные экзамены (ГИА и ЕГЭ), студентов — перед защитой диплом сдается на нормоконтроль, где проверяется соответствие схем стандартам.

Разработка блок-схем выполняется на этапах проектирования и документирования, согласно каскадной модели разработки ПО, которая сейчас почти не применяется, т.к. сопровождается большими рисками, связанными с ошибками на этапах проектирования.

Появляются подозрения, что система образования прогнила и отстала лет на 20, однако аналогичная проблема наблюдается и за рубежом. Международный стандарт ISO 5807:1985 мало чем отличается от ГОСТ 19.701-90, более нового стандарта за рубежом нет. Там же производится множество программ для выполнения этих самых схем — Dia, MS Visio, yEd, …, а значит списывать их не собираются. Вместо блок-схем иногда применяют диаграммы деятельности UML [6], однако удобнее они оказываются, разве что при изображении параллельных алгоритмов.

Периодически поднимается вопрос о том, что ни блок-схемы, ни UML не нужны, да и документация тоже не нужна. Об этом твердят программисты, придерживающиеся методологии экстремального программирования (XP) [7], ходя даже в их кругу нет единого мнения.

В ряде случаев, программирование невозможно без рисования блок-схем, т.к. это один процесс — существуют визуальные языки программирования, такие как ДРАКОН [8], кроме того, блок-схемы используются для верификации алгоритмов (формального доказательства их корректности) методом индуктивных утверждений Флойда [9].

В общем, единого мнения нет. Очевидно, есть области, в которых без чего-то типа блок-схем обойтись нельзя, но более гибкой альтернативы нет. Для формальной верификации необходимо рисовать подробные блок-схемы, но для проектирования и документирования такие схемы не нужны — я считаю разумным утверждение экстремальных программистов о том, что нужно рисовать лишь те схемы, которые помогают в работе и не требуют больших усилий для поддержания в актуальном состоянии [10].

Список использованных источников:

  1. ГОСТ 19.701–90 (ИСО 5807–85) «Единая система программной документа­ции».
  2. Алгоритм. Свойства алгоритма https://pro-prof.com/archives/578
  3. Алгоритмы сортировки слиянием и быстрой сортировки https://pro-prof.com/archives/813
  4. yEd Graph Editor https://www.yworks.com/products/yed
  5. Книги: алгоритмы https://pro-prof.com/books-algorithms
  6. Рамбо Дж., Якобсон А., Буч Г. UML: специальный справочник. -СПб.: Питер, 2002. -656 с.
  7. Кент Бек Экстремальное программирование: разработка через тестирование – СПб.: Питер – 2003
  8. Визуальный язык ДРАКОН https://drakon.su/
  9. Шилов Н.В. Верификация шаблонов алгоритмов для метода отката и метода ветвей и границ. Моделирование и анализ информационных систем, ISSN 1818 – 1015, т.18, №4, 2011
  10. Брукс Ф., Мифический человеко — месяц или как создаются программные системы. СПб. Символ Плюс, 1999 — 304 с. ил.

Конспект

Составление линейных алгоритмов

 На предыдущих уроках мы узнали, что такое алгоритм, какие бывают виды алгоритмов, и кто их исполняет.

Сегодня мы попрактикуемся в составлении алгоритмов. Это очень важные навыки. Мы уже неоднократно отмечали, что составить алгоритм, то есть объяснить другому, как выполнять те или иные задачи так, чтобы это было понятно каждому, — очень тяжело. Наша задача – научиться составлять алгоритмы для различных примеров, чтобы впоследствии, когда вы столкнётесь с необходимостью составлять алгоритмы для написания различных программ, это не составляло для вас особого труда.

 Начнём мы с самых простых алгоритмов – линейных. Их составление, обычно, не вызывает особого труда. Однако, навыки составления таких алгоритмов чрезвычайно важны.

Пример 1. Составить алгоритм запуска программы Paint в ОС Windows 7.

Решение:

Вспомним из курса информатики 5 класса порядок действий для запуска программы Paint.

  1. Войти в меню «Пуск».
  2. Войти в пункт «Все программы».
  3. Войти в пункт «Стандартные».
  4. Выбрать программу «Paint».

Данный алгоритм в виде блок-схемы имеет следующий вид:

 

Рис. 1. Блок-схема к примеру 1.

Составление алгоритмов с ветвлениями

Рассмотрим пример на составление алгоритмов с ветвлениями.

 Пример 2. Составьте алгоритм для перехода дороги на светофоре.

Рис. 2. Светофор (Источник).

Решение:

Возможны следующие ситуации: в тот момент, когда мы подошли к дороге горел красный или зелёный свет. Если горел зелёный свет, то можно переходить дорогу. Если же горел красный свет, то необходимо дождаться зелёного – и уже тогда переходить дорогу.

Таким образом, алгоритм имеет следующий вид:

  1. Подойти к светофору.
  2. Посмотреть на его свет.
  3. Если горит зелёный, то перейти дорогу.
  4. Если горит красный, то подождать, пока загорится зелёный, и уже тогда перейти дорогу.

Блок-схема данного алгоритма имеет вид:

Рис. 3. Блок-схема к примеру 2.

Составление циклических алгоритмов

Рассмотрим пример на составление циклического алгоритма. Мы уже несколько раз обсуждали перевод чисел из десятичной системы в двоичную. Теперь пришло время чётко сформулировать этот алгоритм.

Напомним, что его принцип состоит в делении числа на 2 и записей остатков, получающихся при делении.

Пример 3. Составить алгоритм перевода чисел из десятичной системы в двоичную.

Решение:

То есть, алгоритм будет выглядеть так:

  1. Если число равно 0 или 1, то это и будет его двоичное представление.
  2. Если число больше 1, то мы делим его на 2.
  3. Полученный остаток от деления записываем в последний разряд двоичного представления числа.
  4. Если полученное частное равно 1, то его дописываем в первый разряд двоичного представления числа и прекращаем вычисления.
  5. Если же полученное частное больше 1, то мы заменяем исходное число на него и возвращаемся в пункт 2).

Блок-схема этого алгоритма выглядит следующим образом:

Рис. 4. Блок-схема к примеру 3.

Примечание: подумайте, можно ли как-то упростить приведенную блок-схему.

«Чтение» алгоритмов

Пример 4. По заданной блок-схеме выполнить действия алгоритма для числа 23.

Рис. 5. Блок-схема к примеру 4.

Решение:

  1. a=23
  2. 23+5=28
  3. 28<35
  4. 28+5=33
  5. 33<35
  6. 33+5=38
  7. 38>35
  8. 76 – двузначное число
  9. 76-50=26.

Ответ: 26.

На этом уроке мы разобрали примеры составления алгоритмов, а также пример «чтения алгоритма» по готовой блок-схеме.

На следующем уроке мы обсудим игры и выигрышные стратегии.

Как убить Кощея?

Наверное, все помнят из детства сказку, в которой рассказывается о местонахождении смерти Кощея Бессмертного: «Смерть моя – на конце иглы, которая в яйце, яйцо – в утке, утка – в зайце, заяц в сундуке сидит, сундук на крепкий замок закрыт и закопан под самым большим дубом на острове Буяне, посреди моря-океяна …»

Рис. 6. Кощей Бессмертный и Василиса Премудрая (Источник).

Предположим, вместо Ивана-царевича бороться с Кощеем был брошен Иван-дурак. Давайте поможем Василисе Премудрой составить такой алгоритм, чтобы даже Иван-дурак смог убить Кощея.

  1. Конечно же, сначала необходимо разыскать остров Буян (на такие вещи, будем считать, Иван-дурак способен).
  2. Поскольку сундук закопан под самым большим дубом, то сначала необходимо найти самый большой дуб на острове.
  3. Затем нужно выкопать сам сундук.
  4. Прежде чем доставать зайца, необходимо сломать крепкий замок.
  5. Теперь уже можно достать зайца.
  6. Из зайца нужно достать утку.
  7. Из утки достать яйцо.
  8. Разбить яйцо и достать иголку.
  9. Иголку поломать.

Это тоже линейный алгоритм, хотя и более длинный, чем алгоритм запуска программы Paint.

Его блок-схема выглядит так:

Рис. 7. Блок-схема.

На распутье…

И снова обратимся к сказочным персонажам в поисках примеров различных алгоритмов. Когда речь идёт об алгоритмах с ветвлениями, то, конечно, нельзя не вспомнить о богатыре, стоящем на распутье возле камня.

Рис. 8. Богатырь на распутье (Источник).

На камне написано:

«Направо пойдёшь – коня потеряешь, себя спасёшь; налево пойдёшь – себя потеряешь, коня спасёшь; прямо пойдёшь – и себя и коня потеряешь».

Попробуем составить алгоритм действий, который составил автор надписи на камне для путников?

  1. Если мы пойдём направо, то потеряем коня. Если же мы не пойдём направо, то у нас остаётся два варианта (мы считаем, что назад возвращаться путник не будет): пойти прямо и налево.
  2. В случае, если мы пойдём налево, то потеряем себя, а коня спасём.
  3. Если же мы пойдём прямо, то потеряем и себя, и коня.

Блок-схема этого алгоритма выглядит так:

Рис. 9. Блок-схема.

Репка

Русские народные сказки не оставили нас и без циклического алгоритма. И, как ни странно, спрятался он в одной из самых незамысловатых сказок – «Репке».

Рис. 10. Репка.

Вспомним сюжет сказки: дед тянет-потянет – вытянуть не может. Затем на помощь к деду по очереди подходят новые персонажи – и так до тех пор, пока не приходит мышка.

Попытаемся составить алгоритм действий всех персонажей сказки для того, чтобы они всё-таки смогли вытянуть Репку.

  1. Изначально к Репке подошёл дед и попытался вытянуть.
  2. Поскольку вытянуть Репку не получилось, то понадобилась помощь следующего персонажа.
  3. И так происходит до тех пор, пока не появилась мышка (или, другими словами, до тех пор, пока Репку не вытащили).

В виде блок-схемы этот алгоритм выглядит следующим образом:

Рис. 11. Блок-схема.

Список рекомендованной литературы

  1. Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса. – М.: БИНОМ. Лаборатория знаний, 2012
  2. Босова Л.Л. Информатика: Рабочая тетрадь для 6 класса. – М.: БИНОМ. Лаборатория знаний, 2010.
  3. Босова Л.Л., Босова А.Ю. Уроки информатики в 5-6 классах: Методическое пособие. – М.: БИНОМ. Лаборатория знаний, 2010.

 Рекомендованные ссылки на ресурсы интернет

  1. Интернет портал «Сообщество взаимопомощи учителей» (Источник).
  2. Интернет портал «Nsportal.ru» (Источник).
  3. Интернет портал «Фестиваль педагогических идей» (Источник).

 Рекомендованное домашнее задание

  1. §3.3, 3.4 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса);
  2. Постарайся самостоятельно составить линейный алгоритм из 5-6 фигур;
  3. Составь блок-схему циклического алгоритма выполнения домашнего задания;

Блок -схема — это общий тип «схемы процесса», «модели процесса» или «схемы рабочего процесса». Это позволяет вам нарисовать картину того, как работает процесс, чтобы вы могли понять существующий процесс и сформировать идеи о том, как его улучшить. Поскольку люди в первую очередь визуальные виды, блок-схема передает информацию более эффективно, чем письменное или устное описание. Делая процесс видимым, вы также упрощаете управление им и фиксируете тонкое взаимодействие между компонентами.

Блок-схема используется для отображения последовательных шагов в процессе. В таких диаграммах используется ряд взаимосвязанных символов для отображения всего процесса, что упрощает его понимание и помогает в общении с другими. Блок-схемы можно использовать для объяснения работы сложного и/или абстрактного процесса, системы, концепции или алгоритма. Блок-схемы также могут помочь в планировании и разработке процессов или улучшении существующих процессов.

Почему блок-схемы актуальны и сегодня?

Блок-схемы могут предоставить пошаговые иллюстрации для отображения сложных ситуаций, таких как программирование или бизнес-процессы. Существует множество типов диаграмм процессов, в том числе плавающие диаграммы, такие как межфункциональные диаграммы, диаграммы возможностей или диаграммы процессов развертывания.

Давайте рассмотрим еще несколько причин, по которым блок-схемы являются эффективным дополнением к процессу программирования.

Вот преимущества, которые могут принести блок-схемы.

  • Легко учить.
  • Мгновенная связь.
  • Эффективный анализ
  • Хорошо для нетехнических.
  • Повышенная эффективность.
  • Решение проблем.
  • Визуальный алгоритм
  • Правильная отладка
  • Процедурное описание

Элементы блок-схемы?

Разные символы означают разные вещи, и каждый символ имеет свою особую форму. Метка каждого шага написана внутри формы символа; блок-схемы используют изогнутые прямоугольники, чтобы показать начало и конец процесса; сегменты линий или стрелки используются, чтобы показать направление или переход от одного шага к другому; простые инструкции или прямоугольники действий используются, чтобы указать, когда необходимо принять решение, и используются ромбовидные формы. В дополнение к ним есть много других символов, которые можно использовать в блок-схемах.

10+ шаблонов блок-схем и примеров

Блок-схемы могут быть горизонтальными или вертикальными.

Символы блок-схемы

Различные формы блок-схем имеют разные общепринятые значения. Значения некоторых из наиболее распространенных форм следующие:

Терминатор

Символ завершения представляет собой начальную или конечную точку системы.

Символ блок-схемы: Терминатор

Обработать

Прямоугольник указывает на некоторую конкретную операцию.

Символ блок-схемы: Процесс

Документ

Представляет собой распечатку, такую ​​как документ или отчет.

Символ блок-схемы: Документ

Решение

Ромб представляет собой решение или точку ветвления. Линии, выходящие из ромба, указывают на разные возможные ситуации, ведущие к разным подпроцессам.

Символ блок-схемы: Решение

Данные

Он представляет информацию, входящую или выходящую из системы. Ввод может быть заказом от клиента. Результатом может быть продукт, который должен быть доставлен.

Символ блок-схемы: Данные

Ссылка на странице

Этот символ будет содержать букву внутри. Это указывает на то, что поток продолжается на совпадающем символе, содержащем ту же букву, в другом месте на той же странице.

Символ блок-схемы: ссылка на странице

Справочник вне страницы

Этот символ будет содержать букву внутри. Это указывает на то, что поток продолжается на совпадающем символе, содержащем ту же букву, где-то еще на другой странице.

Символ блок-схемы: ссылка вне страницы

Задержка или узкое место

Обозначает задержку или узкое место.

Символ блок-схемы: Задержка

Поток

Линии представляют поток последовательности и направление процесса.

Символ блок-схемы: поток

Использование блок-схем

  • Документировать процесс
  • Развивать понимание того, как осуществляется процесс
  • Сообщите другим, как выполняется процесс
  • При планировании проекта
  • мозговой штурм идеи
  • Отладка функции или программы
  • Объясните процедуру
  • Исследуйте процесс, который нуждается в улучшении
  • Когда есть необходимость в улучшении коммуникации между людьми, вовлеченными в один и тот же процесс

Пример блок-схемы — простые алгоритмы

Блок-схему также можно использовать для визуализации алгоритмов, независимо от ее сложности. Вот пример, показывающий, как можно использовать блок-схему для демонстрации простого процесса суммирования.

Пример блок-схемы: простые алгоритмы

Пример блок-схемы – расчет прибыли и убытков

В приведенном ниже примере блок-схемы показано, как можно рассчитать прибыль и убыток.

Пример блок-схемы: Расчет прибыли и убытков

Используйте блок-схему с разными уровнями детализации

Блок-схема высокого уровня, показывающая от шести до двенадцати шагов, дает панорамное представление о процессе. Эти блок-схемы ясно показывают основные блоки деятельности или основные компоненты системы в процессе.

Блок-схемы высокого уровня  особенно полезны на ранних этапах проекта. Подробная блок-схема представляет собой крупный план процесса, обычно показывающий десятки шагов. Эти блок-схемы упрощают выявление циклов доработки и сложности процесса.

Изменить этот шаблон блок-схемы

Подробные блок -схемы  полезны после того, как команды точно определили проблемы или когда они вносят изменения в процесс.

Изменить этот шаблон блок-схемы

Блок-схема дорожки для плавания

Базовая блок-схема состоит из ряда шагов процесса, соединенных стрелками, показывающими порядок операций, который считается одномерным. Блок-схема дорожек (также известная как кросс-функциональная блок-схема) обеспечивает дополнительное измерение, назначая каждому шагу процесса категорию. Чаще всего категорией является стейкхолдер (человек, роль или отдел), визуально разграничивающий распределение обязанностей и ответственности за подпроцессы бизнес-процесса. Дорожка может располагаться как горизонтально, так и вертикально.

В чем отличия? Блок-схема против блок-схемы Swimlane

Блок-схема дорожек отличается от других блок-схем тем, что процессы и решения визуально сгруппированы путем размещения их на дорожках. Параллельные линии делят диаграмму на дорожки, по одной дорожке для каждого человека, группы или подпроцесса. Дорожки помечены, чтобы показать, как организована диаграмма.

В приведенном ниже примере вертикальное направление представляет собой последовательность событий в общем процессе, а горизонтальные деления показывают, какой подпроцесс выполняет этот шаг. Стрелки между дорожками показывают, как информация или материал передаются между подпроцессами.

Пример блок-схемы плавательной дорожки

Изменить этот шаблон блок-схемы

С другой стороны, поток можно повернуть так, чтобы последовательность читалась по горизонтали слева направо, при этом задействованные роли показаны на левом краю. Это может быть легче читать и проектировать, поскольку экраны компьютеров обычно шире, чем в высоту, что дает лучшее представление о потоке.

Пример кросс-функциональной блок-схемы

Изменить этот шаблон блок-схемы

Блок-схема развертывания Swimlane

Формы, используемые при рисовании блок-схемы развертывания, такие же, как и в стандартной блок-схеме с обозначениями дорожек. Блок-схема развертывания сочетает в себе две ключевые функции:

  • Последовательность шагов в процессе
  • Кто отвечает за какой этап развертывания

Он показывает этапы процесса, а также показывает, какое лицо или группа вовлечены в реакцию на шаг. В приведенном ниже примере показаны ответственные группы, перечисленные вверху. Это группы Производство, Администрация и Маркетинг. Вы можете нарисовать блок-схему развертывания, в которой перечислены люди, а не группы. Преимущество блок-схемы развертывания заключается в том, что она показывает, где работа передается от одного человека или группы к другому, где недоразумения и ошибки могут быть сведены к минимуму.

Пример блок-схемы развертывания

Изменить этот шаблон блок-схемы

Блок-схема дорожки возможностей

Блок-схемы возможностей (также известные как блок-схемы добавленной стоимости) используются для определения того, какие шаги в процессе являются дополнительными или расточительными. Он отделяет эти важные шаги для создания продукта или услуги от дополнительных затрат.

  1. Создайте блок-схему «дорожки возможности», чтобы определить все этапы процесса.
  2. Определите, какие из шагов повышают ценность с точки зрения клиентов, а какие нет.
  3. Создайте блок-схему для каждого шага в соответствующем столбце.

Пример блок-схемы дорожки возможности

Изменить этот шаблон блок-схемы

использованная литература

  • 10+ шаблонов блок-схем и примеров
  • Учебник по блок-схеме
  • Бесплатный конструктор блок-схем



Что это такое?
Блок-схема алгоритма отображает в графическом виде последовательность операций и переходные фазы. Каждому действию соответствует определенная фигура (ромб, квадрат, овал и т. д.), поэтому располагать их нужно в правильном порядке.



Как составить?
В любой блок-схеме существуют обязательные элементы: начало, конец, линии связи. Также необходима нумерация для понимания направления чтения. Остальные действия зависят от того, какой именно алгоритм нужно описать.

В статье рассказывается:

  1. Суть алгоритмов
  2. Что такое блок-схема алгоритма
  3. Составляющие блок-схемы алгоритма
  4. Правила составления блок-схемы
  5. Разделение блок-схемы
  6. Востребованность блок-схем
  7. Пройди тест и узнай, какая сфера тебе подходит:
    айти, дизайн или маркетинг.

    Бесплатно от Geekbrains

Суть алгоритмов

Алгоритмом называют конечную последовательность конкретных действий, выполняя которые, исполнитель достигает определенной цели.

Суть алгоритмов

Суть алгоритмов

Итогом прохождения всех шагов должен быть изначально заданный результат (например, некие выходные данные). Для выполнения этого процесса по мере необходимости могут создаваться и использоваться промежуточные данные. Они выходными являться не будут и нужны исключительно для обеспечения всей работы.

Любой алгоритм нужно наделять определенными свойствами. Наиболее важную роль играют:

  • Дискретность. Общая задача разделяется на отдельные, последовательно выполняемые шаги. Это, как правило, простейшие действия, порядок которых строго определен. Каждый шаг представляет собой инструкцию или команду, выполнение которой должно начинаться только тогда, когда выполнена предыдущая команда в этой последовательности.
  • Конечность. Количество шагов должно быть конечным. Иными словами, результат необходимо получить по завершении строго определенного числа команд в алгоритме.
  • Понятность. Все шаги необходимо формулировать так, чтобы исполнитель их полностью понимал. То есть алгоритм должен состоять только из команд, входящих в систему компетенций данного человека.

Скачать
файл

  • Детерминированность. Каждую команду, а также порядок выполнения всех команд необходимо предварительно четко и однозначно определить. При этом на результат выполнения каждого шага не должна влиять никакая сторонняя информация. Необходимо выстроить команды так, чтобы конечная цель алгоритма обеспечивалась только формальным выполнением четких и последовательных инструкций. Исполнителю при этом не нужно вникать в смысл команд. Благодаря такому подходу итоговый результат будет всегда одинаковым и предсказуемым независимо от того, кто выполняет эту работу.
  • Массовость. Один алгоритм призван решать сразу комплекс однотипных задач, определяемый заданным диапазоном входной информации.

Алгоритмы могут быть представлены в нескольких формах:

  • Текстовая запись. Команды записываются обычным текстом на каком-либо языке. Порядок выполнения определяется нумерацией. Действия описываются произвольно и максимально конкретно.

    Что такое браузер и как он работает

    Читайте также

  • Блок–схема. Команды отображаются графически, в виде блок-схемы из геометрических фигур.
  • Алгоритмические языки. Алгоритм строится с использованием специального искусственного языка, состоящего из определенной системы обозначений.
  • Псевдокод. Обычный язык комбинируется с алгоритмическим. Последний берется за основу для описания базовых структур алгоритма.

Суть алгоритмов

Суть алгоритмов

Что такое блок-схема алгоритма

Как упоминалось выше, алгоритм может быть схематически представлен в виде блок-схемы. Этот вид графики также широко используется для представления любых процессов и систем в самых разных отраслях деятельности человека. С помощью блок-схемы выполняется документирование, изучение, планирование, совершенствование и объяснение сложных процессов путем превращения их в простые и логичные диаграммы.

Для описания конкретных действий используются геометрические фигуры: прямоугольники, ромбы, овалы и т. д. Последовательность шагов и направление процессов отображается соединительными стрелками.

Существует несколько видов блок-схем алгоритма, которые отличаются в числе прочего сложностью исполнения, начиная от простейших и нарисованных от руки эскизов, заканчивая сложными, спроектированными на компьютере диаграммами. Блок-схемы, учитывая многообразие всех вариаций, могут быть использованы в самых разных областях жизнедеятельности и, соответственно, по-разному называться.

Так, в зависимости от отрасли, встречаются схемы процессов, функциональные блок-схемы, модели и нотации бизнес-процессов, схемы технологических процессов. Все это имеет тесную связь с другими популярными разновидностями схем (например, с некоторыми диаграммами).

Составляющие блок-схемы алгоритма

Блок-схемы создаются из различных блоков, соединяемых между собой линиями со стрелками. Таким образом отображается поток управления. Далее разберем более подробно каждый тип блоков.

Терминал

Представляет собой овальную область, которой обозначают начало и конец выполнения программы. В любом алгоритме, изображенном в виде блок-схемы, присутствует как минимум два таких овала, которые ограничивают собой данный алгоритм.

Составляющие блок-схемы алгоритма

Составляющие блок-схемы алгоритма

Данные

Блок рисуется в виде параллелограмма, содержащего внутри входные или выходные данные. Обычно здесь размещают информацию, поступающую в алгоритм извне, и результат, который в итоге он выдает.

Процесс

Выглядит как прямоугольник, служит для записи основного программного кода. Процесс является ключевым элементом алгоритма, отражающим суть всей блок-схемы.

pdf иконка

Топ-30 самых востребованных и высокооплачиваемых профессий 2023

Поможет разобраться в актуальной ситуации на рынке труда

doc иконка

Подборка 50+ ресурсов об IT-сфере

Только лучшие телеграм-каналы, каналы Youtube, подкасты, форумы и многое другое для того, чтобы узнавать новое про IT

pdf иконка

ТОП 50+ сервисов и приложений от Geekbrains

Безопасные и надежные программы для работы в наши дни

Уже скачали 21022 pdf иконка

Решение

Данный блок рисуется в виде ромба и предназначен для управляющих и условных операторов какого-либо языка программирования (например, if или «больше» и «меньше»). Здесь всегда предлагается на выбор один из двух вариантов: «да» или «нет».

Поток

Обозначается в виде стрелки, представляя собой собственно поток какого либо процесса или алгоритма с указанием направления. Таким способом обеспечивается высокая читаемость программы.

Ссылка на странице

Выглядит как окружность с расположенными внутри символами. Такая ссылка дает понять, что блок-схема продолжает дальнейшие шаги алгоритма. Когда схема достаточно длинная, для экономии места внутри данной окружности в качестве ссылки размещают одну цифру. Этот же символ должен быть использован в продолжении схемы.

Правила составления блок-схемы

Чтобы составить блок-схему алгоритма грамотно, необходимо следовать приведенным ниже принципам.

  • Начало и конец схемы обязательно ограничиваются соответствующими блоками в одном экземпляре.
  • Начальный блок должен быть соединен с конечным линиями связи.
  • Линии потока необходимо рисовать из всех блоков, кроме конечного.
  • Все блоки нумеруются по порядку слева направо и сверху вниз. Номера ставятся в верхнем левом углу с разрывом начертания.
  • Между всеми блоками обеспечивается взаимная связь через линии, определяющие последовательность выполнения команд. Движение потока в обратном порядке от принятого по умолчанию обязательно обозначается стрелками.
  • Используемые в схеме линии могут быть входящими или выходящими. Это разделение относительное. Для одного линия, выходящая из одного блока, для другого уже будет являться входящей.
  • Начальный блок имеет лишь выходящие линии потока. Соответственно, в конечный блок линии могут только входить.
  • Поскольку движение потока идет сверху вниз, входящие линии принято изображать сверху от блока, а выходящие — снизу. Это в целом упрощает чтение блок-схемы.
  • Линии потока могут обрываться. При этом места разрывов необходимо помечать специальными соединительными элементами.
  • Чтобы блок-схема легче читалась, допускается описательную часть выносить в комментарии.

Правила составления блок-схемы

Правила составления блок-схемы

Разделение блок-схемы

Построение блок-схемы зачастую связано с определенными трудностями, среди которых:

  • слишком малое место для размещения на одной странице;
  • сложности в связывании всех элементов непосредственно друг с другом.

Устранить эти проблемы можно путем разбивки всей блок-схемы алгоритма программы на несколько фрагментов и последующего соединения этих фрагментов специальными соединительными элементами.

Используемые при этом соединители подписываются уникальными номерами, состоящими из двух частей. Это нужно для определения соответствия соединительных линий друг другу. Принадлежность частей уникального номера соединительному элементу обеспечивается записью данного номера на каждом фрагменте блок-схемы. Общие правила разделения приведем ниже.

Только до 1.06

Скачай подборку тестов, чтобы определить свои самые конкурентные скиллы

Список документов:

Тест на определение компетенций

Чек-лист «Как избежать обмана при трудоустройстве»

Инструкция по выходу из выгорания

Чтобы получить файл, укажите e-mail:

Подтвердите, что вы не робот,
указав номер телефона:


Уже скачали 7503

  • Места разрыва схемы обозначаются соединительным блоком. Каждое такое соединение маркируется уникальным номером.
  • Использоваться должны только машинно-независимые элементы.
  • Представление в блок-схеме каждого шага не является обязательным. Важно отобразить только ключевые этапы выполнения программы.
  • Переменные и блоки желательно именовать наглядными и запоминаемыми словами.

И самое главное условие — сформированный алгоритм должен быть понятен любому программисту.

Востребованность блок-схем

В небольших компаниях для построения алгоритмов обычно применяют лаконичную словесную форму (псевдокод). Блок-схемы же вероятнее всего встречаются на государственных предприятиях, где действуют требования по оформлению документации ЕСПД. Однако даже при регистрации программного обеспечения в Госреестре можно обойтись без этих схем.

Востребованность блок-схем

Востребованность блок-схем

И все же современные учебные программы в школах и вузах учитывают умение рисовать данного вида графику. Вопросы, посвященные блок-схемам, встречаются на выпускных и государственных экзаменах. Студенты перед дипломной защитой также должны проверять свою работу на соответствие стандартам построения схем.

Программное обеспечение сегодня почти не разрабатывается по устаревшей каскадной модели, так как при этом часто на этапах проектирования возникают ошибки. Но когда разработка по такой модели все же ведется, применяются именно блок-схемы записи алгоритма.

Что такое браузер и как он работает

Читайте также

Во всем мире наблюдается значительное отставание образовательной системы от технического прогресса. Отечественный устаревший стандарт ГОСТ 19.701-90 в целом схож с международным ISO 5807:1985. Более актуальные модификации до сих пор не разработаны. За рубежом все еще продолжают создавать специализированное программное обеспечение для проектирования блок-схем (Dia, MS Visio, yEd).

Есть немногочисленные примеры применения более совершенных диаграмм деятельности UML, хотя эти диаграммы показывают свою эффективность лишь при описании параллельных алгоритмов.

В среде разработчиков порой возникает мнение о бесполезности блок-схем и даже UML. Некоторые убеждены в том, что и документация для разработки тоже не требуется. Впрочем, об этом чаще говорят сторонники так называемого экстремального программирования.

Для определенных задач разработки использование блок-схем все же требуется. В частности, это необходимо, когда программы создаются в визуальных средах программирования (например, ДРАКОН). Также с помощью блок-схем верифицируются алгоритмы. То есть, в соответствии с методом индуктивных утверждений Флойда формально доказывается их корректность.

Пока что можно сделать вывод, что единого мнения касательно необходимости блок-схем нет. Безусловно, в некоторых областях деятельности без них пока не обойтись в отсутствие альтернативы. Формальная верификация требует создавать блок-схемы выполнения алгоритма, хотя для непосредственного проектирования и документирования это уже не нужно.

Здесь стоит прислушаться к утверждению «программистов-экстремалов» о том, что имеет смысл рисовать лишь те схемы, которые действительно полезны в работе и при этом не требуют слишком больших усилий для рисования и актуализации.

В этой статье будут рассмотрены примеры блок-схем, которые могут встретиться вам в учебниках по информатике и другой литературе. Блок-схема представляет собой алгоритм, по которому решается какая-либо задача, поставленная перед разработчиком. Сначала нужно ответить на вопрос, что такое алгоритм, как он представляется графически, а самое главное – как его решить, зная определенные параметры. Нужно сразу отметить, что алгоритмы бывают нескольких видов.

Что такое алгоритм?

Это слово ввел в обиход математик Мухаммед аль-Хорезми, который жил в период 763-850 года. Именно он является человеком, который создал правила выполнения арифметических действий (а их всего четыре). А вот ГОСТ от 1974 года, который гласит, что:

Алгоритм – это точное предписание, которое определяет вычислительный процесс. Причем имеется несколько переменных с заданными значениями, которые приводят расчеты к искомому результату.

Алгоритм позволяет четко указать исполнителю выполнять строгую последовательность действий, чтобы решить поставленную задачу и получить результат. Разработка алгоритма – это разбивание одной большой задачи на некую последовательность шагов. Причем разработчик алгоритма обязан знать все особенности и правила его составления.

Особенности алгоритма

Всего можно выделить восемь особенностей алгоритма (независимо от его вида):

  1. Присутствует функция ввода изначальных данных.
  2. Есть вывод некоего результата после завершения алгоритма. Нужно помнить, что алгоритм нужен для того, чтобы достичь определенной цели, а именно – получить результат, который имеет прямое отношение к исходным данным.
  3. У алгоритма должна быть структура дискретного типа. Он должен представляться последовательными шагами. Причем каждый следующий шаг может начаться только после завершения предыдущего.
  4. Алгоритм должен быть однозначным. Каждый шаг четко определяется и не допускает произвольной трактовки.
  5. Алгоритм должен быть конечным – необходимо, чтобы он выполнялся за строго определенное количество шагов.
  6. Алгоритм должен быть корректным – задавать исключительно верное решение поставленной задачи.
  7. Общность (или массовость) – он должен работать с различными исходными данными.
  8. Время, которое дается на решение алгоритма, должно быть минимальным. Это определяет эффективность решения поставленной задачи.

А теперь, зная, какие существуют блок-схемы алгоритмов, можно приступить к рассмотрению способов их записи. А их не очень много.

Словесная запись

Такая форма, как правило, применяется при описании порядка действий для человека: «Пойди туда, не знаю куда. Принеси то, не знаю что».

Конечно, это шуточная форма, но суть понятна. В качестве примера можно привести еще, например, привычную запись на стеклах автобусов:«При аварии выдернуть шнур, выдавить стекло».

Здесь четко ставится условие, при котором нужно выполнить два действия в строгой последовательности. Но это самые простые алгоритмы, существуют и более сложные. Иногда используются формулы, спецобозначения, но при обязательном условии – исполнитель должен все понимать.

Допускается изменять порядок действий, если необходимо вернуться, например, к предыдущей операции либо обойти какую-то команду при определенном условии. При этом команды желательно нумеровать и обязательно указывается команда, к которой происходит переход: «Закончив все манипуляции, повторяете пункты с 3 по 5».

Запись в графической форме

В этой записи участвуют элементы блок-схем. Все элементы стандартизированы, у каждой команды имеется определенная графическая запись. А конкретная команда должна записываться внутри каждого из блоков обычным языком или математическими формулами. Все блоки должны соединяться линиями – они показывают, какой именно порядок у выполняемых команд. Собственно, этот тип алгоритма более подходит для использования в программном коде, нежели словесный.

Запись на языках программирования

В том случае, если алгоритм необходим для того, чтобы задачу решала программа, установленная на ПК, то нужно его записывать специальным кодом. Для этого существует множество языков программирования. И алгоритм в этом случае называется программой.

Блок-схемы

Блок-схема – это представление алгоритма в графической форме. Все команды и действия представлены геометрическими фигурами (блоками). Внутри каждой фигуры вписывается вся информация о тех действиях, которые нужно выполнить. Связи изображены в виде обычных линий со стрелками (при необходимости).

Для оформления блок-схем алгоритмов имеется ГОСТ 19.701-90. Он описывает порядок и правила создания их в графической форме, а также основные методы решения. В этой статье приведены основные элементы блок-схем, которые используются при решении задач, например, по информатике. А теперь давайте рассмотрим правила построения.

Основные правила составления блок-схемы

Можно выделить такие особенности, которые должны быть у любой блок-схемы:

  1. Обязательно должно присутствовать два блока – «Начало» и «Конец». Причем в единичном экземпляре.
  2. От начального блока до конечного должны быть проведены линии связи.
  3. Из всех блоков, кроме конечного, должны выходить линии потока.
  4. Обязательно должна присутствовать нумерация всех блоков: сверху вниз, слева направо. Порядковый номер нужно проставлять в левом верхнем углу, делая разрыв начертания.
  5. Все блоки должны быть связаны друг с другом линиями. Именно они должны определять последовательность, с которой выполняются действия. Если поток движется снизу вверх или справа налево (другими словами, в обратном порядке), то обязательно рисуются стрелки.
  6. Линии делятся на выходящие и входящие. При этом нужно отметить, что одна линия является для одного блока выходящей, а для другого входящей.
  7. От начального блока в схеме линия потока только выходит, так как он является самым первым.
  8. А вот у конечного блока имеется только вход. Это наглядно показано на примерах блок-схем, которые имеются в статье.
  9. Чтобы проще было читать блок-схемы, входящие линии изображаются сверху, а исходящие снизу.
  10. Допускается наличие разрывов в линиях потока. Обязательно они помечаются специальными соединителями.
  11. Для облегчения блок-схемы разрешается всю информацию прописывать в комментариях.

Графические элементы блок-схем для решения алгоритмов представлены в таблице:

Линейный тип алгоритмов

Это самый простой вид, который состоит из определенной последовательности действий, они не зависят от того, какие данные вписаны изначально. Есть несколько команд, которые выполняются однократно и только после того, как будет сделана предшествующая. Линейная блок-схема выглядит таким образом:

Пример линейного алгоритма

Причем связи могут идти как сверху вниз, так и слева направо. Используется такая блок-схема для записи алгоритмов вычислений по простым формулам, у которых не имеется ограничений на значения переменных, входящих в формулы для расчета. Линейный алгоритм – это составная часть сложных процессов вычисления.

Разветвляющиеся алгоритмы

Блок-схемы, построенные по таким алгоритмам, являются более сложными, нежели линейные. Но суть не меняется. Разветвляющийся алгоритм – это процесс, в котором дальнейшее действие зависит от того, как выполняется условие и какое получается решение. Каждое направление действия – это ветвь.

Разновидности циклов для решения алгоритмов

На схемах изображаются блоки, которые называются «Решение». У него имеется два выхода, а внутри прописывается логическое условие. Именно от того, как оно будет выполнено, зависит дальнейшее движение по схеме алгоритма. Можно разделить разветвляющиеся алгоритмы на три группы:

  1. «Обход» – при этом одна из веток не имеет операторов. Другими словами, происходит обход нескольких действий другой ветки.
  2. «Разветвление» – каждая ветка имеет определенный набор выполняемых действий.
  3. «Множественный выбор» – это разветвление, в котором есть несколько веток и каждая содержит в себе определенный набор выполняемых действий. Причем есть одна особенность – выбор направления напрямую зависит от того, какие заданы значения выражений, входящих в алгоритм.

Это простые алгоритмы, которые решаются очень просто. Теперь давайте перейдем к более сложным.

Циклический алгоритм

Здесь все предельно понятно – циклическая блок-схема представляет алгоритм, в котором многократно повторяются однотипные вычисления. По определению, цикл – это определенная последовательность каких-либо действий, выполняемая многократно (более, чем один раз). И можно выделить несколько типов циклов:

  1. У которых известно число повторений действий (их еще называют циклами со счетчиком).
  2. У которых число повторений неизвестно – с постусловием и предусловием.

Независимо от того, какой тип цикла используется для решения алгоритма, у него обязательно должна присутствовать переменная, при помощи которой происходит выход. Именно она определяет количество повторений цикла. Рабочая часть (тело) цикла – это определенная последовательность действий, которая выполняется на каждом шаге. А теперь более детально рассмотрим все типы циклов, которые могут встретиться при составлении алгоритмов и решении задач по информатике.

Циклы со счетчиками

На рисунке изображена простая блок-схема, в которой имеется цикл со счетчиком. Такой тип алгоритмов показывает, что заранее известно количество повторений данного цикла. И это число фиксировано. При этом переменная, считающая число шагов (повторений), так и называется – счетчик. Иногда в учебниках можно встретить иные определения – параметр цикла, управляющая переменная.

Изображение цикла со счетчиком

Блок-схема очень наглядно иллюстрирует, как работает цикл со счетчиком. Прежде чем приступить к выполнению первого шага, нужно присвоить начальное значение счетчику – это может быть любое число, оно зависит от конкретного алгоритма. В том случае, когда конечное значение меньше величины счетчика, начнет выполняться определенная группа команд, которые составляют тело цикла.

После того, как тело будет выполнено, счетчик меняется на величину шага счетчика, обозначенную буквой h. В том случае, если значение, которое получится, будет меньше конечного, цикл будет продолжаться. И закончится он лишь в тогда, когда конечное значение будет меньше, чем счетчик цикла. Только в этом случае произойдет выполнение того действия, которое следует за циклом.

Как изображается счетчик цикла

Обычно в обозначениях блок-схем используется блок, который называется «Подготовка». В нем прописывается счетчик, а затем указываются такие данные: начальное и конечное значения, шаг изменения. На блок-схеме это параметры I н, Ik и h, соответственно. В том случае, когда h=1, величину шага не записывают. В остальных случаях делать это обязательно. Необходимо придерживаться простого правила – линия потока должна входить сверху. А линия потока, которая выходит снизу (или справа, в зависимости от конкретного алгоритма), должна показывать переход к последующему оператору.

Теперь вы полностью изучили описание блок-схемы, изображенной на рисунке. Можно перейти к дальнейшему изучению. Когда используется цикл со счетчиком, требуется соблюдать определенные условия:

  1. В теле не разрешается изменять (принудительно) значение счетчика.
  2. Запрещено передавать управление извне оператору тела. Другими словами, войти в цикл можно только из его начала.

Циклы с предусловием

Этот тип циклов применяется в тех случаях, когда количество повторений заранее неизвестно. Цикл с предусловием – это тип алгоритма, в котором непосредственно перед началом выполнения тела осуществляется проверка условия, при котором допускается переход к следующему действию. Обратите внимание на то, как изображаются элементы блок-схемы.

В том случае, когда условие выполняется (утверждение истинно), происходит переход к началу тела цикла. Непосредственно в нем изменяется значение хотя бы одной переменной, влияющей на значение поставленного условия. Если не придерживаться этого правила, получим «зацикливание». В том случае, если после следующей проверки условия выполнения тела цикла оказывается, что оно ложное, то происходит выход.

В блок-схемах алгоритмов допускается осуществлять проверку не истинности, а ложности начального условия. При этом из цикла произойдет выход только в том случае, если значение условия окажется истинным. Оба варианта правильные, их использование зависит от того, какой конкретно удобнее использовать для решения той или иной задачи. Такой тип цикла имеет одну особенность – тело может не выполниться в случае, когда условие ложно или истинно (в зависимости от варианта, который применяется для решения алгоритма).

Ниже приведена блок-схема, которая описывает все эти действия:

Изображение цикла с предусловием

Что такое цикл с постусловием?

Если внимательно присмотреться, то этот вид циклов чем-то похож на предыдущий. Самостоятельно построить блок-схему, описывающую этот цикл, мы сейчас и попробуем. Особенность заключается в том, что неизвестно заранее число повторений. А условие задается уже после того, как произошел выход из тела. Отсюда видно, что тело, независимо от решения, будет выполняться как минимум один раз. Для наглядности взгляните на блок-схему, описывающую выполнение условия и операторов:

Изображение цикла с постусловием

Ничего сложного в построении алгоритмов с циклами нет, достаточно в них только один раз разобраться. А теперь перейдем к более сложным конструкциям.

Сложные циклы

Сложные – это такие конструкции, внутри которых есть один или больше простых циклов. Иногда их называют вложенными. При этом те конструкции, которые охватывают иные циклы, называют «внешними». А те, которые входят в конструкцию внешних – внутренними. При выполнении каждого шага внешнего цикла происходит полная прокрутка внутреннего, как представлено на рисунке:

Пример сложного цикла

Вот и все, вы рассмотрели основные особенности построения блок-схем для решения алгоритмов, знаете принципы и правила. Теперь можно рассмотреть конкретные примеры блок-схем из жизни. Например, в психологии такие конструкции используются для того, чтобы человек решил какой-то вопрос:

Пример из жизни решения алгоритма

Или пример из биологии для решения поставленной задачи:

Второй пример решения алгоритма по блок-схеме

Решение задач с блок-схемами

А теперь рассмотрим примеры задач с блок-схемами, которые могут попасться в учебниках информатики. Например, задана блок-схема, по которой решается какой-то алгоритм:

Решение задачи по математике

При этом пользователь самостоятельно вводит значения переменных. Допустим, х=16, а у=2. Процесс выполнения такой:

  1. Производится ввод значений х и у.
  2. Выполняется операция преобразования: х=√16=4.
  3. Выполняется условие: у=у2=4.
  4. Производится вычисление: х=(х+1)=(4+1)=5.
  5. Дальше вычисляется следующая переменная: у=(у+х)=(5+4)=9.
  6. Выводится решение: у=9.

На этом примере блок-схемы по информатике хорошо видно, как происходит решение алгоритма. Нужно обратить внимание на то, что значения х и у задаются на начальном этапе и они могут быть любыми.

Понравилась статья? Поделить с друзьями:
  • Аммоний astroneer как найти
  • Как найти на карте забайкалье
  • Возникла неопределенная ошибка 766f6c756d652e63 461 как исправить
  • Как найти периметр пятиугольника с одинаковыми сторонами
  • Как найти шкуру нахура