Как составить блок схему примера по информатике

Блок-схема

Итак, опустив долгие и нудные восхваления Паскаля, которые так любят публиковать в своих статьях редакторы многих сайтов, приступим непосредственно к самому основному – к программированию.

В школах, как правило, изучение Паскаля начинают с решения простейших задач путем составления различных алгоритмов или блок-схем, которое многие так часто игнорируют, считая никому не нужной ерундой. А зря. Я, как и любой другой человек, хоть немного соображающий в программировании (не важно где – в Паскале, Си, Дельфи), могу уверить Вас – умение правильно и быстро составлять схемы является фундаментом, основой программирования.

Блок-схема — графическое представление алгоритма. Она состоит из функциональных блоков, которые выполняют различные назначения (ввод/вывод, начало/конец, вызов функции и т.д.).

Существует несколько основных видов блоков, которые нетрудно запомнить:

Некоторые виды блоков

Сегодняшний урок я решила посвятить не только изучению блок-схем, но также и изучению линейных алгоритмов. Как Вы помните, линейный алгоритм — наипростейший вид алгоритма. Его главная особенность в том, что он не содержит никаких особенностей. Как раз это и делает работу с ним простой и приятной.

Задача №1: «Рассчитать площадь и периметр прямоугольника по двум известным сторонам».

Данная задача не должна представлять особой трудности, так как построена она на хорошо известных всем нам формулах расчета площади и периметра прямоугольника, поэтому зацикливаться на выведении этих формул мы не будем.

Составим алгоритм решения подобных задач:

1) Прочитать задачу.
2) Выписать известные и неизвестные нам переменные в «дано». (В задаче №1 к известным переменным относятся стороны: a, b ;к неизвестным — площадь S и периметр P)
3) Вспомнить либо составить необходимые формулы. (У нас: S=a*b; P=2*(a+b))
4) Составить блок-схему.
5) Записать решение на языке программирования Pascal.

Запишем условие в более кратком виде.

Дано: a, b

Найти: S, P

Блок-схема:

Решение задачи №1. Блок-схема

Решение задачи №1

Структура программы, решающей данную задачу, тоже проста:

  • 1) Описание переменных;
  • 2) Ввод значений сторон прямоугольника;
  • 3) Расчет площади прямоугольника;
  • 4) Расчет периметра прямоугольника;
  • 5) Вывод значений площади и периметра;
  • 6) Конец.

А вот и решение:

Program Rectangle;
Var a, b, S, P: integer;
Begin
write('Введите стороны прямоугольника!'); 
readln(a, b);
S:=a*b;
P:=2*(a+b);
writeln('Площадь прямоугольника: ', S);
write('Периметр прямоугольника: ', P);
End.

Задача №2: Скорость первого автомобиля — V1 км/ч, второго – V2 км/ч, расстояние между ними S км. Какое расстояние будет между ними через T часов, если автомобили движутся в разные стороны? Значения V1, V2, T  и S задаются с клавиатуры.

Решение осуществляем, опять же, следуя алгоритму. Прочитав текст, мы переходим к следующему пункту. Как и во всех физических или математических задачах, это запись условий задачи:

Дано: V1, V2, S, Т
Найти: S1

Далее идет самая главная и в то же время самая интересная часть нашего решения – составление нужных нам формул. Как правило, на начальных стадиях обучения все необходимые формулы хорошо нам известны и взяты из других технических дисциплин (например, на нахождение площади различных фигур, на нахождение скорости, расстояния и т.п.).

Формула, используемая для решения нашей задачи, выглядит следующим образом:

S1=(V1+V2)*T+S

Следующий пункт алгоритма – блок-схема:

Решение задачи №2.Блок-схема

Решение задачи №2.

А также решение, записанное в Pascal :

Program Rasstoyanie;
Var V1, V2, S, T, S1: integer; {Ввод }
begin
write('Введите скорость первого автомобиля: '); 
readln(V1);
write('Введите скорость второго автомобиля: '); 
readln(V2);
write('Введите время: '); 
readln(T);
write('Введите расстояние между автомобилями: '); 
readln(S);
S1:=(V1+V2)*T+S;
writeln('Через ', t,'ч. расстояние ', S1,' км.');
End.

Вам может показаться, что две эти программы правильны, но это не так. Ведь сторона треугольника может быть 4.5, а не 4, а скорость машины не обязательно круглое число!  А Integer — это только целые числа. Поэтому при попытке написать во второй программе другие числа выскакивает ошибка:

Ошибка!

Обратите внимание в Паскале, как и в любом другом языке программирования десятичная дробь вводится с точкой, а не с запятой!

Чтобы решить эту проблему вам надо вспомнить какой тип в Pascal отвечает за нецелые числа. В этом уроке мы рассматривали основные типы. Итак, это вещественный тип — Real.  Вот, как выглядит исправленная программа:

Снимок экрана 2013 12 15 в 20.00.24 1024x545

Как видите, эта статья полезна для прочтения как новичкам, так и уже более опытными пользователям Pascal, так как составление блок-схем не только очень простое и быстрое, но и весьма увлекательное занятие.

В этой статье будут рассмотрены примеры блок-схем, которые могут встретиться вам в учебниках по информатике и другой литературе. Блок-схема представляет собой алгоритм, по которому решается какая-либо задача, поставленная перед разработчиком. Сначала нужно ответить на вопрос, что такое алгоритм, как он представляется графически, а самое главное – как его решить, зная определенные параметры. Нужно сразу отметить, что алгоритмы бывают нескольких видов.

Что такое алгоритм?

Это слово ввел в обиход математик Мухаммед аль-Хорезми, который жил в период 763-850 года. Именно он является человеком, который создал правила выполнения арифметических действий (а их всего четыре). А вот ГОСТ от 1974 года, который гласит, что:

Алгоритм – это точное предписание, которое определяет вычислительный процесс. Причем имеется несколько переменных с заданными значениями, которые приводят расчеты к искомому результату.

Алгоритм позволяет четко указать исполнителю выполнять строгую последовательность действий, чтобы решить поставленную задачу и получить результат. Разработка алгоритма – это разбивание одной большой задачи на некую последовательность шагов. Причем разработчик алгоритма обязан знать все особенности и правила его составления.

Особенности алгоритма

Всего можно выделить восемь особенностей алгоритма (независимо от его вида):

  1. Присутствует функция ввода изначальных данных.
  2. Есть вывод некоего результата после завершения алгоритма. Нужно помнить, что алгоритм нужен для того, чтобы достичь определенной цели, а именно – получить результат, который имеет прямое отношение к исходным данным.
  3. У алгоритма должна быть структура дискретного типа. Он должен представляться последовательными шагами. Причем каждый следующий шаг может начаться только после завершения предыдущего.
  4. Алгоритм должен быть однозначным. Каждый шаг четко определяется и не допускает произвольной трактовки.
  5. Алгоритм должен быть конечным – необходимо, чтобы он выполнялся за строго определенное количество шагов.
  6. Алгоритм должен быть корректным – задавать исключительно верное решение поставленной задачи.
  7. Общность (или массовость) – он должен работать с различными исходными данными.
  8. Время, которое дается на решение алгоритма, должно быть минимальным. Это определяет эффективность решения поставленной задачи.

А теперь, зная, какие существуют блок-схемы алгоритмов, можно приступить к рассмотрению способов их записи. А их не очень много.

Словесная запись

Такая форма, как правило, применяется при описании порядка действий для человека: «Пойди туда, не знаю куда. Принеси то, не знаю что».

Конечно, это шуточная форма, но суть понятна. В качестве примера можно привести еще, например, привычную запись на стеклах автобусов:«При аварии выдернуть шнур, выдавить стекло».

Здесь четко ставится условие, при котором нужно выполнить два действия в строгой последовательности. Но это самые простые алгоритмы, существуют и более сложные. Иногда используются формулы, спецобозначения, но при обязательном условии – исполнитель должен все понимать.

Допускается изменять порядок действий, если необходимо вернуться, например, к предыдущей операции либо обойти какую-то команду при определенном условии. При этом команды желательно нумеровать и обязательно указывается команда, к которой происходит переход: «Закончив все манипуляции, повторяете пункты с 3 по 5».

Запись в графической форме

В этой записи участвуют элементы блок-схем. Все элементы стандартизированы, у каждой команды имеется определенная графическая запись. А конкретная команда должна записываться внутри каждого из блоков обычным языком или математическими формулами. Все блоки должны соединяться линиями – они показывают, какой именно порядок у выполняемых команд. Собственно, этот тип алгоритма более подходит для использования в программном коде, нежели словесный.

Запись на языках программирования

В том случае, если алгоритм необходим для того, чтобы задачу решала программа, установленная на ПК, то нужно его записывать специальным кодом. Для этого существует множество языков программирования. И алгоритм в этом случае называется программой.

Блок-схемы

Блок-схема – это представление алгоритма в графической форме. Все команды и действия представлены геометрическими фигурами (блоками). Внутри каждой фигуры вписывается вся информация о тех действиях, которые нужно выполнить. Связи изображены в виде обычных линий со стрелками (при необходимости).

Для оформления блок-схем алгоритмов имеется ГОСТ 19.701-90. Он описывает порядок и правила создания их в графической форме, а также основные методы решения. В этой статье приведены основные элементы блок-схем, которые используются при решении задач, например, по информатике. А теперь давайте рассмотрим правила построения.

Основные правила составления блок-схемы

Можно выделить такие особенности, которые должны быть у любой блок-схемы:

  1. Обязательно должно присутствовать два блока – «Начало» и «Конец». Причем в единичном экземпляре.
  2. От начального блока до конечного должны быть проведены линии связи.
  3. Из всех блоков, кроме конечного, должны выходить линии потока.
  4. Обязательно должна присутствовать нумерация всех блоков: сверху вниз, слева направо. Порядковый номер нужно проставлять в левом верхнем углу, делая разрыв начертания.
  5. Все блоки должны быть связаны друг с другом линиями. Именно они должны определять последовательность, с которой выполняются действия. Если поток движется снизу вверх или справа налево (другими словами, в обратном порядке), то обязательно рисуются стрелки.
  6. Линии делятся на выходящие и входящие. При этом нужно отметить, что одна линия является для одного блока выходящей, а для другого входящей.
  7. От начального блока в схеме линия потока только выходит, так как он является самым первым.
  8. А вот у конечного блока имеется только вход. Это наглядно показано на примерах блок-схем, которые имеются в статье.
  9. Чтобы проще было читать блок-схемы, входящие линии изображаются сверху, а исходящие снизу.
  10. Допускается наличие разрывов в линиях потока. Обязательно они помечаются специальными соединителями.
  11. Для облегчения блок-схемы разрешается всю информацию прописывать в комментариях.

Графические элементы блок-схем для решения алгоритмов представлены в таблице:

Линейный тип алгоритмов

Это самый простой вид, который состоит из определенной последовательности действий, они не зависят от того, какие данные вписаны изначально. Есть несколько команд, которые выполняются однократно и только после того, как будет сделана предшествующая. Линейная блок-схема выглядит таким образом:

Пример линейного алгоритма

Причем связи могут идти как сверху вниз, так и слева направо. Используется такая блок-схема для записи алгоритмов вычислений по простым формулам, у которых не имеется ограничений на значения переменных, входящих в формулы для расчета. Линейный алгоритм – это составная часть сложных процессов вычисления.

Разветвляющиеся алгоритмы

Блок-схемы, построенные по таким алгоритмам, являются более сложными, нежели линейные. Но суть не меняется. Разветвляющийся алгоритм – это процесс, в котором дальнейшее действие зависит от того, как выполняется условие и какое получается решение. Каждое направление действия – это ветвь.

Разновидности циклов для решения алгоритмов

На схемах изображаются блоки, которые называются «Решение». У него имеется два выхода, а внутри прописывается логическое условие. Именно от того, как оно будет выполнено, зависит дальнейшее движение по схеме алгоритма. Можно разделить разветвляющиеся алгоритмы на три группы:

  1. «Обход» – при этом одна из веток не имеет операторов. Другими словами, происходит обход нескольких действий другой ветки.
  2. «Разветвление» – каждая ветка имеет определенный набор выполняемых действий.
  3. «Множественный выбор» – это разветвление, в котором есть несколько веток и каждая содержит в себе определенный набор выполняемых действий. Причем есть одна особенность – выбор направления напрямую зависит от того, какие заданы значения выражений, входящих в алгоритм.

Это простые алгоритмы, которые решаются очень просто. Теперь давайте перейдем к более сложным.

Циклический алгоритм

Здесь все предельно понятно – циклическая блок-схема представляет алгоритм, в котором многократно повторяются однотипные вычисления. По определению, цикл – это определенная последовательность каких-либо действий, выполняемая многократно (более, чем один раз). И можно выделить несколько типов циклов:

  1. У которых известно число повторений действий (их еще называют циклами со счетчиком).
  2. У которых число повторений неизвестно – с постусловием и предусловием.

Независимо от того, какой тип цикла используется для решения алгоритма, у него обязательно должна присутствовать переменная, при помощи которой происходит выход. Именно она определяет количество повторений цикла. Рабочая часть (тело) цикла – это определенная последовательность действий, которая выполняется на каждом шаге. А теперь более детально рассмотрим все типы циклов, которые могут встретиться при составлении алгоритмов и решении задач по информатике.

Циклы со счетчиками

На рисунке изображена простая блок-схема, в которой имеется цикл со счетчиком. Такой тип алгоритмов показывает, что заранее известно количество повторений данного цикла. И это число фиксировано. При этом переменная, считающая число шагов (повторений), так и называется – счетчик. Иногда в учебниках можно встретить иные определения – параметр цикла, управляющая переменная.

Изображение цикла со счетчиком

Блок-схема очень наглядно иллюстрирует, как работает цикл со счетчиком. Прежде чем приступить к выполнению первого шага, нужно присвоить начальное значение счетчику – это может быть любое число, оно зависит от конкретного алгоритма. В том случае, когда конечное значение меньше величины счетчика, начнет выполняться определенная группа команд, которые составляют тело цикла.

После того, как тело будет выполнено, счетчик меняется на величину шага счетчика, обозначенную буквой h. В том случае, если значение, которое получится, будет меньше конечного, цикл будет продолжаться. И закончится он лишь в тогда, когда конечное значение будет меньше, чем счетчик цикла. Только в этом случае произойдет выполнение того действия, которое следует за циклом.

Как изображается счетчик цикла

Обычно в обозначениях блок-схем используется блок, который называется «Подготовка». В нем прописывается счетчик, а затем указываются такие данные: начальное и конечное значения, шаг изменения. На блок-схеме это параметры I н, Ik и h, соответственно. В том случае, когда h=1, величину шага не записывают. В остальных случаях делать это обязательно. Необходимо придерживаться простого правила – линия потока должна входить сверху. А линия потока, которая выходит снизу (или справа, в зависимости от конкретного алгоритма), должна показывать переход к последующему оператору.

Теперь вы полностью изучили описание блок-схемы, изображенной на рисунке. Можно перейти к дальнейшему изучению. Когда используется цикл со счетчиком, требуется соблюдать определенные условия:

  1. В теле не разрешается изменять (принудительно) значение счетчика.
  2. Запрещено передавать управление извне оператору тела. Другими словами, войти в цикл можно только из его начала.

Циклы с предусловием

Этот тип циклов применяется в тех случаях, когда количество повторений заранее неизвестно. Цикл с предусловием – это тип алгоритма, в котором непосредственно перед началом выполнения тела осуществляется проверка условия, при котором допускается переход к следующему действию. Обратите внимание на то, как изображаются элементы блок-схемы.

В том случае, когда условие выполняется (утверждение истинно), происходит переход к началу тела цикла. Непосредственно в нем изменяется значение хотя бы одной переменной, влияющей на значение поставленного условия. Если не придерживаться этого правила, получим «зацикливание». В том случае, если после следующей проверки условия выполнения тела цикла оказывается, что оно ложное, то происходит выход.

В блок-схемах алгоритмов допускается осуществлять проверку не истинности, а ложности начального условия. При этом из цикла произойдет выход только в том случае, если значение условия окажется истинным. Оба варианта правильные, их использование зависит от того, какой конкретно удобнее использовать для решения той или иной задачи. Такой тип цикла имеет одну особенность – тело может не выполниться в случае, когда условие ложно или истинно (в зависимости от варианта, который применяется для решения алгоритма).

Ниже приведена блок-схема, которая описывает все эти действия:

Изображение цикла с предусловием

Что такое цикл с постусловием?

Если внимательно присмотреться, то этот вид циклов чем-то похож на предыдущий. Самостоятельно построить блок-схему, описывающую этот цикл, мы сейчас и попробуем. Особенность заключается в том, что неизвестно заранее число повторений. А условие задается уже после того, как произошел выход из тела. Отсюда видно, что тело, независимо от решения, будет выполняться как минимум один раз. Для наглядности взгляните на блок-схему, описывающую выполнение условия и операторов:

Изображение цикла с постусловием

Ничего сложного в построении алгоритмов с циклами нет, достаточно в них только один раз разобраться. А теперь перейдем к более сложным конструкциям.

Сложные циклы

Сложные – это такие конструкции, внутри которых есть один или больше простых циклов. Иногда их называют вложенными. При этом те конструкции, которые охватывают иные циклы, называют «внешними». А те, которые входят в конструкцию внешних – внутренними. При выполнении каждого шага внешнего цикла происходит полная прокрутка внутреннего, как представлено на рисунке:

Пример сложного цикла

Вот и все, вы рассмотрели основные особенности построения блок-схем для решения алгоритмов, знаете принципы и правила. Теперь можно рассмотреть конкретные примеры блок-схем из жизни. Например, в психологии такие конструкции используются для того, чтобы человек решил какой-то вопрос:

Пример из жизни решения алгоритма

Или пример из биологии для решения поставленной задачи:

Второй пример решения алгоритма по блок-схеме

Решение задач с блок-схемами

А теперь рассмотрим примеры задач с блок-схемами, которые могут попасться в учебниках информатики. Например, задана блок-схема, по которой решается какой-то алгоритм:

Решение задачи по математике

При этом пользователь самостоятельно вводит значения переменных. Допустим, х=16, а у=2. Процесс выполнения такой:

  1. Производится ввод значений х и у.
  2. Выполняется операция преобразования: х=√16=4.
  3. Выполняется условие: у=у2=4.
  4. Производится вычисление: х=(х+1)=(4+1)=5.
  5. Дальше вычисляется следующая переменная: у=(у+х)=(5+4)=9.
  6. Выводится решение: у=9.

На этом примере блок-схемы по информатике хорошо видно, как происходит решение алгоритма. Нужно обратить внимание на то, что значения х и у задаются на начальном этапе и они могут быть любыми.

Схемаэто абстракция какого-либо процесса или системы, наглядно отображающая наиболее значимые части. Схемы широко применяются с древних времен до настоящего времени — чертежи древних пирамид, карты земель, принципиальные электрические схемы. Очевидно, древние мореплаватели хотели обмениваться картами и поэтому выработали единую систему обозначений и правил их выполнения. Аналогичные соглашения выработаны для изображения схем-алгоритмов и закреплены ГОСТ и международными стандартами.

На территории Российской Федерации действует единая система программной документации (ЕСПД), частью которой является Государственный стандарт — ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем» [1]. Не смотря на то, что описанные в стандарте обозначения могут использоваться для изображения схем ресурсов системы, схем взаимодействия программ и т.п., в настоящей статье описана лишь разработка схем алгоритмов программ.

Рассматриваемый ГОСТ практически полностью соответствует международному стандарту ISO 5807:1985.

Содержание:

  1. Элементы блок-схем алгоритмов
  2. Примеры блок-схем
  3. Нужны ли блок-схемы? Альтернативы

Элементы блок-схем алгоритмов

Блок-схема представляет собой совокупность символов, соответствующих этапам работы алгоритма и соединяющих их линий. Пунктирная линия используется для соединения символа с комментарием. Сплошная линия отражает зависимости по управлению между символами и может снабжаться стрелкой. Стрелку можно не указывать при направлении дуги слева направо и сверху вниз. Согласно п. 4.2.4, линии должны подходить к символу слева, либо сверху, а исходить снизу, либо справа.

Есть и другие типы линий, используемые, например, для изображения блок-схем параллельных алгоритмов, но в текущей статье они, как и ряд специфических символов, не рассматриваются. Рассмотрены лишь основные символы, которых всегда достаточно студентам.

flowcharts_terminator
Терминатор начала и конца работы функции
Терминатором начинается и заканчивается любая функция. Тип возвращаемого значения и аргументов функции обычно указывается в комментариях к блоку терминатора.
flowcharts_data
Операции ввода и вывода данных
В ГОСТ определено множество символов ввода/вывода, например вывод на магнитные ленты, дисплеи и т.п. Если источник данных не принципиален, обычно используется символ параллелограмма. Подробности ввода/вывода могут быть указаны в комментариях.
flowcharts_process
Выполнение операций над данными
В блоке операций обычно размещают одно или несколько (ГОСТ не запрещает) операций присваивания, не требующих вызова внешних функций.
flowcharts_solution
Блок, иллюстрирующий ветвление алгоритма
Блок в виде ромба имеет один вход и несколько подписанных выходов. В случае, если блок имеет 2 выхода (соответствует оператору ветвления), на них подписывается результат сравнения — «да/нет». Если из блока выходит большее число линий (оператор выбора), внутри него записывается имя переменной, а на выходящих дугах — значения этой переменной.
flowcharts_procedure
Вызов внешней процедуры
Вызов внешних процедур и функций помещается в прямоугольник с дополнительными вертикальными линиями.
flowcharts_loop
Начало и конец цикла
Символы начала и конца цикла содержат имя и условие. Условие может отсутствовать в одном из символов пары. Расположение условия, определяет тип оператора, соответствующего символам на языке высокого уровня — оператор с предусловием (while) или постусловием (do … while).
flowcharts_preprocess
Подготовка данных
Символ «подготовка данных» в произвольной форме (в ГОСТ нет ни пояснений, ни примеров), задает входные значения. Используется обычно для задания циклов со счетчиком.
flowcharts_connector
Соединитель
В случае, если блок-схема не умещается на лист, используется символ соединителя, отражающий переход потока управления между листами. Символ может использоваться и на одном листе, если по каким-либо причинам тянуть линию не удобно.
flowcharts_comment
Комментарий
Комментарий может быть соединен как с одним блоком, так и группой. Группа блоков выделяется на схеме пунктирной линией.

Примеры блок-схем

В качестве примеров, построены блок-схемы очень простых алгоритмов сортировки, при этом акцент сделан на различные реализации циклов, т.к. у студенты делают наибольшее число ошибок именно в этой части.

Сортировка вставками

Массив в алгоритме сортировки вставками разделяется на отсортированную и еще не обработанную части. Изначально отсортированная часть состоит из одного элемента, и постепенно увеличивается.

На каждом шаге алгоритма выбирается первый элемент необработанной части массива и вставляется в отсортированную так, чтобы в ней сохранялся требуемый порядок следования элементов. Вставка может выполняться как в конец массива, так и в середину. При вставке в середину необходимо сдвинуть все элементы, расположенные «правее» позиции вставки на один элемент вправо. В алгоритме используется два цикла — в первом выбираются элементы необработанной части, а во втором осуществляется вставка.

insertsort_flowchart

Блок-схема алгоритма сортировки вставками

В приведенной блок-схеме для организации цикла используется символ ветвления. В главном цикле (i < n) перебираются элементы необработанной части массива. Если все элементы обработаны — алгоритм завершает работу, в противном случае выполняется поиск позиции для вставки i-того элемента. Искомая позиция будет сохранена в переменной j в результате выполнения внутреннего цикла, осуществляющем сдвиг элементов до тех пор, пока не будет найден элемент, значение которого меньше i-того.

На блок-схеме показано каким образом может использоваться символ перехода — его можно использовать не только для соединения частей схем, размещенных на разных листах, но и для сокращения количества линий. В ряде случаев это позволяет избежать пересечения линий и упрощает восприятие алгоритма.

Сортировка пузырьком

Сортировка пузырьком, как и сортировка вставками, использует два цикла. Во вложенном цикле выполняется попарное сравнение элементов и, в случае нарушения порядка их следования, перестановка. В результате выполнения одной итерации внутреннего цикла, максимальный элемент гарантированно будет смещен в конец массива. Внешний цикл выполняется до тех пор, пока весь массив не будет отсортирован.

bubblesort_flowchart

Блок-схема алгоритма сортировки пузырьком

На блок-схеме показано использование символов начала и конца цикла. Условие внешнего цикла (А) проверяется в конце (с постусловием), он работает до тех пор, пока переменная hasSwapped имеет значение true. Внутренний цикл использует предусловие для перебора пар сравниваемых элементов. В случае, если элементы расположены в неправильном порядке, выполняется их перестановка посредством вызова внешней процедуры (swap). Для того, чтобы было понятно назначение внешней процедуры и порядок следования ее аргументов, необходимо писать комментарии. В случае, если функция возвращает значение, комментарий может быть написан к символу терминатору конца.

Сортировка выбором

В сортировке выбором массив разделяется на отсортированную и необработанную части. Изначально отсортированная часть пустая, но постепенно она увеличивается. Алгоритм производит поиск минимального элемента необработанной части и меняет его местами с первым элементом той же части, после чего считается, что первый элемент обработан (отсортированная часть увеличивается).

selectsort_flowchart

Блок-схема сортировки выбором

На блок-схеме приведен пример использования блока «подготовка», а также показано, что в ряде случаев можно описывать алгоритм более «укрупнённо» (не вдаваясь в детали). К сортировке выбором не имеют отношения детали реализации поиска индекса минимального элемента массива, поэтому они могут быть описаны символом вызова внешней процедуры. Если блок-схема алгоритма внешней процедуры отсутствует, не помешает написать к символу вызова комментарий, исключением могут быть функции с говорящими названиями типа swap, sort, … .

На блоге можно найти другие примеры блок-схем:

  • блок-схема проверки правильности расстановки скобок арифметического выражения [2];
  • блок-схемы алгоритмов быстрой сортировки и сортировки слиянием [3].

Часть студентов традиционно пытается рисовать блок-схемы в Microsoft Word, но это оказывается сложно и не удобно. Например, в MS Word нет стандартного блока для терминатора начала и конца алгоритма (прямоугольник со скругленными краями, а не овал). Наиболее удобными, на мой взгляд, являются утилиты MS Visio и yEd [5], обе они позволяют гораздо больше, чем строить блок-схемы (например рисовать диаграммы UML), но первая является платной и работает только под Windows, вторая бесплатная и кроссплатфомренная. Все блок-схемы в этой статье выполнены с использованием yEd.

Частные конторы никакие блок-схемы не используют, в книжках по алгоритмам [6] вместо них применяют словесное описание (псевдокод) как более краткую форму. Возможно блок-схемы применяют на государственных предприятиях, которые должны оформлять документацию согласно требованиям ЕСПД, но есть сомнения — даже для регистрации программы в Государственном реестре программ для ЭВМ никаких блок-схем не требуется.

Тем не менее, рисовать блок-схемы заставляют школьников (примеры из учебников ГОСТ не соответствуют) — выносят вопросы на государственные экзамены (ГИА и ЕГЭ), студентов — перед защитой диплом сдается на нормоконтроль, где проверяется соответствие схем стандартам.

Разработка блок-схем выполняется на этапах проектирования и документирования, согласно каскадной модели разработки ПО, которая сейчас почти не применяется, т.к. сопровождается большими рисками, связанными с ошибками на этапах проектирования.

Появляются подозрения, что система образования прогнила и отстала лет на 20, однако аналогичная проблема наблюдается и за рубежом. Международный стандарт ISO 5807:1985 мало чем отличается от ГОСТ 19.701-90, более нового стандарта за рубежом нет. Там же производится множество программ для выполнения этих самых схем — Dia, MS Visio, yEd, …, а значит списывать их не собираются. Вместо блок-схем иногда применяют диаграммы деятельности UML [6], однако удобнее они оказываются, разве что при изображении параллельных алгоритмов.

Периодически поднимается вопрос о том, что ни блок-схемы, ни UML не нужны, да и документация тоже не нужна. Об этом твердят программисты, придерживающиеся методологии экстремального программирования (XP) [7], ходя даже в их кругу нет единого мнения.

В ряде случаев, программирование невозможно без рисования блок-схем, т.к. это один процесс — существуют визуальные языки программирования, такие как ДРАКОН [8], кроме того, блок-схемы используются для верификации алгоритмов (формального доказательства их корректности) методом индуктивных утверждений Флойда [9].

В общем, единого мнения нет. Очевидно, есть области, в которых без чего-то типа блок-схем обойтись нельзя, но более гибкой альтернативы нет. Для формальной верификации необходимо рисовать подробные блок-схемы, но для проектирования и документирования такие схемы не нужны — я считаю разумным утверждение экстремальных программистов о том, что нужно рисовать лишь те схемы, которые помогают в работе и не требуют больших усилий для поддержания в актуальном состоянии [10].

Список использованных источников:

  1. ГОСТ 19.701–90 (ИСО 5807–85) «Единая система программной документа­ции».
  2. Алгоритм. Свойства алгоритма https://pro-prof.com/archives/578
  3. Алгоритмы сортировки слиянием и быстрой сортировки https://pro-prof.com/archives/813
  4. yEd Graph Editor https://www.yworks.com/products/yed
  5. Книги: алгоритмы https://pro-prof.com/books-algorithms
  6. Рамбо Дж., Якобсон А., Буч Г. UML: специальный справочник. -СПб.: Питер, 2002. -656 с.
  7. Кент Бек Экстремальное программирование: разработка через тестирование – СПб.: Питер – 2003
  8. Визуальный язык ДРАКОН https://drakon.su/
  9. Шилов Н.В. Верификация шаблонов алгоритмов для метода отката и метода ветвей и границ. Моделирование и анализ информационных систем, ISSN 1818 – 1015, т.18, №4, 2011
  10. Брукс Ф., Мифический человеко — месяц или как создаются программные системы. СПб. Символ Плюс, 1999 — 304 с. ил.

Конспект

Составление линейных алгоритмов

 На предыдущих уроках мы узнали, что такое алгоритм, какие бывают виды алгоритмов, и кто их исполняет.

Сегодня мы попрактикуемся в составлении алгоритмов. Это очень важные навыки. Мы уже неоднократно отмечали, что составить алгоритм, то есть объяснить другому, как выполнять те или иные задачи так, чтобы это было понятно каждому, — очень тяжело. Наша задача – научиться составлять алгоритмы для различных примеров, чтобы впоследствии, когда вы столкнётесь с необходимостью составлять алгоритмы для написания различных программ, это не составляло для вас особого труда.

 Начнём мы с самых простых алгоритмов – линейных. Их составление, обычно, не вызывает особого труда. Однако, навыки составления таких алгоритмов чрезвычайно важны.

Пример 1. Составить алгоритм запуска программы Paint в ОС Windows 7.

Решение:

Вспомним из курса информатики 5 класса порядок действий для запуска программы Paint.

  1. Войти в меню «Пуск».
  2. Войти в пункт «Все программы».
  3. Войти в пункт «Стандартные».
  4. Выбрать программу «Paint».

Данный алгоритм в виде блок-схемы имеет следующий вид:

 

Рис. 1. Блок-схема к примеру 1.

Составление алгоритмов с ветвлениями

Рассмотрим пример на составление алгоритмов с ветвлениями.

 Пример 2. Составьте алгоритм для перехода дороги на светофоре.

Рис. 2. Светофор (Источник).

Решение:

Возможны следующие ситуации: в тот момент, когда мы подошли к дороге горел красный или зелёный свет. Если горел зелёный свет, то можно переходить дорогу. Если же горел красный свет, то необходимо дождаться зелёного – и уже тогда переходить дорогу.

Таким образом, алгоритм имеет следующий вид:

  1. Подойти к светофору.
  2. Посмотреть на его свет.
  3. Если горит зелёный, то перейти дорогу.
  4. Если горит красный, то подождать, пока загорится зелёный, и уже тогда перейти дорогу.

Блок-схема данного алгоритма имеет вид:

Рис. 3. Блок-схема к примеру 2.

Составление циклических алгоритмов

Рассмотрим пример на составление циклического алгоритма. Мы уже несколько раз обсуждали перевод чисел из десятичной системы в двоичную. Теперь пришло время чётко сформулировать этот алгоритм.

Напомним, что его принцип состоит в делении числа на 2 и записей остатков, получающихся при делении.

Пример 3. Составить алгоритм перевода чисел из десятичной системы в двоичную.

Решение:

То есть, алгоритм будет выглядеть так:

  1. Если число равно 0 или 1, то это и будет его двоичное представление.
  2. Если число больше 1, то мы делим его на 2.
  3. Полученный остаток от деления записываем в последний разряд двоичного представления числа.
  4. Если полученное частное равно 1, то его дописываем в первый разряд двоичного представления числа и прекращаем вычисления.
  5. Если же полученное частное больше 1, то мы заменяем исходное число на него и возвращаемся в пункт 2).

Блок-схема этого алгоритма выглядит следующим образом:

Рис. 4. Блок-схема к примеру 3.

Примечание: подумайте, можно ли как-то упростить приведенную блок-схему.

«Чтение» алгоритмов

Пример 4. По заданной блок-схеме выполнить действия алгоритма для числа 23.

Рис. 5. Блок-схема к примеру 4.

Решение:

  1. a=23
  2. 23+5=28
  3. 28<35
  4. 28+5=33
  5. 33<35
  6. 33+5=38
  7. 38>35
  8. 76 – двузначное число
  9. 76-50=26.

Ответ: 26.

На этом уроке мы разобрали примеры составления алгоритмов, а также пример «чтения алгоритма» по готовой блок-схеме.

На следующем уроке мы обсудим игры и выигрышные стратегии.

Как убить Кощея?

Наверное, все помнят из детства сказку, в которой рассказывается о местонахождении смерти Кощея Бессмертного: «Смерть моя – на конце иглы, которая в яйце, яйцо – в утке, утка – в зайце, заяц в сундуке сидит, сундук на крепкий замок закрыт и закопан под самым большим дубом на острове Буяне, посреди моря-океяна …»

Рис. 6. Кощей Бессмертный и Василиса Премудрая (Источник).

Предположим, вместо Ивана-царевича бороться с Кощеем был брошен Иван-дурак. Давайте поможем Василисе Премудрой составить такой алгоритм, чтобы даже Иван-дурак смог убить Кощея.

  1. Конечно же, сначала необходимо разыскать остров Буян (на такие вещи, будем считать, Иван-дурак способен).
  2. Поскольку сундук закопан под самым большим дубом, то сначала необходимо найти самый большой дуб на острове.
  3. Затем нужно выкопать сам сундук.
  4. Прежде чем доставать зайца, необходимо сломать крепкий замок.
  5. Теперь уже можно достать зайца.
  6. Из зайца нужно достать утку.
  7. Из утки достать яйцо.
  8. Разбить яйцо и достать иголку.
  9. Иголку поломать.

Это тоже линейный алгоритм, хотя и более длинный, чем алгоритм запуска программы Paint.

Его блок-схема выглядит так:

Рис. 7. Блок-схема.

На распутье…

И снова обратимся к сказочным персонажам в поисках примеров различных алгоритмов. Когда речь идёт об алгоритмах с ветвлениями, то, конечно, нельзя не вспомнить о богатыре, стоящем на распутье возле камня.

Рис. 8. Богатырь на распутье (Источник).

На камне написано:

«Направо пойдёшь – коня потеряешь, себя спасёшь; налево пойдёшь – себя потеряешь, коня спасёшь; прямо пойдёшь – и себя и коня потеряешь».

Попробуем составить алгоритм действий, который составил автор надписи на камне для путников?

  1. Если мы пойдём направо, то потеряем коня. Если же мы не пойдём направо, то у нас остаётся два варианта (мы считаем, что назад возвращаться путник не будет): пойти прямо и налево.
  2. В случае, если мы пойдём налево, то потеряем себя, а коня спасём.
  3. Если же мы пойдём прямо, то потеряем и себя, и коня.

Блок-схема этого алгоритма выглядит так:

Рис. 9. Блок-схема.

Репка

Русские народные сказки не оставили нас и без циклического алгоритма. И, как ни странно, спрятался он в одной из самых незамысловатых сказок – «Репке».

Рис. 10. Репка.

Вспомним сюжет сказки: дед тянет-потянет – вытянуть не может. Затем на помощь к деду по очереди подходят новые персонажи – и так до тех пор, пока не приходит мышка.

Попытаемся составить алгоритм действий всех персонажей сказки для того, чтобы они всё-таки смогли вытянуть Репку.

  1. Изначально к Репке подошёл дед и попытался вытянуть.
  2. Поскольку вытянуть Репку не получилось, то понадобилась помощь следующего персонажа.
  3. И так происходит до тех пор, пока не появилась мышка (или, другими словами, до тех пор, пока Репку не вытащили).

В виде блок-схемы этот алгоритм выглядит следующим образом:

Рис. 11. Блок-схема.

Список рекомендованной литературы

  1. Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса. – М.: БИНОМ. Лаборатория знаний, 2012
  2. Босова Л.Л. Информатика: Рабочая тетрадь для 6 класса. – М.: БИНОМ. Лаборатория знаний, 2010.
  3. Босова Л.Л., Босова А.Ю. Уроки информатики в 5-6 классах: Методическое пособие. – М.: БИНОМ. Лаборатория знаний, 2010.

 Рекомендованные ссылки на ресурсы интернет

  1. Интернет портал «Сообщество взаимопомощи учителей» (Источник).
  2. Интернет портал «Nsportal.ru» (Источник).
  3. Интернет портал «Фестиваль педагогических идей» (Источник).

 Рекомендованное домашнее задание

  1. §3.3, 3.4 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса);
  2. Постарайся самостоятельно составить линейный алгоритм из 5-6 фигур;
  3. Составь блок-схему циклического алгоритма выполнения домашнего задания;

Так ты хочешь выучить блок-схемы? Ну, это учебное пособие по блок-схемам научит тебя всему, что тебе нужно знать. В нем будет освещена история блок-схем, символы блок-схем, как создавать блок-схемы, лучшие практики создания блок-схем, а также мы включили раздел для ответов на часто задаваемые вопросы о блок-схемах. Лучше всего, что вы можете использовать наше программное обеспечение блок-схем, чтобы нарисовать их.

Creately уже есть некоторые действительно удивительные статьи, охватывающие различные вещи, связанные с блок-схемами, как значения символов блок-схемы, как использовать плавательные дорожки в блок-схемах, блок-схемах передового опыта, тематических исследований и многое другое. Этот пост в блоге просто соберет всю эту информацию и представит ее в логическом виде. Я добавил ссылки на различные разделы, чтобы облегчить навигацию. Нажмите на соответствующую ссылку, чтобы быстро прочитать соответствующий раздел.

  • История блок-схем
  • Символы блок-схемы Значение
  • Как нарисовать блок-схему
  • Шаблоны и примеры блок-схем
  • Лучшие практики флоучартов
  • Обычные ошибки, допущенные при рисовании блок-схем
  • Блок-схемы Примеры использования
  • Обратная связь с Руководством по блок-схемам

История блок-схем

Фрэнк Гилберт представил блок-схемы в 1921 году, а в начале их называли “Process Flow Charts”. Аллану Х. Могенсену приписывают заслуги в обучении бизнесменов работе с блок-схемами. В Википедии есть отличное резюме истории блок-схем, подробнее читайте в разделе wiki.

Значение символов блок-схемы

Символы блок-схем, найденные в учебном пособии по блок-схемам, и их значение
Символы блок-схем

Так какие же символы используются в блок-схеме? Большинство людей знают только об основных символах, таких как процессы и блоки решений. Но есть еще много символов, которые сделают вашу блок-схему более значимой. На изображении выше показаны все стандартные символы блок-схемы.

Наиболее распространенным символом, используемым в блок-схеме, является прямоугольник. Прямоугольник представляет собой процесс, операцию или задачу. Следующим наиболее распространенным символом является бриллиант, который используется для обозначения решения.

Существует множество других символов блок-схемы, таких как последовательный доступ к хранилищу, прямые данные, ручной ввод и т.д. Ознакомьтесь со страницей Символы блок-схемы для получения подробного объяснения различных символов.

Хотя это стандартные символы, доступные в большинстве программ для создания блок-схем, некоторые люди используют разные формы для разных значений. Самый распространенный пример – использование кругов для обозначения начала и конца. Примеры в этом учебном пособии по блок-схемам будут придерживаться стандартных символов.

Как нарисовать блок-схему

Как нарисовать блок-схему? Ну, наш инструмент для блок-схем – хорошее начало. Но перед непосредственным использованием инструмента давайте рассмотрим некоторые основы.

Существует четыре основных типа блок-схем. Документная схема, системная схема, блок-схема данных и программная схема. Не все согласны с этой категорией, но основные принципы построения блок-схемы остаются неизменными. Вы должны рассмотреть несколько вещей при рисовании блок-схем, Прежде чем начать, ознакомьтесь с 6 полезными советами по рисованию блок-схем.

Если вы рисуете блок-схему со многими ответственными лицами, вы можете сгруппировать их вместе, используя плавательные дорожки. Плавательные дорожки – это мощная техника для повышения читабельности вашей блок-схемы, поэтому их следует использовать в зависимости от ситуации. Прочтите использование дорожек для плавания на блок-схемах, чтобы узнать больше об этом процессе.

Шаблоны и примеры блок-схем

Хотя вы можете начать рисовать блок-схемы с нуля, использовать шаблоны намного проще. Они помогают сократить количество ошибок и напоминают вам о передовом опыте. Если Вы хотите использовать готовый шаблон, перейдите в секцию Примеры блок-схемыи нажмите на наиболее подходящую Вам блок-схему. Нажмите на использование в шаблоне после изображения, и вы будете готовы нарисовать вашу блок-схему.

Ниже представлены два шаблона из сотен шаблонов блок-схем, доступных пользователю. Нажмите на любую из них, чтобы начать рисование блок-схем немедленно.

Шаблон Meeting Flowchart

Встреча Шаблон блок-схемы (Нажмите на шаблон, чтобы отредактировать его онлайн)
Процесс подачи заявления студентом
Процесс подачи студенческих заявок (Щелкните по шаблону, чтобы отредактировать его онлайн)

Лучшие практики флоучартов

Есть несколько вещей, которые вы можете сделать, чтобы ваша блок-схема была принята всеми. И есть некоторые вещи, которые вы можете сделать, чтобы сделать его визуально приятным и для других.

Если вы планируете поделиться своей блок-схемой или надеетесь использовать одну презентацию и т.д., то разумно использовать стандартные символы. Однако важно помнить, что идея заключается в том, чтобы выдавать информацию в доступной для понимания форме. Вполне допустимо использовать вместо условного обозначения документа альтернативное изображение до тех пор, пока аудитория его понимает.

Держание потока стрелок в одну сторону, использование символов одного и того же размера, называние блоков решений, процессов, стрелок и т.д. – это лишь некоторые вещи, которые вы можете сделать, чтобы сделать это лучше. Раздел “Обычные ошибки” подробно описывает большинство из этих практик.

Обычные ошибки, допущенные при рисовании блок-схем

В этом разделе выделены наиболее распространенные ошибки, допущенные при построении блок-схем. Некоторые из вещей, упомянутых здесь, чтобы сделать его лучше выглядеть и более понятным, не имея их в вашей блок-схеме не сделает его неправильным. Так как есть две должности, освещающие эти ошибки подробно, я буду ссылаться на них из этого руководства по блок-схемам.

15 ошибок, которые вы непреднамеренно сделали бы с блок-схемами (Часть 1)

15 ошибок, которые вы непреднамеренно сделали бы с блок-схемами (Часть 2)

Эффективное использование блок-схем – тематические исследования

Учебное пособие по блок-схемам не является полным без некоторых примеров. Ниже приведены три конкретных примера и реальные примеры того, как блок-схемы могут помочь вам в принятии решений.

  • Десять идей блок-схем для вашего бизнеса – как блок-схемы могут быть использованы при принятии бизнес-решений и оптимизации текущих бизнес-процессов
  • Анализ воронки продаж с помощью блок-схем – Как анализировать воронку продаж Google с помощью блок-схем.
  • Случай с флаттерскейпом – как один из наших клиентов использовал блок-схемы для усовершенствования своих процессов.

Часто задаваемые вопросы о блок-схемах

Раздел комментариев в этой статье полон вопросов. Пожалуйста, обратите внимание, что я не буду рисовать блок-схемы для конкретных сценариев. Ниже я ответил на некоторые из наиболее часто задаваемых вопросов.

Q 01: Что такое подпроцесс в блок-схеме?

Отвечай: Иногда сложные процессы для наглядности разбиваются на более мелкие подпроцессы. Таким образом, блок-схема может указывать на другой подпроцесс в своем потоке. Для отображения таких подпроцессов используется предопределенный символ процесса.

Q 02: Как используются блок-схемы в компьютерном программировании?

Отвечай: Компьютерная программа состоит из множества процессов и потоков. Блок-схемы используются для того, чтобы визуализировать процессы и сделать их понятными для нетехнических людей. Они также используются для визуализации алгоритмов и понимания псевдокода, который используется в программировании.

Комментарии и отзывы об учебном пособии по блок-схемам

Надеюсь, этот учебник по блок-схемам поможет вам придумать потрясающие блок-схемы. Блок-схемы – это отличный способ представления сложных процессов в простой для понимания форме, и они используются во многих отраслях промышленности по всему миру. Если у вас есть вопрос о том, как нарисовать блок-схемы, или у вас есть предложения по улучшению данного сообщения, не стесняйтесь упоминать об этом в разделе комментариев.

Creately – мощная альтернатива Visio для рисования диаграмм

Больше руководств по диаграммам

  • Учебное пособие “Схема последовательности”: Полное руководство с примерами
  • Учебное пособие по моделированию бизнес-процессов (Руководство BPM, объясняющее особенности)
  • Используйте учебное пособие по тематической диаграмме (Руководство с примерами)

Понравилась статья? Поделить с друзьями:
  • Ассасин 3 как найти гарольда ринга
  • Как исправить ошибку 0x8007000d при обновлении windows 10
  • Как найти комнату в уфе
  • Синус 112 как найти
  • Как найти вирус который скачивает программы