Схема — это абстракция какого-либо процесса или системы, наглядно отображающая наиболее значимые части. Схемы широко применяются с древних времен до настоящего времени — чертежи древних пирамид, карты земель, принципиальные электрические схемы. Очевидно, древние мореплаватели хотели обмениваться картами и поэтому выработали единую систему обозначений и правил их выполнения. Аналогичные соглашения выработаны для изображения схем-алгоритмов и закреплены ГОСТ и международными стандартами.
На территории Российской Федерации действует единая система программной документации (ЕСПД), частью которой является Государственный стандарт — ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем» [1]. Не смотря на то, что описанные в стандарте обозначения могут использоваться для изображения схем ресурсов системы, схем взаимодействия программ и т.п., в настоящей статье описана лишь разработка схем алгоритмов программ.
Рассматриваемый ГОСТ практически полностью соответствует международному стандарту ISO 5807:1985.
Содержание:
- Элементы блок-схем алгоритмов
- Примеры блок-схем
- Нужны ли блок-схемы? Альтернативы
Элементы блок-схем алгоритмов
Блок-схема представляет собой совокупность символов, соответствующих этапам работы алгоритма и соединяющих их линий. Пунктирная линия используется для соединения символа с комментарием. Сплошная линия отражает зависимости по управлению между символами и может снабжаться стрелкой. Стрелку можно не указывать при направлении дуги слева направо и сверху вниз. Согласно п. 4.2.4, линии должны подходить к символу слева, либо сверху, а исходить снизу, либо справа.
Есть и другие типы линий, используемые, например, для изображения блок-схем параллельных алгоритмов, но в текущей статье они, как и ряд специфических символов, не рассматриваются. Рассмотрены лишь основные символы, которых всегда достаточно студентам.
Терминатором начинается и заканчивается любая функция. Тип возвращаемого значения и аргументов функции обычно указывается в комментариях к блоку терминатора. | |
В ГОСТ определено множество символов ввода/вывода, например вывод на магнитные ленты, дисплеи и т.п. Если источник данных не принципиален, обычно используется символ параллелограмма. Подробности ввода/вывода могут быть указаны в комментариях. | |
В блоке операций обычно размещают одно или несколько (ГОСТ не запрещает) операций присваивания, не требующих вызова внешних функций. | |
Блок в виде ромба имеет один вход и несколько подписанных выходов. В случае, если блок имеет 2 выхода (соответствует оператору ветвления), на них подписывается результат сравнения — «да/нет». Если из блока выходит большее число линий (оператор выбора), внутри него записывается имя переменной, а на выходящих дугах — значения этой переменной. | |
Вызов внешних процедур и функций помещается в прямоугольник с дополнительными вертикальными линиями. | |
Символы начала и конца цикла содержат имя и условие. Условие может отсутствовать в одном из символов пары. Расположение условия, определяет тип оператора, соответствующего символам на языке высокого уровня — оператор с предусловием (while) или постусловием (do … while). | |
Символ «подготовка данных» в произвольной форме (в ГОСТ нет ни пояснений, ни примеров), задает входные значения. Используется обычно для задания циклов со счетчиком. | |
В случае, если блок-схема не умещается на лист, используется символ соединителя, отражающий переход потока управления между листами. Символ может использоваться и на одном листе, если по каким-либо причинам тянуть линию не удобно. | |
Комментарий может быть соединен как с одним блоком, так и группой. Группа блоков выделяется на схеме пунктирной линией. |
Примеры блок-схем
В качестве примеров, построены блок-схемы очень простых алгоритмов сортировки, при этом акцент сделан на различные реализации циклов, т.к. у студенты делают наибольшее число ошибок именно в этой части.
Сортировка вставками
Массив в алгоритме сортировки вставками разделяется на отсортированную и еще не обработанную части. Изначально отсортированная часть состоит из одного элемента, и постепенно увеличивается.
На каждом шаге алгоритма выбирается первый элемент необработанной части массива и вставляется в отсортированную так, чтобы в ней сохранялся требуемый порядок следования элементов. Вставка может выполняться как в конец массива, так и в середину. При вставке в середину необходимо сдвинуть все элементы, расположенные «правее» позиции вставки на один элемент вправо. В алгоритме используется два цикла — в первом выбираются элементы необработанной части, а во втором осуществляется вставка.
В приведенной блок-схеме для организации цикла используется символ ветвления. В главном цикле (i < n) перебираются элементы необработанной части массива. Если все элементы обработаны — алгоритм завершает работу, в противном случае выполняется поиск позиции для вставки i-того элемента. Искомая позиция будет сохранена в переменной j в результате выполнения внутреннего цикла, осуществляющем сдвиг элементов до тех пор, пока не будет найден элемент, значение которого меньше i-того.
На блок-схеме показано каким образом может использоваться символ перехода — его можно использовать не только для соединения частей схем, размещенных на разных листах, но и для сокращения количества линий. В ряде случаев это позволяет избежать пересечения линий и упрощает восприятие алгоритма.
Сортировка пузырьком
Сортировка пузырьком, как и сортировка вставками, использует два цикла. Во вложенном цикле выполняется попарное сравнение элементов и, в случае нарушения порядка их следования, перестановка. В результате выполнения одной итерации внутреннего цикла, максимальный элемент гарантированно будет смещен в конец массива. Внешний цикл выполняется до тех пор, пока весь массив не будет отсортирован.
На блок-схеме показано использование символов начала и конца цикла. Условие внешнего цикла (А) проверяется в конце (с постусловием), он работает до тех пор, пока переменная hasSwapped имеет значение true. Внутренний цикл использует предусловие для перебора пар сравниваемых элементов. В случае, если элементы расположены в неправильном порядке, выполняется их перестановка посредством вызова внешней процедуры (swap). Для того, чтобы было понятно назначение внешней процедуры и порядок следования ее аргументов, необходимо писать комментарии. В случае, если функция возвращает значение, комментарий может быть написан к символу терминатору конца.
Сортировка выбором
В сортировке выбором массив разделяется на отсортированную и необработанную части. Изначально отсортированная часть пустая, но постепенно она увеличивается. Алгоритм производит поиск минимального элемента необработанной части и меняет его местами с первым элементом той же части, после чего считается, что первый элемент обработан (отсортированная часть увеличивается).
На блок-схеме приведен пример использования блока «подготовка», а также показано, что в ряде случаев можно описывать алгоритм более «укрупнённо» (не вдаваясь в детали). К сортировке выбором не имеют отношения детали реализации поиска индекса минимального элемента массива, поэтому они могут быть описаны символом вызова внешней процедуры. Если блок-схема алгоритма внешней процедуры отсутствует, не помешает написать к символу вызова комментарий, исключением могут быть функции с говорящими названиями типа swap, sort, … .
На блоге можно найти другие примеры блок-схем:
- блок-схема проверки правильности расстановки скобок арифметического выражения [2];
- блок-схемы алгоритмов быстрой сортировки и сортировки слиянием [3].
Часть студентов традиционно пытается рисовать блок-схемы в Microsoft Word, но это оказывается сложно и не удобно. Например, в MS Word нет стандартного блока для терминатора начала и конца алгоритма (прямоугольник со скругленными краями, а не овал). Наиболее удобными, на мой взгляд, являются утилиты MS Visio и yEd [5], обе они позволяют гораздо больше, чем строить блок-схемы (например рисовать диаграммы UML), но первая является платной и работает только под Windows, вторая бесплатная и кроссплатфомренная. Все блок-схемы в этой статье выполнены с использованием yEd.
Частные конторы никакие блок-схемы не используют, в книжках по алгоритмам [6] вместо них применяют словесное описание (псевдокод) как более краткую форму. Возможно блок-схемы применяют на государственных предприятиях, которые должны оформлять документацию согласно требованиям ЕСПД, но есть сомнения — даже для регистрации программы в Государственном реестре программ для ЭВМ никаких блок-схем не требуется.
Тем не менее, рисовать блок-схемы заставляют школьников (примеры из учебников ГОСТ не соответствуют) — выносят вопросы на государственные экзамены (ГИА и ЕГЭ), студентов — перед защитой диплом сдается на нормоконтроль, где проверяется соответствие схем стандартам.
Разработка блок-схем выполняется на этапах проектирования и документирования, согласно каскадной модели разработки ПО, которая сейчас почти не применяется, т.к. сопровождается большими рисками, связанными с ошибками на этапах проектирования.
Появляются подозрения, что система образования прогнила и отстала лет на 20, однако аналогичная проблема наблюдается и за рубежом. Международный стандарт ISO 5807:1985 мало чем отличается от ГОСТ 19.701-90, более нового стандарта за рубежом нет. Там же производится множество программ для выполнения этих самых схем — Dia, MS Visio, yEd, …, а значит списывать их не собираются. Вместо блок-схем иногда применяют диаграммы деятельности UML [6], однако удобнее они оказываются, разве что при изображении параллельных алгоритмов.
Периодически поднимается вопрос о том, что ни блок-схемы, ни UML не нужны, да и документация тоже не нужна. Об этом твердят программисты, придерживающиеся методологии экстремального программирования (XP) [7], ходя даже в их кругу нет единого мнения.
В ряде случаев, программирование невозможно без рисования блок-схем, т.к. это один процесс — существуют визуальные языки программирования, такие как ДРАКОН [8], кроме того, блок-схемы используются для верификации алгоритмов (формального доказательства их корректности) методом индуктивных утверждений Флойда [9].
В общем, единого мнения нет. Очевидно, есть области, в которых без чего-то типа блок-схем обойтись нельзя, но более гибкой альтернативы нет. Для формальной верификации необходимо рисовать подробные блок-схемы, но для проектирования и документирования такие схемы не нужны — я считаю разумным утверждение экстремальных программистов о том, что нужно рисовать лишь те схемы, которые помогают в работе и не требуют больших усилий для поддержания в актуальном состоянии [10].
Список использованных источников:
- ГОСТ 19.701–90 (ИСО 5807–85) «Единая система программной документации».
- Алгоритм. Свойства алгоритма https://pro-prof.com/archives/578
- Алгоритмы сортировки слиянием и быстрой сортировки https://pro-prof.com/archives/813
- yEd Graph Editor https://www.yworks.com/products/yed
- Книги: алгоритмы https://pro-prof.com/books-algorithms
- Рамбо Дж., Якобсон А., Буч Г. UML: специальный справочник. -СПб.: Питер, 2002. -656 с.
- Кент Бек Экстремальное программирование: разработка через тестирование – СПб.: Питер – 2003
- Визуальный язык ДРАКОН https://drakon.su/
- Шилов Н.В. Верификация шаблонов алгоритмов для метода отката и метода ветвей и границ. Моделирование и анализ информационных систем, ISSN 1818 – 1015, т.18, №4, 2011
- Брукс Ф., Мифический человеко — месяц или как создаются программные системы. СПб. Символ Плюс, 1999 — 304 с. ил.
Итак, опустив долгие и нудные восхваления Паскаля, которые так любят публиковать в своих статьях редакторы многих сайтов, приступим непосредственно к самому основному – к программированию.
В школах, как правило, изучение Паскаля начинают с решения простейших задач путем составления различных алгоритмов или блок-схем, которое многие так часто игнорируют, считая никому не нужной ерундой. А зря. Я, как и любой другой человек, хоть немного соображающий в программировании (не важно где – в Паскале, Си, Дельфи), могу уверить Вас – умение правильно и быстро составлять схемы является фундаментом, основой программирования.
Блок-схема — графическое представление алгоритма. Она состоит из функциональных блоков, которые выполняют различные назначения (ввод/вывод, начало/конец, вызов функции и т.д.).
Существует несколько основных видов блоков, которые нетрудно запомнить:
Сегодняшний урок я решила посвятить не только изучению блок-схем, но также и изучению линейных алгоритмов. Как Вы помните, линейный алгоритм — наипростейший вид алгоритма. Его главная особенность в том, что он не содержит никаких особенностей. Как раз это и делает работу с ним простой и приятной.
Задача №1: «Рассчитать площадь и периметр прямоугольника по двум известным сторонам».
Данная задача не должна представлять особой трудности, так как построена она на хорошо известных всем нам формулах расчета площади и периметра прямоугольника, поэтому зацикливаться на выведении этих формул мы не будем.
Составим алгоритм решения подобных задач:
1) Прочитать задачу.
2) Выписать известные и неизвестные нам переменные в «дано». (В задаче №1 к известным переменным относятся стороны: a, b ;к неизвестным — площадь S и периметр P)
3) Вспомнить либо составить необходимые формулы. (У нас: S=a*b; P=2*(a+b))
4) Составить блок-схему.
5) Записать решение на языке программирования Pascal.
Запишем условие в более кратком виде.
Дано: a, b
Найти: S, P
Блок-схема:
Структура программы, решающей данную задачу, тоже проста:
- 1) Описание переменных;
- 2) Ввод значений сторон прямоугольника;
- 3) Расчет площади прямоугольника;
- 4) Расчет периметра прямоугольника;
- 5) Вывод значений площади и периметра;
- 6) Конец.
А вот и решение:
Program Rectangle; Var a, b, S, P: integer; Begin write('Введите стороны прямоугольника!'); readln(a, b); S:=a*b; P:=2*(a+b); writeln('Площадь прямоугольника: ', S); write('Периметр прямоугольника: ', P); End.
Задача №2: Скорость первого автомобиля — V1 км/ч, второго – V2 км/ч, расстояние между ними S км. Какое расстояние будет между ними через T часов, если автомобили движутся в разные стороны? Значения V1, V2, T и S задаются с клавиатуры.
Решение осуществляем, опять же, следуя алгоритму. Прочитав текст, мы переходим к следующему пункту. Как и во всех физических или математических задачах, это запись условий задачи:
Дано: V1, V2, S, Т
Найти: S1
Далее идет самая главная и в то же время самая интересная часть нашего решения – составление нужных нам формул. Как правило, на начальных стадиях обучения все необходимые формулы хорошо нам известны и взяты из других технических дисциплин (например, на нахождение площади различных фигур, на нахождение скорости, расстояния и т.п.).
Формула, используемая для решения нашей задачи, выглядит следующим образом:
S1=(V1+V2)*T+S
Следующий пункт алгоритма – блок-схема:
А также решение, записанное в Pascal :
Program Rasstoyanie; Var V1, V2, S, T, S1: integer; {Ввод } begin write('Введите скорость первого автомобиля: '); readln(V1); write('Введите скорость второго автомобиля: '); readln(V2); write('Введите время: '); readln(T); write('Введите расстояние между автомобилями: '); readln(S); S1:=(V1+V2)*T+S; writeln('Через ', t,'ч. расстояние ', S1,' км.'); End.
Вам может показаться, что две эти программы правильны, но это не так. Ведь сторона треугольника может быть 4.5, а не 4, а скорость машины не обязательно круглое число! А Integer — это только целые числа. Поэтому при попытке написать во второй программе другие числа выскакивает ошибка:
Чтобы решить эту проблему вам надо вспомнить какой тип в Pascal отвечает за нецелые числа. В этом уроке мы рассматривали основные типы. Итак, это вещественный тип — Real. Вот, как выглядит исправленная программа:
Как видите, эта статья полезна для прочтения как новичкам, так и уже более опытными пользователям Pascal, так как составление блок-схем не только очень простое и быстрое, но и весьма увлекательное занятие.
Любому студенту, который учится на программиста или на другую ИТ-специальность, приходится рисовать блок-схемы алгоритмов. Для решения этой задачи есть специальные программы, которые позволяют создавать такие блок-схемы быстро и максимально правильно. Но, они далеко не всегда есть под рукой. Иногда программы нет, а блок-схему нужно нарисовать уже сейчас.
В таких ситуациях может выручить текстовый редактор Word, который обычно доступен на любом компьютере. В этой статье мы покажем, как сделать простую блок-схему алгоритма программы прямо в текстовом редакторе Word.
Как нарисовать блок схему в Word
Для рисования блок-схем в Word нужно использовать кнопку «Фигуры», которая находится на вкладке «Вставка». После нажатия на данную кнопку открывается больше меню со списком всех графических элементов, которые можно вставить в документ Word.
Для рисования блок-схем алгоритмов нужны определённые фигуры. В данном списке эти фигуры находятся в блоках «Линии», «Прямоугольники» и «Блок-схема».
Здесь вы найдете практически все фигуры, которые могут вам надобится для рисования блок-схемы алгоритма. А те фигуры, которые отсутствуют в списке, можно получить путем комбинации и изменения других элементов.
Как создать элемент блок-схемы
Для того создать элемент блок-схемы в Word нажмите на кнопку «Фигуры» и нарисуйте элемент на странице документа. При рисовании вы можете выровнять элемент по центру листа. В этом поможет зеленая линия, которая появится при приближении фигуры к центру.
Изначально, созданный элемент будет иметь заливку определенным цветом. Чтобы это исправить выделите элемент мышкой, перейдите на вкладку «Формат фигуры» и нажмите на кнопку «Заливка фигуры». В открывшемся меню можно убрать заливку выбрав пункт «Нет заливки».
Также рядом доступна кнопка «Контур фигуры» с помощью которой можно изменить цвет контура для созданного элемента.
После этих манипуляций вы получите один готовый элемент для блок-схемы алгоритма. Остальные элементы создаются аналогичным способом с помощью меню «Вставка – Фигуры» и настраиваются на вкладке «Формат фигуры».
Как добавить текст к элементу
Для большинства элементов блок-схемы нужно добавить текст, который будет пояснять выбранную часть алгоритма программа. Для этого кликните по фигуре правой кнопкой мыши и выберите пункт «Добавить текст».
После этого можно будет ввести поясняющий текст. Обратите внимание, если текст не отображается, то скорее всего вы пишите белым по белому, поменяйте цвет текста на вкладке «Главная».
Как добавить линии к блок-схеме
Для добавления линий и стрелок в Word также нужно использовать элементы из списка «Фигуры». Здесь есть как простые линии, так и сложные, с изменением направления. Для рисования прямых линий по горизонтали или вертикали нужно удерживать клавишу Shift.
Если линии нужной формы нет в списке, то ее можно создать самостоятельно, составив из нескольких простых прямых линий.
Используя линии и элементы из списка «Фигуры» можно составить вот такую блок-схему (скриншот выше).
Как сгруппировать блок-схему
После создания блок-схемы в Word ее желательно сгруппировать. Для этого нужно выделить все элементы схемы (удерживая клавишу Shift), кликнуть по ним правой кнопкой мышки и выбрать пункт «Группировать».
Сгруппировав блок-схему, вы сможете перемещать ее по документу Word как один элемент. Также вы сможете увеличивать или уменьшать ее размер, не нарушая связей между фигурами.
Основные фигуры для блок-схем
Ниже приведен список основных фигур, которые используются для построения блок-схем алгоритмов. Данные фигуры должны соединяться спрошной линией, которая может дополняться стрелкой. Входные линии должны располагаться сверху или слева от фигуры, а выходные снизу или справа.
Обозначение начала и конца программы или функции. Тип значения, которое возвращается функцией, обозначается в комментариях к фигуре. | |
Операции ввода или вывода данных. Подробное описание ввода/вывода можно указать в комментариях. | |
Блок для обозначения одной или нескольких операций над данными, которые не требуют вызова внешних функций. | |
Ветвление алгоритма программы. В фигуре записывается условие, а рядом с выводами возможные результаты. | |
Вызов внешней процедуры или функции. | |
Начало и конец цикла в алгоритме. Внутри фигуры указывается условие, которое должно выполняться во время работы цикла. | |
Подготовка данных, установка входных значений. Обычно используется для обозначения циклов со счетчиком. | |
Соединитель. Используется для отражения перехода блок-схемы на другую страницу. | |
Комментарий. Используется для добавления комментариев к блокам или группам блоков. Для соединения комметария и блока используется пунктирная линия. |
Посмотрите также:
- Как перевернуть страницу в Word
- Как построить график в Excel
- Как сделать альбомную страницу в Word
- Как сделать вертикальный текст в Word
- Как закрепить область в Экселе
Автор
Александр Степушин
Создатель сайта comp-security.net, автор более 2000 статей о ремонте компьютеров, работе с программами, настройке операционных систем.
Остались вопросы?
Задайте вопрос в комментариях под статьей или на странице
«Задать вопрос»
и вы обязательно получите ответ.
Практическая
раборта № 1
Построение
блок-схем алгоритмов(теория)
Предпочтительнее
до записи на алгоритмическом языке представить алгоритм в виде блок-схемы. Для
построения алгоритма в виде блок-схемы необходимо знать назначении каждого из
блоков. В таблице 1. приводятся типы блоков и их назначение.
Таблица 1
№ |
Блок |
Назначение |
1 |
|
Начало блок-схемы |
2 |
|
Ввод |
3 |
|
Процесс |
4 |
|
условие |
6 |
|
Цикл |
Основные
типы алгоритмов
Алгоритмизация выступает как набор
определенных практических приёмов, особых специфических навыков рационального
мышления в рамках заданных языковых средств. Алгоритмизация вычислений
предполагает решение задачи в виде последовательности действий, т.е. решение,
представленное в виде блок-схемы. Можно выделить типичные алгоритмы. К ним
относятся: линейные алгоритмы, разветвляющиеся алгоритмы, циклические
алгоритмы.
Линейные алгоритмы
Линейный алгоритм является наиболее
простым. В нём предполагается последовательное выполнение операций. В этом
алгоритме не предусмотрены проверки условий или повторений.
Пример: Вычислить функцию z=
(х-у)/x +y2.
Составить блок-схему вычисления функции по
линейному алгоритму. Значения переменных х, у могут быть
любые, кроме нуля, вводить их с клавиатуры.
Решение: Линейный алгоритм вычисления
функции задан в виде блок-схемы на рис.1. При выполнении линейного алгоритма
значения переменных вводятся с клавиатуры, подставляются в заданную функцию,
вычисляется результат, а затем выводится результат.
Рис.1. Линейный алгоритм
Назначение блоков в схеме на
рис.1:
·
Блок 1 в схеме служит в качестве
логического начала.
·
Блок 2 соответствует вводу данных.
·
Блок 3 представляет арифметическое
действие.
·
Блок 4 выводит результат.
·
Блок 5 в схеме служит в качестве
логического завершения схемы.
Алгоритмы ветвлений
Разветвляющийся алгоритм предполагает
проверку условий для выбора решения. Соответственно в алгоритме появятся две
ветви для каждого условия.
В
примере рассматривается разветвляющийся алгоритм, где в зависимости от условия
выбирается один из возможных вариантов решений. Алгоритм представляется в виде
блок-схемы.
Пример:
При выполнении условия x>0
вычисляется функция: z=
x+
y,
иначе, а именно, когда х=0 или x<0,
вычисляется функция: z=x2+y2.
Составить
блок-схему вычисления функции по алгоритму ветвления. Значения переменных х,
у могут быть любые, вводить их с клавиатуры.
Решение:
На рис.2 представлен разветвляющийся алгоритм, где в зависимости от условия
выполнится одна из веток. В блок-схеме появился новый блок 3, который проверяет
условие задачи. Остальные блоки знакомы из линейного алгоритма.
Рис.2. Алгоритм ветвления
Пример: Найти максимальное значение
из трёх различных целых чисел, введенных с клавиатуры. Составить блок-схему
решения задачи.
Решение: Данный алгоритм
предполагает проверку условия. Для этого выбирается любая из трёх переменных и
сравнивается с другими двумя. Если она больше, то поиск максимального числа
окончен. Если условие не выполняется, то сравниваются две оставшиеся
переменные. Одна из них будет максимальной. Блок-схема к этой задаче
представлена на рис 3.
Рис. 3. Блок-схема поиска максимума
Циклические алгоритмы
Циклический алгоритм предусматривает
повторение одной операции или нескольких операций в зависимости от условия
задачи.
Из
циклических алгоритмов выделяют два типа:
1)
с заданным количеством циклов или со
счётчиком циклов;
2)
количество циклов неизвестно.
Пример:
В цикле вычислить значение функции z=x*y при условии, что одна из
переменных x
меняется в каждом цикле на единицу, а другая переменная у не
меняется и может быть любым целым числом. В результате выполнения цикла при
начальном значении переменной х=1 можно получить таблицу умножения.
Количество циклов может быть любым. Составить блок-схему решения задачи.
Решение:
В примере количество циклов задаётся. Соответственно выбирается алгоритм
циклов первого типа. Алгоритм этой задачи приводится на рис. 4.
Во
втором блоке вводятся количество циклов n и любые целые числа х,
y.
В
блок-схеме появился новый блок 3, в котором переменная i считает
количество циклов, после каждого цикла увеличиваясь на единицу, пока счётчик не
будет равен i=n. При i=n будет выполнен последний
цикл.
В
третьем блоке указывается диапазон изменения счётчика цикла (от i =1 до i=n).
В
четвёртом блоке изменяются значения переменных: z, x.
В
пятом блоке выводится результат. Четвёртый и пятый блоки повторяются в каждом
цикле.
Рис.4 . Циклический алгоритм со счётчиком
циклов
Этот
тип циклических алгоритмов предпочтителен, если дано количеством циклов.
Если количество циклов неизвестно, то
блок-схемы циклических алгоритмов могут быть представлены в виде рисунков 5, 6.
Пример:
Вычислить у=у-x
пока y>x,
если y=30,
x=4.
Подсчитать количество выполненных циклов, конечное значение переменной у.
В цикле вывести значение переменной у, количество выполненных
циклов. Составить блок-схему решения задачи.
Решение:
В примере количество циклов неизвестно. Соответственно выбирается алгоритм
циклов второго типа. Алгоритм этой задачи приводится на рис. 5.
Условие
проверяется на входе в цикл. В теле цикла выполняется два блока:
1)
у=у-х; i=i+1;
2)
вывод значений переменных i,
y.
Цикл
выполняется до тех пор, пока выполняется условие y>x. При условии
равенства этих переменных у=х или y<x цикл заканчивается.
Алгоритм,
представленный на рис.5, называется циклический алгоритм с предусловием,
так как условие проверяется в начале цикла или на входе в цикл.
Рис.5. Блок-схема
циклического алгоритма с предусловием
Во втором блоке вводятся y=30,
x=4.
В
третьем блоке проверяется условие y>x
на входе в цикл. Если условие выполняется, то переход к блоку 4, иначе на блок
6.
В
четвёртом блоке вычисляется значение переменной у, подсчитывается
количество выполненных циклов i=i+1.
В
пятом блоке выводится результат:
·
значение переменной у,
·
количество выполненных циклов i.
Пример:
Составить блок-схему примера (рисунок 5), проверяя условие выхода из цикла.
В этом примере условие задачи не меняется, и результат выведется тот же, но
блок-схема будет другой.
Решение:
В этом случае проверяется условие на выход из цикла: y<=x. При
этом условии цикл не выполняется. Условие в блок-схеме следует перенести в
конец цикла, после вывода на печать. Цикл выполняется до тех пор, пока
выполняется условие y>x.
Алгоритм,
если условие перенести в конец цикла, называется алгоритмом цикла с
постусловием. Алгоритм этой задачи приводится на рис. 6.
Во
втором блоке вводятся y=30,
x=4.
В
третьем блоке вычисляется значение переменной у, подсчитывается
количество выполненных циклов i=i+1.
В
четвёртом блоке выводится результат:
·
значение переменной у,
·
количество выполненных циклов i.
В
пятом блоке проверяется условие y<=x
на выход из цикла. Если условие выполняется, то переход к блоку 6, иначе на
блок 3 и цикл повторяется.
Рис.6 . Алгоритм цикла с
постусловием
Индивидуальные задания к работе:
1.
Найти
результат работы алгоритма:
Входные данные по вариантам
№ |
A |
B |
C |
D |
1 |
0 |
-1 |
-2 |
-3 |
2 |
1 |
0 |
-1 |
-2 |
3 |
2 |
1 |
0 |
-1 |
4 |
3 |
2 |
1 |
0 |
5 |
4 |
3 |
2 |
1 |
6 |
5 |
4 |
3 |
2 |
7 |
6 |
5 |
4 |
3 |
8 |
7 |
6 |
5 |
4 |
9 |
-3 |
7 |
6 |
5 |
10 |
-4 |
-3 |
7 |
6 |
11 |
-5 |
-4 |
-3 |
7 |
12 |
-6 |
-5 |
-4 |
-3 |
13 |
-7 |
-6 |
-5 |
-4 |
14 |
9 |
-7 |
-6 |
-5 |
15 |
8 |
7 |
-7 |
-6 |
16 |
5 |
5 |
8 |
-7 |
17 |
5 |
2 |
4 |
5 |
2. При
заданном Х условие выполнется? Написать результат вычисления и ответ попадаем в
условие или нет.
Входные данные по вариантам
№ |
X1 |
X1 |
1 |
55 |
12 |
2 |
85 |
13 |
3 |
24 |
17 |
4 |
65 |
15 |
5 |
17 |
54 |
6 |
15 |
67 |
7 |
26 |
3 |
8 |
27 |
21 |
9 |
92 |
34 |
10 |
12 |
23 |
11 |
45 |
22 |
12 |
66 |
45 |
13 |
71 |
46 |
14 |
13 |
76 |
15 |
45 |
67 |
16 |
53 |
35 |
17 |
52 |
23 |
3. Написать
результат выполнения алгоритма с указанными входными данными
Входные данные по вариантам
№ |
S |
1 |
1,5 |
2 |
1,8 |
3 |
2,4 |
4 |
1,6 |
5 |
1,7 |
6 |
1,3 |
7 |
2,6 |
8 |
2,37 |
9 |
1,92 |
10 |
1,12 |
11 |
1,45 |
12 |
2,66 |
13 |
2,71 |
14 |
2,13 |
15 |
1,45 |
16 |
2,53 |
17 |
1,52 |
4. Написать
результат выполнения алгоритма с указанными входными данными
Входные данные по вариантам
№ |
X |
1 |
-1 |
2 |
0 |
3 |
1 |
4 |
2 |
5 |
3 |
6 |
4 |
7 |
5 |
8 |
6 |
9 |
7 |
10 |
-3 |
11 |
-4 |
12 |
-5 |
13 |
-6 |
14 |
-7 |
15 |
7 |
16 |
5 |
17 |
2 |
5. Построить
блок схему к задаче(по вариантам). Указать тип алгоритма, что дано и что нужно
найти.
№ |
Задача |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
6. Построить
блок схему к задаче(по вариантам). Указать тип алгоритма, что дано и что нужно
найти.
№ |
Задача |
1 |
Дано двузначное число. |
2 |
Дано двузначное число. |
3 |
Дано двузначное число. |
4 |
Дано двузначное число. |
5 |
Дано двузначное число. |
6 |
Дано трехзначное число. |
7 |
Дано трехзначное число. |
8 |
Дано трехзначное число. |
9 |
Дано трехзначное число. |
10 |
Дано трехзначное число. |
11 |
Дано трехзначное число. |
12 |
Дано трехзначное число. |
13 |
Дано трехзначное число. |
14 |
Дано трехзначное число. |
15 |
Дано трехзначное число, |
16 |
Дано натуральное число |
17 |
Дано натуральное число |
7. Построить
блок схему к задаче(по вариантам). Указать тип алгоритма, что дано и что нужно
найти.
№ |
Задача |
1 |
Определить максимальное |
2 |
Известны два |
3 |
Известны две скорости: |
4 |
Даны радиус круга и |
5 |
Даны объемы и массы |
6 |
Известны сопротивления |
7 |
Даны вещественные числа |
8 |
Известны площади круга |
9 |
Известны площади круга |
10 |
Известны площади круга |
11 |
Известны площади круга |
12 |
Дано двузначное число. |
13 |
Дано двузначное число. |
14 |
Дано двузначное число. |
15 |
Дано двузначное число. Определить: |
16 |
Дано трехзначное число. |
17 |
Дано трехзначное число. |
8. Построить
блок схему к задаче(по вариантам). Указать тип алгоритма, что дано и что нужно
найти.
№ |
Задача |
1 |
Одна штука некоторого |
2 |
Напечатать таблицу |
3 |
Напечатать таблицу |
4 |
Напечатать таблицу |
5 |
Считая, что Земля — |
6 |
. Напечатать таблицу |
7 |
Напечатать таблицу |
8 |
Напечатать |
9 |
Напечатать таблицу |
10 |
Вывести |
11 |
. Вывести |
12 |
Вывести |
13 |
Вывести «столбиком» |
14 |
Напечатать таблицу |
15 |
Составить программу |
16 |
Напечатать таблицу |
17 |
Напечатать таблицу |
9. Построить
блок схему к задаче(по вариантам). Указать тип алгоритма, что дано и что нужно
найти.
№ |
Задача |
1 |
Даны числа а1, а2, |
2 |
Известна масса каждого |
3 |
. Известны оценки |
4 |
В ведомости указана |
5 |
Известна масса каждого |
6 |
Известно сопротивление |
7 |
Известно сопротивление |
8 |
Известны оценки по |
9 |
Известны оценки ученика |
10 |
Известны оценки по |
11 |
Известна масса каждого |
12 |
Известны оценки двух |
13 |
Известны результаты |
14 |
Известен возраст (в |
15 |
Известно количество |
16 |
Известен рост каждого |
17 |
Известны оценки по |
10. Построить
блок схему к задаче(по вариантам). Указать тип алгоритма, что дано и что нужно
найти.
№ |
Задача |
1 |
Дано натуральное число. |
2 |
Дано натуральное число. |
3 |
Дано натуральное число. |
4 |
Дано натуральное число. |
5 |
Дано натуральное число |
6 |
Дано натуральное число. |
7 |
Дано натуральное число. |
8 |
Дано натуральное число. |
9 |
Дано натуральное число. |
10 |
Дано натуральное число. |
11 |
Дано натуральное число. |
12 |
Дано натуральное число. |
13 |
Дано натуральное число. |
14 |
Дано натуральное число. |
15 |
Дано натуральное |
16 |
Дано натуральное число. |
17 |
Дано натуральное число. |
В этой статье будут рассмотрены примеры блок-схем, которые могут встретиться вам в учебниках по информатике и другой литературе. Блок-схема представляет собой алгоритм, по которому решается какая-либо задача, поставленная перед разработчиком. Сначала нужно ответить на вопрос, что такое алгоритм, как он представляется графически, а самое главное – как его решить, зная определенные параметры. Нужно сразу отметить, что алгоритмы бывают нескольких видов.
Что такое алгоритм?
Это слово ввел в обиход математик Мухаммед аль-Хорезми, который жил в период 763-850 года. Именно он является человеком, который создал правила выполнения арифметических действий (а их всего четыре). А вот ГОСТ от 1974 года, который гласит, что:
Алгоритм – это точное предписание, которое определяет вычислительный процесс. Причем имеется несколько переменных с заданными значениями, которые приводят расчеты к искомому результату.
Алгоритм позволяет четко указать исполнителю выполнять строгую последовательность действий, чтобы решить поставленную задачу и получить результат. Разработка алгоритма – это разбивание одной большой задачи на некую последовательность шагов. Причем разработчик алгоритма обязан знать все особенности и правила его составления.
Особенности алгоритма
Всего можно выделить восемь особенностей алгоритма (независимо от его вида):
- Присутствует функция ввода изначальных данных.
- Есть вывод некоего результата после завершения алгоритма. Нужно помнить, что алгоритм нужен для того, чтобы достичь определенной цели, а именно – получить результат, который имеет прямое отношение к исходным данным.
- У алгоритма должна быть структура дискретного типа. Он должен представляться последовательными шагами. Причем каждый следующий шаг может начаться только после завершения предыдущего.
- Алгоритм должен быть однозначным. Каждый шаг четко определяется и не допускает произвольной трактовки.
- Алгоритм должен быть конечным – необходимо, чтобы он выполнялся за строго определенное количество шагов.
- Алгоритм должен быть корректным – задавать исключительно верное решение поставленной задачи.
- Общность (или массовость) – он должен работать с различными исходными данными.
- Время, которое дается на решение алгоритма, должно быть минимальным. Это определяет эффективность решения поставленной задачи.
А теперь, зная, какие существуют блок-схемы алгоритмов, можно приступить к рассмотрению способов их записи. А их не очень много.
Словесная запись
Такая форма, как правило, применяется при описании порядка действий для человека: «Пойди туда, не знаю куда. Принеси то, не знаю что».
Конечно, это шуточная форма, но суть понятна. В качестве примера можно привести еще, например, привычную запись на стеклах автобусов:«При аварии выдернуть шнур, выдавить стекло».
Здесь четко ставится условие, при котором нужно выполнить два действия в строгой последовательности. Но это самые простые алгоритмы, существуют и более сложные. Иногда используются формулы, спецобозначения, но при обязательном условии – исполнитель должен все понимать.
Допускается изменять порядок действий, если необходимо вернуться, например, к предыдущей операции либо обойти какую-то команду при определенном условии. При этом команды желательно нумеровать и обязательно указывается команда, к которой происходит переход: «Закончив все манипуляции, повторяете пункты с 3 по 5».
Запись в графической форме
В этой записи участвуют элементы блок-схем. Все элементы стандартизированы, у каждой команды имеется определенная графическая запись. А конкретная команда должна записываться внутри каждого из блоков обычным языком или математическими формулами. Все блоки должны соединяться линиями – они показывают, какой именно порядок у выполняемых команд. Собственно, этот тип алгоритма более подходит для использования в программном коде, нежели словесный.
Запись на языках программирования
В том случае, если алгоритм необходим для того, чтобы задачу решала программа, установленная на ПК, то нужно его записывать специальным кодом. Для этого существует множество языков программирования. И алгоритм в этом случае называется программой.
Блок-схемы
Блок-схема – это представление алгоритма в графической форме. Все команды и действия представлены геометрическими фигурами (блоками). Внутри каждой фигуры вписывается вся информация о тех действиях, которые нужно выполнить. Связи изображены в виде обычных линий со стрелками (при необходимости).
Для оформления блок-схем алгоритмов имеется ГОСТ 19.701-90. Он описывает порядок и правила создания их в графической форме, а также основные методы решения. В этой статье приведены основные элементы блок-схем, которые используются при решении задач, например, по информатике. А теперь давайте рассмотрим правила построения.
Основные правила составления блок-схемы
Можно выделить такие особенности, которые должны быть у любой блок-схемы:
- Обязательно должно присутствовать два блока – «Начало» и «Конец». Причем в единичном экземпляре.
- От начального блока до конечного должны быть проведены линии связи.
- Из всех блоков, кроме конечного, должны выходить линии потока.
- Обязательно должна присутствовать нумерация всех блоков: сверху вниз, слева направо. Порядковый номер нужно проставлять в левом верхнем углу, делая разрыв начертания.
- Все блоки должны быть связаны друг с другом линиями. Именно они должны определять последовательность, с которой выполняются действия. Если поток движется снизу вверх или справа налево (другими словами, в обратном порядке), то обязательно рисуются стрелки.
- Линии делятся на выходящие и входящие. При этом нужно отметить, что одна линия является для одного блока выходящей, а для другого входящей.
- От начального блока в схеме линия потока только выходит, так как он является самым первым.
- А вот у конечного блока имеется только вход. Это наглядно показано на примерах блок-схем, которые имеются в статье.
- Чтобы проще было читать блок-схемы, входящие линии изображаются сверху, а исходящие снизу.
- Допускается наличие разрывов в линиях потока. Обязательно они помечаются специальными соединителями.
- Для облегчения блок-схемы разрешается всю информацию прописывать в комментариях.
Графические элементы блок-схем для решения алгоритмов представлены в таблице:
Линейный тип алгоритмов
Это самый простой вид, который состоит из определенной последовательности действий, они не зависят от того, какие данные вписаны изначально. Есть несколько команд, которые выполняются однократно и только после того, как будет сделана предшествующая. Линейная блок-схема выглядит таким образом:
Причем связи могут идти как сверху вниз, так и слева направо. Используется такая блок-схема для записи алгоритмов вычислений по простым формулам, у которых не имеется ограничений на значения переменных, входящих в формулы для расчета. Линейный алгоритм – это составная часть сложных процессов вычисления.
Разветвляющиеся алгоритмы
Блок-схемы, построенные по таким алгоритмам, являются более сложными, нежели линейные. Но суть не меняется. Разветвляющийся алгоритм – это процесс, в котором дальнейшее действие зависит от того, как выполняется условие и какое получается решение. Каждое направление действия – это ветвь.
На схемах изображаются блоки, которые называются «Решение». У него имеется два выхода, а внутри прописывается логическое условие. Именно от того, как оно будет выполнено, зависит дальнейшее движение по схеме алгоритма. Можно разделить разветвляющиеся алгоритмы на три группы:
- «Обход» – при этом одна из веток не имеет операторов. Другими словами, происходит обход нескольких действий другой ветки.
- «Разветвление» – каждая ветка имеет определенный набор выполняемых действий.
- «Множественный выбор» – это разветвление, в котором есть несколько веток и каждая содержит в себе определенный набор выполняемых действий. Причем есть одна особенность – выбор направления напрямую зависит от того, какие заданы значения выражений, входящих в алгоритм.
Это простые алгоритмы, которые решаются очень просто. Теперь давайте перейдем к более сложным.
Циклический алгоритм
Здесь все предельно понятно – циклическая блок-схема представляет алгоритм, в котором многократно повторяются однотипные вычисления. По определению, цикл – это определенная последовательность каких-либо действий, выполняемая многократно (более, чем один раз). И можно выделить несколько типов циклов:
- У которых известно число повторений действий (их еще называют циклами со счетчиком).
- У которых число повторений неизвестно – с постусловием и предусловием.
Независимо от того, какой тип цикла используется для решения алгоритма, у него обязательно должна присутствовать переменная, при помощи которой происходит выход. Именно она определяет количество повторений цикла. Рабочая часть (тело) цикла – это определенная последовательность действий, которая выполняется на каждом шаге. А теперь более детально рассмотрим все типы циклов, которые могут встретиться при составлении алгоритмов и решении задач по информатике.
Циклы со счетчиками
На рисунке изображена простая блок-схема, в которой имеется цикл со счетчиком. Такой тип алгоритмов показывает, что заранее известно количество повторений данного цикла. И это число фиксировано. При этом переменная, считающая число шагов (повторений), так и называется – счетчик. Иногда в учебниках можно встретить иные определения – параметр цикла, управляющая переменная.
Блок-схема очень наглядно иллюстрирует, как работает цикл со счетчиком. Прежде чем приступить к выполнению первого шага, нужно присвоить начальное значение счетчику – это может быть любое число, оно зависит от конкретного алгоритма. В том случае, когда конечное значение меньше величины счетчика, начнет выполняться определенная группа команд, которые составляют тело цикла.
После того, как тело будет выполнено, счетчик меняется на величину шага счетчика, обозначенную буквой h. В том случае, если значение, которое получится, будет меньше конечного, цикл будет продолжаться. И закончится он лишь в тогда, когда конечное значение будет меньше, чем счетчик цикла. Только в этом случае произойдет выполнение того действия, которое следует за циклом.
Обычно в обозначениях блок-схем используется блок, который называется «Подготовка». В нем прописывается счетчик, а затем указываются такие данные: начальное и конечное значения, шаг изменения. На блок-схеме это параметры I н, Ik и h, соответственно. В том случае, когда h=1, величину шага не записывают. В остальных случаях делать это обязательно. Необходимо придерживаться простого правила – линия потока должна входить сверху. А линия потока, которая выходит снизу (или справа, в зависимости от конкретного алгоритма), должна показывать переход к последующему оператору.
Теперь вы полностью изучили описание блок-схемы, изображенной на рисунке. Можно перейти к дальнейшему изучению. Когда используется цикл со счетчиком, требуется соблюдать определенные условия:
- В теле не разрешается изменять (принудительно) значение счетчика.
- Запрещено передавать управление извне оператору тела. Другими словами, войти в цикл можно только из его начала.
Циклы с предусловием
Этот тип циклов применяется в тех случаях, когда количество повторений заранее неизвестно. Цикл с предусловием – это тип алгоритма, в котором непосредственно перед началом выполнения тела осуществляется проверка условия, при котором допускается переход к следующему действию. Обратите внимание на то, как изображаются элементы блок-схемы.
В том случае, когда условие выполняется (утверждение истинно), происходит переход к началу тела цикла. Непосредственно в нем изменяется значение хотя бы одной переменной, влияющей на значение поставленного условия. Если не придерживаться этого правила, получим «зацикливание». В том случае, если после следующей проверки условия выполнения тела цикла оказывается, что оно ложное, то происходит выход.
В блок-схемах алгоритмов допускается осуществлять проверку не истинности, а ложности начального условия. При этом из цикла произойдет выход только в том случае, если значение условия окажется истинным. Оба варианта правильные, их использование зависит от того, какой конкретно удобнее использовать для решения той или иной задачи. Такой тип цикла имеет одну особенность – тело может не выполниться в случае, когда условие ложно или истинно (в зависимости от варианта, который применяется для решения алгоритма).
Ниже приведена блок-схема, которая описывает все эти действия:
Что такое цикл с постусловием?
Если внимательно присмотреться, то этот вид циклов чем-то похож на предыдущий. Самостоятельно построить блок-схему, описывающую этот цикл, мы сейчас и попробуем. Особенность заключается в том, что неизвестно заранее число повторений. А условие задается уже после того, как произошел выход из тела. Отсюда видно, что тело, независимо от решения, будет выполняться как минимум один раз. Для наглядности взгляните на блок-схему, описывающую выполнение условия и операторов:
Ничего сложного в построении алгоритмов с циклами нет, достаточно в них только один раз разобраться. А теперь перейдем к более сложным конструкциям.
Сложные циклы
Сложные – это такие конструкции, внутри которых есть один или больше простых циклов. Иногда их называют вложенными. При этом те конструкции, которые охватывают иные циклы, называют «внешними». А те, которые входят в конструкцию внешних – внутренними. При выполнении каждого шага внешнего цикла происходит полная прокрутка внутреннего, как представлено на рисунке:
Вот и все, вы рассмотрели основные особенности построения блок-схем для решения алгоритмов, знаете принципы и правила. Теперь можно рассмотреть конкретные примеры блок-схем из жизни. Например, в психологии такие конструкции используются для того, чтобы человек решил какой-то вопрос:
Или пример из биологии для решения поставленной задачи:
Решение задач с блок-схемами
А теперь рассмотрим примеры задач с блок-схемами, которые могут попасться в учебниках информатики. Например, задана блок-схема, по которой решается какой-то алгоритм:
При этом пользователь самостоятельно вводит значения переменных. Допустим, х=16, а у=2. Процесс выполнения такой:
- Производится ввод значений х и у.
- Выполняется операция преобразования: х=√16=4.
- Выполняется условие: у=у2=4.
- Производится вычисление: х=(х+1)=(4+1)=5.
- Дальше вычисляется следующая переменная: у=(у+х)=(5+4)=9.
- Выводится решение: у=9.
На этом примере блок-схемы по информатике хорошо видно, как происходит решение алгоритма. Нужно обратить внимание на то, что значения х и у задаются на начальном этапе и они могут быть любыми.