Как составить электронную формулу вещества ковалентной связи

План урока

Дисциплина: 
Химия

Урок № 72

Преподаватель:
Аметова Ульвие Юнусовна

Дата: 
28.02.19    02.03.19

Группа:
12              11

Тема урока: Ковалентная
химическая связь. Составление формул. Свойства веществ.

Тип
урока:
изучение и закрепление
нового материала.

Вид
урока:
урок-дискуссия

Методы
обучения:
словесный, наглядный,
объяснение.

Цель
урока:

         Образовательные:

Ø изучить виды
ковалентной связи (полярная и неполярная);

Ø изучить механизм
образования ковалентной химической связи;

Ø научиться
составлять электронные формулы молекул бинарных соединений;

Ø систематизировать
и обобщить знания учащихся о ковалентной химической связи;

Ø продолжить
формирование интереса к химии;

Развивающие:

Ø создание условий
для развития приемов мышления (анализ, синтез, обобщение, классификация), развитие
коммуникационных умений;

Ø закрепить знания
учащихся о распределении электронов в атоме;

Ø формировать
умения определять вид ковалентной связи;

Ø формировать
умения написания электронных формул бинарных соединений;

Ø развивать навыки
аналитического мышления;

Ø развитие
самостоятельности, памяти, внимания, логического мышления, умения анализировать
и систематизировать, самостоятельно делать выводы посредством обобщений.

Воспитательные:

Ø воспитывать
умение работать в сотрудничестве, оказывать взаимовыручку и взаимопомощь;

Ø создание условий
для воспитания активности и самостоятельности, убежденности в познаваемости
мира;

Ø воспитывать
культуру научного труда; повышать интерес к проблемам современной науки;

Ø формирование эстетического
чувства при аккуратном заполнение тетрадей;

Межпредметные связи (МПС): физика.

ТСО и наглядные пособия: учебник химии, периодическая таблица Д.И. Менделеева, таблицы «Механизмы образования ковалентной химической связи»,
«Молекула водорода», «Электроотрицательность», алгоритм составления схемы
ковалентной связи.

Ход
урока

1.    
Организационный момент.

         Приветствие. Проверка готовности к
уроку. Проверка присутствующих.

2.    
Актуализация опорных знаний.

         Что мы изучали на прошлом уроке? Вспомним
основные понятия.

—  Фронтальный опрос.

— Что такое лантаноиды и актиноиды? Где
они расположены в периодической таблице Д.И. Менделеева?

— Какие подуровни появляются у элементов
данных рядов?

— Что такое провал электрона? Приведите примеры,
у каких элементов это возможно?

— Сколько энергетических уровней будет у
элементов 4-7 периодов? Сколько электронов на внешнем уровне содержат элементы
побочных подгрупп?

         3. Формирование новых понятий
и способов действий, формирование навыков умственного труда.

— Ребята, как вы считаете, что важно знать
при составлении химических формул?

Ответ: вид химической связи.

Учитель: запишите тему урока: «Ковалентная
химическая связь. Составление формул. Свойства веществ.»

Учитель: Какие виды химической связи вам
известны?

Студенты: ковалентная связь, ионная,
металлическая, водородная связи.

Учитель: А что такое химическая связь?

— Химическая связь
– это такое взаимодействие атомов,
которое связывает их в молекулы, ионы, радикалы, атомы.

         Причиной образования химической связи
между частицами является стремление системы к минимуму энергии. Энергия
образующейся системы – химической связи – меньше энергии, которой обладают
изолированные частицы. Идет выигрыш энергии.

         Учитель: А какие
частицы образуются за счет ковалентной связи?

Студенты: атомы, молекулы.

         Учитель: Совершенно
точно и вы должны помнить, что синонимом ковалентной связи является атомная
химическая связь.

         Атомная или
ковалентная химическая связь — взаимодействие атомов, энергия которых находится
в пределах от нескольких десятков до примерно 1000 кДж/моль. Однако,
энергетический критерий еще не дает возможность отличить химическую связь от
других взаимодействий, например от межмолекулярного, энергия которого может достигать
80 кДж/моль.         Поэтому будет правильнее определить ковалентную химическую
связь как перестройку электронных оболочек связывающихся атомов путем
обобществления их валентных электронов. Результатом этого процесса является
образование из атомов молекул, радикалов, кристаллов. Подумайте и вспомните,
какие химические элементы в природных условиях находятся в состоянии
одноатомных газов?

         Вы также должны
помнить, с чем это связано?

         Правильно, поэтому
логично предположить, что атомы других химических элементов будут стремиться
приобрести конфигурацию благородного газа, т.е. наиболее стабильную. Это
возможно достичь путем образования общих электронных пар, принадлежащих
соединяющимся атомам и взаимодополняющих их электронные орбитали до устойчивой
конфигурации типа 1s2 или ns2np,
т.е. с помощью ковалентной связи.

         Каждый атом стремится
завершить свой внешний электронный уровень, чтобы уменьшить потенциальную
энергию. Поэтому ядро одного атома притягивается к себе электронную плотность
другого атома и наоборот, происходит наложение электронных облаков двух
соседних атомов.

Учитель: записать в тетради основные определения.

         Ковалентная связь
это связь, образованная между двумя неметаллами, возникающая между атомами за
счет образования общих электронных пар. (Например: H2, HCl, H2O).

         По степени
смещённости общих электронных пар к одному из связанных ими атомов ковалентная
связь может быть полярной и неполярной.

Запишите: ковалентная связь
делится на полярную и неполярную связь.

         Учитель: важнейшим
фактором характеристики атома при образовании химической связи является его
электроотрицательность. Вспомним что такое электроотрицательность?

         Электроотрицательность (ЭО) — это свойство атомов одного элемента притягивать к себе
электроны от атомов других элементов.

Учитель: Какой самый электроотрицательный химический элемент?

Студент: Самый электроотрицательный элемент – фтор F.

         Совершенно верно. За
1 приняли электроотрицательность атома лития, а далее по периоду слева на
направо она увеличивается.

         Электроотрицательность
можно выразить количественно и выстроить элементы в ряд по ее возрастанию.
Наиболее часто используют ряд электроотрицательности элементов, предложенный
американским химиком Л. Полингом.

         Учитель: вот
вам таблица с электроотрицательностью элементов. Давайте проанализируем ее?

— Как меняются значения
электроотрицательности в периодической системе по периоду и подгруппе?

— (Вывод: Металлы имеют более
низкое значение электроотрицательности, чем неметаллы. И между ними она сильно
отличается.)

р.png

         — Если связь
образуется между двумя одинаковыми атомами или между атомами с одинаковым
значением ЭО, то смещения общей электронной пары нет и такая связь носит
название неполярной.

         Учитель:
запись в тетрадь.

         КОВАЛЕНТНАЯ
НЕПОЛЯРНАЯ СВЯЗЬ (КНС)
 — образуют
атомы одного и того же химического элемента — неметалла (Например: H2,
O2, О3). Атомы между которыми происходит образование
связи, обладают равной ЭО.

Механизм образования
связи.

(Составление электронных
формул молекул простых веществ неметаллов)

         Каждый атом неметалла
отдает в общее пользование другому атому наружные не спаренные электроны.
Образуются общие электронные пары. Электронная пара принадлежит в равной мере
обоим атомам.

Рассмотрим механизм
образования молекулы хлора:
Cl2 –
кнс.

Электронная схема образования
молекулы Cl2:

https://gigabaza.ru/images/53/104892/m64f31bc7.png

Структурная формула молекулы
Cl2:.

Cl – Cl , σ (p – p) —
одинарная связь

https://gigabaza.ru/images/53/104892/9172804.png

Образование молекулы
водорода

         Атомы образуют связь,
осуществляемую общей для них электронной парой, для достижения наиболее
стабильной электронной конфигурации, которая может быть представлена следующим
образом (электроны обозначены точками):

https://gigabaza.ru/images/53/104892/m4c7633a5.png

Электронную пару можно
обозначить черточкой:

https://gigabaza.ru/images/53/104892/7f59e862.png

         Связь между двумя
атомами образуется тогда, когда они приближаются друг к другу на расстояние,
достаточное для того, чтобы электроны каждого из них оказались в пределах
взаимодействия с ядром другого атома.

         При образовании
молекулы N2. Образуются 3 общие электронные пары. Перекрываются
р-орбитали. (слайд 4)

http://festival.1september.ru/articles/650483/image007.png

Связь
называется неполярная.

         Предположим, что
связь образуют два неметалла с различными значениями электроотрицательности.

         (Учитель берет за
руку ученика, имитируя образование химической связи). Неспаренные электроны
одного атома соединяются с неспаренными электронами другого атома, образуется
общая электронная пара, которая принадлежит каждому из атомов.

         — Если сила атомов различная,
их ЭО различная, то связь смещается в сторону более сильного атома, т.е. атома
с большим значением ЭО. Такая связь называется полярной.

Учитель: записываем определение в терадь.

          КОВАЛЕНТНАЯ
ПОЛЯРНАЯ СВЯЗЬ (КПС) 
— образуют
атомы разных неметаллов, отличающихся по значениям электроотрицательности
(Например: HCl, H2O,
NH3, HF).

Механизм образования
связи.

         Каждый атом неметалла
отдает в общее пользование другому атому свои наружные не спаренные электроны.
Образуются общие электронные пары. Общая электронная пара смещена к более
электроотрицательному элементу.

Рассмотрим механизм образования молекулы
хлороводорода: 
НCl – кпс.

         Электронная схема образования молекулы НCl:

https://gigabaza.ru/images/53/104892/eb6eb2e.png

         Учитель: Общая электронная пара смещена к хлору,
как более электроотрицательному. Значит это ковалентная связь. Она образована
атомами, электроотрицательности которых несильно отличаются, поэтому это
ковалентная полярная связь.

Структурная формула молекулы НCl:

σ

Н → Cl , σ (s – p)

— одинарная связь σ, смещение электронной плотности в сторону
более электроотрицательного атома хлора (→)

https://gigabaza.ru/images/53/104892/66915908.png

Составление электронных формул молекул фтороводорода и аммиака:

         — К доске выходит студент и составляет электронную
формулу.

         Студент: При образовании молекулы фтороводорода
перекрывается орбиталь s-электрона водорода и орбиталь р-электрона фтора Н-F.

http://festival.1september.ru/articles/650483/image009.png

         Связывающая
электронная пара смещена к атому фтора, в результате чего образуется диполь.
Связь называется полярная.

5.png

            Вывод:  Ковалентная связь классифицируется не только по механизму
образования общих электронных пар, соединяющих атомы, но и по способу
перекрывания электронных орбиталей, по числу общих электронных пар, а также по
смещению их к одному из связанных атомов.

         В частности по способу перекрывания электронных орбиталей
различают σ- и π-ковалентные связи. Найдите в учебнике, что же такое сигма и
пи-связи.

         По числу общих электронных пар, связывающих атомы, т.е.
по кратности, различают ординарные, двойные, тройные связи (делаю пояснения на
доске на примерах молекулы водорода, метана, углекислого газа, этилена, азота,
ацетилена).

         По степени смещенности общих электронных пар к одному из
связанных ими атомов ковалентная связь может быть полярной и неполярной. При
этом особую актуальность приобретает такое понятие как электроотрицательность.

         4.
Итог урока (комментарий ответов).


Ребята мы сегодня изучили ковалентную химическую связь и ее виды. Для
закрепления материала порешаем несколько примеров возле доски.

Составьте
электронные формулы и определите вид связи:
HI,
F2,
NF3,
HBr.

HI
– ковалентная полярная;

F2
– ковалентная неполярная;

NF3
– ковалентная полярная;

HBr
– ковалентная полярная;

         Выставление
оценок за урок.

5. Домашнее задание: выучить конспект, задание в
тетради.

— Определите вид химической
связи, составьте электронные формулы для ковалентной связи следующих химических
формул:
H2S, H2O, I2, CO2

Преподаватель:
                               
Аметова Ульвие Юнусовна

Электронные формулы молекул

Для изображения электронного строения молекул, ионов или радикалов используются электронные формулы (структуры Льюиса, октетные формулы). При написании электронной формулы должно выполняться правило октета, согласно которому атом, участвуя в образовании химической связи (отдавая или принимая электроны), стремится приобрести электронную конфигурацию инертного газа — октет (восемь) валентных электронов. Исключение составляет атом водорода, для которого устойчивой является конфигурация гелия, т.е. 2 валентных электрона.

Электронные формулы органических соединений
Примеры электронных формул
Примеры электронных формул

    Элементы 3-го и последующих периодов, имеющие на внешнем валентном уровне относительно низкие по энергии 3d-орбитали, могут за счет участия этих орбиталей образовывать более 4-х ковалентных связей. В этом случае правило октета теряет свою силу, например, в соединениях фосфора и серы: (C2H5)3P=O,
    CH3-SO3H.

Связывающие электронные пары, соответствующие ковалентным связям между атомами, чаще изображают валентной чертой. Несвязывающие электроны (электроны неподеленных пар, неспаренные электроны в свободных радикалах) обозначают точками, формальные заряды в ионах – знаками «+» или «–»:

Электронные формулы молекул (а также ионов и свободных радикалов) нашли широкое применение в органической химии. Однако они не отражают пространственного строения молекул. Поэтому в тех случаях, когда необходимо иметь представление не только о распределении электронов, но и о пространственном строении органических соединений, используются атомно-орбитальные модели, которые служат основой для построения стереохимических (пространственных) формул молекул.

Печатать книгуПечатать книгу

Сайт: Профильное обучение
Курс: Химия. 10 класс
Книга: § 4. Ковалентная связь
Напечатано:: Гость
Дата: Пятница, 26 Май 2023, 02:31

Оглавление

  • Ковалентная связь
  • Кратность ковалентной связи
  • Энергия и длина ковалентной связи
  • Полярность ковалентной связи
  • Вопросы и задания

Ковалентная связь

Основным типом химических связей в органических соединениях является ковалентная связь. Рассмотрим механизм её образования и основные характеристики.

Простейший пример соединения с ковалентной связью — молекула водорода Н2. Атом водорода состоит из положительно заряженного ядра и одного неспаренного электрона, занимающего 1s-орбиталь. При сближении двух атомов водорода происходит перекрывание их электронных облаков:

В результате в пространстве между ядрами происходит увеличение электронной плотности, то есть в этой области концентрируется отрицательный заряд. Этот отрицательный заряд притягивает положительно заряженные ядра, и между атомами формируется химическая связь. Образуется молекула водорода , или Н2. Такая связь называется ковалентной. Чем больше перекрываются электронные облака атомов, тем прочнее будет ковалентная связь.

Схему образования ковалентной связи между атомами водорода можно представить следующим образом:

или:

Из представленной схемы видно, что ковалентная связь осуществляется посредством общей электронной пары. В электронных формулах электронную пару обычно обозначают двумя точками, расположенными между атомами. Если вокруг таких атомов описать окружности, видно, что каждый атом водорода в молекуле имеет завершённую электронную оболочку, как у атома гелия:

В структурных формулах ковалентная связь обозначается чёрточкой:

Используя понятие общей электронной пары, можно дать краткое определение ковалентной связи.

Ковалентная связь — химическая связь, образованная посредством общих электронных пар.

В молекуле водорода общая электронная пара формируется за счёт неспаренных электронов двух атомов водорода. Следовательно, можно заключить, что число ковалентных связей, которое может образовать элемент, равно числу неспаренных электронов в его атоме.

Например, в атоме водорода один неспаренный электрон, поэтому водород может образовать только одну ковалентную связь. Число ковалентных связей, которое образует данный атом в химическом соединении, называется его валентностью. Например, поскольку валентность водорода равна единице, то в структурных формулах от символа H следует рисовать одну чёрточку:

Рассмотрим основные характеристики ковалентной связи.

Кратность ковалентной связи

На внешнем слое атома фтора имеется один неспаренный электрон, поэтому валентность фтора в соединениях равна единице.

От символа F в структурных формулах следует рисовать одну чёрточку:

На рисунке 4.2. показана схема образования ковалентной связи в молекуле фтора:

В молекуле фтора атомы связывает одна общая электронная пара. Такая связь называется одинарной.

На внешнем слое атома кислорода имеется два неспаренных электрона, поэтому валентность кислорода в соединениях равна двум.

От символа O в структурных формулах следует рисовать две чёрточки:

На рисунке 4.3 показана схема образования ковалентной связи в молекуле кислорода:

В молекуле кислорода атомы связывают две электронные пары. Такая связь называется двойной. Двойная связь прочнее одинарной.

На внешнем слое атома азота имеется три неспаренных электрона, поэтому валентность азота в соединениях равна трём.

От символа N в структурных формулах следует рисовать три чёрточки:

На рисунке 4.4. показана схема образования ковалентной связи в молекуле азота:

В молекуле азота атомы связывают три электронные пары. Такая связь называется тройной. Тройная связь прочнее одинарной и двойной.

Двойные и тройные связи имеют общее название кратные.

В основном состоянии на внешнем слое атома углерода имеется два неспаренных электрона. Однако, атом углерода легко переходит в возбуждённое состояние, в котором имеется четыре неспаренных электрона:

 

В связи с этим валентность углерода может быть равна четырём. В большинстве соединений углерод четырёхвалентен. Поэтому в структурных формулах от символа C следует рисовать четыре чёрточки:

 

Атомы углерода могут связываться между собой как одинарными, так и кратными связями. Например, в молекуле этана, имеющего состав С2Н6, атомы углерода образуют только одинарные связи:

Двойной ковалентной связью атомы углерода соединены между собой   в молекуле этилена 2Н4):

Тройная связь между атомами углерода имеется в молекуле ацетилена 2Н2):

Энергия и длина ковалентной связи

Важнейшими характеристиками ковалентной связи являются её энергия и длина.

Энергия, которую необходимо затратить для разрыва химической связи, называется энергией связи. Энергия связи измеряется в кДж/моль. Чем прочнее связь, тем больше энергии необходимо затратить на её разрыв, следовательно, тем больше энергия связи.

Энергия кратных связей больше, чем одинарных (табл. 4.1). Это вполне понятно, так как для разрушения двух или трёх связей требуется затратить больше энергии, чем для разрыва одной связи.

Атомы, соединённые химической связью, находятся на определённом расстоянии друг от друга. Расстояние между ядрами атомов, образующих связь, называется длиной связи.

Из данных таблицы 1.4 видно, что в ряду этан — этилен — ацетилен с ростом кратности длина связи углерод-углерод уменьшается. То есть при образовании кратных связей атомы сильнее притягиваются друг к другу.

Таблица 4.1. Энергия и длина связи углерод-углерод в некоторых молекулах

Название вещества

Структурная формула

Энергия связи углерод-углерод, кДж/моль

Длина связи углерод-углерод, нм

Этан

370

0,154

Этилен

612

0,134

Ацетилен

833

0,120

Полярность ковалентной связи

В молекуле водорода H2 ковалентная связь образуется между атомами одного элемента, поэтому общая электронная пара располагается симметрично (посередине) между ядрами атомов. Такая связь называется ковалентной неполярной.

Пример 1. Ковалентной неполярной связью соединяются между собой атомы неметаллов в простых веществах

Кроме того, ковалентная неполярная связь образуется между атомами углерода в этане , этилене  и ацетилене .

При образовании ковалентной связи между атомами разных химических элементов общая электронная пара смещается к более электроотрицательному атому. Такая связь называется ковалентной полярной.

Напомним, что электроотрицательность — это  способность  атома в химическом соединении притягивать к себе электроны других атомов. Самый электроотрицательный элемент — фтор (ЭО — 4,1).

Пример 2. Ковалентная полярная связь в молекуле фтороводорода HF. Молекула  образована атомами водорода и фтора. Электроотрицательность фтора выше, чем водорода, поэтому общая электронная пара будет смещена к более электроотрицательному атому фтора (рис. 4.5).

В результате на атоме фтора возникает частичный отрицательный заряд, на атоме водорода — частичный положительный. Частичные, а не полные заряды возникают вследствие того, что общая электронная пара смещается к атому фтора, но полного перехода электрона от одного атома к другому  не происходит. Частичный заряд обозначается греческой буквой δ (дельта):

Связь между атомами водорода и фтора является ковалентной полярной.

Ковалентная полярная связь возникает между атомами неметаллов с различной электроотрицательностью, например в молекулах хлороводорода, воды, аммиака:

Чем сильнее различаются между собой электроотрицательности атомов, образующих ковалентную связь, тем больше будут частичные заряды на атомах и тем более полярной будет связь.

Пример 3. Ковалентные полярные связи в молекулах фтороводорода HF и хлороводорода HCl.

Таблица 4.2. Электроотрицательности  и  частичные  заряды  на  атомах в молекулах HF и HCl

Название вещества

Электроотрицательности элементов

Частичные заряды на атомах

Фтороводород

Хлороводород

Из таблицы 4.2 видно, что частичные заряды на атомах в молекуле HF значительно больше, чем в молекуле HCl. Следовательно, связь в молекуле HF более полярна, чем в HCl.

Ковалентная связь осуществляется посредством общих электронных пар. В электронных формулах общую электронную пару обозначают двумя точками, расположенными между атомами. В структурных формулах ковалентную связь обозначают чёрточкой.

Ковалентная связь образуется между атомами неметаллов. Между атомами одного и того же неметалла возникает ковалентная неполярная связь. Между атомами разных неметаллов — ковалентная полярная.

Ковалентная связь бывает одинарной, двойной и тройной. Двойная и тройная связи называются кратными.

Чем прочнее связь, тем больше энергия связи. Энергия кратных связей выше энергии одинарных связей. Кратные связи короче одинарных связей.

Вопросы и задания

1. При помощи электронных формул изобразите образование ковалентных связей в молекулах HCl, H2O, NH3, CH4. Укажите валентности элементов в этих веществах.

2. Учитывая, что валентность водорода и хлора равна единице, углерода — четырём, а кислорода — двум, напишите структурные формулы молекул: CCl4, CO2, CH3Cl, C2H6, C2H4, C2H2, C2H5Cl.

3. В какой молекуле, H2O или NH3, ковалентные связи более полярные? Составьте структурные формулы этих молекул и укажите знаки частичных зарядов на атомах.

4. Напишите структурную формулу пероксида водорода H2O2. Укажите полярные и неполярные связи.

5. В какой молекуле, O2 или H2O2, энергия связи кислород-кислород больше?

6. При сильном нагревании может происходить  разрыв  связей  в  молекулах.  При этом молекулы распадаются на атомы. Какое вещество, Cl2 или N2, будет более устойчиво к нагреванию (термически устойчиво)?

Содержание:

Ковалентная связь:

Свойство вещества определяется его химическим составом, последовательностью соединения атомов в его молекуле и их взаимодействием. Совокупность сил, связывающих друг с другом атомы в молекуле, называется химической связью. Теория строения атома раскрывает природу химической связи и механизм образования молекулы.

Было установлено, что образование и природа химической связи строение непосредственно связаны со строением наружных электронных слоев взаимодействующих атомов элементов. Имеющиеся к настоящему времени сведения об агомах и молекулах подтверждают электронное происхождение всех химических связей. По правилу октета, при образовании химической связи наружные энергетические уровни завершаются в большинстве случаев образуются восьмиэлектронные октеты …ns2np6, а в некоторых случаях (для атомов и ионов H , He0, Li+, Be2+, B+3) двухэпектронное дуплетное строение 1s2.

Электроны, участвующие в образовании связи, называются валентными электронами. В различных химических соединениях химические связи по механизму образования и типу отличаются друг от друга. Электроотрицательность элементов влияет на распределение электронов между взаимодействующими друг с другом атомами. По характеру распределения электронов в веществах различают четыре основных типа химической связи.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Химическая связь, возникающая в результате образования общих (связывающих) электронных пар, называется ковалентной связью. Ковалентная связь образуется между атомами неметаллов с одинаковыми или мало отличающимися друг от друга электроотрицательностями. Образование большинства молекул связано с созданием ковалентной связи.

Ковалентная связь это локализованная двухэлектронная связь с двумя центрами. Локализованная связь подразумевает такую связь, которая действует лишь между двумя атомами на ограниченном участке. Одна ковалентная связь образуется одной электронной парой. Т.е. ковалентную связь показывают парными точками или линиями. Эти электроны расположены в наружных электронных слоях обоих атомов.

Ковалентная связь в основном возникает по двум различным механизмам:

1.    Механизм обмена. Каждый атом, образующий ковалентную связь, отдаёт одинаковое количество электронов для образования общей электронной пары. Общую электронную пару образуют неспаренные (одиночные |) электроны атомов, образующих связь. При этом спаренные электроны должны обладать антипараллельными спинами Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

2.    Донорно-акцепторный механизм. Ковалентная связь образуется за счет неподеленной электронной пары одного атома и незаполненных (пустых) орбиталей другого атома. Схематически это выглядит так:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Здесь атом D, предоставляющий свою неподеленную электронную пару для общего пользования, называется донором, а атом А, имеющий свободную орбиталь, акцептором. Образованная таким путем ковалентная связь называется донорно-акцепторной или координативной связью.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами Этот механизм химической связи был открыт в 1893 ем году
Альфредом Вернером, создавшим координационную теорию
комплексных соединений. В связи с этим, донорно акцепторная связь раньше называлась координативной связью.

Ион аммония (NHКовалентная связь в химии - виды, типы, формулы и определения с примерами), угарный газ (СО), ион гидроксония (НзО+) образуются по донорно-акцепторному механизму.

  • а) Донорно-акцепторная связь указывается стрелкой, которая всегда направлена от донора (N) в сторону акцептора (H);
  • б) При образовании донорно-акцепторной связи валентность атома-донора увеличивается на одну единицу. Степень окисления не меняется.
Молекулы и ионы Донор-атом
Валентность Степень окисления
NHКовалентная связь в химии - виды, типы, формулы и определения с примерами 4 -3
NH3 3 -3
H2O 2 -2
H3O+ 3 -2

Установлено, что все связи N H ионе аммония (NHКовалентная связь в химии - виды, типы, формулы и определения с примерами) обладают одинаковыми свойствами. Значит, ковалентная связь, образованная по механизму обмена, не отличается от связи, созданной по донорно-акцепторному механизму. Если неподеленную электронную пару атома азота в аммиаке (NH3) представить в виде двух точек, а свободную орбиталь иона водорода (H+) в форме четырехугольника, тогда схему образования иона аммония, угарного газа и иона гидроксония можно изобразить так:

Механизм образования иона аммония
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Все кислоты, кроме кремниевой кислоты (H2SiO3), при растворении а воде образуют ион гидроксония (H3O+). Образование иона гидроксония также происходит по донорно акцепторному механизму.

Механизм образования иона гидроксония:
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Механизм образования угарного газа
Ковалентная связь в химии - виды, типы, формулы и определения с примерами
Вещество или ион Донор Акцептор Число электронов, участвующих в образовании связей
у донора у акцептора
NHКовалентная связь в химии - виды, типы, формулы и определения с примерами N H 5 3
СО O C 4 2
H3O+ O H 4 2

Виды ковалентной связи

Начертите схему связи и электронов, образующих эту связь.
1. H2S→ Ковалентная связь в химии - виды, типы, формулы и определения с примерами 2. N2Ковалентная связь в химии - виды, типы, формулы и определения с примерами 3. SO2Ковалентная связь в химии - виды, типы, формулы и определения с примерами 4. F2Ковалентная связь в химии - виды, типы, формулы и определения с примерами 5. H2SO4Ковалентная связь в химии - виды, типы, формулы и определения с примерами
Какие виды ковалентной связи существуют? Чем они отличаются друг от друга?

Существует два вида ковалентной связи, образованной по механизму обмена:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Неполярная ковалентная связь

Ковалентная связь, образованная между атомами неметаллов одного вида (или между атомами с одинаковой электроотрицательностью), называется неполярной ковалентной связью:
H2, N2, O2, F2, Cl2, Br2,I2, P4, S8

Ковалентная связь в химии - виды, типы, формулы и определения с примерами
Неполярная ковалентная связь

При образовании ковалентной связи между атомами с одинаковой электроотрицательностью электронные пары между ядрами атомов размещаются симметрично. В образовавшейся в результате
этого молекуле центры положительных и отрицательных зарядов совпадают.

Полярная ковалентная связь

Ковалентная связь, образованная между атомами различных видов неметаллов (или между атомами неметаллов с различными электроотрицательностями), называется полярной ковалентной связью.

Вещества с полярной ковалентной связью:
HCl, СО, SO2, NO2, P2O5, HNO3, H2CO3, H3PO4, SiO2, SiC, CS2, CH4, CF4  

В большинстве полярных молекул центры положительных и отрицательных зарядов не совпадают. Одна сторона молекулы частично заряжается положительно, а другая сторона частично отрицательно. В результате создается диполь (поляризация в молекуле). Электронная пара перемещается в сторону атома с большей электроотрицательностью. Молекулы, образующие диполь, бывают полярными.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами
Полярная ковалентная связь

Слово «диполь» на греческом «polos» означает «полярный». +δ  и δ  (дельта) относительные заряды.
Их абсолютное значение бывает меньше 1.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Несмотря на то, что в молекулах некоторых веществ все связи полярноковалентные, однако из-за неспособности молекулы к поляризации (т.е. к созданию диполя), они являются неполярными (СО2, СН4).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

σ (сигма) и π(пи) — связи

Сущность образования электронных пар, создающих связь, объясняется перекрыванием электронных облаков. В зависимости от направления перекрывания атомных орбиталей, ковалентные связи делятся на две части.
σ — связь. Если электронные облака перекрываются по прямой линии, соединяющей центры связывающих атомов, то такая связь называется сигма-связью. Вращение одного из атомов вокруг прямой линии, соединяющей ядра обоих атомов, не разрывает связи, σ- связь может образоваться во время перекрывания двух s-, двух р-, одного s- и одного р- электронных облаков в отдельности, а также всех гибридных электронных облаков.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

При наличии между атамами одной ковалентной связи ее называют одинарной связью. Все одинарные связи σ— связи.

πсвязь:

При образовании второй и третьей ковалентных связей между двумя атомами перекрывание электронных облаков происходит не по линии, соединяющей центры атомов. Электронные облака в атоме расположены в отношении друг к другу под определенным углом. И поэтому перекрывание электронных облаков происходит по обе стороны от линии, пересекающей центры атомов.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами
π- связь.

Ковалентная связь, созданная за счет перекрывания орбиталей по обе стороны от оси, соединяющей центры атомов, называется π- связью, πсвязь образуется перекрыванием двух р- орбиталей по обе стороны от оси, соединяющей центры атомов, π— связь могут образовать негибридизированные р- орбитали (р- электроны).

В результате образования π— и σ- связей, находящихся на перпендикулярно расположенных друг к другу плоскостях в пространстве в составе одной молекулы, создаются двойные и тройные связи.

Все одинарные связи являются σ- связью, из двойных же связей одна σ- связь, а другая σ- связь, из тройных связей одна σ- связь, а две π— связи.

Вещество Ковалентная связь в химии - виды, типы, формулы и определения с примерами Ковалентная связь в химии - виды, типы, формулы и определения с примерами Ковалентная связь в химии - виды, типы, формулы и определения с примерами
Количество σ- связей 1 1 1
Количество π- связей 0 1 2

Пространственное строение молекул и гибридизация

Определите соответствие.
Ковалентная связь в химии - виды, типы, формулы и определения с примерами
Какое значение имеют гибридные орбитали в процессе гибридизации? Какие формы гибридизации вы знаете?

Пространственное строение молекулы зависит от формы и направления электронных орбиталей её атомов. Процесс образования новых орбиталей с одинаковыми энергией и формой из комбинации различных орбиталей (s- и р-) называется гибридизацией. Образовавшиеся новые орбитали называются гибридными орбиталями.

  1. Гибридизация орбиталей атомов происходит во время химических реакций.
  2. При образовании связи от гибридизированных орбиталей выделяется ещё больше энергии и связь становится более прочной.
  3. Число образованных гибридных орбиталей равно числу орбиталей, участвующих в гибридизации.

Для s- и р-орбиталей возможны три типа гибридизации.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

sp- гибридизация:

При участии одной s- и одной р-орбитали образуются 2 sp- гибридные орбитали, расположенные под углом 180°. Подобная гибридизация характерна для некоторых элементов II группы: ZnCl2, BeCl2, Mgl2 и др. Электронное строение внешнего электронного слоя бериллия имеет вид 2s22p°. При возбуждении атома бериллия один из s- электронов переходит на р- подуровень, а затем, в результате гибридизации одной s- и одной р- орбиталей, образуются две sp-гибридные орбитали с одинаковой энергией,
расположенные под углом 180°.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Образовавшиеся две sp-гибридные орбитали, оттолкнувшись друг от друга, располагаются под углом 180°, т.е. вдоль прямой линии, двигаясь в противоположных направлениях. В результате перекрывания двух sp- гибридных электронных облаков атома Be р-электроными облаками атомов Cl образуется BeCl2 линейного строения.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

BeF2, BeCl2, BeBr2, Bel2, СО2 это вещества линейного строения, образованные за счет перекрывания sp- гибридных орбиталей.

sp2— гибридизация:

При участии одной s- и двух р- орбиталей образуются три sp2— гибридные орбитали одинаковой формы, расположенные на одной плоскости под углом 120°. Подобный тип гибридизации характерен для некоторых элементов III группы.

Электронное строение внешнего энергетического уровня атома бора следующее: 2s22p1. При возбуждении атома бора один из электронов переходит с S- орбитали на р- орбиталь и в итоге образуются три одинаковые sp2 гибридные орбитали.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Эти три возбужденных гибридных электронных облака атома бора перекрываются р- электронными облаками атомов фтора и в результате образуется молекула BF3 треугольной формы. Все три образовавшиеся связи находятся на одной плоскости. BCl3, ВВr3, Bl3 также обладают подобным плоским строением.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

sp3— гибридизация:

Процесс образования в пространстве четырех гибридных орбиталей из комбинации одной s- и трех р- орбиталей называют sp3— гибридизацией. Для некоторых элементов IV группы характерна sp3— гибридизация: СН4, CCl4, CF4 и др. В нормальном состоянии имеющиеся в наружном электронном слое атома углерода четыре электрона находятся в состоянии 2s22p2. При возбуждении атома углерода во время реакции один из электронов с 2s2— орбитали переходит на 2р- орбиталь и в результате гибридизации в возбужденном состоянии одного S- и трех р- электронных облаков образуются четыре одинаковые sp3— гибридные орбитали.
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В метане все гибридные орбитали атома углерода (С), находящегося в состоянии sр3-гибридизации, образуют связь, и молекула приобретает форму тетраэдра (симметрическую), а угол связи составляет -109o28′.

Ковалентная связь в химии - виды, типы, формулы и определения с примерамиКовалентная связь в химии - виды, типы, формулы и определения с примерами

Содержащийся в молекуле воды аnом кислорода не возбуждается. В результате гибридизации двух орбиталей, содержащих по одному электрону, и двух орбита-лей, содержащих по два электрона, образуются четыре sр3-гибридные орбитали.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Гибридные орбитали, содержащие электронные пары атома кислорода в молекуле воды, отталкивают другие гибридные орбитали и в результате молекула приобретает неправильную (несимметрическую) форму тетраэдра, образуя угол связи 104o5′.

Ковалентная связь в химии - виды, типы, формулы и определения с примерамиКовалентная связь в химии - виды, типы, формулы и определения с примерами

В атоме азота в молекуле аммиака возбуждение не происходит. В результате гибридизации трех орбиталей, содержащих по одному электрону, и одной орбитали, содержащей два электрона, создаются 3sp3— гибридные орбитали.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Гибридные орбитали, содержащие электронные пары атома азота в молекуле аммиака, отталкивают другие гибридные орбитали и в результате молекула приобретает неправильную (несимметрическую) форму тетраэдра, а угол связи составляет 107o3′.

Свойства ковалентной связи

Основными характерными свойствами ковалентной связи являются ее прочность, энергия, насыщенность, направленность, полярность, длина и кратность.

Прочность ковалентной связи

Чем больше электронная плотность между ядрами атомов, тем прочнее будет связь. Прочность химической связи зависит от:
1) насыщенности связи; 2) длины связи; 3) полярности связи.

Энергия связи

Энергия связи это количество минимальной энергии, необходимой для того, чтобы разорвать связь. Единицей энергии связи является кДж/моль, которая предусмотрена для 1 моль связи. Энергия связи 1 моль водорода равна 436 кДж/моль. Процесс разрыва связи можно выразить в виде термохимического уравнения:
H      H — 2Н      436 кДж/моль или ΔH=+436 кДж/моль

Энергия связи для 1 молекулы равна соотношению между минимальной энергией, необходимой для разрыва связи, и постоянной Авогадро.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Для вычисления энергии, необходимой для разрыва одной связи в многоатомных молекулах, следует поделить общую энергию связи на количество связей. Энергия связи в молекуле метана(СН4)

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

ΔH=+1647 кДж/моль      Эсвязи= 1647 : 4 ≈ 412 кДж/моль

Однако действительное значение каждой отдельно взятой энергии связи несколько отличается от ее среднего значения.

Пользуясь понятием энергии связи, можно определить, являются ли химические реакции экзотермическими или эндотермическими.

Разница между суммой энергий связи между атомами продуктов реакции и суммой энергий связи между атомами веществ, вступивших в реакцию, определяет тепловой эффект химической реакции. Если эта разница положительная, то реакция экзотермическая, а при отрицательной разнице эндотермическая. При вычислении же по изменению энтальпии (ΔH) бывает наоборот.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Qpeaн.=(6 . QС H + QС С )       (4 ∙ QС H + QС=С + QH H ); ΔH= Q

В общем виде вычисляется следующим образом:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Δ H равен тепловому эффекту реакции с противоположным значением, называется изменением энтальпии. Оно находится только посредством вычислений.  

Насыщенность связи

Насыщенность ковалентной связи определяется валентными возможностями атомов. Возможность образования ковалентной связи определяется числом валентных электронов (или образующих ковалентную связь орбиталей). Например, в атоме углерода, имеющем в наружном электронном слое всего 4 орбитали, в возбужденном состоянии содержится 4 одиночных электрона и поэтому атом углерода способен образовать не более 4-х ковалентных связей. Валентные возможности атомов определяются числом неподеленных электронных пар, которые могут быть отданы другим атомам с незаполненными орбиталями на наружном энергетическом уровне.

Направленность связи

Это свойство ковалентной связи обуславливает пространственное строение молекул. Направленность химических связей объясняется различным расположением электронных облаков в пространстве. Во время взаимного перекрывания электронных облаков в пространстве могут образоваться соединения, молекулы которых будут иметь линейную форму или форму угла. Н2, N2, F2, НСl, СО, NO имеют линейное строение, а H2O, SO2, NO2 форму угла.

Кратность связи определяется числом электронных пар (числом ковалентных связей), соединяющих два атома. В молекуле кислорода кратность связи равна 2. На внешнем энергетическом уровне каждого атома кислорода содержатся два неспаренных одиночных электрона: O=O

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В молекуле азота кратность связи равна 3. На внешнем энергетическом уровне каждого атома азота содержатся три неспаренных одиночных электрона. N Ковалентная связь в химии - виды, типы, формулы и определения с примерамиN

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Длина связи это расстояние между ядрами атомов, образующих связь; измеряется в нанометрах (нм). Чем короче длина химической связи, тем прочнее будет связь.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Полярность связи зависит от смещения электронной пары, образующей ковалентную связь, в сторону одного из атомов.
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В галогенидах водорода (HF, HC1, HBr, HI) в связи с увеличением радиуса по мере возрастания порядкового номера галогена, увеличивается и длина связи. Так как F (фтор) самый сильный неметалл, HF отличает большей полярностью и прочностью. В связи с увеличением длины связи в HF, HC1, HBr, HI, по мере увеличения радиуса, их полярность, прочность связи уменьшаются, а кислотность, восстановительные свойства усиливаются.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами
полярность, прочность связи уменьшаются, кислотность, восстановительные свойства усиливаются.

Природа и типы химической связи

При обычных условиях химические элементы существуют в форме различных атомных частиц в составе простых и сложных веществ. Из них только простые вещества благородных газов (элементов VIIIA-группы) являются одноатомными молекулами, а остальные представляют собой самые разнообразные соединения. Число атомов в таких соединениях колеблется от двух до сотен и тысяч. Силы, которые обеспечивают существование таких агрегатов (молекул, радикалов, кристаллов и др.), получили название химическая связь.

Химическая связь — это взаимодействие, которое связывает отдельные атомы в более сложные системы (молекулы, радикалы, кристаллы и т. д.).

Причиной образования химической связи является стремление атомов путем взаимодействия с другими атомами достичь более устойчивого состояния, т. е. состояния с минимально возможным запасом энергии. Следовательно, основным условием образования химической связи является понижение полной энергии Е многоатомной системы по сравнению с суммарной энергией изолированных атомов, т. е.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

в случае образования вещества АВ из атомов А и В.

Таким образом, образование химической связи всегда сопровождается выделением энергии.

Природа сил химической связи — электростатическая, т. е. обусловлена различными видами взаимодействий положительно заряженных ядер и отрицательно заряженных электронов (рис. 15).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Главную роль при образовании химической связи между атомами играют их валентные электроны, т. е. те электроны, которые обычно находятся на внешнем энергетическом уровне и наименее прочно связаны с ядром атома. У атома на внешнем энергетическом уровне может содержаться от одного до восьми электронов. Завершенными, а поэтому и самыми устойчивыми, являются внешние электронные оболочки атомов благородных газов: у гелия там находится два электрона (1s2) и у остальных — по восемь электронов (ns2np6, где n — номер периода).

У атомов остальных элементов внешние энергетические уровни являются незавершенными, и поэтому в процессе химического взаимодействия атомы стремятся их завершить, т. е. приобрести электронное строение атома ближайшего благородного газа. Это соответствует нахождению двух электронов на внешнем уровне у атомов водорода, который расположен в одном периоде с гелием, и восьми электронов (октет) — у всех остальных атомов. Достичь такого электронного состояния атомы могут только за счет обобществления электронов, т. е. их совместного использования атомами, соединяющимися между собой. При этом образуются общие электронные пары, которые связывают атомы друг с другом — между ними возникает химическая связь.

В зависимости от способа обобществления электронов различают три основных типа химической связи: ковалентную, ионную и металлическую.

Ковалентная связь:

Ковалентная связь возникает обычно между двумя атомами неметаллов с одинаковыми или близкими значениями электроотрицательности. Рассмотрим образование ковалентной связи на примере простейшей молекулы — молекулы водорода Н2. У атома водорода всего один электрон, находящийся на внешнем (первом) энергетическом уровне, до завершения которого не хватает одного электрона.

При сближении двух атомов водорода за счет сил притяжения, действующих между их ядрами и электронами, происходит частичное перекрывание электронных облаков неспаренных электронов с антипараллельным спином (это одно из условий образования общей электронной пары!). В зоне их перекрывания плотность двухэлектронного облака увеличивается. Ядра атомов стягиваются к этой области повышенного отрицательного заряда до тех пор, пока не наступит равновесие между силами межъядерного отталкивания и силами притяжения. Расстояние между ядрами атомов уменьшается, энергия системы, состоящей из двух атомов водорода, также понижается. Область повышенной электронной плотности связывает два атома водорода в молекулу Н2 (рис. 16).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Образование химической связи между атомами водорода в молекуле можно показать различными способами. Например, с помощью электронных формул, в которых Указывают символы элементов и валентные электроны в виде точек:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В графических (или структурных) формулах пару электронов обозначают с помощью черточки:  

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В случае молекулы водорода эта единственная черточка символизирует ковалентную связь.

Химическая связь, возникающая в результате обобществления электронов с образованием общих электронных пар между атомами, называется ковалентной связью.

Образование ковалентной связи можно показать и с помощью электронно-графических схем, на которых обычно указываются только орбитали внешнего энергетического уровня:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Волнистая линия между двумя орбиталями 1s указывает на то, что каждый электрон как бы одновременно находится как на одной, так и на другой орбитали. В данном случае ковалентная связь образована в результате перекрывания двух s-opбиталей (или s-облаков) (рис. 17).

Подобным образом образуется ковалентная связь и между двумя атомами фтора в молекуле F2. Атом фтора имеет 7 электронов на внешнем электронном слое, один из них — неспаренный электрон. При сближении двух атомов фтора происходит перекрывание электронных облаков их неспаренных электронов, образуется общая электронная пара и внешний энергетический уровень каждого атома фтора завершается до октета (8 электронов):
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Схема образования молекулы фтора с помощью электронных формул:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

а графическая формула молекулы:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В данном случае образование ковалентной связи произошло за счет перекрывания р-электронных облаков (рис. 18).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Одинарная связь:

И в молекуле водорода, и в молекуле фтора атомы связаны электронной парой, образующей одну химическую связь, называемую одинарной. В обоих случаях перекрывание электронных облаков (как s-, так и р-) происходит вдоль линии, соединяющей центры взаимодействующих атомов. Эту условную прямую называют линией (или осью) связи.

Ковалентная связь, образованная за счет перекрывания атомных орбиталей вдоль линии связи, называется Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связью (сигма-связью).

Пару электронов, образующих ковалентную связь, называют связывающей в отличие от электронных пар, которые не участвуют в образовании связей и, следовательно, являются несвязывающими. Такие пары часто также называют неподеленными, поскольку они принадлежат только одному атому.

У атомов водорода в молекуле Н2 нет несвязывающих пар, а в молекулах F2, С12, Вr2 или I2 у каждого из атомов галогенов их по три:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

  • Причиной образования химической связи является стремление атомов к достижению более устойчивого состояния, что приводит к выделению энергии при образовании связей.
  • Природа сил химической связи — электростатическая, т. е. определяется различными видами взаимодействий электронов и ядер в системе связанных атомов.
  • Различают три основных типа химической связи — ковалентную, ионную и металлическую.
  • Ковалентная связь — это химическая связь, возникающая в результате образования общих электронных пар между двумя атомами.

Кратные связи. Полярная и неполярная ковалентная связь

Два атома могут быть связаны между собой не только одной, но и несколькими ковалентными связями. В таком случае говорят о кратности связи, понимая под этим термином число электронных пар, участвующих в образовании ковалентной связи.

Кратные связи

У атомов азота (элемента VA-группы) до завершения внешнего энергетического уровня не хватает трех электронов:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Поэтому при образовании молекулы N2 атомы азота обобщают уже не одну, а три пары электронов:
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Схема образования молекулы азота:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

а графическая формула молекулы:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Одна из ковалентных связей, образовавшаяся в результате перекрывания р-электронных облаков вдоль линии связи, представляет собой Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязь. Две другие образуются за счет перекрывания вертикально направленных облаков р-электронов. Такое перекрывание происходит уже не вдоль линии, соединяющей центры атомов, а по обе стороны от нее. Образуется не одна, а две области перекрывания (рис. 19).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Такая ковалентная связь получила название Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связи.

 Ковалентная связь в химии - виды, типы, формулы и определения с примерами-Связь — это ковалентная связь, возникающая при перекрывании электронных облаков по обе стороны от линии, соединяющей ядра атомов.

Облака s-электронов не могут образовывать Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связи. В образовании Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связей могут участвовать только p— и d-облака. Возникновение Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связей происходит между двумя атомами только тогда, когда они уже связаны Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связью.

Если ковалентная связь между двумя атомами образуется двумя общими электронными парами, то такая ковалентная связь называется двойной связью, и она обозначается двумя черточками. Например, в молекуле этена С2Н4 атомы углерода соединены между собой двойной связью:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

одна из которых — Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязь, а вторая — Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связь.

Если в молекуле имеется тройная связь, как, например, в молекуле азота N2, то одна из них — Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязь, а две другие — Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связи, расположенные во взаимно перпендикулярных плоскостях (рис. 20).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Полярная и неполярная ковалентная связь

До сих пор мы рассматривали ковалентную связь, образованную атомами одного и того же элемента. В этом случае общая пара электронов располагается симметрично между двумя атомами с одинаковой электроотрицательностью. Такая ковалентная связь называется неполярной.

Если же взаимодействуют атомы с различными электроотрицательностями, т. е. атомы разных элементов, то общая электронная пара смещается к атому с большей электроотрицательностью. В таких случаях возникает полярная ковалентная связь.

Например, в молекуле хлороводорода HCI общая электронная пара смещена в сторону более электроотрицательного элемента, каким является хлор:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В данном случае перекрываются сферическое s-электронное облако атома водорода и гантелеобразное р-облако атома хлора (рис. 21).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Схема такого перекрывания:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В результате смещения общей электронной пары в молекуле HCl на атоме хлора возникает частичный отрицательный заряд, а на атоме водорода — такой же по величине, по положительный заряд:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

(греческая буква Ковалентная связь в химии - виды, типы, формулы и определения с примерами (дельта) обозначает частичный заряд, т.е. заряд меньше единицы).

Значение заряда Ковалентная связь в химии - виды, типы, формулы и определения с примерами можно рассматривать как меру полярности связи: чем больше частичные заряды на атомах, тем больше полярность связи. Например: связь Н — F более полярна, чем Н —Cl, так как частичные заряды на атомах Н и F равны 0,43+ и 0,43- соответственно, а на атомах Н и Cl — 0,18+ и 0,18—. Если молекула состоит из двух атомов, связанных между собой полярной связью, то она также называется полярной, т. е. представляет собой диполь (рис. 22).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Чем больше разность электроотрицательностей связанных атомов, тем более полярна химическая связь межту ними.

С помощью ковалентной связи образуются молекулы и более сложных веществ, состоящих из трех, четырех и более атомов. В качестве примера рассмотрим образование молекулы аммиака NH3. Электронно-графическая схема взаимодействия трех атомов водорода и одного атома азота следующая:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Общая схема образования аммиака:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

а графическая формула молекулы:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Таким образом, три неспаренных электрона атома азота принимают участие в образовании трех ковалентных связей с атомами водорода, а на внешнем энергетическом уровне у атома азота остается еще неподеленная пара электронов. Каждая связь N — Н является полярной. В целом вся молекула NH;i представляет собой диполь, так как она имеет форму пирамиды с атомом азота в ее вершине. Однако существует много молекул, которые содержат полярные связи, но сами являются неполярными. Это объясняется особенностями их пространственного строения. Об этом мы поговорим в следующих параграфах.

  • Кратность связи определяется числом общих электронных пар между двумя связанными атомами.
  • Ковалентная связь, при образовании которой области перекрывания электронных облаков находятся по обе стороны от линии, соединяющей ядра атомов, называется Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связью.
  • При соединении двух атомов с разными электроотрицательностями возникает ковалентная полярная связь.

Механизмы образования ковалентной связи

Различают два основных механизма образования ковалентной связи — обменный и донорно-акцепторный.

Обменный механизм образования связи

Ковалентная связь образуется двумя атомами с помощью двух электронов с антипараллельным спином, т. е. химическая связь находится (локализована) между двумя атомами. Так как нахождение двух электронов в поле действия двух ядер энергетически выгоднее, чем пребывание каждого электрона в поле своего ядра, то в образовании ковалентной связи принимают участие все одноэлектронные орбитали внешнего энергетического уровня. Например, атом азота имеет три не-спаренных электрона на внешнем уровне:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

атом кислорода — два:
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

а атом фтора — один:
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Поэтому эти атомы могут образовывать за счет таких электронов соответственно три, две и одну ковалентные связи.

Число неспаренных электронов может увеличиваться при переходе атома в возбужденное состояние. Например, на внешнем энергетическом уровне атома углерода находится только два неспаренных электрона.
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Однако в большинстве своих соединений углерод проявляет валентность, равную 4, образуя четыре ковалентные связи, например: С02, СН4, ССl4 и т.д. Такая валентность атома углерода становится возможной благодаря тому, что его атом при образовании химических связей с другими атомами переходит в возбужденное состояние (т. е. в состояние с большей энергией) за счет распаривания пары электронов 2s2 и перехода одного из них па подуровень :

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В возбужденном состоянии атом углерода имеет четыре неспаренных электрона, за счет которых он может образовывать четыре ковалентные связи с атомами других элементов. Распаривание электронов требует затраты энергии, но эта затрата с избытком компенсируется энергией, выделяющейся при образовании дополнительных связей. Распаривание, как правило, происходит лишь в пределах данного энергетического уровня, поскольку переход электронов на свободные орбитали другого уровня энергетически не выгоден. Поэтому в возбужденное состояние могут перейти атомы только тех элементов второго периода, у которых имеются свободные орбитали (бериллий, бор, углерод). У атомов азота, кислорода и фтора нет свободных орбиталей на втором энергетическом уровне, а переход электронов на третий уровень потребует слишком больших затрат энергии, которые не компенсируются выделением энергии при образовании дополнительных связей.

В то же время атомы элементов третьего и следующих периодов имеют на внешнем энергетическом уровне d-подуровень, на который при возбуждении могут переходить s- и р-электроны:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Благодаря этому атом хлора способен образовывать не одну, а несколько ко-валентных связей, вплоть до семи, как, например, в оксиде Сl207.

Таким образом, атомы при образовании ковалентных связей используют все свои неспаренные электроны, как находящиеся в основном состоянии, так и образовавшиеся при распаривании.

  • Механизм образования ковалентной связи за счет обобществления не-спаренных электронов двух взаимодействующих атомов называется обменным.

Донорно-акцепторный механизм образования ковалентной связи

Образование ковалентной связи возможно и при взаимодействии атомов, один из которых имеет пару неподеленных электронов (Ковалентная связь в химии - виды, типы, формулы и определения с примерами), а другой — свободную орбиталь (Ковалентная связь в химии - виды, типы, формулы и определения с примерами). В этом случае атом А предоставляет атому В в общее пользование пару электронов, и она становится связывающей парой, образуя между этими атомами ковалентную связь:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Атом, предоставляющий электронную пару для образования связи, называется донором, а участвующий в обобществлении пары за счет свободной орбитали, — акцептором. Такой механизм образования ковалентной связи получил название донорно-акцепторного.

Механизм образования ковалентной связи за счет неподеленной пары электронов одного атома и свободной орбитали другого называется донорно-акцепторным.

Примером такого механизма может служить образование иона аммония Ковалентная связь в химии - виды, типы, формулы и определения с примерами при взаимодействии аммиака NH3 и хлороводородной кислоты HCl в растворе:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Сокращенно ионное уравнение этой реакции:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Составим электронную схему такого взаимодействия, обозначив точками электроны, принадлежащие атому азота, а звездочками — атомам водорода:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В ионе аммония каждый атом водорода связан с атомом азота общей электронной парой. И хотя одна из этих связей образована по донорно-акцепторному механизму, она не отличается по своим характеристикам от остальных ковалентных связей, образованных по обменному механизму.

Донорно-акцепторный механизм позволяет объяснить существование иона гидроксония Н30+, в виде которого находится в водных растворах ион водорода. Эта частица образуется в результате гидратации иона водорода:
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Электронная схема этого процесса:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

  • Обменным называется механизм образования ковалентной связи, при котором каждый атом предоставляет для формирования общей электронной пары один неспаренный электрон.
  • Механизм образования ковалентной связи за счет электронной пары одного атома и свободной орбитали другого называется донорно-акцепторным.

Свойства ковалентной связи

Вы уже познакомились с одной из характеристик ковалентной связи — полярностью. Полярность связи и всей молекулы в целом во многом определяет физические и химические свойства вещества, такие, как температуры кипения и плавления, растворимость и даже способность вступать в химические реакции с другими веществами.

Рассмотрим еще некоторые характеристики ковалентной связи.

Энергия и длина связи

Одной из важнейших характеристик химической связи является ее прочность. Прочность связей определяет реакционную способность вещества.

Мерой прочности связи является та энергия, которую необходимо затратить на ее разрыв. Эту характеристику называют энергией связи. В случае веществ с двухатомными молекулами ее величину рассчитывают на 1 моль вещества. Так. у молекулы водорода Н2 энергия связи Н — Н равна 435 кДж/моль, у молекулы фтора F2 — 159 кДж/моль, а у молекулы азота эта характеристика равна 943 кДж/моль. Чем меньше энергия связи, тем менее прочной является ковалентная связь, тем больше реакционная способность вещества.

Еще одной характеристикой прочности связи является длина связи — расстояние между ядрами химически связанных атомов. С увеличением радиусов атомов длина связи между ними увеличивается, а прочность — уменьшается. Ковалентная связь Н—Н более прочная, чем связь F—F, так как ее длина равна 0,074 нм, а связи F—F — 0,142 нм.

Увеличение кратности связи приводит к уменьшению межъядерного расстояния и упрочнению связи между атомами (табл. 9).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Из таблицы 9 видно, что энергия двойной связи Ковалентная связь в химии - виды, типы, формулы и определения с примерами (или тройной Ковалентная связь в химии - виды, типы, формулы и определения с примерами) меньше удвоенной (или утроенной) энергии одинарной связи Ковалентная связь в химии - виды, типы, формулы и определения с примерами, следовательно, Ковалентная связь в химии - виды, типы, формулы и определения с примерами и Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи не одинаковы по прочности: Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязь слабее Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи, поэтому при химических реакциях Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязь разрывается первой.

Насыщаемость

Ковалентная связь характеризуется насыщаемостью. Это свойство состоит в том, что образование связывающей два атома электронной пары исключает ее участие в других химических взаимодействиях. Благодаря этому общее число ковалентных связей, которые способен образовывать тот или иной атом, ограничено. Оно определяется числом орбиталей атома, использование которых для образования химических связей энергетически выгодно. Так, элементы второго периода, у атомов которых внешний энергетический уровень состоит только из четырех орбиталей (одна s- и три р-типа), могут образовать не более четырех ковалентных связей. У атомов следующих периодов в образовании ковалентных связей могут принимать участие и d-орбитали как внешнего, так и предвнешнего энергетических уровней.

Поэтому ковалентные соединения имеют строго определенный состав.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Направленность ковалентной связи

Ковалентная связь между двумя атомами располагается таким образом, чтобы обеспечить максимальное перекрывание электронных облаков. Поскольку в образовании связей принимают участие электронные облака различной формы и ориентации в пространстве, то и ковалентные связи, образованные этими облаками, также характеризуются определенной направленностью.

Если ковалентная связь образуется путем перекрывания сферических s-электронных облаков, как, например, в молекуле Н2, то она может располагаться в любом направлении (рис. 23) относительно центра данного атома.

А вот в молекуле Сl2, где ковалентная связь образована за счет перекрывания р-облаков, область перекрывания располагается только вдоль линии связи, определенной пространственной ориентацией р-облака (рис. 24).

Следовательно, направленность ковалентных связей объясняется различным расположением электронных облаков в пространстве.

  • Основными характеристиками ковалентной связи являются ее длина, энергия, полярность, насыщаемость.
  • Ковалентные химические связи характеризуются определенной направленностью.

Понятие о стереохимии и атомные кристаллические решетки

Каждая молекула представляет собой систему взаимосвязанных атомов, расположенных определенным образом относительно друг друга. Следовательно, молекула характеризуется определенным пространственным строением, или, говоря иначе, геометрией (формой).

Вопросы строения молекул рассматривает один из разделов химии, который называется стереохимией (в буквальном переводе с греческого языка — пространственная химия).

Согласно стереохимическим представлениям, когда один атом образует несколько связей, они будут направлены под определенными углами друг к другу. Угол между связями (или валентный угол) — это угол между воображаемыми прямыми, проходящими через ядра химически связанных атомов. Такие прямые, как вы уже знаете, называются линиями связи (рис. 25).

Например, в молекуле Н20 атом кислорода образует две Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи с атомами водорода за счет р-облаков внешнего энергетического уровня, ориентированных в атоме взаимно перпендикулярно (см. §11). Следовательно, угол между двумя линиями связи О—Н должен быть близок к 90° (рис. 26).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Аналогично в молекуле NH3 углы между связями N—Н, образованные тремя р-орбиталями атома азота, также должны быть близки к 90° (рис. 27), а вся молекула в целом должна иметь форму треугольной пирамиды с атомом азота в вершине.

Действительные значения углов между связями (104,5° в молекуле Н20 и 107° в молекуле NH3) отличаются от ожидаемых. Увеличение валентных углов можно объяснить взаимным отталкиванием положительно заряженных атомов водорода. Например, уже в молекуле H2S такое отталкивание слабее, чем в молекуле Н20 (так как радиус атома серы больше радиуса атома кислорода), и угол Н—S—Н ближе к 90°, чем угол Н—О—Н.

За счет ковалентной связи образуются не только молекулы. Некоторые простые и сложные вещества построены из атомов, связанных друг с другом ковалентными связями, и образуют протяженные кристаллические структуры — атомные кристаллические решетки.

Примерами таких веществ являются простые вещества — бор, алмаз, кремний. В кремнии (как и в кристалле алмаза)(рис. 28) каждый атом связан четырьмя ковалентными связями с другими атомами.

Подобное строение имеют и сложные вещества: карбид кремния SiC и оксид кремния Si02 (кварц).

Атомных кристаллов сравнительно немного. Благодаря высокой прочности ковалентных связей они имеют очень высокие температуры плавления, большую твердость. Так, самым твердым природным веществом является алмаз — его температура плавления более 3500 °С. Карбид кремния SiC также является одним из самых твердых веществ с очень высокой температурой плавления — более 2700 °С.

  • Стереохимия — раздел химии, рассматривающий пространственное строение молекул или кристаллов.
  • Кристаллические структуры, построенные из атомов, связанных друг с другом ковалентными связями, называются атомными кристаллическими решетками.

Гибридизация атомных орбиталей

Вы уже знаете, что в образовании ковалентных связей принимают участие как s-, так и р-электроны, орбитали которых имеют разную форму и направленность в пространстве. Вместе с тем связи, которые образуются при их участии, оказываются равноценными и расположенными симметрично.

В рамках электронной теории химической связи эти факты объясняются на основе концепции гибридизации атомных валентных орбиталей. Согласно данной концепции в образовании ковалентных связей участвуют не «чистые», а так называемые гибридные, усредненные по форме и размерам (а следовательно, и по энергии) орбитали. Число таких орбиталей равно числу исходных орбиталей. Гибридные орбитали более вытянуты в пространстве (рис. 29), что обеспечивает их более полное перекрывание с орбиталями соседних атомов при образовании связей. Гибридные орбитали, вследствие особой симметрии, в образовании Ковалентная связь в химии - виды, типы, формулы и определения с примерами-связей участия не принимают, так как не могут обеспечить перекрывание между собой в двух областях пространства по обе стороны от линии связи (рис. 30).

Ковалентная связь в химии - виды, типы, формулы и определения с примерамиКовалентная связь в химии - виды, типы, формулы и определения с примерами

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Условия устойчивой гибридизации:

  1. в гибридизации могут участвовать орбитали с близкими значениями энергий, т. е. s- и р-орбитали внешнего энергетического уровня и d-орбитали внешнего или предвнешнего уровня;
  2. гибридная атомная орбиталь должна более полно перекрываться с орбита-лями другого атома при образовании связей;
  3. в    гибридизации участвуют орбитали с достаточно высокой электронной плотностью, которыми в большинстве случаев являются орбитали элементов начальных периодов;
  4. гибридные орбитали должны быть ориентированы в пространстве таким образом, чтобы обеспечить максимальное взаимное удаление друг от друга. В этом случае энергия их отталкивания (и, следовательно, энергия всей системы) минимальна.

Ориентация гибридных орбиталей определяет геометрическую структуру молекулы и молекулярных ионов. Так, при комбинации одной s- и одной р-орбитали возникают две sp-гибридные орбитали, расположенные симметрично под углом 180° (рис. 31). Соответственно связи, образованные с участием электронов этих орбиталей, также располагаются под углом 180°. Например, у атома бериллия sp-гибридизация орбиталей проявляется в молекуле ВеСl2, которая вследствие этого имеет линейную форму (рис. 32).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Комбинация трех орбиталей (одной s- и двух р-типа) приводит к образованию трех sp2-гибридных орбиталей, расположенных в одной плоскости под углом 120° (рис. 33) (например, в молекуле BF3) (рис. 34).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Комбинация четырех орбиталей (одной s- и трех р-типа) приводит к sр3-гибридизации, при которой четыре гибридные орбитали симметрично ориентированы в пространстве к четырем вершинам тетраэдра, т. е. под углом 109°28′ (рис. 35) (атом углерода в молекуле СН4) (рис. 36).

Основные характеристики указанных типов гибридизации приведены в таблице 10.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Существуют и другие типы гибридизации атомных орбиталей. Они достаточно доступны для понимания, но их рассмотрение выходит за рамки школьного курса.

  • Гибридизация атомных орбиталей — усреднение по форме и энергии электронных облаков, соответствующих разным орбиталям.
  • В гибридизации могут участвовать орбитали с близкими значениями энергии.
  • Гибридные орбитали должны быть ориентированы в пространстве таким образом, чтобы обеспечить максимальное взаимное удаление друг от друга.
  • Гибридные орбитали участвуют в образовании только Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи.

Пространственное строение молекул

Пространственное строение молекул или молекулярных ионов зависит от типа гибридизации и взаимного расположения в пространстве гибридизованных орбиталей центральных атомов.

В реальных молекулярных структурах углы между связями часто отличаются от углов, соответствующих типу гибридизации.

В чем причина таких отклонений?

Прежде чем ответить на этот вопрос, выделим несколько положений, на которых основываются подходы к рассмотрению геометрии молекул.

Линия связи (или ось связи) — это прежде всего область перекрывания электронных облаков при образовании Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязей. Поскольку Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи располагаются в тех же областях межъядерного пространства, что и Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи, и влияют только на длину и прочность связи между двумя атомами, геометрическая конфигурация молекул определяется в основном пространственной направленностью Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязей.

Ковалентная связь в химии - виды, типы, формулы и определения с примерамиСвязи (поделенные пары электронов) так же, как и неподеленные пары, представляют собой области повышенной электронной плотности, т. е. отрицательного заряда. Устойчивому состоянию молекулы соответствует такое пространственное расположение электронных облаков валентного слоя, при котором их взаимное отталкивание минимально. Поэтому такие электронные пары стремятся максимально оттолкнуться друг от друга, располагаясь в пространстве под возможно большим углом.

Основными причинами отклонений углов связей от углов, соответствующих типу гибридизации, являются следующие.

1. Не все гибридные орбитали участвуют в образовании связей, часть из них — несвязывающие. Электронные пары, находящиеся на этих орбиталях, также называются несвязывающими (или неподеленными). Например, у атома азота в молекуле NH3 одна пара электронов — несвязывающая, а в молекуле Н20 у атома кислорода две пары электронов являются несвязывающими:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Связывающая электронная пара локализована между двумя атомами и поэтому занимает меньше пространства, чем электронное облако несвязывающей пары. Вследствие этого отталкивающее действие несвязывающей пары проявляется в большей мере, чем связывающей. В молекулах воды и аммиака у атомов (N и О) один и тот же тип гибридизации атомных орбиталей sp3. Однако вследствие наличия одной (у азота) и двух (у кислорода) несвязывающих пар идеальный угол для этого типа гибридизации, равный 109°28′ уменьшается соответственно до 107° (угол Н — N — Н) и 104,5° (угол Н —О—Н) (рис.37, 38).

Ковалентная связь в химии - виды, типы, формулы и определения с примерамиВ таблице 11 приведены виды геометрических конфигураций, соответствующих некоторым типам гибридизации орбиталей центрального атома А, с учетом влияния несвязывающих электронных пар.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Число атомов В (в общем случае и число групп атомов), непосредственно связанных с центральным атомом А, называется его координационным числом. В соединениях с ковалентным типом связей координационное число атома равно числу Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязей, которые связывают его с другими атомами.

2. Наличие Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязи влияет только на величину валентного угла, но не сказывается на типе гибридизации атомных орбиталей и, следовательно, на геометрии молекулы. Только углы между Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязями фиксируют пространственное расположение атомов относительно друг Друга.

Предполагается, что электронные пары кратной связи занимают ту же область пространства, что и электронная пара простой связи. Суммарное электронное облако кратной связи (двойной или тройной) занимает больший объем пространства, чем одинарной, и поэтому обладает большим отталкивающим действием. Например, в молекуле COF2, имеющей плоскостное строение (sp2-гибридизация атома углерода), углы связи F—С—О больше угла связи F—С—F, так как связь С = 0 является двойной и обладает большим отталкивающим действием, чем одинарная связь С—F (рис. 39).

В молекуле углекислого газа С02, графическая формула которого

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

две ковалентные связи одинарные, т. е. являются Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязями, а две другие — Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязями. Ковалентная связь в химии - виды, типы, формулы и определения с примерамиСвязи не влияют на геометрию молекулы, поэтому пространственная структура С02 определяется только двумя Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязями — молекула имеет линейное строение, так как тип гибридизации центрального атома sp.

Многоцентровые связи

Строение многих молекул нельзя изобразить только одной графической формулой с точной локализацией кратной связи, поскольку истинные свойства молекулы оказываются промежуточными между теми, которые отражаются в каждой отдельной схеме. Например, строение молекулы HNO3 можно изобразить двумя равнозначными графическими формулами:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Поскольку в этой молекуле оба атома кислорода Ковалентная связь в химии - виды, типы, формулы и определения с примерами равноценны (и, следовательно, равноценны обе их связи с азотом), строение молекулы лучше передает графическая формула с делокализованной Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязью:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В этой формуле пунктирные линии означают, что одна из общих электронных пар в равной степени распределена между одной и другой связями N—О. Другими словами, эта электронная пара принадлежит не двум, а трем атомам и, следовательно, образованная ею связь является трехцентровой.

Примерами структур с многоцентровыми (делокализованными) Ковалентная связь в химии - виды, типы, формулы и определения с примерамисвязями могут служить такие, как Ковалентная связь в химии - виды, типы, формулы и определения с примерами и др.

Валентность и степень окисления

Валентность и валентные возможности атомов

Мы установили, что атомы способны образовывать ковалентные связи различным образом. Количественно эта способность атомов оценивается с помощью характеристики, называемой валентностью.

Валентность — мера способности атомов данного элемента соединяться с другими атомами.

Такое толкование валентности является общим, или стехиометрическим. Оно обосновывает количественные соотношения атомов элементов в любых химических соединениях.

С развитием электронных представлений о строении веществ понятие валентности приобрело определенное физическое обоснование. В современной химии валентность химического элемента определяется числом ковалентных связей, которыми данный атом связан с другими атомами.

Ковалентные связи могут быть образованы как с помощью одноэлектронной орбитали атома, так и с помощью неподеленной пары электронов (если атом — донор) или свободной орбитали (если атом — акцептор). Следовательно, можно сказать, что валентность химического элемента также равна числу электронных орбиталей, которые данный атом использует для образования ковалентных связей.

Таким образом, валентность химического элемента определяется как числом ковалентных связей, которыми его атом связан с другими атомами, так и числом орбиталей, используемых этим атомом для образования связей.

Зная электронное строение атома того или иного элемента, можно определить его валентные возможности. Так, атом водорода всегда проявляет валентность, равную единице, поскольку у него всего одна орбиталь.

Анализируя строение простых и сложных веществ, образованных атомами элементов второго периода, нетрудно убедиться, что большинство этих элементов могут проявлять переменную валентность. Например, в молекулах простых веществ N2, 02, F2 атом азота имеет валентность, равную трем, кислорода — двум, а фтора — единице согласно графическим формулам этих молекул:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Простые вещества бора и углерода являются немолекулярными соединениями, однако атомы этих элементов связаны в кристаллах ковалентными связями: бор — тремя, а углерод — четырьмя. Поэтому их валентности равны соответственно III и IV.

В то же время в соединениях с атомами других элементов кислород, азот и фтор способны проявлять и другие валентности. Например, в молекулярном ионе Ковалентная связь в химии - виды, типы, формулы и определения с примерами азот связан четырьмя ковалентными связями с атомами водорода, поэтому его валентность IV. Кислород в ионе гидроксония Н30+ имеет валентность III, фтор также может проявлять валентность больше I.

В любом случае у элементов второго периода максимальная валентность не может быть больше четырех, так как на внешнем электронном слое у атомов этих элементов всего четыре орбитали, и, следовательно, атомы максимально могут образовать только четыре ковалентные связи.

У атомов элементов третьего периода в связи с появлением d-подуровня валентные возможности увеличиваются, так как в результате распаривания Зр- и 3s-электронов может образоваться от четырех до семи (у хлора) неспаренных электронов. Например, сера, помимо валентности II в основном состоянии:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

может проявлять также валентности IV и VI:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Такое распаривание электронов проявляется обычно поддействием атома более электроотрицательного элемента, например фтора, кислорода, поэтому свои высшие валентности атомы проявляют обычно в соединениях с кислородом и фтором.

Таким образом, валентность является численной характеристикой способности атомов данного элемента образовывать ковалентные связи и поэтому может относиться только к соединениям с таким типом связи.

Степень окисления

Более универсальной характеристикой состояния атома в химическом соединении является степень окисления.

Степень окисления — это условный заряд атома в химическом соединении, если предположить, что оно состоит из ионов.

При определении степени окисления атомов предполагают, что все связывающие электронные пары перешли к более электроотрицательному атому. На самом деле такого полного смещения не происходит даже при взаимодействии элементов с большой разницей в электроотрицателыюстях.

Однако условно считают такое смещение электронных нар полным независимо от реальной степени смещения.

Численное значение этой характеристики выражается в единицах заряда электрона и может иметь положительное, отрицательное и нулевое значения.

Количественно степень окисления определяется числом валентных электронов, смещенных от атома данного элемента в химическом соединении (положительная степень окисления) или к нему (отрицательная степень окисления).

В основу расчета степени окисления атомов в соединениях положен принцип, согласно которому алгебраическая сумма степеней окисления атомов в соединении равна нулю, а в сложном ионе (типа Ковалентная связь в химии - виды, типы, формулы и определения с примерами и т. п.) — заряду иона.

При расчетах надо знать несколько основных положений.

1.    Металлы во всех сложных соединениях имеют только положительные степени окисления.

2.    Неметаллы могут проявлять как положительные, так и отрицательные степени окисления.

3.    Элементы, проявляющие постоянную степень окисления:

  • а)    щелочные металлы (Li, Na, К, Rb, Cs) — +1;
  • б)    металлы второй группы (А и В) — +2;
  • в)    алюминий — +3;
  • г)    фтор — -1.

Кислород практически во всех своих соединениях проявляет степень окисления —2, исключая его фторид OF2 и пероксид Н202.

4.    Высшая положительная степень окисления, как правило, равна номеру группы периодической системы.

5.    Низшая отрицательная степень окисления обычно равна разности:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Для большинства элементов характерно проявление переменных степеней окисления в зависимости от атомов, с которыми они связаны, и типа соединения, в котором они находятся. Например, атом азота может проявлять самые разнообразные степени окисления от —3 в молекуле аммиака NH3 до +5 в молекуле азотной кислоты HN03.

Степень окисления не следует отождествлять с валентностью элемента, хотя их численные значения часто совпадают:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В пероксиде Н — О — О — Н валентность кислорода равна двум, а степень окисления —1, в ионе Н30+ его валентность III, а степень окисления —2.

Очень часто степень окисления элемента определяется как алгебраическая сумма степеней окисления по всем связям с другими элементами. Например, в молекуле гидроксиламина NH2OH общая степень окисления азота равна —1. так как по двум связям с водородом азот проявляет суммарную степень окисления —2, а по связи с атомом кислорода +1:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Степень окисления характеризует состояние атомов элемента в сложном веществе независимо от типов связей его атомов. Особенно важна эта характеристика при составлении уравнений окислительно-восстановительных реакций.

  • Валентность химического элемента определяется числом ковалентных связей, которыми его атом связан с другими атомами, или, что то же самое, числом орбиталей, используемых данным атомом для образования связей.
  • Степень окисления — это условный заряд атома в химическом соединении, вычисленный из предположения, что оно состоит из ионов.

Ионная связь и металлическая связь

Ковалентная химическая связь обычно возникает между атомами неметаллов с одинаковой или не очень сильно различающейся электроотрицательностью. Если различие в электроотрицательности атомов, между которыми образуется химическая связь, велико (Ковалентная связь в химии - виды, типы, формулы и определения с примерами превышает 1,7), то общая электронная пара практически полностью смешается к атому с большей электроотрицательностью. В результате этого образуются частицы, имеющие заряды — положительно и отрицательно заряженные ионы с устойчивой электронной конфигурацией атомов ближайшего благородного газа. Противоположно заряженные ионы прочно удерживаются силами электростатического притяжения — между ними возникает химическая связь, которая называется ионной.

Ионная связь

Ионная связь, как правило, возникает между атомами типичных металлов и типичных неметаллов. Характерным свойством атомов металлов является то, что они легко отдают свои валентные электроны, тогда как атомы неметаллов способны легко их присоединять.

Рассмотрим возникновение ионной химической связи, например, между атомами натрия и атомами хлора в хлориде натрия NaCl.

Отрыв электрона от атома натрия приводит к образованию положительно заряженного иона — катиона натрия Na+ (рис. 40).

Присоединение электрона к атому хлора приводит к образованию отрицательно заряженного иона — аниона хлора CI (рис. 41).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Между образовавшимися ионами Na+ и Cl, имеющими противоположный заряд, возникает электростатическое притяжение, в результате которого образуется соединение — хлорид натрия с ионным типом химической связи.

Химическая связь, которая осуществляется за счет электростатического взаимодействия противоположно заряженных ионов, называется ионной связью.

Таким образом, процесс образования ионной связи сводится к переходу электронов от атомов натрия к атомам хлора с образованием противоположно заряженных ионов, имеющих завершенные электронные конфигурации внешних слоев:
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Экспериментально установлено, что в действительности электроны не отрываются полностью от атома металла, а лишь смещаются в сторону атома хлора. Это смещение тем значительней, чем больше разность электроотрицательностей атомов, между которыми образуется ионная связь. Однако даже в случае фторида цезия CsF, в котором разность электроотрицательностей превышает 3,0, заряд атома цезия не равен 1+ . Это означает, что электрон атома цезия не полностью переходит к атому фтора. В случае других соединений, для которых разность электроотрицательностей не так велика, смещение электрона еще меньше, и поэтому следует говорить об ионной химической связи с определенной долей ковалентной.

Соединения, в которых вклад ионной связи значителен, принято называть ионными. Большинство бинарных соединений, содержащих атомы металлов, являются ионными, т. е. в них химическая связь в значительной степени ионная. К числу таких соединений относятся галогениды, оксиды, сульфиды, нитриды и др.

Ионная связь возникает не только между простыми катионами и простыми анионами типа Ковалентная связь в химии - виды, типы, формулы и определения с примерами но и между простыми катионами и сложными анионами типа Ковалентная связь в химии - виды, типы, формулы и определения с примерами или гидроксид-ионами Ковалентная связь в химии - виды, типы, формулы и определения с примерами Подавляющее большинство солей и оснований являются ионными соединениями, например Ковалентная связь в химии - виды, типы, формулы и определения с примерами Ковалентная связь в химии - виды, типы, формулы и определения с примерами Существуют ионные соединения, в состав которых входят сложные катионы, не содержащие атомы металла, например ион аммония Ковалентная связь в химии - виды, типы, формулы и определения с примерами а также соединения, в которых сложными являются и катион, и анион, например сульфат аммония Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Ионные кристаллы

По своим свойствам ионная связь отличается от ковалентной. Так как силы электростатического взаимодействия направлены от иона во все стороны, то каждый ион может притягивать ионы противоположного знака в любом направлении. Поэтому ионное соединение представляет собой гигантскую ассоциацию ионов противоположных знаков, расположенных в определенном порядке, в форме ионного кристалла. Кристаллы ионных соединений состоят из катионов и анионов, которые определенным образом располагаются в пространстве благодаря равновесию сил притяжения и отталкивания. На рисунке 42 представлено строение кристалла хлорида натрия NaCl, состоящего из катионов натрия Na+ и анионов хлора Сl. Каждый катион натрия окружен шестью анионами хлора, а каждый анион хлора — шестью катионами натрия.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Наименьшей структурной единицей кристалла (т. е. наименьшей частью), отражающей все особенности структуры его кристаллической решетки, является элементарная ячейка. Строение элементарной ячейки зависит от соотношения размеров катиона и аниона. На рисунке 43 приведено строение элементарных ячеек хлорида натрия NaCl и хлорида цезия CsCl. Существуют и другие типы элементарных ячеек.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Если частицы в веществе связаны ионной связью, то оно относится к веществам с немолекулярным строением. В твердом агрегатном состоянии такие вещества представляют собой ионные кристаллы. Так как ионная связь является прочной, то ионные кристаллы имеют обычно высокие температуры плавления и кипения, не имеют запаха. Сильное притяжение ионов друг к другу обусловливает хрупкость таких веществ при разрушении, а отсутствие свободных заряженных частиц объясняет тот факт, что при комнатной температуре они плохо проводят электрический ток.

Металлическая связь. Металлические кристаллы

Атомы большинства металлов достаточно легко отдают свои валентные электроны, в результате чего превращаются в положительно заряженные ионы. Это происходит не только при взаимодействии металлов с другими атомами, но и при образовании металлических кристаллов из одних и тех же атомов.

В кристалле металла непрерывно протекают два противоположных процесса — образование ионов металла из нейтральных атомов в результате отрыва от них валентных электронов:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

и присоединение валентных электронов к ионам металла с образованием нейтральных атомов:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В узлах кристаллической решетки металлов попеременно находятся как нейтральные атомы, так и положительно заряженные катионы металла (рис. 44). Образующиеся при этом электроны свободно перемещаются внутри кристалла и компенсируют взаимное отталкивание между положительно заряженными катионами металла, а также удерживают атомы в составе кристалла. Они становятся общими для всех атомов и ионов металла, связывая их между собой.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

► Химическая связь между атомами в металлическом кристалле посредством обобществления валентных электронов называется металлической связью.

Металлическая связь не имеет направленности в пространстве. Эта химическая связь является коллективной, как и ионная, в ней принимают участие все атомы кристалла металла.

Металлическая связь сходна с ковалентной связью тем, что при ее образовании так же, как и при образовании ковалентной связи, электроны обобществляются. Однако в случае металлической связи эти электроны связывают все атомы металлического кристалла, тогда как в ковалентном соединении связываются лишь находящиеся рядом атомы.

Взаимосвязь различных типов химической связи

Вы познакомились с тремя типами химической связи и соответствующими веществами, которые мы характеризовали как вещества с ковалентным (02, N2, Cl2), ионным (LiF, NaCl) и металлическим типом связи (металлы). В реальности в большинстве неорганических веществ взаимодействие между различными атомами носит более сложный характер, являясь как бы комбинацией различных типов связи. Это особенно характерно проявляется в ряду простых и сложных бинарных веществ элементов III периода, который Д. И. Менделеев назвал «типическим».

В углах представленного треугольника химических связей (рис. 45) расположены вещества, являющиеся наиболее характерными представителями каждого типа связи: NaCl — соединений ионного типа, Cl2 — ковалентного, а Na — металлического. В ряду от NaCl до Cl2 находятся бинарные вещества общей формулы ЭСl, где Э — элемент третьего периода:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Как вам уже известно, в периодах от щелочного металла до галогена электроотрицательность последовательно растет и, соответственно, уменьшается величина Ковалентная связь в химии - виды, типы, формулы и определения с примерами:

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

где Ковалентная связь в химии - виды, типы, формулы и определения с примерами— значения электроотрицательностей хлора и элемента Э. Например, Ковалентная связь в химии - виды, типы, формулы и определения с примерами и т. д. Это свидетельствует об уменьшении полярности связи Ковалентная связь в химии - виды, типы, формулы и определения с примерами, т. е. об уменьшении доли ионной связи и увеличении доли ковалентной составляющей. Другими словами, мы можем заключить, что в ряду однотипных соединений между NaCl и С12 располагаются соединения со смешанным типом химической связи, при этом ковалентная составляющая постоянно увеличивается.

Подобные закономерности наблюдаются и в двух других рядах веществ. В ряду от Na до NaCl располагаются соединения условной формулы NaЭ, где Э — элемент третьего периода. Характер химической связи в этих веществах последовательно изменяется от металлического до ионного.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

В ряду от Na до Cl2 располагаются простые вещества третьего периода. Свойства этих веществ последовательно изменяются от металлических к неметаллическим, что соответствует изменению характера химической связи от металлического к ковалентному.

Таким образом, мы можем заключить, что однозначное определение типа химической связи в большинстве неорганических соединений невозможно. В реальности химическая связь между разнородными атомами носит смешанный характер с той или иной долей ковалентной, ионной или металлической составляющей.

  • Ионная связь осуществляется за счет электростатического притяжения между противоположно заряженными ионами.
  • Химическая связь между атомами в металлическом кристалле посредством обобществления электронов называется металлической связью.

Межмолекулярное взаимодействие

Молекулы, несмотря на свою электронейтральность, способны взаимодействовать между собой. Такое взаимодействие называется межмолекулярным. Силы, за счет которых возникает это взаимодействие, часто называют ван-дер-ваальсовыми в честь голландского ученого И. Д. Ван-дер-Ваальса. Эти силы обусловливают притяжение молекул данного вещества (или разных веществ) друг к другу в жидком и твердом агрегатном состоянии.

Природа межмолекулярного взаимодействия

Межмолекулярное взаимодействие, как и химическая связь между атомами, имеет электростатическую природу. Несимметричность распределения электронов и ядер атомов в молекуле приводит к появлению у нее электрических полюсов — положительного с той стороны, где электронная плотность понижена, и отрицательного, где она повышена. Образовавшиеся полярные молекулы притягиваются друг к другу разноименными полюсами (рис. 46, а).

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Взаимодействие может осуществляться также между полярной и неполярной молекулами. При этом в неполярной молекуле под действием электрического поля полярной молекулы возникает (индуцируется) диполь. Постоянный диполь и индуцированный диполь притягиваются друг к другу (рис. 46, б).

В неполярных молекулах вследствие непрерывного движения частиц с различными электрическими зарядами (ядер и электронов) также непрерывно возникают, перемещаются и исчезают электрические полюсы. Поэтому в разные моменты времени возникают мгновенные диполи, между которыми также действуют силы притяжения (рис. 46, в).

В этом и состоит объяснение существования притяжения между любыми молекулами, как полярными, так и неполярными.

Прочность межмолекулярного взаимодействия и агрегатное состояние вещества

Межмолекулярное взаимодействие обусловливает переход вещества из газообразного в жидкое, а затем и в твердое состояние. Но по сравнению с ковалентной связью межмолекулярные взаимодействия слабые, связи между молекулами относительно непрочные и легко разрываются. Именно поэтому молекулярные вещества плавятся и кипят при относительно низких температурах. Межмолекулярное взаимодействие определяет также механические свойства подобных веществ, их теплопроводность, электрическую проводимость и др.

Энергия межмолекулярного взаимодействия зависит в основном от двух характеристик молекулы — ее полярности и размера. Чем сильнее межмолекулярное взаимодействие в веществе, тем выше у него будут температуры плавления и кипения. Например, кислород из-за более прочного межмолекулярного взаимодействия кипит при более высокой температуре, чем азот, что и используется при получении этих газов из воздуха. Углеводороды с большой молекулярной массой кипят при более высокой температуре, чем низкомолекулярные углеводороды. Это свойство углеводородов лежит в основе процесса перегонки нефти.

Молекулярные кристаллы

В узлах молекулярной кристаллической решетки расположены молекулы, связанные между собой слабыми межмолекулярными связями (рис. 47). Молекулярные кристаллические решетки образуют водород, азот, кислород, сера, йод, вода, углекислый газ, многие органические вещества. Кристаллы благородных газов также молекулярные, они построены из одноатомных молекул.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Для веществ, образующих молекулярные кристаллы, характерны низкие температуры плавления и кипения, значительная сжимаемость, небольшая твердость. Нагревание некоторых молекулярных кристаллов, например иода, углекислого газа, приводит к переходу вещества из твердого состояния сразу в газообразное, минуя жидкую фазу. Этот процесс называется возгонкой или сублимацией.

В то же время многие органические вещества с большими молекулами, содержащими десятки тысяч и более атомов, вообще не плавятся, так как прочность связей между молекулами в сумме оказывается выше прочности связей внутри молекулы. Попробуйте расплавить, например, крахмал, целлюлозу, вату. Вы убедитесь в том, что вещество начнет разрушаться раньше, чем плавиться.

Однако надо иметь в виду, что реакционная способность молекулярных веществ зависит от прочности не межмолекулярных, а внутримолекулярных связей. Ведь при химическом взаимодействии разрываются именно внутримолекулярные связи. Например, парафин — механически непрочное вещество, связи между молекулами в нем слабые. Но это вещество химически достаточно устойчиво.

Водородная связь

Одной из разновидностей межмолекулярного взаимодействия является водородная связь. Она осуществляется между положительно поляризованным атомом водорода одной молекулы и отрицательно поляризованным атомом другой молекулы:    

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

где X — атом одного из наиболее электроотрицательных элементов — F, О, N, реже CI и S.
Возникновение водородной связи  (на схеме она показывается тремя точками) обусловлено прежде всего тем, что у атома водорода имеется только один электрон, который при образовании полярной ковалентной связи с атомом сильно электроотрицательного элемента смещается в сторону атома этого элемента. На атоме водорода возникает высокий эффективный положительный заряд, что в сочетании с отсутствием внутренних электронных слоев позволяет другому атому сближаться до расстояний, близких к длинам атомных связей.

В первом приближении образование водородной связи можно объяснить электростатическим взаимодействием между молекулами. Определенный вклад в образование водородной связи вносит донорно-акцепторное взаимодействие «свободной» 1s-орбитали атома водорода и орбитали с неподеленной парой электронов электроотрицательного атома. Поэтому водородная связь обладает свойством направленности, во многом определяя структуру вещества в конденсированном состоянии.

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Благодаря водородным связям молекулы объединяются в ассоциаты, например молекулы уксусной кислоты образуют димеры (рис. 48). Водородные связи определяют кристаллическую структуру льда, где каждый атом кислорода в молекулах Н20 связан с четырьмя атомами водорода — двумя ковалентными и двумя водородными связями (рис. 49).
Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Ковалентная связь в химии - виды, типы, формулы и определения с примерами

Водородная связь в несколько раз сильнее, чем обычное межмолекулярное взаимодействие, но слабее ковалентной связи. С повышением температуры прочность водородной связи уменьшается. Поэтому водородная связь более характерна для веществ в твердом и жидком состояниях.

Наличие водородной связи существенно влияет на физические свойства веществ. Так, аномально высокие температуры кипения H2O, HF, HN3 по сравнению с аналогичными веществами, образованными элементами этих же групп других периодов (рис.50), объясняются образованием ассоциатов за счет водородных связей.

Во дородная связь О…Н наиболее распространена в природе. Именно ее наличием обусловлены аномальные свойства воды, в том числе высокие температуры кипения и плавления, необычайно высокие теплоемкость и диэлектрическая проницаемость. Благодаря своей ажурной структуре (см.рис.49) лед имеет меньшую плотность, чем жидкая вода. Поэтому зимой лед находится на поверхности воды, и глубокие водоемы не промерзают до дна.

Светло-голубой цвет чистой воды  и толстого слоя льда обусловлен водородными связями. Когда одна молекула воды колеблется, то она заставляет колебаться и другие, связанные с ней молекулы. В результате этого молекулы H2O частично поглощают красный цвет, а вода приобретает голубоватый оттенок.

Водородная связь может возникать и между атомами одной молекулы. Чаще всего внутримолекулярная водородная связь возникает в молекулах органических веществ, содержащих в своем составе такие группы атомов как —Ковалентная связь в химии - виды, типы, формулы и определения с примерами и др.

Особенно велика роль водородных связей в биохимических процессах с участием высокомолекулярных соединений (белки, ДНК и др.), пространственная структура которых определяется наличием водородных связей.

Межмолекулярное взаимодействие возникает между любыми молекулами, как полярными, так и неполярными, и имеет электростатическую природу.

Межмолекулярное взаимодействие обусловливает переход вещества из газообразного в жидкое, а затем и в твердое состояние.

Водородная связь осуществляется между положительно поляризованным атомом водорода одной молекулы и отрицательно поляризованным атомом фтора, кислорода, азота (реже хлора и серы), принадлежащим другой молекуле.

  • Валентность и степень окисления
  • Ионная связь
  • Химические реакции
  • Теория электролитической диссоциации
  • Физические и химические явления
  • Растворы в химии
  • Периодический закон Д. И. Менделеева
  • Химические связи

Цели урока:

  • На основании знаний о строении атома начать
    формирование понятий «химическая связь»,
    «ковалентная связь», «электроотрицательность»,
    «ковалентная полярная и неполярная связь».
  • Научить школьников записывать схемы
    образования ковалентной связи для двухатомных
    молекул.
  • Сформировать понятие о кратности ковалентной
    связи.
  • Разъяснить смысл электронных и структурных
    формул.

Тип урока: Формирование новых знаний

Вид урока: Мультимедиа урок.

Оборудование: компьютер, проектор,
мультимедийные ресурсы, периодическая система
химических элементов Д.И.Менделеева.

ХОД УРОКА

I. Организационный момент

II.Актуализация знаний

Прежде чем рассматривать механизм ковалентной
связи, учитель предлагает повторить с учащимися
строение атома и распределение электронов по
энергетическим уровням; объяснить на основании
строения атома причину химической инертности
атомов благородных газов; рассмотреть, что такое
завершенный электронный слой. (Презентация
1
)
 Несколько учащихся на макете составляют
электронные формулы (Презентация 4)

III. Изучение нового материала

Основными объектами окружающего нас мира
являются атомы и молекулы. Наверняка многие из
вас знают, что из атомов и молекул состоят все
вещи в мире. Тогда как вы объясните, чем они
отличаются? Если бы все атомы были
одинаковыми, в мире существовал бы лишь один вид
материи.
Вам известно, что в настоящее время, существует
более ста разновидностей атомов, которые могут
соединяться между собой. Если соединяются
несколько атомов одного вида, они образуют
простые вещества. Существуют и такие вещества,
молекулы которых состоят из двух-трех и более
атомов разного вида – их называют сложными.
Каждое вещество имеет свое название и обладает
уникальными свойствами. Каким же образом атомы
соединяются между собой?
Далее обсуждаем, все ли атомы химических
элементов соединяются. Нет ли в природе
одиночных атомов? Оказывается, есть – это атомы
благородных газов.
Электроны в атоме располагаются на
энергетических уровнях. Электроны наружного
слоя называют валентными. Полностью заполненным
энергетическим уровнем обладают элементы  VIII
А группы – благородные (инертные) газы.
Сравниваем электронное строение атомов
благородных газов, выясняем особенность
завершенных и устойчивых внешних энергетических
уровней:

Чем объяснить устойчивость внешнего
восьмиэлектронного уровня? Причина этого
заключается в том, что все электроны на внешних
энергетических уровнях элементов спарены, то
есть уже в атомах связаны попарно.

Поскольку электронная конфигурация
благородного газа очень устойчива, то её
стремятся достичь и атомы других элементов. Все
атомы, объединяясь в молекулы, сделать это могут
либо, отдав электроны, либо приняв электроны,
либо обобществив свои электроны с электронами
других атомов.
Число электронов, необходимых атомам разных
химических элементов до завершения внешнего
электронного слоя, различно.

Внешние электронные слои атомов других
химических элементов могут содержать как
спаренные, так и не спаренные электроны.

Предлагаем учащимся подсчитать, сколько
электронов не хватает атомам каждого из
химических элементов второго периода для
завершения внешнего электронного слоя.

Вывод: если в атоме нет непарных
электронов и нет возможности для их
распаривания, как у инертных газов, они не
образуют химической связи и соединений не
образуют, потому и инертны. В образовании
химической связи участвуют в основном непарные
электроны наружного слоя атома. Сущность
образования химической связи состоит в
спаривании непарных электронов.
Ребята, мы ответили на один вопрос, поставленный
в задачу нынешнего урока.
– Что заставляет атомы соединяться друг с другом
в молекулы?
А вот как происходит это спаривание, нам
предстоит разобраться.
Интересно, например, как осуществляется связь
между атомами элементов-неметаллов, которые
имеют сходную тенденцию к присоединению
электронов? Рассмотрим вначале, как образуется
связь между атомами одного и того же химического
элемента, например в веществах, имеющих
двухатомные молекулы.
Два одинаковых атома элемента-неметалла могут
объединяться в молекулу только одним способом:
обобществив свои внешние электроны, то есть,
сделав их общими для обоих атомов.
Когда атомы обобществляют свои электроны,
образуется ковалентная связь.

Ковалентная связь – это химическая
связь, возникающая в результате образования
общей электронной пары между взаимодействующими
атомами.
Для наглядности изображения того как образуется
ковалентная связь используются электронные
формулы. В ней каждый атом обозначается
буквенными символами соответствующего элемента,
а вокруг этого символа точками обозначают все
валентные электроны, в том числе и не участвующие
в образовании связи. Одна точка обозначает один
электрон.

Например:  электронная формула водорода
электронная формула хлора
электронная формула кислорода
электронная формула азота

Для образования связи каждый атом
предоставляет в общее пользование по одному
электрону. Ковалентную связь образует только
пара электронов, находящаяся между атомами. Она
называется поделенной парой. Остальные
пары электронов называют неподеленными
парами
. Они заполняют оболочки и не принимают
участие в связывании. При этом образующаяся пара
электронов принадлежит одновременно двум
атомам.

Механизм возникновения ковалентной связи
рассмотрим на примере образования молекулы
водорода:

Ядро атома водорода окружено сферическим
электронным облаком, образованным
1 s-электроном. При сближении атомов до
определенного расстояния начинают действовать
силы притяжения между ядром одного атома и
электроном другого атома, а так же силы
отталкивания между ядрами и между электронами

Ковалентная связь бывает двух видов – ковалентная
неполярная и ковалентная полярная
. Связано
такое деление с тем, где именно между ядрами
будут располагаться общие электронные пары –
ровно посередине или будут смещены в сторону
одного из ядер.

Расположение общих электронных пар между
ядрами связывающихся атомов зависит
от электроотрицательности атома.

Электроотрицательность – это способность
атомов химического элемента оттягивать к себе
общие электронные пары, участвующие в
образовании химической связи.

У элементов рассчитали значение
электроотрицательности и расположили их по
возрастанию этого значения в ряд
электроотрицательности (приводится не
полностью):

Элемент

K

Na

Сa

Mg

Al

Si

B

H

C

S

I

Br

Cl

N

O

F

χ

0.9

0.93

1.0

1.2

1.47

1.74

2.01

2.1

2.5

2.58

2.66

2.74

2.83

3.07

3.5

4.0

Используя периодическую систему химических
элементов Д.И. Менделеева, объясняем, что в
периодах, слева направо, электроотрицательность
 увеличивается, в главных подгруппах
сверху вниз – уменьшается. Что касается
ряда то, правее стоящий в этом ряду элемент
обладает большей электроотрицательностью и
лучше оттягивает в свою сторону общие
электронные пары. Фтор самый
электроотрицательный элемент.

Если молекула состоит из атомов одного вида,
электроотрицательность которых равна, то
общие электронные пары будут находиться
посередине между ядрами двух связывающихся
атомов, поскольку ядра притягивают общие
электронные пары в равной степени. В этом случае
между атомами образуется ковалентная
неполярная связь
. Ковалентная неполярная
связь образуется в таких молекулах как Н2, F2,
N2 и т.д.

Пример образования ковалентной неполярной
связи вмолекуле фтора.

Рассмотрим образование ковалентной связи в
молекуле фтора F2

Электронная формула внешнего слоя атома фтора:
1s22s22p5, электронно-графическая
формула:

Один из р-электронов в атоме фтора
является неспаренным.

При образовании молекулы неспаренные
электроны двух атомов фтора образуют одну общую
электронную пару; в результате каждый атом фтора
приобретает электронную структуру 2s22p6,
т.е. на внешнем энергетическом уровне помещается
по восемь электронов. 

Демонстрация схемы образования ковалентной
неполярной химической связи в молекуле фтора. (Презентация
3
, слайд 2)

Связь между атомами может быть образована и
несколькими электронными парами. Существуют
молекулы, в которых между двумя атомами
возникают две или три общие электронные пары.
Такие ковалентные связи называются двойными и
тройными, а общее их название – кратные связи.
При увеличении числа общих электронных пар
прочность ее увеличивается.

Например, в молекулах водорода H2 и фтора
 F2 связь между атомами водорода и фтора
соответственно – одинарная (однократная), в
молекуле кислорода  O2 – двойная, а в
молекуле азота  N2 – тройная. (Презентация
3
, слайды 3, 4)

Подводим учащихся к выводу о том, что кратность
связи в молекуле определяется (в основном) числом
непарных электронов.

При соединении атомов одного элемента никакого
смещения электронов не происходит, т.к. их
электроотрицательность одинакова.
Если ковалентная связь образуется между
атомами с различной ЭО, то общая электронная пара
смещается в сторону атома с большей ЭО. 

Схематично образование ковалентной полярной
связи в молекуле НF  можно изобразить так:

Молекула фтороводорода образована элементами,
отличающимися по своей ЭО.

Δ Э.О. = 3,98 – 2,20 = 1,78

Общая электронная пара оказывается смещенной в
сторону фтора, в результате на атоме фтора
возникает частичный отрицательный заряд δ
(дельта минус), а на атоме водорода – частичный
положительный δ+ (дельта плюс) Нδ+Fδ. Таким
образом, молекула становится полярной. Чем
больше различается электроотрицательность
взаимодействующих атомов, тем больше смещена
общая электронная пара к наиболее
электроотрицательному атому, тем полярнее
химическая связь между атомами. (Презентация
3
, слайд 5)

Направление смещения электронов обозначается
также стрелкой: C ––> Cl,  
C ––> О,   C ––> N,  
О <–– Н,   C <–– Mg

Ковалентная химическая связь между
атомами разных элементов, при которой общая
электронная пара (пары) смещена в сторону более
ЭО элемента (разность ЭО < 1,9), называется  ковалентной
полярной
.

Молекулы хлороводорода, воды, аммиака также
являются полярными. Их еще называют диполями
(имеющими два полюса).

Общую пару электронов иногда обозначают
черточкой, которая символизирует химическую
связь.  Если общие электронные пары обозначать
чертой, то электронная формула превращается в
структурную:

H:Cl           
H–Cl

Электронные и структурные формулы показывают
последовательность соединения атомов в
молекуле. Например, в молекуле аммиака атомы
водорода соединяются с атомами азота, но между
собой не соединяются.

Под числом химических связей подразумевают
число общих пар электронов. В структурной
формуле соединения, число черточек, отходящих от
данного атома, равно его валентности.

IV. Закрепление

Составление схемы образования ковалентной
полярной связи в молекуле Н2O.  (Презентация
3
, слайд 6)
Выполнение тренировочного теста по теме. (Презентация
2
)

V. Домашнее задание

§ 40, § 41, с 141 – 144. Составить схемы
образования ковалентной связи в молекулах Сl2
и  HCl.

Понравилась статья? Поделить с друзьями:
  • Как найти подходящую музыку для рилс
  • Как найти какую либо игру
  • Как найти долги по налоговой инспекции
  • Как найти работу если нет стажа
  • Как они нашли оборотня видео