Как составить электронные облака


Загрузить PDF


Загрузить PDF

Электронная конфигурация атома — это численное представление его электронных орбиталей. Электронные орбитали — это области различной формы, расположенные вокруг атомного ядра, в которых математически вероятно нахождение электрона. Электронная конфигурация помогает быстро и с легкостью сказать читателю, сколько электронных орбиталей есть у атома, а также определить количество электронов, находящихся на каждой орбитали. Прочитав эту статью, вы освоите метод составления электронных конфигураций.

  1. 1

    Найдите атомный номер вашего атома. Каждый атом имеет определенное число электронов, связанных с ним. Найдите символ вашего атома в таблице Менделеева. Атомный номер — это целое положительное число, начинающееся от 1 (у водорода) и возрастающее на единицу у каждого последующего атома. Атомный номер — это число протонов в атоме, и, следовательно, это еще и число электронов атома с нулевым зарядом.

  2. 2

    Определите заряд атома. Нейтральные атомы будут иметь столько же электронов, сколько показано в таблице Менделеева. Однако заряженные атомы будут иметь большее или меньшее число электронов — в зависимости от величины их заряда. Если вы работаете с заряженным атомом, добавляйте или вычитайте электроны следующим образом: добавляйте один электрон на каждый отрицательный заряд и вычитайте один на каждый положительный.

    • Например, атом натрия с зарядом -1 будет иметь дополнительный электрон в добавок к своему базовому атомному числу 11. Иначе говоря, в сумме у атома будет 12 электронов.
    • Если речь идет об атоме натрия с зарядом +1, от базового атомного числа 11 нужно отнять один электрон. Таким образом, у атома будет 10 электронов.
  3. 3

    Запомните базовый список орбиталей. По мере того, как у атома увеличивается число электронов, они заполняют различные подуровни электронной оболочки атома согласно определенной последовательности. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов. Имеются следующие подуровни:

    • s-подуровень (любое число в электронной конфигурации, которое стоит перед буквой «s») содержит единственную орбиталь, и, согласно Принципу Паули, одна орбиталь может содержать максимум 2 электрона, следовательно, на каждом s-подуровне электронной оболочки может находиться 2 электрона.
    • p-подуровень содержит 3 орбитали, и поэтому может содержать максимум 6 электронов.
    • d-подуровень содержит 5 орбиталей, поэтому в нем может быть до 10 электронов.
    • f-подуровень содержит 7 орбиталей, поэтому в нем может быть до 14 электронов.
    • g-, h-, i- и k-подуровни являются теоретическими. Атомы, содержащие электроны в этих орбиталях, неизвестны. g-подуровень содержит 9 орбиталей, поэтому теоретически в нем может быть 18 электронов. В h-подуровне может быть 11 орбиталей и максимум 22 электрона; в i-подуровне —13 орбиталей и максимум 26 электронов; в k-подуровне — 15 орбиталей и максимум 30 электронов.
    • Запомните порядок орбиталей с помощью мнемонического приема:[1]

      Sober Physicists Don’t Find Giraffes Hiding In Kitchens (трезвые физики не находят жирафов, скрывающихся на кухнях).
  4. 4

    Разберитесь в записи электронной конфигурации. Электронные конфигурации записываются для того, чтобы четко отразить количество электронов на каждой орбитали. Орбитали записываются последовательно, причем количество атомов в каждой орбитали записывается как верхний индекс справа от названия орбитали. Завершенная электронная конфигурация имеет вид последовательности обозначений подуровней и верхних индексов.

    • Вот, например, простейшая электронная конфигурация: 1s2 2s2 2p6. Эта конфигурация показывает, что на подуровне 1s имеется два электрона, два электрона — на подуровне 2s и шесть электронов на подуровне 2p. 2 + 2 + 6 = 10 электронов в сумме. Это электронная конфигурация нейтрального атома неона (атомный номер неона — 10).
  5. 5

    Запомните порядок орбиталей. Имейте в виду, что электронные орбитали нумеруются в порядке возрастания номера электронной оболочки, но располагаются по возрастанию энергии. Например, заполненная орбиталь 4s2 имеет меньшую энергию (или менее подвижна), чем частично заполненная или заполненная 3d10, поэтому сначала записывается орбиталь 4s. Как только вы будете знать порядок орбиталей, вы сможете с легкостью заполнять их в соответствии с количеством электронов в атоме. Порядок заполнения орбиталей следующий: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.

    • Электронная конфигурация атома, в котором заполнены все орбитали, будет иметь следующий вид: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d107p6
    • Обратите внимание, что приведенная выше запись, когда заполнены все орбитали, является электронной конфигурацией элемента Uuo (унуноктия) 118, атома периодической системы с самым большим номером. Поэтому данная электронная конфигурация содержит все известные в наше время электронные подуровни нейтрально заряженного атома.
  6. 6

    Заполняйте орбитали согласно количеству электронов в вашем атоме. Например, если мы хотим записать электронную конфигурацию нейтрального атома кальция, мы должны начать с поиска его атомного номера в таблице Менделеева. Его атомный номер — 20, поэтому мы напишем конфигурацию атома с 20 электронами согласно приведенному выше порядку.

    • Заполняйте орбитали согласно приведенному выше порядку, пока не достигнете двадцатого электрона. На первой 1s орбитали будут находится два электрона, на 2s орбитали — также два, на 2p — шесть, на 3s — два, на 3p — 6, и на 4s — 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Иными словами, электронная конфигурация кальция имеет вид: 1s2 2s2 2p6 3s2 3p6 4s2.
    • Обратите внимание: орбитали располагаются в порядке возрастания энергии. Например, когда вы уже готовы перейти на 4-й энергетический уровень, то сначала записывайте 4s орбиталь, а затем 3d. После четвертого энергетического уровня вы переходите на пятый, на котором повторяется такой же порядок. Это происходит только после третьего энергетического уровня.
  7. 7

    Используйте таблицу Менделеева как визуальную подсказку. Вы, вероятно, уже заметили, что форма периодической системы соответствует порядку электронных подуровней в электронных конфигурациях. Например, атомы во второй колонке слева всегда заканчиваются на «s2«, а атомы на правом краю тонкой средней части оканчиваются на «d10» и т.д. Используйте периодическую систему как визуальное руководство к написанию конфигураций — как порядок, согласно которому вы добавляете к орбиталям соответствует вашему положению в таблице. Смотрите ниже:

    • В частности, две самые левые колонки содержат атомы, чьи электронные конфигурации заканчиваются s-орбиталями, в правом блоке таблицы представлены атомы, чьи конфигурации заканчиваются p-орбиталями, а в нижней части атомы заканчиваются f-орбиталями.
    • Например, когда вы записываете электронную конфигурацию хлора, размышляйте следующим образом: «Этот атом расположен в третьем ряду (или «периоде») таблицы Менделеева. Также он располагается в пятой группе орбитального блока p периодической системы. Поэтому, его электронная конфигурация будет заканчиваться на …3p5
    • Обратите внимание: элементы в области орбиталей d и f таблицы характеризуются энергетическими уровнями, которые не соответствуют периоду, в котором они расположены. Например, первый ряд блока элементов с d-орбиталями соответствует 3d орбиталям, хотя и располагается в 4 периоде, а первый ряд элементов с f-орбиталями соответствует орбитали 4f, несмотря на то, что он находится в 6 периоде.
  8. 8

    Выучите сокращения написания длинных электронных конфигураций. Атомы на правом краю периодической системы называются благородными газами. Эти элементы химически очень устойчивы. Чтобы сократить процесс написания длинных электронных конфигураций, просто записывайте в квадратных скобках химический символ ближайшего благородного газа с меньшим по сравнению с вашим атомом числом электронов, а затем продолжайте писать электронную конфигурацию последующих орбитальных уровней. Смотрите ниже:

    • Чтобы понять эту концепцию, полезно будет написать пример конфигурации. Давайте напишем конфигурацию цинка (атомный номер 30), используя сокращение, включающее благородный газ. Полная конфигурация цинка выглядит так: 1s2 2s2 2p6 3s2 3p6 4s2 3d10. Однако мы видим, что 1s2 2s2 2p6 3s2 3p6 — это электронная конфигурация аргона, благородного газа. Просто замените часть записи электронной конфигурации цинка химическим символом аргона в квадратных скобках ([Ar].)
    • Итак, электронная конфигурация цинка, записанная в сокращенном виде, имеет вид: [Ar]4s2 3d10.
    • Учтите, если вы пишете электронную конфигурацию благородного газа, скажем, аргона, писать [Ar] нельзя! Нужно использовать сокращение благородного газа, стоящего перед этим элементом; для аргона это будет неон ([Ne]).

    Реклама

  1. Изображение с названием ADOMAH Table v2

    1

    Освойте периодическую таблицу ADOMAH. Данный метод записи электронной конфигурации не требует запоминания, однако требует наличия переделанной периодической таблицы, поскольку в традиционной таблице Менделеева, начиная с четвертого периода, номер периода не соответствует электронной оболочке. Найдите периодическую таблицу ADOMAH — особый тип периодической таблицы, разработанный ученым Валерием Циммерманом. Ее легко найти посредством короткого поиска в интернете.[2]

    • В периодической таблице ADOMAH горизонтальные ряды представляют группы элементов, такие как галогены, инертные газы, щелочные металлы, щелочноземельные металлы и т.д. Вертикальные колонки соответствуют электронным уровням, а так называемые «каскады» (диагональные линии, соединяющие блоки s,p,d и f) соответствуют периодам.
    • Гелий перемещен к водороду, поскольку оба этих элемента характеризуются орбиталью 1s. Блоки периодов (s,p,d и f) показаны с правой стороны, а номера уровней приведены в основании. Элементы представлены в прямоугольниках, пронумерованных от 1 до 120. Эти номера являются обычными атомными номерами, которые представляют общее количество электронов в нейтральном атоме.
  2. 2

    Найдите ваш атом в таблице ADOMAH. Чтобы записать электронную конфигурацию элемента, найдите его символ в периодической таблице ADOMAH и вычеркните все элементы с большим атомным номером. Например, если вам нужно записать электронную конфигурацию эрбия (68), вычеркните все элементы от 69 до 120.

    • Обратите внимание на номера от 1 до 8 в основании таблицы. Это номера электронных уровней, или номера колонок. Игнорируйте колонки, которые содержат только вычеркнутые элементы. Для эрбия остаются колонки с номерами 1,2,3,4,5 и 6.
  3. 3

    Посчитайте орбитальные подуровни до вашего элемента. Смотря на символы блоков, приведенные справа от таблицы (s, p, d, and f), и на номера колонок, показанные в основании, игнорируйте диагональные линии между блоками и разбейте колонки на блоки-колонки, перечислив их по порядку снизу вверх. И снова игнорируйте блоки, в которых вычеркнуты все элементы. Запишите блоки-колонки, начиная от номера колонки, за которым следует символ блока, таким образом: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s (для эрбия).

    • Обратите внимание: Приведенная выше электронная конфигурация Er записана в порядке возрастания номера электронного подуровня. Ее можно также записать в порядке заполнения орбиталей. Для этого следуйте по каскадам снизу вверх, а не по колонкам, когда вы записываете блоки-колонки: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f12.
  4. 4

    Посчитайте электроны для каждого электронного подуровня. Подсчитайте элементы, в каждом блоке-колонке которые не были вычеркнуты, прикрепляя по одному электрону от каждого элемента, и запишите их количество рядом с символом блока для каждого блока-колонки таким образом: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f12 5s2 5p6 6s2. В нашем примере это электронная конфигурация эрбия.

  5. 5

    Учитывайте неправильные электронные конфигурации. Существует восемнадцать типичных исключений, относящихся к электронным конфигурациям атомов в состоянии с наименьшей энергией, также называемом основным энергетическим состоянием. Они не подчиняются общему правилу только по последним двум-трем положениям, занимаемым электронами. При этом действительная электронная конфигурация предполагает нахождение электронов в состоянии с более низкой энергией в сравнении со стандартной конфигурацией атома. К атомам-исключениям относятся:

    • Cr (…, 3d5, 4s1); Cu (…, 3d10, 4s1); Nb (…, 4d4, 5s1); Mo (…, 4d5, 5s1); Ru (…, 4d7, 5s1); Rh (…, 4d8, 5s1); Pd (…, 4d10, 5s0); Ag (…, 4d10, 5s1); La (…, 5d1, 6s2); Ce (…, 4f1, 5d1, 6s2); Gd (…, 4f7, 5d1, 6s2); Au (…, 5d10, 6s1); Ac (…, 6d1, 7s2); Th (…, 6d2, 7s2); Pa (…, 5f2, 6d1, 7s2); U (…, 5f3, 6d1, 7s2); Np (…, 5f4, 6d1, 7s2) и Cm (…, 5f7, 6d1, 7s2).

    Реклама

Советы

  • Чтобы найти атомный номер атома, когда он записан в форме электронной конфигурации, просто сложите все числа, которые идут за буквами (s, p, d, и f). Это работает только для нейтральных атомов, если вы имеете дело с ионом, то ничего не получится — вам придется добавить или вычесть количество дополнительных или потерянных электронов.
  • Число, идущее за буквой — это верхний индекс, не сделайте ошибку в контрольной.
  • «Стабильности полузаполненного» подуровня не существует. Это упрощение. Любая стабильность, которая относится к «наполовину заполненным» подуровням, имеет место из-за того, что каждая орбиталь занята одним электроном, поэтому минимизируется отталкивание между электронами.
  • Каждый атом стремится к стабильному состоянию, а самые стабильные конфигурации имеют заполненные подуровни s и p (s2 и p6). Такая конфигурация есть у благородных газов, поэтому они редко вступают в реакции и в таблице Менделеева расположены справа. Поэтому, если конфигурация заканчивается на 3p4, то для достижения стабильного состояния ей необходимо два электрона (чтобы потерять шесть, включая электроны s-подуровня, потребуется больше энергии, поэтому потерять четыре легче). А если конфигурация оканчивается на 4d3, то для достижения стабильного состояния ей необходимо потерять три электрона. Кроме того, полузаполненные подуровни (s1, p3, d5..) являются более стабильными, чем, например, p4 или p2; однако s2 и p6 будут еще более устойчивыми.
  • Когда вы имеете дело с ионом, это значит, что количество протонов не равно количеству электронов. Заряд атома в этом случае будет изображен сверху справа (как правило) от химического символа. Поэтому атом сурьмы с зарядом +2 имеет электронную конфигурацию 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p1. Обратите внимание, что 5p3 изменилось на 5p1. Будьте внимательны, когда конфигурация нейтрального атома заканчивается на подуровни, отличные от s и p. Когда вы забираете электроны, вы можете забрать их только с валентных орбиталей (s и p орбиталей). Поэтому, если конфигурация заканчивается на 4s2 3d7 и атом получает заряд +2, то конфигурация будет заканчиваться 4s0 3d7. Обратите внимание, что 3d7 не меняется, вместо этого теряются электроны s-орбитали.
  • Существуют условия, когда электрон вынужден «перейти на более высокий энергетический уровень». Когда подуровню не хватает одного электрона до половинной или полной заполненности, заберите один электрон из ближайшего s или p- подуровня и переместите его на тот подуровень, которому необходим электрон.
  • Имеется два варианта записи электронной конфигурации. Их можно записывать в порядке возрастания номеров энергетических уровней или в порядке заполнения электронных орбиталей, как было показано выше для эрбия.
  • Также вы можете записывать электронную конфигурацию элемента, записав лишь валентную конфигурацию, которая представляет собой последний s и p подуровень. Таким образом, валентная конфигурация сурьмы будет иметь вид 5s2 5p3.
  • Ионы не то же самое. С ними гораздо сложнее. Пропустите два уровня и действуйте по той же схеме в зависимости от того, где вы начали, и от того, насколько велико количество электронов.

Реклама

Об этой статье

Эту страницу просматривали 483 393 раза.

Была ли эта статья полезной?

Строение электронных оболочек атомов

На этом уроке вы узнаете, как устроена электронная оболочка атома, и сможете объяснить явление периодичности. Познакомитесь с моделями строения электронных оболочек атомов, с помощью которых можно предсказать и объяснить свойства химических элементов и их соединений.

I. Состояние электронов в атоме

Вы­да­ю­щий­ся дат­ский физик Нильс Бор (Рис. 1) пред­по­ло­жил, что элек­тро­ны в атоме могут дви­гать­ся не по любым, а по стро­го опре­де­лен­ным ор­би­там.

При этом элек­тро­ны в атоме раз­ли­ча­ют­ся своей энер­ги­ей. Как по­ка­зы­ва­ют опыты, одни из них при­тя­ги­ва­ют­ся к ядру силь­нее, дру­гие – сла­бее. Глав­ная при­чи­на этого за­клю­ча­ет­ся в раз­ном уда­ле­нии элек­тро­нов от ядра атома. Чем ближе элек­тро­ны к ядру, тем они проч­нее свя­за­ны с ним и их труд­нее вы­рвать из элек­трон­ной обо­лоч­ки. Таким об­ра­зом, по мере уда­ле­ния от ядра атома запас энер­гии элек­тро­на уве­ли­чи­ва­ет­ся.

Элек­тро­ны, дви­жу­щи­е­ся вб­ли­зи ядра, как бы за­го­ра­жи­ва­ют (экра­ни­ру­ют) ядро от дру­гих элек­тро­нов, ко­то­рые при­тя­ги­ва­ют­ся к ядру сла­бее и дви­жут­ся на боль­шем уда­ле­нии от него. Так об­ра­зу­ют­ся элек­трон­ные слои.

Каж­дый элек­трон­ный слой со­сто­ит из элек­тро­нов.

Электрон вращается вокруг ядра атома с невообразимой скоростью. Так, за 1 секунду  он делает столько оборотов вокруг ядра атома, сколько оборотов делает пропеллер самолета вокруг оси за 5–5,5 лет непрерывной работы двигателя. Пропеллер самолета образует «облако», находящееся в одной плоскости, а электрон образует объемное облако –электронное облако, форма и размер которого зависят от энергии электрона.

Если обозначить точками все вероятные места нахождения электрона в атомном пространстве за некоторое время, то совокупность этих точек будет представлять собойэлектронное облако.

II. Электронное облако

Электронное облако – это модель, которая описывает  состояние (движение) электрона в атоме.

Электронное облако не имеет строго очерченных границ и плотность его неравномерна.

Часть атомного пространства, в котором вероятность нахождения электрона наибольшая (~90%), называется орбиталью.

Виды электронных орбиталей

Форма орбитали в пространстве

Количество орбиталей в атоме.

Условное обозначение орбитали – клетка: 

s – орбиталь

(электронное облако s – электрона)

сфера (шар)

Электронное облако такой формы может занимать в атоме одно положение

(условное обозначение)

p – орбиталь

(электронное облако p – электрона)

гантель (восьмёрка)

Электронное облако такой формы может занимать в атоме три положения вдоль осей координат пространства  xy и z.

 (условное обозначение)

d – орбиталь

(электронное облако d – электрона)

четырёхлепестковая форма

Все d-орбитали (а их может быть уже пять) одинаковы по энергии, но по-разному расположены в пространстве. Да и по форме, напоминающей перевязанную лентами подушечку, одинаковы только четыре. 
А пятая — вроде гантели, продетой в бублик

         

(условное обозначение)

f – орбиталь

(электронное облако f – электрона)

сложная форма

Электронное облако такой формы может занимать в атоме семь положений.

             

 (условное обозначение)

Условное обозначение электрона – стрелка, направленная вверх↑ (электрон вращается вокруг собственной оси по часовой стрелке) или стрелка, направленная вниз↓ (электрон вращается вокруг собственной оси против часовой стрелки).

Число электронов в атоме определяют по порядковому номеру

О – 8 электронов, S – 16 электронов.

На одной орбитали могут находиться только ДВА электрона, которые вращаются вокруг своей оси в противоположных направлениях (по часовой стрелке и против часовой стрелке) – электроны с противоположными спинами:

Cледовательно, на s – орбитали максимально может разместиться два электрона (s2);  на p – орбитали максимально может разместиться шесть электронов (p6) на  d – орбитали максимально может разместиться десять электронов (d10); f – четырнадцать электронов (f14).

Располагаясь на различных расстояниях от ядра, электроны образуют электронные слои (энергетические уровни) – каждому слою соответствует определённый уровень энергии.

Условное обозначение уровня — скобка:   )

Число энергетических уровней определяют по номеру периода, в котором находится химический элемент

О – 2 уровня, S – три уровня.

Для элементов главных подгрупп (А) число электронов на внешнем уровне = номеру группы.

+15P – V группа (А) – на внешнем уровне 5 электронов

Для элементов побочных подгрупп (В) число электронов на внешнем уровне = двум.

Исключения (один электрон) – хром, медь, серебро, золото и некоторые другие.

III. Формулы отражающие строение атомов первого и второго периодов

H +1 )1e 

– схема строения атома, отображает распределение электронов по энергоуровням.

+1 Н   1s1 

– электронная формула, отображает число электронов по орбиталям.

+1 Н  

— электронно-графическая формула – показывает распределение электронов по орбиталям и отображает спин электрона.

У элементов второго периода начинается заполнение второго энергетического уровня — он включает восемь электронов (n = 2, N = 8). Второй период содержит восемь элементов. У неона, элемента, завершающего второй период, первый и второй энергетические уровни оказываются целиком заполненными.

Аме­ри­кан­ский химик Гил­берт Льюис дал объ­яс­не­ние этому и вы­дви­нул пра­ви­ло ок­те­та, в со­от­вет­ствии с ко­то­рым устой­чи­вым яв­ля­ет­ся вось­ми­элек­трон­ный слой (за ис­клю­че­ни­ем 1 слоя: т. к. на нем может на­хо­дить­ся не более 2 элек­тро­нов, устой­чи­вым для него будет двух­элек­трон­ное со­сто­я­ние).

IV. Распределение электронов по энергетическим уровням элементов третьего и четвертого периодов ПСХЭ

1. Порядок заполнения уровней и подуровней электронами

Электронные формулы атомов химических элементов составляют в следующем порядке:

  • Сначала по номеру элемента в таблице Д. И. Менделеева определяют общее число электронов в атоме;
  • Затем по номеру периода, в котором расположен элемент, определяют число энергетических уровней;
  • Уровни разбивают на подуровни и орбитали, и заполняют их электронами в соответствии Принципом наименьшей энергии
  • Для  удобства электроны можно распределить по энергетическим уровням, воспользовавшись формулой N=2n2 и с учётом того, что:
  1. У элементов главных подгрупп (s-;p-элементы) число электронов на внешнем уровне равно номеру группы.
  2. У элементов побочных подгрупп на внешнем уровне обычно дваэлектрона (исключение составляют атомы CuAgAuCrNbMoRuRh, у которых на внешнем уровне один электрон, у Pd на внешнем уровне нольэлектронов);
  3. Число электронов на предпоследнем уровне равно общему числу электронов в атоме минус число электронов на всех остальных уровнях.

Порядок заполнения электронами атомных орбиталей определяется:

Принципом наименьшей энергии

  Шкала энергий:

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s…

2. Семейства химических элементов

Элементы, в атомах которых происходит заполнение электронами s-подуровня внешнегоэнергетического уровня, называются s-элементами. Это первые 2 элемента каждого периода, составляющие главные подгруппы I и II групп.

Элементы, в атомах которых электронами заполняется p-подуровень внешнегоэнергетического уровня, называются p-элементами. Это последние 6 элементов каждого периода (за исключением I и VII), составляющие главные подгруппы IIIVIII групп.

Элементы, в которых заполняется d-подуровень второго снаружи уровня, называются d-элементами. Это элементы вставных декад IVVVI периодов.

Элементы, в которых заполняется f-подуровень третьего снаружи уровня, называются f-элементами. К f-элементам относятся лантаноиды и актиноиды. 

В третьем периоде происходит заполнение третьего энергетического уровня. Третий уровень (n = 3) может максимально вмещать 18 электронов. Однако элементов в третьем периоде всего восемь. К концу третьего периода (у аргона) полностью заполняются 3s- и 3p-подуровни, а 3d-подуровень остается пустым, поэтому третий уровень не заполняется до конца.

В четвертом периоде у первых двух элементов (калия и кальция) электроны идут на четвертый энергетический уровень (4s-подуровень), а затем у последующих десяти элементов (от скандия до цинка) завершается заполнение третьего энергетического уровня (3d-подуровня).

«Проскок» или «провал» электрона

У атомов  Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Pt, Au  имеет место «провал» электрона с s-подуровня внешнего слоя на d-подуровень предыдущего слоя, что приводит к энергетически более устойчивому состоянию атома. Например, электронная формула атома меди, исходя из вышенаписанного, должна иметь вид: Cu 1s22s22p63s23p64s23d9. Однако в действительности один из двух 4s-электронов «проваливается» на 3d-подуровень, и атом меди имеет следующую конфигурацию: 1s22s22p63s23p64s13d10

 Для элементов IБ-подгруппы характерна конфигурация внешнего слоя: ns1(n−1)d10.

Для элементов Cr и Mo характерна конфигурация внешнего слоя: ns1(n−1)d5.

Особо следует отметить палладий, у которого «проваливаются» два электрона:  

Pd1s22s22p63s23p64s23d104p65s04d10

V. Тест

Решите тестовые задания (один верный вариант ответа).

1. Заряд ядра атома фосфора равен

а) +30 

б) +31 

в) +15 

г) +5

2. Количество энергоуровней в атоме равно

а) порядковому номеру элемента;

б) номеру группы;

в) заряду ядра атома; 

г) номеру периода

3. Число нейтронов в атоме цинка равно

а) 30 

б) 35 

в) 4 

г) 2

4. В ряду элементов Na, Mg, Al, Cl металлические свойства

а) убывают;

б) возрастают;

в) не изменяются;

г) сначала убывают, а затем возрастают

5. Формула высшего оксида RO2 характерна для

а) Li 

б) Br 

в) C 

г) N

6. Электронная формула строения атома меди, это-

а) 1s22s22p63s23p64s23d10

б) 1s22s22p63s23p64s23d9;

в) 1s22s22p63s13p64s23d10

г) 1s22s22p63s23p64s23d11.

7. Заряд ядра атома кальция равен

а) 20 

б) 2 

в) 40 

г) 41

8. Число электронов на внешнем энергоуровне для элементов главных подгрупп равно

а) номеру периода;

б) номеру группы;

в) порядковому номеру элемента;

г) атомной массе.

9. Число нейтронов в атоме железа равно

а) 26

б) 55 

в) 56 

г) 30

10. В ряду элементов C, Si, Ge, Sn способность отдавать валентные электроны

а) уменьшается;

б) не изменяется;

в) увеличивается;

г) сначала увеличивается, а затем уменьшается.

11. Формула летучего водородного соединения для элемента с электронным строением атома 1s22s22p2 – это

а) RH4;

б) RH3;

в) RH2;

г) RH.

12. Электронная формула строения атома мышьяка, это-

а) 1s22s22p63s23p64s13d114p3

б) 1s22s22p63s23p64s23d94p4;

в) 1s22s22p63s23p64s13d104p4

г) 1s22s22p63s23p64s23d104p4.

Тренажер №1

Тренажер №2

Электронная конфигурация атома

Электронная конфигурация атома — это формула, показывающая расположение электронов в атоме по уровням и
подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и
сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали
одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему.
Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может
превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину.
Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо
изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном
состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество
протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов — 16й элемент периодической
системы. Золото имеет 79 протонов — 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном
состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются
квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин «орбиталь», орбиталь — это волновая функция электрона,
грубо — это область, в которой электрон проводит 90% времени.

N — уровень
L — оболочка
Ml — номер орбитали
Ms — первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии,
облако принимает четыре основных формы: шар, гантели и другие две, более сложные.
В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой.
На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f)
орбиталей. Орбитальное квантовое число — это оболочка, на которой находятся
орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно
принимает значения 0,1,2 или 3.

Как выглядят орбитали в атоме, формы орбиталей

На s-оболочке одна орбиталь (L=0) — два электрона
На p-оболочке три орбитали (L=1) — шесть электронов
На d-оболочке пять орбиталей (L=2) — десять электронов
На f-оболочке семь орбиталей (L=3) — четырнадцать электронов

Магнитное квантовое число ml

На p-оболочке находится три орбитали, они обозначаются цифрами
от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали «-1», «0» и «1».
Магнитное квантовое число обозначается буквой ml.

Внутри оболочки электронам легче
располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую
орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять
электронов заполняют оболочку принимая значения Ml=-2,Ml=-1,Ml=0,
Ml=1,Ml=2.

Спиновое квантовое число ms

Спин — это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число
имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с
противоположными спинами. Спиновое квантовое число обозначается ms

Главное квантовое число n

Главное квантовое число — это уровень энергии, на данный момент известны семь энергетических уровней,
каждый обозначается арабской цифрой: 1,2,3,…7. Количество оболочек на каждом уровне равно номеру уровня:
на первом уровне одна оболочка, на втором две и т.д.

Номер электрона

Расположение электронов в атоме, электронная конфигурация атома

Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой
позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне
распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0,
магнитное квантовое число может принять только одно значение, Ml=0 и спин будет равен +1/2.
Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут:
N=2, L=1, M=-1, спин 1/2.

Энергетические уровни с подуровнями для наглядности изображены ниже, сверху вниз расположены уровни
и цветом разделены подуровни:

1
2
3
4
5
6
7
8
Таблица 1. Распределение электронов по энергетическим уровням

Здесь, сверху-вниз показаны энергетические уровни (1-7), слева-направо разделены по группам электронные
подуровни (s,p,d,f), в каждой ячейке располагаются по два электрона в противоположных направлениях. Общий
принцип распределения электронов такой, что энергетические подуровни заполняются в порядке суммы главного
и орбитального квантовых чисел, то есть: 1S, 2S, 2P, 3S, 3P, 4S, 3D и так далее, если сумма одинакова, то
сначала заполняется уровень с меньшим главным квантовым числом N.

У некоторых элементов имеются отклонения в формировании электронной конфигурации, а именно у
24Cr,
29Cu,
41Nb,
42Mo,
44Ru,
45Rh,
46Pd,
47Ag,
78Pt,
79Au

Элементы

Проверьте себя, составьте электронную конфигурацию для элементов #3, #13 и #16, затем проверьте себя по таблице ниже.

Элемент Название Электронная конфигурация Энергетических уровней
1 H водород 1s 1 1
2 He гелий 1s 2 1
3 Li литий 1s 22s 1 2
4 Be бериллий 1s 22s 2 2
5 B бор 1s 22s 22p 1 2
6 C углерод 1s 22s 22p 2 2
7 N азот 1s 22s 22p 3 2
8 O кислород 1s 22s 22p 4 2
9 F фтор 1s 22s 22p 5 2
10 Ne неон 1s 22s 22p 6 2
11 Na натрий 1s 22s 22p 63s 1 3
12 Mg магний 1s 22s 22p 63s 2 3
13 Al алюминий 1s 22s 22p 63s 23p1 3
14 Si кремний 1s 22s 22p 63s 23p2 3
15 P фосфор 1s 22s 22p 63s 23p3 3
16 S сера 1s 22s 22p 63s 23p4 3
17 Cl хлор 1s 22s 22p 63s 23p5 3
18 Ar аргон 1s 22s 22p 63s 23p6 3
19 K калий 1s 22s 22p 63s 23p64s 1 4
20 Ca кальций 1s 22s 22p 63s 23p64s 2 4
21 Sc скандий 1s 22s 22p 63s 23p64s 23d1 4
22 Ti титан 1s 22s 22p 63s 23p64s 23d2 4
23 V ванадий 1s 22s 22p 63s 23p64s 23d3 4
24 Cr хром 1s 22s 22p 63s 23p64s 13d5 4
25 Mn марганец 1s 22s 22p 63s 23p64s 23d5 4
26 Fe железо 1s 22s 22p 63s 23p64s 23d6 4
27 Co кобальт 1s 22s 22p 63s 23p64s 23d7 4
28 Ni никель 1s 22s 22p 63s 23p64s 23d8 4
29 Cu медь 1s 22s 22p 63s 23p64s 13d10 4
30 Zn цинк 1s 22s 22p 63s 23p64s 23d10 4
31 Ga галлий 1s 22s 22p 63s 23p64s 23d104p1 4
32 Ge германий 1s 22s 22p 63s 23p64s 23d104p2 4
33 As мышьяк 1s 22s 22p 63s 23p64s 23d104p3 4
34 Se селен 1s 22s 22p 63s 23p64s 23d104p4 4
35 Br бром 1s 22s 22p 63s 23p64s 23d104p5 4
36 Kr криптон 1s 22s 22p 63s 23p64s 23d104p6 4
37 Rb рубидий 1s 22s 22p 63s 23p64s 23d104p65s1 5
38 Sr стронций 1s 22s 22p 63s 23p64s 23d104p65s2 5
39 Y иттрий 1s 22s 22p 63s 23p64s 23d104p65s24d1 5
40 Zr цирконий 1s 22s 22p 63s 23p64s 23d104p65s24d2 5
41 Nb ниобий 1s 22s 22p 63s 23p64s 23d104p65s14d4 5
42 Mo молибден 1s 22s 22p 63s 23p64s 23d104p65s14d5 5
43 Tc технеций 1s 22s 22p 63s 23p64s 23d104p65s24d5 5
44 Ru рутений 1s 22s 22p 63s 23p64s 23d104p65s14d7 5
45 Rh родий 1s 22s 22p 63s 23p64s 23d104p65s14d8 5
46 Pd палладий 1s 22s 22p 63s 23p64s 23d104p64d10 5
47 Ag серебро 1s 22s 22p 63s 23p64s 23d104p65s14d10 5
48 Cd кадмий 1s 22s 22p 63s 23p64s 23d104p65s24d10 5
49 In индий 1s 22s 22p 63s 23p64s 23d104p65s24d105p1 5
50 Sn олово 1s 22s 22p 63s 23p64s 23d104p65s24d105p2 5
51 Sb сурьма 1s 22s 22p 63s 23p64s 23d104p65s24d105p3 5
52 Te теллур 1s 22s 22p 63s 23p64s 23d104p65s24d105p4 5
53 I йод 1s 22s 22p 63s 23p64s 23d104p65s24d105p5 5
54 Xe ксенон 1s 22s 22p 63s 23p64s 23d104p65s24d105p6 5
55 Cs цезий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s1 6
56 Ba барий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s2 6
57 La лантан 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s25d1 6
58 Ce церий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f2 6
59 Pr празеодим 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f3 6
60 Nd неодим 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f4 6
61 Pm прометий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f5 6
62 Sm самарий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f6 6
63 Eu европий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f7 6
64 Gd гадолиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f75d1 6
65 Tb тербий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f9 6
66 Dy диспрозий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f10 6
67 Ho гольмий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f11 6
68 Er эрбий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f12 6
68 Tm тулий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f13 6
70 Yb иттербий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f14 6
71 Lu лютеций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d1 6
72 Hf гафний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d2 6
73 Ta тантал 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d3 6
74 W вольфрам 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d4 6
75 Re рений 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d5 6
76 Os осмий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d6 6
77 Ir иридий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d7 6
78 Pt платина 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d9 6
79 Au золото 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s14f145d10 6
80 Hg ртуть 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d10 6
81 Tl таллий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p1 6
82 Pb свинец 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p2 6
83 Bi висмут 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p3 6
84 Po полоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p4 6
85 At астат 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p5 6
86 Rn радон 1s 22s 22p 63s 23p64s 23d104p65s14d105p66s24f145d106p6 6
87 Fr франций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s1 7
88 Ra радий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s2 7
89 Ac актиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d1 7
90 Th торий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s26d25f0 7
91 Pa протактиний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f26d1 7
92 U уран 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f36d1 7
93 Np нептуний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f46d1 7
94 Pu плутоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f56d1 7
95 Am америций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f7 7
96 Cm кюрий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f76d1 7
97 Bk берклий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f86d1 7
98 Cf калифорний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f10 7
99 Es эйнштейний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f11 7
100 Fm фермий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f12 7
101 Md менделеевий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f13 7
102 No нобелий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f14 7
103 Lr лоуренсий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d1 7
104 Rf резерфордий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d2 7
105 Db дубний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d3 7
106 Sg сиборгий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d4 7
107 Bh борий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d5 7
108 Hs хассий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d6 7
109 Mt мейтнерий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d7 7
110 Ds дармштадтий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d8 7
111 Rg рентгений 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d9 7
112 Cn коперниций 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d10 7
113 Nh нихоний 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p1 7
114 Fl флеровий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p2 7
115 Mc московий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p3 7
116 Lv ливерморий 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p4 7
117 Ts теннесcин 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p5 7
118 Og оганесон 1s 22s 22p 63s 23p64s 23d104p65s24d105p66s24f145d106p67s25f146d107p6 7
Таблица 2. Электронная конфигурация атомов

Если Вы хотите узнать, как составить электронную конфигурацию, обратитесь к статье
«как написать электронную конфигурацию»

Квантовые числа электронов в атомах

Значения квантовых
чисел n
и
l
определяют как энергию соответствующих
электронов в атоме, так и форму области
пространства, в котором наиболее вероятно
нахождение электрона (максимальна
плотность электронного облака).

Значение n
прежде всего
отражается на протяженности электронного
облака. Чем больше n,
тем
дальше от ядра существует заметная
плотность облака, отвечающего данному
электрону (хотя увеличение объема этой
области с ростом n
сравнительно невелико). На форме
электронного облака сказывается главным
образом значение побочного квантового
числа l.
Так, если l
=
0, т.е. речь
идет об sэлектронах,
то облако имеет сферическую форму
(рис.1,а). Облако имеет центральную
симметрию. Интересно следующее. Если
на sорбитали
находится только
один неспаренный электрон, то объем (и
радиус сферы, отвечающей основной
плотности этого облака) заметно больше,
чем объем орбитали, на которой расположены
два спаренных электрона. Появление
второго электрона приводит к уменьшению
объема соответствующего сферического
облака на 25-30% и больше.

Если
речь идет о p-электронах
(l
= 1),
то облако имеет не центральную, а осевую
симметрию. Таких электронных облаков
3. Электроны располагаются на взаимно
перпендикулярных осях, проходящих через
центр ядра атома (рис.1, б). Эти оси можно
обозначить как x,
y
и z.
Соответственно, сами облака можно
обозначить как
px,
py
и pz
(рис.
2). Каждое электронное облако может
включать электронную плотность,
отвечающую двум электронам с разными
значениями спина). Каждое p
облако имеет две части, расположенные
по разные стороны от центра ядра атома
(в том числе и тогда, когда на этой
орбитали находится только один неспаренный
электрон). Очень приближенно каждое
такое облако можно представить себе
как две свеклы с длинными хвостиками,
соединенные между собой в тех местах,
где была удалена ботва (рис.3).

В
случае l
= 2 или 3 (т.е. d
или
f-электронов)
форма облаков (соответственно пяти или
семи) еще более сложная и здесь
рассматриваться не будет.

При
последовательном заполнении электронами
электронных оболочек и подоболочек
(подуровней) электроны сначала поступают
в атоме на те орбитали, где их энергия
минимальна (т.е. электроны наиболее
прочно связаны с ядром). Особенности
изменения энергии электронов по мере
заполнения электронной оболочки атомов
показаны на рис. 4.

Сначала
электроны попадают на самый низший
уровень 1s.
Когда он полностью заполняется, новые
электроны начинают поступать на уровень
с большей энергией 2s,
потом – на уровень 2p,
затем – на 3s
и далее на 3p.
Уровень 3d
по энергии оказывается более высоким,
чем 4s,
потому очередной электрон сначала
попадает на уровень 4s,
а
только потом на уровень 3d
и т.д., как это показано на рис. 4.

Из-за
того, что значение главного квантового
числа в квадрате n2
входит в выражение для энергии электрона
в знаменатель, различия в энергии
электронов с разными значениями главного
квантового числа n,
отвечающие электронным оболочкам с n
и
n+1
(значения разности En
En+1),
быстро уменьшаются по мере роста n.
Это
сближение условно отражено на рис. 4.

Руководствуясь
приведенными выше сведениями о квантовых
числах и порядке заполнения электронами
атомов химических элементов, можно
построить периодическую систему
элементов. Удивительно, что Д.И.Менделеев,
ничего не зная о квантовых числах,
уровнях, подуровнях и других характеристиках
электрона и электронных оболочек атомов,
смог на основании гениальной интуиции
создать более 150 лет назад периодическую
систему элементов!

В
атоме водорода H
(атомный номер Z
=
1) первый электрон попадает на уровень
1s
(рис.
5). В атоме гелия Не (Z
=
2) новый электрон попадает также на
уровень 1s.
У
одного из двух электронов атома гелия
набор квантовых чисел такой: n
= 1, l
= 0, m
=
0, s
= ½; а у
второго – n
= 1, l
= 0, m=0,
s
= –½. В
атоме следующего за гелием элемента
лития Li
(Z
=
3) три
электрона. Однако третьему электрону
места в оболочке с n
= 1 нет: квантовые характеристики третьего
электрона в этой оболочке будут полностью
совпадать с характеристиками одного
из двух уже имеющихся здесь электронов.
А такое совпадение невозможно, оно
запрещено принципом Паули. Поэтому
третий электрон атома лития занимает
место на второй электронной оболочке,
так что у него n
= 2. Остальные его квантовые характеристики
следующие: l
= 0, m
=
0, s
= ½.

Для того, чтобы
отразить характер заполнения электронами
какого-либо атома, используют не
пространные записи типа приведенных
выше, а так называемые электронные
конфигурации атомов. В случае атома
лития электронная конфигурация
нейтрального невозбужденного атома
имеет вид: 1s22s1
(нужно отметить, что и во всех остальных
случаях в этом разделе речь идет об
описании электронных конфигураций
именно нейтральных невозбужденных
атомов).

На орбитали 2s
могут
находиться (в соответствии с принципом
Паули) 2 электрона (с разными значениями
спина). Поэтому понятно, что электронная
конфигурация следующего за литием в
периодической системе элемента бериллия
Ве (Z
=
4) 1s22s2.

В атоме бериллия
все места для электронов на 2sподуровне
заняты. Новый, пятый электрон у атома
следующего за бериллием элемента бора
В (Z
=
5) поступает на орбиталь, для которой n
= 2, значение побочного квантового числа
l
= 1, магнитного m
=
0, а спин s
= ½. Орбиталь
с l
= 1 – это орбиталь р-электрона.
Всего таких орбиталей 3. Электронная
конфигурация атома бора 1s22s22р1.

В
атоме следующего за бором элемента –
углерода С (Z
=
6) шесть электронов. Шестой электрон
может попасть на 2р-орбиталь,
где уже имеется один электрон со спином
s
= +½, а может
– и на свободную 2р-орбиталь,
где еще нет электрона. В соответствии
с правилом, Гунда (фамилию сейчас часто
пишут через первую букву «х»: Хунд) в
пределах одного подуровня электроны
располагаются так, чтобы их суммарный
спин был максимален. Иными словами,
правило Гунда – правило максимальной
мультиплетности спина, т.е. максимального
сложения значений спина электронов
данного подуровня.

Поэтому
первый электрон, оказавшийся на орбитали,
всегда имеет спин + ½
и правильно изображается стрелкой,
направленной вверх (↑). Новый шестой
электрон в атоме углерода попадает на
свободную 2р-орбиталь
со спином +
½, и суммарный
спин электронов, оказавшихся в атоме С
на 2р
–подуровне, оказывается равен ½ +½ = 1
(если бы шестой электрон в атоме С занял
место на орбитали, где уже был электрон
со спином ½, суммарный спин двух электронов
стал бы равен 0). Таким образом, электронная
конфигурация атома С 1s22s22р2.

С учетом правила
Гунда новый электрон в атоме элемента
азота N
(Z
=
7) попадает
на третью свободную р-орбиталь
второго подуровня. Электронная
конфигурация атома N
1s22s22р3
, а суммарный спин атома равен 1,5 (3 . ½).

В атоме следующего
за азотом элемента кислорода О (Z
=
8) свободных
р-орбиталей
нет, и восьмой электрон занимает место
на одной из этих орбиталей, где уже был
неспаренный электрон. Спин нового
электрона –½, а суммарный спин атома
кислорода ½ + ½ = 1. Электронная конфигурация
атома О 1s22s22р4.

Понятно, что в
атоме фтора F
(Z
=
9) остается только один неспаренный
электрон со спином ½.
Электронная конфигурация этого атома
1s22s22р5.

В атоме замыкающего
второй период элемента неона Ne
(Z
=
10) все электроны 2р-подуровня
спарены. Суммарный спин атома неона 0,
а его электронная конфигурация 1s22s22р6.
Теперь все места
на уровне с главным квантовым числом n
= 2 заняты,
и в соответствии с принципом Паули
одиннадцатый электрон в атоме следующего
в периодической системе за неоном
элемента натрия Na
(Z
=
11) занимает место на 3sорбитали
следующего электронного слоя с n
= 3. Электронная конфигурация атома
натрия 1s22s22р63s1,
его спин ½.

У последующих
элементов от магния Mg
(Z
=
12) до аргона Ar
(Z
=
18) порядок заполнения электронами 3s
и 3р-подуровней
аналогичен порядку заполнения 2s
и 2р-подуровней
второго электронного слоя. Электронная
конфигурация аргона Ar
1s22s22р63s23р6.

Уже отмечалось,
что координата электрона в атоме не
определена, и указать, какой электрон
ближе к ядру, а какой дальше, нельзя. Тем
не менее, в литературе устоялись идущие
от доволновых представлений о природе
электрона выражения типа «внешний
электронный слой», «предвнешний
электронный слой» и аналогичные. В
рамках таких представлений электронный
слой атома с максимальным для его
электронов значением главного квантового
числа называют внешним. Если использовать
этот термин, то можно сказать, что внешние
электронные слои атомов аргона и неона
характеризуются одинаковой конфигурацией
s2р6.

Как следует из
приведенной на рис. 4 диаграммы, энергия
электронов 4s–подуровня
в атоме меньше, чем 3d-подуровня.
Поэтому новый, девятнадцатый электрон
в атоме калия K
(Z
=
19) поступает
не на 3d-подуровень,
который имеется в слое с главным квантовым
числом n
= 3, а на 4s-подуровень
следующего электронного слоя с главным
квантовым числом n
= 4. Поэтому электронная конфигурация
атома калия 1s22s22р63s23р64s1.
Электронная конфигурация следующего
за калием в периодической системе
элемента кальция Са (Z
=
20) 1s22s22р63s23р64s2.

В атоме кальция
оба места на 4s-орбитали
электронами заняты. Энергия 3d-подуровня
ниже, чем 4p
(рис.4). Поэтому, если атомный номер
элемента увеличится еще на единицу, то
новый двадцать первый электрон в атоме
элемента скандия (Z
= 21) попадет на одно из вакантных мест
на 3d–подуровне,
состоящего из пяти орбиталей (рис.6).

Заполнение
электронами 3d–подуровня
в атомах двух следующих элементов –
титана Ti
(Z
= 22) и ванадия V
(Z
= 23) происходит в соответствии с
приведенными выше принципами и правилами.
В результате в атоме ванадия на
3d–подуровне
оказывается три неспаренных электрона
(электронная конфигурация атома ванадия
1s22s22р63s23р63d34s2)
и приводит к тому, что в этом атоме три
неспаренных электрона.

Обратите внимание!
Хотя по энергии 3d–электроны
выше, чем 4sэлектронов,
и попали они в соответствующие атомы
уже тогда, когда 4sэлектроны
в их оболочке уже были, при указании
электронной конфигурации 4sэлектроны
записывают после 3d–электронов.

Казалось бы,
электронная конфигурация атома хрома
Cr
(Z
= 24) будет 1s22s22р63s23р63d44s2
и спин атома хрома 2 (4
½). Но на самом деле спин этого атома 3
(6½).
Откуда же в атоме хрома 6 неспаренных
электронов? Дело в том, что состояние с
наполовину заполненным электронами
3dподуровне
(по одному электрону на каждой из пяти
3dорбиталей)
и одним электроном на 4s-подуровне
энергетически более выгодно (т.е. обладает
меньшей энергией), чем распределение
электронов, отвечающее конфигурации
1s22s22р63s23р63d44s2.

В атоме хрома один
электрон с 4sорбитали
как бы «проваливается» и попадает на
свободную 3dорбиталь.
Поэтому правильно записанная электронная
конфигурация нейтрального невозбужденного
атома хрома 1s22s22р63s23р63d54s1.
В атоме хрома 6 неспаренных электронов
(пять на 3d5
и один на 4s1).
Поэтому суммарный спин атома хрома
равен 3. Численноре значение спина хрома
самое большое для атомов 4-го периода.

Далее сначала
происходит заполнение 4s–подуровня
(электронная конфигурация атома марганца
Mn,
для которого Z
= 25, 1s22s22р63s23р63d54s1).
Затем наблюдается дозаполнение
(достройка) 3dподуровня.

Электронная
конфигурация атома меди Cu,
Z
= 29, 1s22s22р63s23р63d104s1,
а атома цинка Zn
(Z
= 30) 1s22s22р63s23р63d104s2.
Далее с ростом атомного номера элемента
до Z
= 38 у криптона Kr
происходит постепенное заполнение
электронами 4р-подуровня.
Электронная Последующее заполнение
электронами слоев и подуровней в атомах
происходит в соответствии с указанными
выше принципами и правилами. Заполнение
электронами 4f
–подуровня, который имеется в 4-м
электроном слое, начинается у элементов
не 5-го, а 6-го периода, после того, как на
6s-подуровне
электронных оболочек атомов этого
периода оказывается 2 электрона. В
результате такой особенности заполнения
в 6-м периоде оказывается 14 близких по
химическим свойствам элементов –
лантаноидов (на орбиталях 4f
–подуровня всего может разместиться
72
= 14 электронов).

Задание на дом

1. Запишите в тетради
электронные конфигурации атомов всех
элементов 4-го периода. Каково значение
суммарного спина каждого из этих атомов?

2. У атомов какого
элемента 4-го периода самое большое
значение спина?

3. Какому элементу
отвечает электронная конфигурация
1s22s22р63s23р63d64s2?

Задачи на массовую
долю вещества в растворе

1. Сколько граммов
цинка надо добавить к 200 мл 30%-й соляной
кислоты (плотность 1,15 г/см3),
чтобы получить: а) 25%-й раствор соляной
кислоты; б) 5%-й раствор хлорида цинка?

2. Сколько граммов
ВаСl2
2H2O
надо внести в 300 г 25%-го раствора серной
кислоты, чтобы получить: а) 20%-й раствор
серной кислоты; б) 5%-й раствор соляной
кислоты; в) 5%-й раствор хлорида бария?

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

По современным научным представлениям электрон проявляет свойства частицы и волны.

Чтобы описать состояние электрона в атоме, можно охарактеризовать вероятность его нахождения в той или иной точке пространства возле ядра. Эту вероятность принято изображать в виде электронного облака, в котором густота точек условно показывает вероятность нахождения электрона.

Электронное облако — область околоядерного пространства, в которой может находиться электрон.

Электронное облако.png

Рис. (1). Электронное облако

В электронном облаке выделяют атомную орбиталь.

Атомная орбиталь — часть электронного облака, в которой вероятность обнаружения электрона составляет больше (90) (%).

Орбитали характеризуются формой и размерами. Орбитали разной формы обозначаются буквами (s), (p), (d), (f).

(s)-орбиталь имеет форму сферы. На каждом энергетическом уровне может быть только одна такая орбиталь.

(p)-орбитали напоминают объёмные восьмёрки, которые ориентированы в трёх взаимоперпендикулярных направлениях. Таких орбиталей на одном уровне три.

shutterstock_1639712344.png

Рис. (2). (s)- и (p)-орбитали

(d)- и (f)-орбитали имеют более сложную форму. На одном уровне может быть пять (d)-орбиталей и семь (f)-орбиталей.

shutterstock_1639712344 — копия (2).png

Рис. (3). (d)-орбитали

При удалении от ядра энергия электрона (энергия орбитали) увеличивается, увеличиваются и размеры орбитали, на которой находится электрон.

На одной орбитали может располагаться один или два электрона.

Орбиталь без электронов называется свободной или вакантной, с одним электроном — наполовину заполненной, с двумя электронами — заполненной.

Если на орбитали находится один электрон, то его называют неспаренным, два электрона — спаренными или электронной парой. Электроны, образующие пару, имеют противоположные спины (упрощённо — вращаются в разные стороны).

Источники:

Рис. 1. Электронное облако. © ЯКласс.

Рис. 2. s- и p-орбитали, https://image.shutterstock.com/image-illustration/atomic-orbitals-s-p-d-600w-1639712344.jpg, дата обращения: 06.09.2022.

Рис. 3. d-орбитали, https://image.shutterstock.com/image-illustration/atomic-orbitals-s-p-d-600w-1639712344.jpg, дата обращения: 06.09.2022. 

Понравилась статья? Поделить с друзьями:
  • Linux как найти что занимает место
  • Как найти воздушный куб на 1 человека
  • Юбка поднимается как исправить
  • Как найти давление тела на поверхность формула
  • Вот идешь нашел как писать