Как составить функцию по графику ее производной

По графику производной y= f ‘ (x) можно не только исследовать поведение функции y=f(x) , но и попытаться построить ее график.

Поскольку для одной функции первообразных существует бесконечное множество, график функции по графику производной можно построить лишь схематично: точки экстремума и промежутки возрастания и убывания функции определить можно, а нули функции и экстремумы — нет.

Дан график производной: y= f ‘ (x):

po grafiku proizvodnoy postroit grafik funktsii

Построить график функции y=f(x).

Решение:

Точки x=x2, x=x3, x=x4,  в которых производная y= f ‘ (x) обращается в нуль — это точки экстремума функции y=f(x).

В точках x=x2 и x=x4 производная меняет знак с «-«на «+», поэтому x2 и x=x4 — точки минимума функции y=f(x).

В точке x=x3 производная меняет знак с «+» на «-«, поэтому x=x3 — точка максимума функции.

На промежутках [x1;x2] и [x3;x4]  f ‘ (x)<0, поэтому y=f(x) на этих промежутках убывает.

На промежутках [x2;x3] и [x4;x5]  f ‘ (x)>0, поэтому для y=f(x)  они являются промежутками возрастания.

Сказать что-то более определенное о нулях и других значениях функции y=f(x) не получится. Данный эскиз графика y=f(x) — один из множества графиков первообразных для функции  y= f ‘ (x).  Другие могут быть получены из него параллельным переносом вдоль оси oy.

Если график производной y= f ‘ (x) представляет собой прямую,  параллельную оси ox (y=b, где b- число),, то функция y=f(x) — линейная. Она является возрастающей, если b>0, убывающей, если b<0, и постоянной, если b=0.

dan grafik proizvodnoy

Как по графику производной построить график функции

Если график производной имеет явно выраженные признаки, можно строить предположения о поведении первообразной. При построении графика функции проверяйте сделанные выводы по характерным точкам.

Как по графику производной построить график функции

Инструкция

Если график производной — прямая, параллельная оси ОХ, то ее уравнение Y’ = k, тогда искомая функция Y = k*x. Если график производной — прямая, проходящая под некоторым углом к числовым осям, то график функции — парабола. Если график производной похож на гиперболу, то еще до его исследования можно предположить, что первообразная является функцией натурального логарифма. Если график производной — синусоида, то функция является косинусом аргумента.

Если график производной — прямая, то ее уравнение в общем виде можно записать Y’=k*x+b. Для определения коэффициента k при переменной х проведите параллельную заданному графику прямую через начало координат. Снимите с этого вспомогательного графика координаты х и у произвольной точки и вычислите k= y/x. Знак k установите по направлению графика производной — если с увеличением значения аргумента график поднимается, следовательно, k>0. Значение свободного члена b равно значению Y’ при х=0.

Определите формулу функции по составленному уравнению производной:
Y=k/2 * х²+bx+с

Свободный член с найти по графику производной нельзя. Положение графика функции вдоль оси Y не фиксируется. По точкам постройте график полученной функции — параболу. Ветви параболы направлены вверх при k>0 и вниз при k

График производной показательной функции совпадает с графиком самой функции, поскольку при дифференцировании показательная функция не меняется. Контрольная точка графика имеет координаты (0, 1), т.к. любое число в нулевой степени равно единице.

Если график производной — гипербола с ветвями в первой и третьей четвертях координатной оси, то уравнение производной Y’ = 1/х. Следовательно первообразная будет являться функцией натурального логарифма. Контрольные точки при построении графика функции (1,0) и (е, 1).

График производной показательной функции совпадает с графиком самой функции, поскольку при дифференцировании показательная функция не меняется. Контрольная точка графика имеет координаты (0, 1), т.к. любое число в нулевой степени равно единице.

Если график производной — гипербола с ветвями в первой и третьей четвертях координатной оси, то уравнение производной Y’ = 1/х. Следовательно первообразная будет являться функцией натурального логарифма. Контрольные точки при построении графика функции (1,0) и (е, 1).

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Если на некотором промежутке график функции представляет собой непрерывную линию, иными словами, такую линию, которую можно провести без карандаша от листа бумаги, то такая функция называется непрерывной на этом промежутке. Существуют также функции, которые непрерывными не являются. В качестве примера рассмотрим график функции, которая на промежутках [a; c] и [с; b] непрерывна, но в точке
х = с разрывна и поэтому на всем отрезке [a; b] не является непрерывной. Все функции, изучаемые нами в школьном курсе математики, – это функции непрерывные на каждом промежутке, на котором они определены.

Применение производной к построению графиков функции 1Отметим, что если на некотором промежутке функция имеет производную, то на этом промежутке она непрерывна.

Обратное утверждение является неверным. Функция, которая непрерывна на промежутке, может не иметь производной в некоторых точках этого промежутка. Например, функция
у = |log 2 x| непрерывна на промежутке х > 0, но в точке х = 1 не имеет производной, в силу того что в этой точке график функции касательной не имеет.

Рассмотрим построение графиков с помощью производной.

Задача 1.

Построить график функции f(x) = x3 – 2x2 + x.

Решение.

1) Эта функция определена при всех х € R.

2) Найдем промежутки монотонности рассматриваемой функции и ее точки экстремума с помощью производной. Производная равна f ‘(x) = 3x2 – 4x + 1. Найдем стационарные точки:
3x2 – 4x + 1 = 0, откуда х1 = 1/3, х2 = 1.

Для определения знака производной разложим квадратные трехчлен 3x2 – 4x + 1 на множители:
f ‘(x) = 3(х – 1/3)(х – 1). Следовательно, на промежутках х < 1/3 и х > 1 производная положительна; значит, функция возрастает на этих промежутках.

Производная отрицательна при 1/3 < х < 1; следовательно, функция убывает на этом интервале.

Точка х1 = 1/3 является точкой максимума, так как справа от этой точки функция убывает, а слева – возрастает. В этой точке значение функции равно f (1/3) = (1/3)3 – 2(1/3)2 + 1/3 = 4/27.

Точкой минимума является точка х2 = 1, так как слева от этой  точки функция убывает, а справа возрастает; ее значение в этой точке минимума равняется f (1) = 0.

3) При построение графика обычно находят точки пересечения графика с осями координат. Так как f(0) = 0, то график проходит через начало координат. Решая уравнение f(0) = 0, находим точки пересечения графика с осью абсцисс:

x3 – 2x2 + x = 0, х(x2 – 2х + 1) = 0, х(х – 1) 2 = 0, откуда х = 0, х = 1.

4) Для более точного построение графика найдем значения функции еще в двух точках: f(-1/2) = -9/8, f(2) = 2.

5) Используя результаты исследования (пункты 1 – 4), строим график функции у = x3 – 2x2 + x.

Для построения графика функции обычно сначала исследуют свойства этой функции с помощью ее производной по схеме, аналогичной схеме при решении задачи 1.

Таким образом, при исследовании свойств функции необходимо найти:

1) область ее определения;

2) производную;

3) стационарные точки;

4) промежутки возрастания и убывания;

5) точки экстремума и значения функции в этих точках.

Результаты исследования удобно записывать в виде таблицы. Затем, используя таблицу, строят график функции. Для более точного построения графика обычно находят точки его пересечения с осями координат и – при необходимости – еще несколько точек графика.

Если же мы сталкиваемся с четной или нечетной функцией, то для Применение производной к построению графиков функции 2построения ее графика достаточно исследовать свойства и построить ее график при х > 0, а затем отразить его симметрично относительно оси ординат (начала координат). Например, анализируя функцию f(x) = х + 4/х, мы приходим к выводу о том, что данная функция нечетная: f(-x) = -х + 4/(-х) = -(х + 4/х) = -f(x). Выполнив все пункты плана, строим график функции при х > 0, а график этой функции при х < 0 получаем посредством симметричного отражения графика при х > 0 относительно начала координат.

Для краткости решения задач на построение графиков функции большую часть рассуждений проводят устно.

Также отметим, что при решении некоторых задач мы можем столкнуться с необходимостью исследования функции не на всей области определения, а только на некотором промежутке, например, если нужно построить график, скажем, функции f(x) = 1 + 2x2 – x4 на отрезке [-1; 2].

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

В.К. Кузнецова,

учитель математики ГБОУ «Школа № 329» г.  Москва,

кандидат педагогических наук

Готовимся к ЕГЭ

Пособие для учащихся

Исследование функций по графику производной

В данной статье рассматриваются задачи входящие в ЕГЭ по математике, в которых дан график производной функции (задание 7). В этих задачах ставятся следующие вопросы:

1. В какой точке заданного отрезка функция принимает наибольшее (или наименьшее) значение.

2. Найти количество точек максимума (или минимума) функции, принадлежащих заданному отрезку.

3. Найти количество точек экстремума функции, принадлежащих заданному отрезку.

4. Найти точку экстремума функции, принадлежащую заданному отрезку.

5. Найти промежутки возрастания (или убывания) функции и в ответе указать сумму целых точек, входящих в эти промежутки.

6. Найти промежутки возрастания (или убывания) функции. В ответе указать длину наибольшего из этих промежутков.

7. Найти количество точек, в которых касательная к графику функции параллельна прямой вида у = kx + b или совпадает с ней.

8. Найти абсциссу точки, в которой касательная к графику функции параллельна оси абсцисс или совпадает с ней.

Краткая теория

1. Производная на интервалах возрастания имеет положительный знак.

Если производная в определённой точке из некоторого интервала имеет положительное значение,  то график функции на этом интервале возрастает.

2. На интервалах убывания производная имеет отрицательный знак.

Если производная в определённой точке из некоторого интервала имеет отрицательное значение,  то график функции на этом интервале убывает. 

3. Производная в точке х равна угловому коэффициенту касательной, проведённой к графику функции в этой же точке.

4. В точках экстремума (максимума-минимума) функции производная равна нулю. Касательная к графику функции в этой точке параллельна  оси ох.

Многие путают график производной и график функции. Поэтому в таких зданиях, где  дан график, сразу же нужно обратить своё внимание в условии на том, что дано: график функции или  график производной функции?

Если это график производной функции, то рассматривать его нужно как бы  «отражение» самой функции, которое просто даёт нам информацию об этой функции.

Рассмотрим алгоритм решения задания.

Задача

На рисунке изображен график у = f′(х) — производной функции  f(х), определенной на интервале (–2;21).

Решение задач с графиком производной функции

Ответим на следующие вопросы:

1. В какой точке отрезка [7;15] функция f(х) принимает наибольшее значение.

На заданном отрезке производная функции отрицательна, значит, функция на этом отрезке убывает (она убывает от левой границы интервала к правой). Таким образом, наибольшее значение функции достигается на левой границе отрезка, т. е. в точке 7.

Ответ: 7.

2. В какой точке отрезка [3;6] функция f(х) принимает наименьшее значение.

По данному графику производной можем сказать следующее. На заданном отрезке производная функции положительна, значит,  функция на этом отрезке возрастает (она возрастает от левой границы интервала к правой). Таким образом, наименьшее значение функции достигается на левой границе отрезка, то есть в точке  х = 3.

Ответ: 3.

3. Найдите количество точек максимума функции f(х), принадлежащих отрезку [0;20].

Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный. Рассмотрим, где таким образом меняется знак.

На отрезке (3;6) производная положительна, на отрезке (6;16) отрицательна.

На отрезке (16;18) производная положительна, на отрезке (18;20) отрицательна.

Таким образом, на заданном отрезке [0;20] функция имеет две точки максимума х = 6 и  х = 18.

Ответ: 2.

4. Найдите количество точек минимума функции f(х), принадлежащих отрезку [0;4].

Точки минимума соответствуют точкам смены знака производной с отрицательного на положительный.  У нас на  интервале (0;3) производная  отрицательна, на интервале (3;4) положительна.

Таким образом, на отрезке [0;4] функция имеет только одну точку минимума х = 3.

!!! Будьте внимательны при записи ответа – записывается количество точек, а не значение х, такую  ошибку можно допустить из-за невнимательности.

Ответ: 1.

5. Найдите количество точек экстремума функции f(х), принадлежащих отрезку [0;20].

Обратите внимание, что необходимо найти количество точек экстремума (это и  точки максимума и точки минимума).

Точки экстремума соответствуют точкам смены знака производной (с положительного на отрицательный или наоборот). На данном в условии графике это нули функции. Производная обращается в нуль

 в точках 3, 6, 16, 18.

Таким образом, на отрезке [0;20] функция имеет 4 точки экстремума.

Ответ: 4.

6. Найдите промежутки возрастания функции f(х). В ответе укажите сумму целых точек, входящих в эти промежутки.

Промежутки возрастания данной функции f(х) соответствуют промежуткам, на которых ее производная положительна, то есть интервалам (3;6) и (16;18). Обратите внимание, что границы интервала не входят в него (круглые скобки – границы не включены в интервал, квадратные – включены). Данные интервалы содержат целые точки 4, 5, 17. Их сумма равна: 4 + 5 + 17 = 26

Ответ: 26.

7. Найдите промежутки убывания функции f(х) на заданном интервале. В ответе укажите сумму целых точек, входящих в эти промежутки.

Промежутки убывания функции f(х) соответствуют промежуткам, на которых производная функции отрицательна. В данной задаче это интервалы (–2;3), (6;16), (18;21).

Данные интервалы содержат следующие целые точки: –1, 0, 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20. Их сумма равна:

 ( –1) + 0 + 1 + 2 + 7 + 8 + 9 + 10 +

+ 11 + 12 + 13 + 14 + 15 + 19 + 20  =  140

Ответ: 140.

!!! Необходимо обратить  внимание в условии: включены ли границы в интервал или нет. Если границы будут включены, то и в рассматриваемых в процессе решения интервалах эти границы также необходимо учитывать.

8. Найдите промежутки возрастания функции f(х). В ответе укажите длину наибольшего из них.

Промежутки возрастания функции f(х) соответствуют промежуткам, на которых производная функции положительна. Мы уже указывали их: (3;6) и (16;18). Наибольшим из них  является интервал (3;6), его длина равна 3.

Ответ: 3

9. Найдите промежутки убывания функции f(х). В ответе укажите длину наибольшего из них.

Промежутки убывания функции f(х) соответствуют промежуткам, на которых производная функции отрицательна. Мы уже указывали их, это интервалы

(–2;3), (6;16), (18;21), их длины соответственно равны 5, 10, 3.

Длина наибольшего интервала равна 10.

Ответ: 10

10. Найдите количество точек, в которых касательная к графику функции f(х) параллельна прямой у = 2х + 3  или совпадает с ней.

Значение производной в точке касания равно угловому коэффициенту касательной. Так как касательная параллельна прямой у = 2х + 3 или совпадает с ней, то их угловые коэффициенты равны 2. Значит, необходимо найти количество точек, в которых у′(х0) = 2. Геометрически это соответствует количеству точек пересечения графика производной с прямой  у = 2. На данном интервале таких точек 4.

Ответ: 4

11. Найдите точку экстремума функции f(х), принадлежащую отрезку [0;5].

Точка экстремума функции это такая точка, в которой её производная равна нулю, при чём в окрестности этой точки производная меняет знак (с положительного на отрицательный или наоборот). На отрезке [0;5] график производной пересекает ось абсцисс, производная меняет знак с отрицательного на положительный. Следовательно, точка х = 3 является точкой экстремума.

Ответ: 3

12. Найдите абсциссы точек, в которых касательные к графику у = f (x) параллельны оси абсцисс или совпадают с ней. В ответе укажите наибольшую из них.

Касательная к графику у = f (x) может быть параллельна оси абсцисс или совпадать с ней, только в точках, где производная равна нулю (это могут быть точки экстремума или стационарные точки, в окрестностях которых производная свой знак не меняет). По данному графику видно, что производная равна нулю в точках 3, 6, 16,18. Наибольшая равна 18.

Можно построить рассуждение таким образом:

Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна оси абсцисс или совпадает с ней, её угловой коэффициент равен 0  (действительно тангенс угла в ноль градусов равен нулю). Следовательно, мы ищем точку, в которой угловой коэффициент, равен нулю, а значит, и производная равна нулю. Производная равна нулю в той точке, в которой её график пересекает ось абсцисс, а это точки  3, 6, 16,18.

Ответ: 18

Решите самостоятельно

Задача № 1.

На рисунке изображен график у= f′(х) — производной функции f(х), определенной на интервале (–8;4). В какой точке отрезка [–7;–3] функция f(х) принимает наименьшее значение.

http://matematikalegko.ru/wp-content/uploads/2013/05/27492.gif

Задача № 2.

На рисунке изображен график у = f′(х)  — производной функции f(х), определенной на интервале (–7;14). Найдите количество точек максимума функции f(х),  принадлежащих отрезку [–6;9].

http://matematikalegko.ru/wp-content/uploads/2013/05/27494.gif

Задача № 3.

На рисунке изображен график у = f′(х)  — производной функции f(х), определенной на интервале (–18;6). Найдите количество точек минимума функции f(х),  принадлежащих отрезку [–13;1].

http://matematikalegko.ru/wp-content/uploads/2013/05/27495.gif

Задача № 4.

На рисунке изображен график у = f′(х)   — производной функции f(х), определенной на интервале (–11; –11). Найдите количество точек экстремума функции f(х),  принадлежащих отрезку [–10; –10].

http://matematikalegko.ru/wp-content/uploads/2013/05/27496.gif

Задача № 5.

На рисунке изображен график у = f′(х)   — производной функции f(х), определенной на интервале (–7;4). Найдите промежутки возрастания функции f(х). В ответе укажите сумму целых точек, входящих в эти промежутки.

http://matematikalegko.ru/wp-content/uploads/2013/05/27497.gif

Задача № 6.

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–5;7). Найдите промежутки убывания функции f(х). В ответе укажите сумму целых точек, входящих в эти промежутки.

http://matematikalegko.ru/wp-content/uploads/2013/05/27498.gif

Задача № 7.

На рисунке изображен график у = f′(х)   — производной функцииf(х), определенной на интервале (–11;3). Найдите промежутки возрастания функции f(х). В ответе укажите длину наибольшего из них.

http://matematikalegko.ru/wp-content/uploads/2013/05/27499.gif

Задача № 8.

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–2;12). Найдите промежутки убывания функции f(х). В ответе укажите длину наибольшего из них.

http://matematikalegko.ru/wp-content/uploads/2013/05/27500.gif

Задача № 9.

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–10;2). Найдите количество точек, в которых касательная к графику функции f(х) параллельна прямой       у = –2х – 11 или совпадает с ней.

http://matematikalegko.ru/wp-content/uploads/2013/05/27501.gif

Задача № 10.

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–4;8). Найдите точку экстремума функции f(х), принадлежащую отрезку [–2;6].

http://matematikalegko.ru/wp-content/uploads/2013/05/27502.gif

Задача № 11.

На рисунке изображен график у = f′(х) — производной функции f(х). Найдите абсциссу точки, в которой касательная к графику  у=f(х) параллельна прямой

 у = 2х – 2 или совпадает с ней.

http://matematikalegko.ru/wp-content/uploads/2013/05/40130.gif

Задача № 12.

На рисунке изображен график  у = f′(х) — производной функции f(х). Найдите абсциссу точки, в которой касательная к графику

 у = f(х)  параллельна оси абсцисс или совпадает с ней.

http://matematikalegko.ru/wp-content/uploads/2013/05/40131.gif

Ответы:

1

2

3

4

5

6

7

8

9

10

11

12

-7

1

1

5

-3

18

6

6

5

4

5

-3

Производная положительна только тогда, когда функция возрастает. То есть, нам необходимо найти точки, в которых функция растет. Смотрим на график нашей функции: функция растет на промежутках: от (x=-7) до (x=0) и от (x = 6) до (x=12).

Так как по условию нам нужны только ЦЕЛЫЕ точки, в которых производная положительна, то это будут: (x=—6); (x=-5), (x=-4), (x=-3), (x=-2), (x=-1), (x=7), (x=8), (x=9), (x=10), (x=11). Всего точек получилось (11). Я отметил их зеленым цветом.

Обратите внимание, что точки (x=-7), (x=0), (x=6), (x=12) мы не считаем, так как в этих точках у нас будут минимумы и максимумы функции, а в них производная равна нулю, то есть не положительна.

Ответ: (11.)

Пример 2
На рисунке 6 изображен график функции, определенной на промежутке ((-10;12)). Найдите количество точек, в которых производная функции равна нулю.

Понравилась статья? Поделить с друзьями:
  • Как найти ответ в системе неравенств
  • Как найти мои комментарии в инстаграмме
  • Как найти производную корня квадратного уравнения
  • Как найти значение мощности электроприбора
  • Как найти заказчика портала