Фундаментальные законы физики и химии, и в том числе, закон сохранения массы и энергии вещества, находят свое подтверждение на уровне перемещения мельчайших частиц – электронов, массами которых в химии обычно пренебрегают.
Речь идет об окислительно-восстановительных процессах, сопровождающихся переходом электронов от одних веществ (восстановителей) к другим (окислителям). Причем вещества могут обмениваться электронами, непосредственно соприкасаясь друг с другом.
Однако существует множество случаев, когда прямого контакта веществ не происходит, а процесс окисления-восстановления все равно идет. А если он идет самопроизвольно, то при этом еще и энергия выделяется. Ее человек с успехом использует для выполнения электрической работы.
Реализуется такая возможность в гальваническом элементе, схема работы которого, а также расчеты, связанные с ним, рассматриваются в данной статье.
Содержание:
1) Простейший гальванический элемент: схема работы.
2) Как устроен гальванический элемент Даниэля-Якоби, или Так где же все-таки электрический ток?
3) Типовые задачи на схему гальванического элемента: примеры решения.
Простейший гальванический элемент: схема работы
Гальванический элемент – это прибор, позволяющий при посредстве химической реакции получить электрическую энергию.
Пластинка металла и вода: простые взаимоотношения
Давайте сначала разберемся, что происходит с пластинкой металла, если опустить ее в воду?
Процесс схож с диссоциацией соли: диполи воды ориентируются к ионам металла и извлекают их из пластины. Но почему же тогда не происходит растворения самой пластины в воде? Все дело в строении кристаллической решетки.
Кристаллы соли состоят из катионов и анионов, поэтому диполями воды извлекаются из решетки и те, и другие.
У металла же кристаллическая решетка представлена атомами-ионами. Внутри нее всегда происходит превращение атомов в катионы за счет отщепления валентных электронов и обратный процесс: катионы снова превращаются в атомы, присоединяя электроны. Электроны являются общими для всех ионов и атомов, присутствующих в кристаллической решетке металла.
Процессы внутри металлической кристаллической решетки в обобщенном виде можно показать так:
В итоге, вода, окружающая пластинку – это уже не собственно вода, а раствор, составленный из молекул воды и перешедших в нее из пластины ионов металла. На пластине же возникает избыток электронов, которые скапливаются у ее поверхности, так как сюда притягиваются гидратированные катионы металла.
Возникает так называемый двойной электрический слой.
Бесконечно катионы металла с пластины в раствор уходить не будут, поскольку существует и обратный процесс: переход катионов из раствора на пластину. И он будет идти до тех пор, пока не наступит динамическое равновесие:
На границе раздела «металлическая пластина – раствор» возникает разность потенциала, которая называется равновесным электродным потенциалом металла.
Пластинка металла и раствор его соли: к чему приводит такое соседство
А что произойдет, если металлическую пластинку поместить не в воду, а в раствор соли этого же металла, например, цинковую пластинку Zn в раствор сульфата цинка ZnSO4?
В растворе сульфата цинка уже присутствуют катионы цинка Zn2+. Таким образом, при погружении в него цинковой пластины возникнет избыточное количество этих катионов, и уже известное нам равновесие (см. выше) сместится влево. Все это приведет к тому, что отрицательный заряд на пластинке будет иметь меньшее значение, так как меньшее количество катионов с нее будет переходить в раствор. Как результат – более быстрое наступление равновесия и менее значительный скачок потенциала.
Потенциал металла в растворе его же соли в момент равновесия записывают так:
Металл, погруженный в раствор электролита, называют электродом, обратимым относительно катиона.
Цинк – достаточно активный металл. А если речь будет идти о медной пластинке Cu, погруженной в раствор, например, сульфата меди (II) CuSO4?
Медь – металл малоактивный. Двойной электрический слой, конечно же, появится и в этом случае. Но! Катионы из пластинки в раствор переходить не будут. Наоборот, катионы меди (II) Cu2+из раствора соли начнут встраиваться в кристаллическую решетку пластинки и создавать положительный заряд на ее поверхности. Сюда же подойдут сульфат-анионы SO42-и создадут вокруг нее отрицательный заряд. То есть распределение зарядов в данном случае будет совершенно противоположным, чем на цинковой пластинке.
Это общая закономерность: пластинки из малоактивных металлов при погружении в раствор их солей всегда заряжаются положительно.
Как устроен гальванический элемент Даниэля-Якоби, или Так где же все-таки электрический ток?
Известно, что электрический ток – это направленное движение заряженных частиц (электронов).
На активном металле скапливаются электроны, а поверхность малоактивного металла, заряжается положительно. Если соединить проводником (например, металлической проволокой) оба металла, то электроны с одного перейдут на другой, а двойной электрический слой перестанет существовать. Это будет означать возникновение электрического тока.
Причем, ток возникает за счет окислительно-восстановительного процесса: активный металл окисляется (так как отдает электроны малоактивному), а малоактивный металл восстанавливается (так как принимает электроны от активного). Металлы друг с другом не соприкасаются, а взаимодействуют через посредника: внешнего проводника. Данная схема и есть схема гальванического элемента. Именно так устроен и работает гальванический элемент Даниэля-Якоби:
В схеме элемента показан «солевой мостик». Он представляет собой трубку, в которой присутствует электролит, не способный взаимодействовать ни с электродами (катодом или анодом), ни с электролитами в пространствах у электродов. Например, это может быть раствор сульфата натрия Na2SO4. Подобный мостик нужен для того, чтобы уравновешивать (нейтрализовать) заряды, образующиеся в растворах гальванического элемента.
Таким образом, возникшая электрическая цепь замыкается: анод → проводник с гальванометром → катод → раствор в катодном пространстве → «солевой мостик» → раствор в анодном пространстве → анод.
Анод – электрод, на котором происходит окисление (цинковая пластинка):
Электроны цинка Zn отправляются по внешней цепи (то есть по проводнику) на катод.
Катод – электрод, на котором происходит восстановление (медная пластинка):
Катионы меди Cu2+, пришедшие на пластинку из раствора сульфата меди (II), получают электроны цинкового анода.
В общем виде весь процесс окисления-восстановления в гальваническом элементе выглядит так:
Для любого гальванического элемента можно составить запись в виде схемы. Например, для приведенного элемента Даниэля-Якоби она будет выглядеть так:
Здесь:
1 – анод;
2 – катод;
3 – скачок потенциала (граница раздела фаз);
4 – электролит в анодном пространстве;
5 – электролит в катодном пространстве;
6 – граница между растворами (солевой мостик).
Или сокращенно:
Типовые задачи на схему гальванического элемента: примеры решения
По вопросу, рассмотренному в данной статье, возможны два основных вида задач.
Задача 1. Составьте схему гальванического элемента, в котором протекает реакция:
Решение:
Задача 2. Напишите электродные и суммарные уравнения реакций, протекающих в гальваническом элементе:
Решение:
Итак, разобрав принцип работы гальванического элемента, мы научились записывать схему его работы и определять основные процессы на электродах.
Чтобы самыми первыми узнавать о новых публикациях на сайте, присоединяйтесь к нашей группе ВКонтакте.
Алгоритм составления схемы гальванического элемента.
-
Записать схемы
электродов. -
Используя
уравнение Нернста рассчитать величины
электродных потенциалов. -
Определить,
зная, что φк
φа,
электрод-анод и электрод-катод. -
Составить
схему гальванического элемента,
используя принятую форму записи. -
Записываем
уравнения катодной, анодной и суммарной
реакций, идущих в элементе. -
Рассчитать ЭДС
гальванического элемента.
Пример
1. Составить
схему гальванического элемента, анодом
которого является магний, погруженный
в раствор соли с концентрацией 0,01М.
Решение.
1.
Записываем схему электрода: Mg|Mg2+
-
По
уравнению. Нернста рассчитываем величину
электродного потенциала:
-
Так
как в условии задачи не указан материал,
из которого изготовлен катод, то
используя соотношение φк
φа,
выбираем металл с более положительным
потенциалом. Например, цинковый электрод.
Значение потенциала выбранного электрода
определяем по таблице «Стандартные
электродные потенциалы металлов при
250С».
Следовательно,
.
-
Записываем схему
гальванического элемента:
А(-)
Mg|Mg2+||Zn2+|Zn (+)K
-
Записываем
электродные реакции:
А(-)
Mg
2e—
Mg2+
K(+)
Zn2+
+ 2e—
Zn0
Суммарная
реакция: Mg0
+ Zn2+
Mg2+
+ Zn0
-
Рассчитываем ЭДС
гальванического элемента:
Пример
2. Составьте
схему гальванического элемента,
состоящего из водородного электрода,
погруженного в раствор с рН =3 и железного
электрода, погруженного в раствор соли
с концентрацией 0.1М. Рассчитайте ЭДС
элемента.
Решение.
1.
Записываем схемы электродов:
Водородный
– 2Н+|
Н2
(Pt);
Железный
–
Fe|Fe2+
-
По
уравнению Нернста рассчитываем величину
электродного потенциала железного
электрода:
Используя
уравнение Нернста (4) рассчитываем
величину электродного потенциала
водородного электрода:
-
Используя
соотношение φк
φа
определяем электрод-анод.
Так
как величина φ-потенциала
железного электрода меньше
следовательно этот электрод является
анодом.
-
Записываем схему
гальванического элемента:
А(-) Fe|Fe2+||2H+|H2 (+)
K
-
Рассчитываем ЭДС
гальванического элемента.
Задания для
самоконтроля
-
Составьте
схему гальванического элемента,
состоящего из никелевого электрода-катода,
погруженного в раствор соли с концентрацией
0.02М. Напишите уравнения электродных
реакций и вычислите ЭДС гальванического
элемента. -
Составьте
схему гальванического элемента,
состоящего из медного электрода,
погруженного в раствор соли меди с
концентрацией 0.01М и железного электрода,
погруженного в раствор соли железа с
концентрацией 0.1М. Напишите уравнения
электродных реакций. Вычислите ЭДС
гальванического элемента. -
Составьте
схему гальванического элемента,
состоящего из стандартного водородного
электрода и ртутного электрода.
Рассчитайте его ЭДС при [Hg2+]=0,1
М. Напишите уравнения электродных
реакций. -
Составьте
схему и рассчитайте ЭДС концентрированного
гальванического элемента, составленного
из двух железных электродов, погруженных
в раствор соли железа с концентрациями
1 М и 0,01 М. Напишите уравнения электродных
реакций. -
В гальваническом
элементе протекает химическая реакция
Zn+NiSO4=ZnSO4+Ni.
Напишите его схему
и уравнения электродных реакций.
Вычислите ЭДС этого элемента при
стандартных условиях. Какой металл
вместо никеля можно взять, чтобы увеличить
ЭДС?
-
Составьте
схему гальванического элемента,
состоящего из водородного электрода,
погруженного в раствор с pH=5,
и марганцевого электрода, погруженного
в раствор соли марганца с концентрацией
0,2 М. Напишите уравнения электродных
реакций и рассчитайте его ЭДС. -
Составьте
схему гальванического элемента,
состоящего из водородного электрода,
погруженного в раствор с pH=10,
и серебряного электрода, погруженного
в раствор соли серебра с концентрацией
0,01 М. Напишите уравнения электродных
реакций и рассчитайте его ЭДС.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Вычисление ЭДС, составление схемы гальванического элемента
Задача 195.
Составьте схему гальванического элемента, состоящего из двух металлических пластин, опущенных в растворы их солей. Напишите уравнения электродных процессов. Вычислите ЭДС гальванического элемента. Cu (Cсоли = 1,5 моль/л) и Ni (Cсоли = 1,8 моль/л).
Решение:
Стандартный электродный потенциал меди – Е(Cu2+/Cu0) = +0,34 B; стандартный электродный потенциал никеля – E(Ni2+/Ni0) = -0,25 B. Медь, потенциал которой (+0,34 В) более электроположительный, чем у никеля (-0,25 В) — катод, т.е. электрод, на котором протекает восстановительный процесс:
Cu2+ + 2e = Cu0
Никель, имеющий меньший потенциал, является анодом, на котором протекает окислительный процесс:
Ni0 — 2e = Ni2+
Для расчета значения потенциалов, используем уравнение Нернста:
Е = Е0 + (0,059/n)lgC, где
Е0 – стандартный электродный потенциал металла; n – число электронов, принимающих участие в процессе; C – концентрация ионов металла в растворе.
Тогда
Е(Cu) = +0,34 + (0,059/2)lg1,5 = +0,345 B;
Е(Ni) = -0,25 + (0,059/2)lg1,8 = -0,2575 B.
Для определения ЭДС гальванического элемента необходимо из потенциала катода вычесть потенциал анода, т.е. при вычислении ЭДС элемента меньший электродный потенциал вычитается из большего (в алгебраическом смысле), получим:
ЭДС = +0,345 — (-0,2575) = +0,6025 приблизительно +),60 B.
Схема гальванического элемента будет иметь вид:
(+) Ni|Ni2+(1,8 M)||Cu2+(1,5 M)|Cu (-).
Задача 196.
Вычислить ЭДС гальванического элемета: Mn|MnSO4||AgNO3|Ag, если концентрация MnSО4 равна 10 М, а AgNО3 — 2 М.
Решение:
Серебро, потенциал которого (+0,799 В) более электроположительный, чем у марганца (-1,180 В) — катод, т. е. электрод, на котором протекает восстановительный процесс:
Ag+ + 1e = Ag0
Марганец имеет меньший потенциал (-1,180 В) является анодом, на котором протекает окислительный процесс:
Mn0 — 2e = Mn2+
Электродные процессы на электродах:
К(-): 2|Ag+ + 1e = Ag0
А(+): 1|Mn0 — 2e = Mn2+
Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного и катодного процессов, получим:
2Ag+ + Mn0 = 2Ag0 + Mn2+
Для расчета значения потенциалов, используем уравнение Нернста:
Е = Е0 + (0,059/n)lgC, где
Е0 – стандартный электродный потенциал металла; n – число электронов, принимающих участие в процессе; C – концентрация ионов металла в растворе.
Тогда
Е(Ag) = +0,799 + (0,059/1)lg10 = +0,858 B.
Е(Mn) = -1,180 + (0,059/2)lg2 = -1,171 B;
Для определения ЭДС гальванического элемента необходимо из потенциала катода вычесть потенциал анода, т е. при вычислении ЭДС элемента меньший электродный потенциал вычитается из большего (в алгебраическом смысле), получим:
ЭДС = +0,858 — (-1,171) = +0,313 B.
Ответ: +0,313 B.
Задача 196.
Составьте схему медного концентрационного гальванического элемента с активностями иона Cu2+, равными 1 моль/л у одного электрода и 10–3 – у другого. Рассчитайте ЭДС этого элемента при 298 К.
Решение:
а1 = 1 моль/л;
а2 = 1 • 10-3 моль/л.
Таким образом, a1 > a2; [Cu2+]1 > [Cu2+]2; 1 моль/л > 1 • 10-3 моль/л.
Полюсы элемента:
отрицательный — это электрод с меньшей концентрацией электролита;
положительный — электрод с большей концентрацией электролита.
Схема электродных процессов:
Катод (-): 1|Cu2+ + 2e = Cu2+ (a2)
Анод (+): 1|Cu0 — 2е = Cu0 (a1)
Определим потенциалы электродов:
Е1(K) = +0,34 + (0,059/2) • lg[1 · 10-3] = +0,2515 B;
Е2(A) = +0,34 + (0,059/2) • lg[1] = +0,34 В.
Для определения ЭДС гальванического элемента необходимо из потенциала катода вычесть потенциал анода, т е. при вычислении ЭДС элемента меньший электродный потенциал вычитается из большего (в алгебраическом смысле), получим:
ЭДС = -0,52 — (-1,26) = +0,74 B.
Схема гальванического элемента:
К(-)Cu|Cu2+(10-3 M)||Cu2+(1 M)|Cu(+)A
Задача 197.
Изобразите схему электродных процессов, суммарное уравнение и условную схему коррозионного элемента, возникающего при коррозии ферромарганца в растворе, с концентрацией 2•10-3. Вычислите ЭДС коррозионного элемента.
Решение:
Железо, потенциал которого (-0,44 В) более электроположительный, чем у марганца (-1,18 В) — катод, т.е. электрод, на котором протекает восстановительный процесс:
Fe2+ + 2e = Fe0
Марганец имеет меньший потенциал (-1,18 В) является анодом, на котором протекает окислительный процесс:
Mn0 — 2e = Mn2+
Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного и катодного процессов, получим:
Fe2+ + Mn0 = Fe0 + Mn2+
Для расчета значения потенциалов, используем уравнение Нернста:
Е = Е0 + (0,059/n)lgC, где
Е0 – стандартный электродный потенциал металла; n – число электронов, принимающих участие в процессе; C – концентрация ионов металла в растворе.
Тогда
Е(Fe) = -0,44 + (0,059/2)lg0,002 = -0,52 B;
Е(Mg) = -1,18 + (0,059/2)lg0,002 = -1,26 B.
Для определения ЭДС гальванического элемента необходимо из потенциала катода вычесть потенциал анода, т е. при вычислении ЭДС элемента меньший электродный потенциал вычитается из большего (в алгебраическом смысле), получим:
ЭДС = -0,52 — (-1,26) = +0,74 B.
В гальваническом элементе, в котором электродами являются два металла Fe и Mn, опущенные в растворы их солей, электроны будут перемещаться от электрода с более положительным значением стандартного потенциала к электроду с более отрицательным значением стандартного потенциала. Так как электродный потенциал железа (-0,44 B) более электроположителен чем у марганца (-1,18 B), то электроны будут перемещаться от железного электрода к марганцевому, т.е. железо будет катодом, марганец — анодом.
Тогда схема данного гальванического элемента будет иметь вид:
(-)Fe|Fe2+(0,002 M)||Mn2+(0,002 M)|Mn(+)
Можно схематично решить данную задачу так:
1. Схема электродных процессов:
Катод: Fe2+ + 2e = Fe0
Анод: Mn0 — 2e = Mn2+
2. Cуммарное уравнение процесса:
Fe2+ + Mn0 = Fe0 + Mn2+
3. ЭДС коррозионного элемента:
Е(Fe) = -0,44 + (0,059/2)lg0,002 = -0,52 B;
Е(Mg) = -1,18 + (0,059/2)lg0,002 = -1,26 B.
ЭДС = -0,52 — (-1,26) = +0,74 B.
4. Схема коррозионного элемента:
(-)Fe|Fe2+(0,002 M)||Mn2+(0,002 M)|Mn(+)
Задача 198.
1. Схема гальванического элемента : Al|Al2(SO4)3||AgNO3|Ag.
Указать анод и катод, написать электродные процессы, суммарное уравнение реакции и рассчитать электродвижущую силу элемента при 298 К, если [Al3+] =0,0001 моль/л, [Аg+] =0,1моль/л.
2. Составить схему гальванического элемента, в котором алюминий будет катодом. Написать электродные процессы, суммарное уравнение процесса.
Решение:
1). Серебро, потенциал которого (+0,80 В) более электроположительный, чем у алюминия (-1,66 В) — катод, т. е. электрод, на котором протекает восстановительный процесс:
Ag+ + 1e = Ag0
Алюминий имеет меньший потенциал (-1,66 В) является анодом, на котором протекает окислительный процесс:
Al0 — 3e = Al3+
Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного и катодного процессов, получим:
Al0 + 3Ag+ = 3Ag0 + Al3+
Для расчета значения потенциалов, используем уравнение Нернста:
Е = Е0 + (0,059/n)lgC где
Е0 – стандартный электродный потенциал металла; n – число электронов, принимающих участие в процессе; с – концентрация ионов металла в растворе.
Тогда
Е (Ag) = +0,80 + (0,059/1)lg0,1 = +0,74 B;
Е (Al) = -1,66 + (0,059/3)lg0,0001 = -1,74 B.
Для определения ЭДС гальванического элемента необходимо из потенциала катода вычесть потенциал анода, т е. при вычислении ЭДС элемента меньший электродный потенциал вычитается из большего (в алгебраическом смысле), получим:
ЭДС = +0,74 — (-1,74) = +2,48 B.
2). Cхема гальванического элемента, в котором алюминий будет катодом может иметь вид:
(-)Al3+|Al||Mg|Mg2+(+)
Или
(-)AlCl3|Al||Mg|MgCl2(+)
Алюминий, потенциал которого (-1,66 В) более электроположительный, чем у магния (-2,38 В) — катод, т. е. электрод, на котором протекает восстановительный процесс:
Al3+ + 3e = Al0
Магний имеет меньший потенциал (-2,38 В) является анодом, на котором протекает окислительный процесс:
Mg0 — 2e = Mg2+
Cуммарное уравнение процесса:
3Mg0 + 2Al3+ = 3Mg2+ + 2Al0
Определение полярности электродов и ЭДС гальванического элемента
Гальванопара
Электрод 1 (подложка) Концентрация С1: моль/л до 2 моль/л Температура T1: К от 273 до 373 K |
Электрод 2 (покрытие) Концентрация С2: моль/л до 2 моль/л Температура T2: К от 273 до 373 K |
Замечание
Катодное восстановление (выделение) магния и алюминия из водных растворов невозможно. По этой причине составление гальванической пары, в которой один из этих металлов восстанавливался бы на катоде — невозможно.
Замечание
Анодное растворение палладия и золота в растворах их простых неорганических солей невозможно из-за пассивации. По этой причине составление гальванической пары, в которой один из этих металлов служил бы анодом — невозможно.
Гальванический элемент представляет собой систему из двух электродов, погруженных в раствор своих солей.
При выборе одинаковых металлов для обоих электродов гальванический элемент рассматривается как концентрационный.
Не меняя стандартных условий возможно оценить механизм защиты, рассматривая сочетание металлов как гальванопару «подложка-покрытие».
Программа вычисляет значения равновесных потенциалов для каждого из электродов на основании введенных данных по металлам,
концентрациям, температурам по уравнению Нернста E = E0 + [RT/(z*F)]*ln[C], определяет катодом тот электрод,
потенциал которого — больше и анодом тот — потенциал которого меньше, после чего производит расчет ЭДС как разность
потенциалов электродов ΔE = Eкатода — Eанода.