Как составить квадратные уравнения если известны их коэффициенты

  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Решение квадратных уравнений: формула корней, примеры

    В продолжение темы «Решение уравнений» материал данной статьи познакомит вас с квадратными уравнениями.

    Рассмотрим все подробно: суть и запись квадратного уравнения, зададим сопутствующие термины, разберем схему решения неполных и полных уравнений, познакомимся с формулой корней и дискриминантом, установим связи между корнями и коэффициентами, ну и конечно приведем наглядное решение практических примеров.

    Квадратное уравнение, его виды

    Квадратное уравнение – это уравнение, записанное как a · x 2 + b · x + c = 0 , где x – переменная, a , b и c – некоторые числа, при этом a не есть нуль.

    Зачастую квадратные уравнения также носят название уравнений второй степени, поскольку по сути квадратное уравнение есть алгебраическое уравнение второй степени.

    Приведем пример для иллюстрации заданного определения: 9 · x 2 + 16 · x + 2 = 0 ; 7 , 5 · x 2 + 3 , 1 · x + 0 , 11 = 0 и т.п. – это квадратные уравнения.

    Числа a , b и c – это коэффициенты квадратного уравнения a · x 2 + b · x + c = 0 , при этом коэффициент a носит название первого, или старшего, или коэффициента при x 2 , b – второго коэффициента, или коэффициента при x , а c называют свободным членом.

    К примеру, в квадратном уравнении 6 · x 2 − 2 · x − 11 = 0 старший коэффициент равен 6 , второй коэффициент есть − 2 , а свободный член равен − 11 . Обратим внимание на тот факт, что, когда коэффициенты b и/или c являются отрицательными, то используется краткая форма записи вида 6 · x 2 − 2 · x − 11 = 0 , а не 6 · x 2 + ( − 2 ) · x + ( − 11 ) = 0 .

    Уточним также такой аспект: если коэффициенты a и/или b равны 1 или − 1 , то явного участия в записи квадратного уравнения они могут не принимать, что объясняется особенностями записи указанных числовых коэффициентов. К примеру, в квадратном уравнении y 2 − y + 7 = 0 старший коэффициент равен 1 , а второй коэффициент есть − 1 .

    Приведенные и неприведенные квадратные уравнения

    По значению первого коэффициента квадратные уравнения подразделяют на приведенные и неприведенные.

    Приведенное квадратное уравнение – это квадратное уравнение, где старший коэффициент равен 1 . При иных значениях старшего коэффициента квадратное уравнение является неприведенным.

    Приведем примеры: квадратные уравнения x 2 − 4 · x + 3 = 0 , x 2 − x − 4 5 = 0 являются приведенными, в каждом из которых старший коэффициент равен 1 .

    9 · x 2 − x − 2 = 0 — неприведенное квадратное уравнение, где первый коэффициент отличен от 1 .

    Любое неприведенное квадратное уравнение возможно преобразовать в приведенное уравнение, если разделить обе его части на первый коэффициент (равносильное преобразование). Преобразованное уравнение будет иметь такие же корни, как и заданное неприведенное уравнение или так же не иметь корней вовсе.

    Рассмотрение конкретного примера позволит нам наглядно продемонстрировать выполнение перехода от неприведенного квадратного уравнения к приведенному.

    Задано уравнение 6 · x 2 + 18 · x − 7 = 0 . Необходимо преобразовать исходное уравнение в приведенную форму.

    Решение

    Cогласно указанной выше схеме разделим обе части исходного уравнения на старший коэффициент 6 . Тогда получим: ( 6 · x 2 + 18 · x − 7 ) : 3 = 0 : 3 , и это то же самое, что: ( 6 · x 2 ) : 3 + ( 18 · x ) : 3 − 7 : 3 = 0 и далее: ( 6 : 6 ) · x 2 + ( 18 : 6 ) · x − 7 : 6 = 0 . Отсюда: x 2 + 3 · x — 1 1 6 = 0 . Таким образом, получено уравнение, равносильное заданному.

    Ответ: x 2 + 3 · x — 1 1 6 = 0 .

    Полные и неполные квадратные уравнения

    Обратимся к определению квадратного уравнения. В нем мы уточнили, что a ≠ 0 . Подобное условие необходимо, чтобы уравнение a · x 2 + b · x + c = 0 было именно квадратным, поскольку при a = 0 оно по сути преобразуется в линейное уравнение b · x + c = 0 .

    В случае же, когда коэффициенты b и c равны нулю (что возможно, как по отдельности, так и совместно), квадратное уравнение носит название неполного.

    Неполное квадратное уравнение – такое квадратное уравнение a · x 2 + b · x + c = 0 , где хотя бы один из коэффициентов b и c (или оба) равен нулю.

    Полное квадратное уравнение – квадратное уравнение, в котором все числовые коэффициенты не равны нулю.

    Порассуждаем, почему типам квадратных уравнений даны именно такие названия.

    При b = 0 квадратное уравнение примет вид a · x 2 + 0 · x + c = 0 , что то же самое, что a · x 2 + c = 0 . При c = 0 квадратное уравнение записано как a · x 2 + b · x + 0 = 0 , что равносильно a · x 2 + b · x = 0 . При b = 0 и c = 0 уравнение примет вид a · x 2 = 0 . Уравнения, которые мы получили, отличны от полного квадратного уравнения тем, что в их левых частях не содержится либо слагаемого с переменной x , либо свободного члена, либо обоих сразу. Собственно, этот факт и задал название такому типу уравнений – неполное.

    Например, x 2 + 3 · x + 4 = 0 и − 7 · x 2 − 2 · x + 1 , 3 = 0 – это полные квадратные уравнения; x 2 = 0 , − 5 · x 2 = 0 ; 11 · x 2 + 2 = 0 , − x 2 − 6 · x = 0 – неполные квадратные уравнения.

    Решение неполных квадратных уравнений

    Заданное выше определение дает возможность выделить следующие виды неполных квадратных уравнений:

    • a · x 2 = 0 , такому уравнению соответствуют коэффициенты b = 0 и c = 0 ;
    • a · x 2 + c = 0 при b = 0 ;
    • a · x 2 + b · x = 0 при c = 0 .

    Рассмотрим последовательно решение каждого вида неполного квадратного уравнения.

    Решение уравнения a·x 2 =0

    Как уже было указано выше, такому уравнению отвечают коэффициенты b и c , равные нулю. Уравнение a · x 2 = 0 возможно преобразовать в равносильное ему уравнение x 2 = 0 , которое мы получим, поделив обе части исходного уравнения на число a , не равное нулю. Очевидный факт, что корень уравнения x 2 = 0 это нуль, поскольку 0 2 = 0 . Иных корней это уравнение не имеет, что объяснимо свойствами степени: для любого числа p , не равного нулю, верно неравенство p 2 > 0 , из чего следует, что при p ≠ 0 равенство p 2 = 0 никогда не будет достигнуто.

    Таким образом, для неполного квадратного уравнение a · x 2 = 0 существует единственный корень x = 0 .

    Для примера решим неполное квадратное уравнение − 3 · x 2 = 0 . Ему равносильно уравнение x 2 = 0 , его единственным корнем является x = 0 , тогда и исходное уравнение имеет единственный корень — нуль.

    Кратко решение оформляется так:

    − 3 · x 2 = 0 , x 2 = 0 , x = 0 .

    Решение уравнения a · x 2 + c = 0

    На очереди — решение неполных квадратных уравнений, где b = 0 , c ≠ 0 , то есть уравнений вида a · x 2 + c = 0 . Преобразуем это уравнение, перенеся слагаемое из одной части уравнения в другую, сменив знак на противоположный и разделив обе части уравнения на число, не равное нулю:

    • переносим c в правую часть, что дает уравнение a · x 2 = − c ;
    • делим обе части уравнения на a , получаем в итоге x = — c a .

    Наши преобразования являются равносильными, соответственно полученное уравнение также равносильно исходному, и этот факт дает возможность делать вывод о корнях уравнения. От того, каковы значения a и c зависит значение выражения — c a : оно может иметь знак минус (допустим, если a = 1 и c = 2 , тогда — c a = — 2 1 = — 2 ) или знак плюс (например, если a = − 2 и c = 6 , то — c a = — 6 — 2 = 3 ); оно не равно нулю, поскольку c ≠ 0 . Подробнее остановимся на ситуациях, когда — c a 0 и — c a > 0 .

    В случае, когда — c a 0 , уравнение x 2 = — c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при — c a 0 ни для какого числа p равенство p 2 = — c a не может быть верным.

    Все иначе, когда — c a > 0 : вспомним о квадратном корне, и станет очевидно, что корнем уравнения x 2 = — c a будет число — c a , поскольку — c a 2 = — c a . Нетрудно понять, что число — — c a — также корень уравнения x 2 = — c a : действительно, — — c a 2 = — c a .

    Прочих корней уравнение не будет иметь. Мы можем это продемонстрировать, используя метод от противного. Для начала зададим обозначения найденных выше корней как x 1 и − x 1 . Выскажем предположение, что уравнение x 2 = — c a имеет также корень x 2 , который отличается от корней x 1 и − x 1 . Мы знаем, что, подставив в уравнение вместо x его корни, преобразуем уравнение в справедливое числовое равенство.

    Для x 1 и − x 1 запишем: x 1 2 = — c a , а для x 2 — x 2 2 = — c a . Опираясь на свойства числовых равенств, почленно вычтем одно верное равенство из другого, что даст нам: x 1 2 − x 2 2 = 0 . Используем свойства действий с числами, чтобы переписать последнее равенство как ( x 1 − x 2 ) · ( x 1 + x 2 ) = 0 . Известно, что произведение двух чисел есть нуль тогда и только тогда, когда хотя бы одно из чисел является нулем. Из сказанного следует, что x 1 − x 2 = 0 и/или x 1 + x 2 = 0 , что то же самое, x 2 = x 1 и/или x 2 = − x 1 . Возникло очевидное противоречие, ведь вначале было условлено, что корень уравнения x 2 отличается от x 1 и − x 1 . Так, мы доказали, что уравнение не имеет иных корней, кроме x = — c a и x = — — c a .

    Резюмируем все рассуждения выше.

    Неполное квадратное уравнение a · x 2 + c = 0 равносильно уравнению x 2 = — c a , которое:

    • не будет иметь корней при — c a 0 ;
    • будет иметь два корня x = — c a и x = — — c a при — c a > 0 .

    Приведем примеры решения уравнений a · x 2 + c = 0 .

    Задано квадратное уравнение 9 · x 2 + 7 = 0 . Необходимо найти его решение.

    Решение

    Перенесем свободный член в правую часть уравнения, тогда уравнение примет вид 9 · x 2 = − 7 .
    Разделим обе части полученного уравнения на 9 , придем к x 2 = — 7 9 . В правой части мы видим число со знаком минус, что означает: у заданного уравнения нет корней. Тогда и исходное неполное квадратное уравнение 9 · x 2 + 7 = 0 не будет иметь корней.

    Ответ: уравнение 9 · x 2 + 7 = 0 не имеет корней.

    Необходимо решить уравнение − x 2 + 36 = 0 .

    Решение

    Перенесем 36 в правую часть: − x 2 = − 36 .
    Разделим обе части на − 1 , получим x 2 = 36 . В правой части — положительное число, отсюда можно сделать вывод, что x = 36 или x = — 36 .
    Извлечем корень и запишем окончательный итог: неполное квадратное уравнение − x 2 + 36 = 0 имеет два корня x = 6 или x = − 6 .

    Ответ: x = 6 или x = − 6 .

    Решение уравнения a·x 2 +b·x=0

    Разберем третий вид неполных квадратных уравнений, когда c = 0 . Чтобы найти решение неполного квадратного уравнения a · x 2 + b · x = 0 , воспользуемся методом разложения на множители. Разложим на множители многочлен, который находится в левой части уравнения, вынеся за скобки общий множитель x . Этот шаг даст возможность преобразовать исходное неполное квадратное уравнение в равносильное ему x · ( a · x + b ) = 0 . А это уравнение, в свою очередь, равносильно совокупности уравнений x = 0 и a · x + b = 0 . Уравнение a · x + b = 0 линейное, и корень его: x = − b a .

    Таким образом, неполное квадратное уравнение a · x 2 + b · x = 0 будет иметь два корня x = 0 и x = − b a .

    Закрепим материал примером.

    Необходимо найти решение уравнения 2 3 · x 2 — 2 2 7 · x = 0 .

    Решение

    Вынесем x за скобки и получим уравнение x · 2 3 · x — 2 2 7 = 0 . Это уравнение равносильно уравнениям x = 0 и 2 3 · x — 2 2 7 = 0 . Теперь следует решить полученное линейное уравнение: 2 3 · x = 2 2 7 , x = 2 2 7 2 3 .

    Далее осуществим деление смешанного числа на обыкновенную дробь и определяем, что x = 3 3 7 . Таким образом, корни исходного уравнения это: x = 0 и x = 3 3 7 .

    Кратко решение уравнения запишем так:

    2 3 · x 2 — 2 2 7 · x = 0 x · 2 3 · x — 2 2 7 = 0

    x = 0 или 2 3 · x — 2 2 7 = 0

    x = 0 или x = 3 3 7

    Ответ: x = 0 , x = 3 3 7 .

    Дискриминант, формула корней квадратного уравнения

    Для нахождения решения квадратных уравнений существует формула корней:

    x = — b ± D 2 · a , где D = b 2 − 4 · a · c – так называемый дискриминант квадратного уравнения.

    Запись x = — b ± D 2 · a по сути означает, что x 1 = — b + D 2 · a , x 2 = — b — D 2 · a .

    Нелишним будет понимать, как была выведена указанная формула и каким образом ее применять.

    Вывод формулы корней квадратного уравнения

    Пускай перед нами стоит задача решить квадратное уравнение a · x 2 + b · x + c = 0 . Осуществим ряд равносильных преобразований:

    • разделим обе части уравнения на число a, отличное от нуля, получим приведенное квадратное уравнение: x 2 + b a · x + c a = 0 ;
    • выделим полный квадрат в левой части получившегося уравнения:
      x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 — b 2 · a 2 + c a = = x + b 2 · a 2 — b 2 · a 2 + c a
      После этого уравнения примет вид: x + b 2 · a 2 — b 2 · a 2 + c a = 0 ;
    • теперь возможно сделать перенос двух последних слагаемых в правую часть, сменив знак на противоположный, после чего получаем: x + b 2 · a 2 = b 2 · a 2 — c a ;
    • наконец, преобразуем выражение, записанное в правой части последнего равенства:
      b 2 · a 2 — c a = b 2 4 · a 2 — c a = b 2 4 · a 2 — 4 · a · c 4 · a 2 = b 2 — 4 · a · c 4 · a 2 .

    Таким образом, мы пришли к уравнению x + b 2 · a 2 = b 2 — 4 · a · c 4 · a 2 , равносильному исходному уравнению a · x 2 + b · x + c = 0 .

    Решение подобных уравнений мы разбирали в предыдущих пунктах (решение неполных квадратных уравнений). Уже полученный опыт дает возможность сделать вывод касательно корней уравнения x + b 2 · a 2 = b 2 — 4 · a · c 4 · a 2 :

    • при b 2 — 4 · a · c 4 · a 2 0 уравнение не имеет действительных решений;
    • при b 2 — 4 · a · c 4 · a 2 = 0 уравнение имеет вид x + b 2 · a 2 = 0 , тогда x + b 2 · a = 0 .

    Отсюда очевиден единственный корень x = — b 2 · a ;

    • при b 2 — 4 · a · c 4 · a 2 > 0 верным будет: x + b 2 · a = b 2 — 4 · a · c 4 · a 2 или x = b 2 · a — b 2 — 4 · a · c 4 · a 2 , что то же самое, что x + — b 2 · a = b 2 — 4 · a · c 4 · a 2 или x = — b 2 · a — b 2 — 4 · a · c 4 · a 2 , т.е. уравнение имеет два корня.

    Возможно сделать вывод, что наличие или отсутствие корней уравнения x + b 2 · a 2 = b 2 — 4 · a · c 4 · a 2 (а значит и исходного уравнения) зависит от знака выражения b 2 — 4 · a · c 4 · a 2 , записанного в правой части. А знак этого выражения задается знаком числителя, (знаменатель 4 · a 2 всегда будет положителен), то есть, знаком выражения b 2 − 4 · a · c . Этому выражению b 2 − 4 · a · c дано название — дискриминант квадратного уравнения и определена в качестве его обозначения буква D . Здесь можно записать суть дискриминанта – по его значению и знаку делают вывод, будет ли квадратное уравнение иметь действительные корни, и, если будет, то каково количество корней — один или два.

    Вернемся к уравнению x + b 2 · a 2 = b 2 — 4 · a · c 4 · a 2 . Перепишем его, используя обозначение дискриминанта: x + b 2 · a 2 = D 4 · a 2 .

    Вновь сформулируем выводы:

    • при D 0 уравнение не имеет действительных корней;
    • при D = 0 уравнение имеет единственный корень x = — b 2 · a ;
    • при D > 0 уравнение имеет два корня: x = — b 2 · a + D 4 · a 2 или x = — b 2 · a — D 4 · a 2 . Эти корни на основе свойства радикалов возможно записать в виде: x = — b 2 · a + D 2 · a или — b 2 · a — D 2 · a . А, когда раскроем модули и приведем дроби к общему знаменателю, получим: x = — b + D 2 · a , x = — b — D 2 · a .

    Так, результатом наших рассуждений стало выведение формулы корней квадратного уравнения:

    x = — b + D 2 · a , x = — b — D 2 · a , дискриминант D вычисляется по формуле D = b 2 − 4 · a · c .

    Данные формулы дают возможность при дискриминанте больше нуля определить оба действительных корня. Когда дискриминант равен нулю, применение обеих формул даст один и тот же корень, как единственное решение квадратного уравнения. В случае, когда дискриминант отрицателен, попытавшись использовать формулу корня квадратного уравнения, мы столкнемся с необходимостью извлечь квадратный корень из отрицательного числа, что выведет нас за рамки действительных чисел. При отрицательном дискриминанте у квадратного уравнения не будет действительных корней, но возможна пара комплексно сопряженных корней, определяемых теми же полученными нами формулами корней.

    Алгоритм решения квадратных уравнений по формулам корней

    Решить квадратное уравнение возможно, сразу задействуя формулу корней, но в основном так поступают при необходимости найти комплексные корни.

    В основной же массе случаев обычно подразумевается поиск не комплексных, а действительных корней квадратного уравнения. Тогда оптимально перед тем, как использовать формулы корней квадратного уравнения, сначала определить дискриминант и удостовериться, что он не является отрицательным (в ином случае сделаем вывод, что у уравнения нет действительных корней), а после приступить к вычислению значения корней.

    Рассуждения выше дают возможность сформулировать алгоритм решения квадратного уравнения.

    Чтобы решить квадратное уравнение a · x 2 + b · x + c = 0 , необходимо:

    • по формуле D = b 2 − 4 · a · c найти значение дискриминанта;
    • при D 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
    • при D = 0 найти единственный корень уравнения по формуле x = — b 2 · a ;
    • при D > 0 определить два действительных корня квадратного уравнения по формуле x = — b ± D 2 · a .

    Отметим, что, когда дискриминант есть нуль, можно использовать формулу x = — b ± D 2 · a , она даст тот же результат, что и формула x = — b 2 · a .

    Примеры решения квадратных уравнений

    Приведем решение примеров при различных значениях дискриминанта.

    Необходимо найти корни уравнения x 2 + 2 · x − 6 = 0 .

    Решение

    Запишем числовые коэффициенты квадратного уравнения: a = 1 , b = 2 и c = − 6 . Далее действуем по алгоритму, т.е. приступим к вычислению дискриминанта, для чего подставим коэффициенты a , b и c в формулу дискриминанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · ( − 6 ) = 4 + 24 = 28 .

    Итак, мы получили D > 0 , а это означает, что исходное уравнение будет иметь два действительных корня.
    Для их нахождения используем формулу корня x = — b ± D 2 · a и, подставив соответствующие значения, получим: x = — 2 ± 28 2 · 1 . Упростим полученное выражение, вынеся множитель за знак корня с последующим сокращением дроби:

    x = — 2 + 2 · 7 2 или x = — 2 — 2 · 7 2

    x = — 1 + 7 или x = — 1 — 7

    Ответ: x = — 1 + 7 ​​​​​​, x = — 1 — 7 .

    Необходимо решить квадратное уравнение − 4 · x 2 + 28 · x − 49 = 0 .

    Решение

    Определим дискриминант: D = 28 2 − 4 · ( − 4 ) · ( − 49 ) = 784 − 784 = 0 . При таком значении дискриминанта исходное уравнение будет иметь лишь один корень, определяемый по формуле x = — b 2 · a .

    x = — 28 2 · ( — 4 ) x = 3 , 5

    Ответ: x = 3 , 5 .

    Необходимо решить уравнение 5 · y 2 + 6 · y + 2 = 0

    Решение

    Числовые коэффициенты этого уравнения будут: a = 5 , b = 6 и c = 2 . Используем эти значения для нахождения дискриминанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Вычисленный дискриминант отрицателен, таким образом, исходное квадратное уравнение не имеет действительных корней.

    В случае, когда стоит задача указать комплексные корни, применим формулу корней, выполняя действия с комплексными числами:

    x = — 6 + 2 · i 10 или x = — 6 — 2 · i 10 ,

    x = — 3 5 + 1 5 · i или x = — 3 5 — 1 5 · i .

    Ответ: действительные корни отсутствуют; комплексные корни следующие: — 3 5 + 1 5 · i , — 3 5 — 1 5 · i .

    В школьной программе стандартно нет требования искать комплексные корни, поэтому, если в ходе решения дискриминант определен как отрицательный, сразу записывается ответ, что действительных корней нет.

    Формула корней для четных вторых коэффициентов

    Формула корней x = — b ± D 2 · a ( D = b 2 − 4 · a · c ) дает возможность получить еще одну формулу, более компактную, позволяющую находить решения квадратных уравнений с четным коэффициентом при x (либо с коэффициентом вида 2 · n , к примеру, 2 · 3 или 14 · ln 5 = 2 · 7 · ln 5 ). Покажем, как выводится эта формула.

    Пусть перед нами стоит задача найти решение квадратного уравнения a · x 2 + 2 · n · x + c = 0 . Действуем по алгоритму: определяем дискриминант D = ( 2 · n ) 2 − 4 · a · c = 4 · n 2 − 4 · a · c = 4 · ( n 2 − a · c ) , а затем используем формулу корней:

    x = — 2 · n ± D 2 · a , x = — 2 · n ± 4 · n 2 — a · c 2 · a , x = — 2 · n ± 2 n 2 — a · c 2 · a , x = — n ± n 2 — a · c a .

    Пусть выражение n 2 − a · c будет обозначено как D 1 (иногда его обозначают D ‘ ). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2 · n примет вид:

    x = — n ± D 1 a , где D 1 = n 2 − a · c .

    Легко увидеть, что что D = 4 · D 1 , или D 1 = D 4 . Иначе говоря, D 1 – это четверть дискриминанта. Очевидно, что знак D 1 такой же, как знак D , а значит знак D 1 также может служить индикатором наличия или отсутствия корней квадратного уравнения.

    Таким образом, чтобы найти решение квадратного уравнения со вторым коэффициентом 2 · n , необходимо:

    • найти D 1 = n 2 − a · c ;
    • при D 1 0 сделать вывод, что действительных корней нет;
    • при D 1 = 0 определить единственный корень уравнения по формуле x = — n a ;
    • при D 1 > 0 определить два действительных корня по формуле x = — n ± D 1 a .

    Необходимо решить квадратное уравнение 5 · x 2 − 6 · x − 32 = 0 .

    Решение

    Второй коэффициент заданного уравнения можем представить как 2 · ( − 3 ) . Тогда перепишем заданное квадратное уравнение как 5 · x 2 + 2 · ( − 3 ) · x − 32 = 0 , где a = 5 , n = − 3 и c = − 32 .

    Вычислим четвертую часть дискриминанта: D 1 = n 2 − a · c = ( − 3 ) 2 − 5 · ( − 32 ) = 9 + 160 = 169 . Полученное значение положительно, это означает, что уравнение имеет два действительных корня. Определим их по соответствующей формуле корней:

    x = — n ± D 1 a , x = — — 3 ± 169 5 , x = 3 ± 13 5 ,

    x = 3 + 13 5 или x = 3 — 13 5

    x = 3 1 5 или x = — 2

    Возможно было бы произвести вычисления и по обычной формуле корней квадратного уравнения, но в таком случае решение было бы более громоздким.

    Ответ: x = 3 1 5 или x = — 2 .

    Упрощение вида квадратных уравнений

    Иногда существует возможность оптимизировать вид исходного уравнения, что позволит упростить процесс вычисления корней.

    К примеру, квадратное уравнение 12 · x 2 − 4 · x − 7 = 0 явно удобнее для решения, чем 1200 · x 2 − 400 · x − 700 = 0 .

    Чаще упрощение вида квадратного уравнения производится действиями умножения или деления его обеих частей на некое число. К примеру, выше мы показали упрощенную запись уравнения 1200 · x 2 − 400 · x − 700 = 0 , полученную делением обеих его частей на 100 .

    Такое преобразование возможно, когда коэффициенты квадратного уравнения не являются взаимно простыми числами. Тогда обычно осуществляют деление обеих частей уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Как пример используем квадратное уравнение 12 · x 2 − 42 · x + 48 = 0 . Определим НОД абсолютных величин его коэффициентов: НОД ( 12 , 42 , 48 ) = НОД(НОД ( 12 , 42 ) , 48 ) = НОД ( 6 , 48 ) = 6 . Произведем деление обеих частей исходного квадратного уравнения на 6 и получим равносильное ему квадратное уравнение 2 · x 2 − 7 · x + 8 = 0 .

    Умножением обеих частей квадратного уравнения обычно избавляются от дробных коэффициентов. При этом умножают на наименьшее общее кратное знаменателей его коэффициентов. К примеру, если каждую часть квадратного уравнения 1 6 · x 2 + 2 3 · x — 3 = 0 перемножить с НОК ( 6 , 3 , 1 ) = 6 , то оно станет записано в более простом виде x 2 + 4 · x − 18 = 0 .

    Напоследок отметим, что почти всегда избавляются от минуса при первом коэффициенте квадратного уравнения, изменяя знаки каждого члена уравнения, что достигается путем умножения (или деления) обеих частей на − 1 . К примеру, от квадратного уравнения − 2 · x 2 − 3 · x + 7 = 0 можно перейти к упрощенной его версии 2 · x 2 + 3 · x − 7 = 0 .

    Связь между корнями и коэффициентами

    Уже известная нам формула корней квадратных уравнений x = — b ± D 2 · a выражает корни уравнения через его числовые коэффициенты. Опираясь на данную формулу, мы имеем возможность задать другие зависимости между корнями и коэффициентами.

    Самыми известными и применимыми являются формулы теоремы Виета:

    x 1 + x 2 = — b a и x 2 = c a .

    В частности, для приведенного квадратного уравнения сумма корней есть второй коэффициент с противоположным знаком, а произведение корней равно свободному члену. К примеру, по виду квадратного уравнения 3 · x 2 − 7 · x + 22 = 0 возможно сразу определить, что сумма его корней равна 7 3 , а произведение корней — 22 3 .

    Также можно найти ряд прочих связей между корнями и коэффициентами квадратного уравнения. Например, сумма квадратов корней квадратного уравнения может быть выражена через коэффициенты:

    x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 — 2 · x 1 · x 2 = — b a 2 — 2 · c a = b 2 a 2 — 2 · c a = b 2 — 2 · a · c a 2 .

    Методы решения квадратных уравнений. Формула Виета для квадратного уравнения

    Квадратные уравнения часто появляются в ряде задач по математике и физике, поэтому уметь их решать должен каждый школьник. В этой статье подробно рассматриваются основные методы решения уравнений квадратных, а также приводятся примеры их использования.

    Какое уравнение называется квадратным

    В первую очередь ответим на вопрос этого пункта, чтобы лучше понимать, о чем пойдет речь в статье. Итак, уравнение квадратное имеет следующий общий вид: c + b*x+a*x2=0, где a, b, c — некоторые числа, которые называются коэффициентами. Здесь a≠0 — это обязательное условие, в противном случае указанное уравнение вырождается в линейное. Остальные коэффициенты (b, c) могут принимать абсолютно любые значения, включая ноль. Так, выражения типа a*x2=0, где b=0 и c=0 или c+a*x2=0,где b=0, или b*x+a*x2=0, где c=0 — это тоже уравнения квадратные, которые называют неполными, поскольку в них либо линейный коэффициент b равен нулю, либо нулевым является свободный член c, либо они оба зануляются.

    Вам будет интересно: Химические цепочки превращений: примеры и способы решения

    Уравнение, в котором a=1, называют приведенным, то есть оно вид имеет: x2 + с/a + (b/a)*x =0.

    Решение квадратного уравнения заключается в нахождении таких значений x, которые удовлетворяют его равенству. Эти значения называются корнями. Поскольку рассматриваемое уравнение — это выражение второй степени, то это означает, что максимальное число его корней не может превышать двух.

    Какие методы решения уравнений квадратных существуют

    В общем случае существует 4 метода решения. Ниже перечисляются их названия:

  • Разложение на множители.
  • Дополнение до квадрата.
  • Использование известной формулы (через дискриминант).
  • Способ решения геометрический.

    Вам будет интересно: Каково значение слова «транспарентность»?

    Как понятно из приведенного списка, первые три метода являются алгебраическими, поэтому они используются чаще, чем последний, который предполагает построение графика функции.

    Существует еще один способ решения по теореме Виета уравнений квадратных. Его можно было бы включить 5-м в список выше, однако, это не сделано, поскольку теорема Виета является простым следствием 3-го метода.

    Далее в статье рассмотрим подробнее названные способы решения, а также приведем примеры их использования для нахождения корней конкретных уравнений.

    Метод №1. Разложение на множители

    Для этого метода в математике квадратных уравнений существует красивое название: факторизация. Суть этого способа заключается в следующем: необходимо квадратное уравнение представить в виде произведения двух членов (выражений), которое должно равняться нулю. После такого представления можно воспользоваться свойством произведения, которое будет равно нулю только тогда, когда один или несколько (все) его членов являются нулевыми.

    Теперь рассмотрим последовательность конкретных действий, которые нужно выполнить, чтобы найти корни уравнения:

  • Перебросить все члены в одну часть выражения (например, в левую) так, чтобы в другой его части (правой) остался только 0.
  • Представить сумму членов в одной части равенства в виде произведения двух линейных уравнений.
  • Приравнять каждое из линейных выражений к нулю и решить их.

    Вам будет интересно: Коммуникативная методика обучения английскому языку: главные принципы, учебники, результаты, отзывы

    Как видно, алгоритм факторизации является достаточно простым, тем не менее, у большинства школьников возникают трудности во время реализации 2-го пункта, поэтому поясним его подробнее.

    Чтобы догадаться, какие 2-а линейных выражения при умножении их друг на друга дадут искомое квадратное уравнение, необходимо запомнить два простых правила:

    • Линейные коэффициенты двух линейных выражений при умножении их друг на друга должны давать первый коэффициент квадратного уравнения, то есть число a.
    • Свободные члены линейных выражений при их произведении должны давать число c искомого уравнения.

    После того, как подобраны все числа множителей, следует выполнить их перемножение, и если они дают искомое уравнение, тогда переходить к пункту 3 в изложенном выше алгоритме, в противном случае следует изменить множители, но делать это нужно так, чтобы приведенные правила всегда выполнялись.

    Пример решения методом факторизации

    Покажем наглядно, как алгоритм решения уравнения квадратного составить и найти неизвестные корни. Пусть дано произвольное выражение, например, 2*x-5+5*x2-2*x2 = x2+2+x2+1. Перейдем к его решению, соблюдая последовательность пунктов от 1-го до 3-х, которые изложены в предыдущем пункте статьи.

    Пункт 1. Перенесем все члены в левую часть и выстроим их в классической последовательности для квадратного уравнения. Имеем следующее равенство: 2*x+(-8)+x2=0.

    Пункт 2. Разбиваем на произведение линейных уравнений. Поскольку a=1, а с=-8, то подберем, например, такое произведение (x-2)*(x+4). Оно удовлетворяет изложенным в пункте выше правилам поиска предполагаемых множителей. Если раскрыть скобки, то получим: -8+2*x+x2, то есть получается точно такое же выражение, как в левой части уравнения. Это означает, что мы правильно угадали множители, и можно переходить к 3-му пункту алгоритма.

    Пункт 3. Приравниваем каждый множитель нулю, получаем: x=-4 и x=2.

    Если возникают какие-либо сомнения в полученном результате, то рекомендуется выполнить проверку, подставляя найденные корни в исходное уравнение. В данном случае имеем: 2*2+22-8=0 и 2*(-4)+(-4)2-8=0. Корни найдены правильно.

    Таким образом, методом факторизации мы нашли, что заданное уравнение два корня различных имеет: 2 и -4.

    Метод №2. Дополнение до полного квадрата

    В алгебре уравнений квадратных метод множителей не всегда может использоваться, поскольку в случае дробных значений коэффициентов квадратного уравнения возникают сложности в реализации пункта 2 алгоритма.

    Метод полного квадрата, в свою очередь, является универсальным и может применяться для квадратных уравнений любого типа. Суть его заключается в выполнении следующих операций:

  • Члены уравнения, содержащие коэффициенты a и b, необходимо перебросить в одну часть равенства, а свободный член c — в другую.
  • Далее, следует части равенства (правую и левую) разделить на коэффициент a, то есть представить уравнение в приведенном виде (a=1).
  • Сумму членов с коэффициентами a и b представить в виде квадрата линейного уравнения. Поскольку a=1, то линейный коэффициент будет равен 1, что касается свободного члена уравнения линейного, то он равен должен быть половине линейного коэффициента приведенного уравнения квадратного. После того, как составлен квадрат линейного выражения, необходимо в правую часть равенства, где находится свободный член, добавить соответствующее число, которое получается при раскрытии квадрата.
  • Взять квадратный корень со знаками «+» и «-» и решить полученное уже уравнение линейное.

    Описанный алгоритм может на первый взгляд быть воспринят, как достаточно сложный, однако, на практике его реализовать проще, чем метод факторизации.

    Пример решения с помощью дополнения до полного квадрата

    Приведем пример уравнения квадратного для тренировки его решения методом изложенным в предыдущем пункте. Пусть дано уравнение квадратное -10 — 6*x+5*x2 = 0. Начинаем решать его, следуя описанному выше алгоритму.

    Пункт 1. Используем метод переброски при решении уравнений квадратных, получаем: — 6*x+5*x2 = 10.

    Пункт 2. Приведенный вид этого уравнения получается путем деления на число 5 каждого его члена (если равенства обе части поделить или умножить на одинаковое число, то равенство сохранится). В результате преобразований получим: x2 — 6/5*x = 2.

    Пункт 3. Половина от коэффициента — 6/5 равна -6/10 = -3/5, используем это число для составления полного квадрата, получаем: (-3/5+x)2. Раскроем его и полученный свободный член следует вычесть из части равенства левой, чтобы удовлетворить исходному виду квадратного уравнения, что эквивалентно его добавлению в правую часть. В итоге получаем: (-3/5+x)2 = 59/25.

    Пункт 4. Вычисляем квадратный корень с положительным и отрицательным знаками и находим корни: x = 3/5±√59/5 = (3±√59)/5. Два найденных корня имеют значения: x1 = (√59+3)/5 и x1 = (3-√59)/5.

    Поскольку проведенные вычисления связаны с корнями, то велика вероятность допустить ошибку. Поэтому рекомендуется проверить правильность корней x2 и x1. Получаем для x1: 5*((3+√59)/5)2-6*(3+√59)/5 — 10 = (9+59+6*√59)/5 — 18/5 — 6*√59/5-10 = 68/5-68/5 = 0. Подставляем теперь x2: 5*((3-√59)/5)2-6*(3-√59)/5 — 10 = (9+59-6*√59)/5 — 18/5 + 6*√59/5-10 = 68/5-68/5 = 0.

    Таким образом, мы показали, что найденные корни уравнения являются истинными.

    Метод №3. Применение известной формулы

    Этот метод решения уравнений квадратных является, пожалуй, самым простым, поскольку он заключается в подставлении коэффициентов в известную формулу. Для его использования не нужно задумываться о составлении алгоритмов решения, достаточно запомнить только одну формулу. Она приведена на рисунке выше.

    В этой формуле подкоренное выражение (b2-4*a*c) называется дискриминантом (D). От его значения зависит то, какие корни получатся. Возможны 3-и случая:

    • D>0, тогда уравнение корня два имеет действительных и разных.
    • D=0, тогда получается корень один, который можно вычислить из выражения x = -b/(a*2).
    • D 0 — параболы ветви направлены вверх, наоборот, если a 0. Ее экстремум имеет координаты: x=4/10=2/5, y=-4*2/5+5*(2/5)2+10 = 9,2. Поскольку минимум кривой лежит над осью абсцисс (y=9,2), то она не пересекает последнюю ни при каких значениях x. То есть действительных корней приведенное уравнение не имеет.

    Теорема Виета

    Как выше было отмечено, эта теорема является следствием метода №3, который основан на применении формулы с дискриминантом. Суть теоремы Виета заключается в том, что она позволяет связать в равенство коэффициенты уравнения и его корни. Получим соответствующие равенства.

    Воспользуемся формулой для вычисления корней через дискриминант. Сложим два корня, получаем: x1+x2 = -b/a. Теперь умножим корни друг на друга: x1*x2, после ряда упрощений получается число c/a.

    Таким образом, для решения уравнений квадратных по теореме Виета можно использовать полученных два равенства. Если все три коэффициента уравнения известны, тогда корни можно найти путем решения соответствующей системы из этих двух уравнений.

    Пример использования теоремы Виета

    Необходимо составить квадратное уравнение, если известно, что оно имеет вид x2+c = -b*x и корни его равны 3 и -4.

    Поскольку в рассматриваемом уравнении a=1, то формулы Виета будут иметь вид: x2+x1 =-b и x2*x1= с. Подставляя известные значения корней, получаем: b = 1 и c = -12. В итоге восстановленное уравнение квадратное приведенное будет вид иметь: x2-12 = -1*x. Можно подставить в него значение корней и убедиться, что равенство выполняется.

    Обратное применение Виета теоремы, то есть вычисление корней по известному виду уравнения, позволяет для небольших целых чисел a, b и c быстро (интуитивно) находить решения.

    источники:

    http://zaochnik.com/spravochnik/matematika/systems/reshenie-kvadratnyh-uravnenij/

    http://1ku.ru/obrazovanie/9864-metody-resheniya-kvadratnyx-uravnenij-formula-vieta-dlya-kvadratnogo-uravneniya/

  • Решение квадратных уравнений

    6 июля 2011

    Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

    Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

    Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

    1. Не имеют корней;
    2. Имеют ровно один корень;
    3. Имеют два различных корня.

    В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

    Дискриминант

    Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

    Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

    1. Если D < 0, корней нет;
    2. Если D = 0, есть ровно один корень;
    3. Если D > 0, корней будет два.

    Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

    Задача. Сколько корней имеют квадратные уравнения:

    1. x2 − 8x + 12 = 0;
    2. 5x2 + 3x + 7 = 0;
    3. x2 − 6x + 9 = 0.

    Выпишем коэффициенты для первого уравнения и найдем дискриминант:
    a = 1, b = −8, c = 12;
    D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

    Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
    a = 5; b = 3; c = 7;
    D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

    Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
    a = 1; b = −6; c = 9;
    D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

    Дискриминант равен нулю — корень будет один.

    Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

    Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

    Корни квадратного уравнения

    Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

    Формула корней квадратного уравнения

    Основная формула корней квадратного уравнения

    Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

    Задача. Решить квадратные уравнения:

    1. x2 − 2x − 3 = 0;
    2. 15 − 2xx2 = 0;
    3. x2 + 12x + 36 = 0.

    Первое уравнение:
    x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
    D = (−2)2 − 4 · 1 · (−3) = 16.

    D > 0 ⇒ уравнение имеет два корня. Найдем их:

    Решение простого квадратного уравнения

    Второе уравнение:
    15 − 2xx2 = 0 ⇒ a = −1; b = −2; c = 15;
    D = (−2)2 − 4 · (−1) · 15 = 64.

    D > 0 ⇒ уравнение снова имеет два корня. Найдем их

    [begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]

    Наконец, третье уравнение:
    x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
    D = 122 − 4 · 1 · 36 = 0.

    D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

    [x=frac{-12+sqrt{0}}{2cdot 1}=-6]

    Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

    Неполные квадратные уравнения

    Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

    1. x2 + 9x = 0;
    2. x2 − 16 = 0.

    Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

    Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

    Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

    Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

    Решение неполного квадратного уравнения

    Решение неполного квадратного уравнения

    Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

    1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
    2. Если же (−c/a) < 0, корней нет.

    Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

    Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

    Разложение уравнения на множители

    Вынесение общего множителя за скобку

    Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

    Задача. Решить квадратные уравнения:

    1. x2 − 7x = 0;
    2. 5x2 + 30 = 0;
    3. 4x2 − 9 = 0.

    x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

    5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

    4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

    Смотрите также:

    1. Теорема Виета
    2. Следствия из теоремы Виета
    3. Тест на тему «Значащая часть числа»
    4. Метод коэффициентов, часть 1
    5. Однородные тригонометрические уравнения: общая схема решения
    6. Задача B4: строительные бригады

    Вася Иванов

    Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
    1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
    2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
    3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
    4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

    Что такое квадратные уравнения?

    А теперь подробно с примерами обсудим квадратные уравнения.

    Любые уравнения, сводящиеся к виду (ax^2+bx+c=0), называются квадратными. Где буквы ( b,; с) — любые числа, (aneq0). Почему (aneq0) мы обсудим ниже.

    Обратите внимание на порядок слагаемых в квадратном уравнении:
    (a) — всегда стоит первая и обязательно умножается на (x^2), она называется старшим коэффициентом (или первым);
    (b) — принадлежит второму слагаемому и всегда умножается просто на переменную (x), это у нас второй коэффициент;
    (c) — называют свободным членом, она не умножается ни на какую переменную.

    В дальнейшем старайтесь приводить квадратное уравнение к виду (ax^2+bx+c=0), чтобы слагаемые стояли именно в таком порядке. Это очень важно при решении уравнений, и поможет избежать множества ошибок.

    Потренируемся определять значения коэффициентов ( a, ; b,; с), чтобы запомнить порядок:

    Пример 1
    $$2x^2+3x+4=0;$$
    $$a=2 quad b=3 quad c=4.$$

    Пример 2
    $$5x^2-3x-0,7=0;$$
    $$a=5 quad b=-3 quad c=-0,7.$$

    Пример 3
    $$-x^2+2x+10=0;$$
    Минус перед (x^2) можно представить в виде (-x^2=-1*x^2). Единицу обычно не пишут, поэтому минус перед первым слагаемым означает, что (a=-1):
    $$a=-1 quad b=2 quad c=10.$$

    Пример 4
    $$3+x^2-5x=0;$$
    Слагаемые стоят в неправильном порядке. Так коэффициенты находить неудобно, поэтому переставим все слагаемые в нужном порядке. От перемены мест слагаемых сумма не меняется:
    $$x^2-5x+3=0;$$
    $$a=1 quad b=-5 quad c=3.$$

    Пример 5
    $$2x^2-3x=0;$$
    В уравнении нет свободного члена (c), поэтому он будет равен (0):
    $$a=2 quad b=-3 quad c=0.$$

    Пример 6
    $$-4x^2+1=0;$$
    А здесь уже нет второго коэффициента (b):
    $$a=-4 quad b=0 quad c=1.$$

    Уравнения, приведенные в примерах №5 и 6, называются неполными квадратными уравнениями, так как в них коэффициенты (b) или (c) равны нулю.

    А вот если в уравнении коэффициенты ( a, ; b,; с) не равны 0, то такое уравнение называется полным.

    От того, полное ли квадратное уравнение или неполное, зависит, как мы будем его решать. Начнем с неполных уравнений, они немного легче, но почему-то как раз в них все часто ошибаются.

    Неполные квадратные уравнения

    Неполное квадратное уравнение — это уравнение, в котором один из коэффициентов (b) или (c) равен нулю, (aneq0).

    Как решать квадратное уравнение (ax^2+bx=0)?

    Рассмотрим уравнение, в котором (c=0), оно будет иметь вид:
    $$ax^2+bx=0;$$
    Чтобы его решить, нужно вынести общий множитель (x) за скобки:
    $$x(ax+b)=0;$$
    И вспомнить правило, что произведение равно нулю, когда хотя бы один из множителей равен нулю. Здесь два множителя: (x) и ((ax+b)). Приравниваем их к нулю и решаем каждое по-отдельности:
    $$x=0;$$
    Тут решать-то нечего, сразу дан корень.
    Второе:
    $$ax+b=0;$$
    Обычное линейное уравнение:
    $$ax=-b;$$
    $$x=frac{-b}{a};$$

    Получили, что уравнение имеет сразу два корня:(x=0) и (x=frac{-b}{a}).

    Разберем на примере:

    Пример 7
    $$2x^2+8x=0;$$
    Выносим общий множитель (x):
    $$x(2x+8)=0;$$
    $$quad x_1=0 quad и quad 2x+8=0;$$
    $$2x+8=0;$$
    $$2x=-8;$$
    $$x_2=-4.$$
    Ответ: (x_1=0 quad и quad x_2=-4.)

    Как решать квадратное уравнение (ax^2+с=0)?

    Вот с такими уравнениями надо быть очень внимательными. Важно помнить, что любое число (выражение), возведенное в квадрат, всегда больше или равно нуля, оно не может быть отрицательным.

    Общая схема решения уравнений вида (ax^2+с=0):

    • Выражаем (x^2) из уравнения:
      $$ax^2+c=0;$$
      $$ax^2=-c;$$
      $$x^2=frac{-c}{a};$$
    • Если (-frac{c}{a} geq 0):
      $$x_1=sqrt{-frac{c}{a}};$$
      $$x_2=-sqrt{-frac{c}{a}};$$
    • Если (-frac{c}{a} lt 0):
      РЕШЕНИЙ НЕТ.

    Пример 8
    $$2x^2-8=0;$$
    $$2x^2=8;$$
    $$x^2=frac{8}{2};$$
    $$x^2=4;$$
    $$x=pmsqrt{4};$$
    $$x_1=2;$$
    $$x_2=-2;$$
    Ответ: (x_1=2 quad и quad x_2=-2.)

    Пример 9
    $$4x^2+36=0;$$
    $$2x^2=-36;$$
    $$x^2=frac{-36}{2}=-18;$$
    Так как (-18 < 0), а (x^2) не может быть отрицательным, то это уравнение не имеет корней.
    Ответ: Нет корней.

    Пример 10
    $$frac{1}{2}x^2-frac{1}{18}=0;$$
    $$frac{1}{2}x^2=frac{1}{18};$$
    Чтобы избавиться от (frac{1}{2}), умножим уравнение слева и справа на (2):
    $$x^2=frac{2}{18};$$
    $$x^2=frac{1}{9};$$
    $$x=pmsqrt{frac{1}{9}};$$
    $$x_1=frac{1}{3};$$
    $$x_2=-frac{1}{3};$$
    Ответ: (x_1=frac{1}{3} quad и quad x_2=-frac{1}{3}.)

    Решение квадратных уравнений через дискриминант

    Квадратные уравнения (ax^2+bx+c=0), у которых все коэффициенты ( a, ; b,; с) не равны 0, называются полными квадратными уравнениями.

    Чтобы их решать, нужно уметь находить дискриминант квадратного уравнения. Ничего страшного в этом нет, несмотря на странное называние. Дискриминантом уравнения (ax^2+bx+c=0) называют выражение:
    $$D=b^2-4ac;$$

    1. Если дискриминант получился больше нуля ((D ge 0)), то квадратное уравнение имеет два корня, которые можно найти по формулам:
      $$x_1=frac{-b+sqrt{D}}{2a};$$
      $$x_2=frac{-b-sqrt{D}}{2a};$$
    2. Если дискриминант равен нулю ((D=0)), то квадратное уравнение имеет один корень:
      $$x=frac{-b}{2a};$$
    3. Если дискриминант меньше нуля ((D<0)), то квадратное уравнение не имеет корней.

    Примеры квадратных уравнений

    Пример 11
    $$2x^2-9x+4=0;$$
    Прежде чем решать уравнение, я рекомендую выписать все коэффициенты:
    $$a=2 quad b=-9 quad c=4.$$
    Используя значения коэффициентов, можем посчитать дискриминант:
    $$D=b^2-4ac=(-9)^2-4*2*4=81-32=49;$$
    Ура, дискриминант посчитан и он больше нуля! Значит корней будет два, найдем их по формулам:
    $$x_1=frac{-b+sqrt{D}}{2a}=frac{-(-9)+sqrt{49}}{2*2}=frac{9+7}{4}=frac{16}{4}=4;$$
    $$x_2=frac{-b-sqrt{D}}{2a}=frac{-(-9)—sqrt{49}}{2*2}=frac{9-7}{4}=frac{2}{4}=frac{1}{2};$$
    Ответ: (x_1=4 quad и quad x_2=frac{1}{2}.)

    Пример 12
    $$10x^2+x-21=0;$$
    $$a=10 quad b=1 quad c=-21.$$
    $$D=b^2-4ac=1^2-4*10*(-21)=1+840=841;$$
    $$x_1=frac{-b+sqrt{D}}{2a}=frac{-1+sqrt{841}}{2*10}=frac{-1+29}{20}=frac{28}{20}=frac{7}{5};$$
    $$x_2=frac{-b-sqrt{D}}{2a}=frac{-1-sqrt{841}}{2*10}=frac{-1-29}{20}=frac{-30}{20}=frac{-3}{2};$$
    Ответ: (x_1=frac{7}{5} quad и quad x_2=-frac{3}{2}.)

    Пример 13
    $$(x-7)^2=2x^2+11x+23;$$
    Это уравнение еще нужно привести к стандартному виду, для этого раскроем скобки по формуле «квадрат разности» ((a-b)^2=a^2-2ab+b^2):
    $$x^2-14x+49=2x^2+11x+23;$$
    Перекинем все слагаемые в левую часть, не забывая при этом менять знак на противоположный:
    $$x^2-14x+49-2x^2-11x-23=0;$$
    Приводим подобные слагаемые:
    $$-x^2-25x+26=0;$$
    $$a=-1 quad b=-25 quad c=26.$$
    $$D=b^2-4ac=(-25)^2-4*(-1)*26=625+104=729;$$
    $$x_1=frac{-b+sqrt{D}}{2a}=frac{-(-25)+sqrt{729}}{2*(-1)}=frac{25+27}{-2}=frac{52}{-2}=-26;$$
    $$x_2=frac{-b-sqrt{D}}{2a}=frac{-(-25)-sqrt{729}}{2*(-1)}=frac{25-27}{-2}=frac{-2}{-2}=1;$$
    Ответ: (x_1=-26 quad и quad x_2=1.)

    Пример 14
    $$3x^2+7x+6=0;$$
    $$a=3 quad b=7 quad c=6.$$
    $$D=b^2-4ac=7^2-4*3*6=49-72=-23;$$
    Стоп! Дискриминант получился отрицательный, это означает, что у этого квадратного уравнения не будет корней.
    Ответ: Нет корней.

    Пример 15
    $$4x^2-4x+1=0;$$
    $$a=4 quad b=-4 quad c=1.$$
    $$D=b^2-4ac=(-4)^2-4*4*1=16-16=0;$$
    Дискриминат получился равен нулю. В этом случае у квадратного уравнения будет всего один корень, который можно найти по формуле:
    $$x=frac{-b}{2a}=frac{-(-4)}{2*4}=frac{4}{8}=frac{1}{2};$$
    Ответ: (x=frac{1}{2}.)

    Полезно знать! Если дискриминант получился равен нулю, то перед вами формула полного квадрата. Это значит, что квадратный многочлен можно разложить по формуле ((apm b)^2=a^2pm 2ab+b^2).
    И пример №15 можно решить, используя эту формулу:
    $$4x^2-4x+1=0;$$
    $$(2x-1)^2=0;$$
    Квадрат равен нулю только в том случае, если выражение под квадратом равно нулю:
    $$2x-1=0;$$
    $$2x=1;$$
    $$x=frac{1}{2};$$
    Ответ получили точно такой же, как и при решении через дискриминант.

    Дискриминант деленный на 4

    Квадратные уравнения иногда удобно решать по упрощенной формуле дискриминанта. Но применять ее можно не во всех случаях, а только, если коэффициент (b) в уравнении (ax^2+bx+c=0) четный (делится на 2).

    Итак, представим, что коэффициент (b) четный, тогда дискриминант можно посчитать по формуле:
    $$D_4=left(frac{b}{2}right)^2-ac;$$
    А корни уравнения находятся по формулам:
    $$x_1=frac{-frac{b}{2}+sqrt{D_4}}{a};$$
    $$x_2=frac{-frac{b}{2}-sqrt{D_4}}{a};$$
    Кстати, обычный дискриминант (D) отличается от (D_4) в 4 раза:
    $$D_4=frac{D}{4}=frac{b^2-4ac}{4}=frac{b^2}{4}-frac{4ac}{4}=left(frac{b}{2}right)^2-ac;$$
    Поэтому (D_4) называют «дискриминантом деленным на 4».

    Эти формулы нужны, чтобы, когда это возможно, сократить вычисления. Разберем на примере:

    Пример 16
    $$7x^2-20x-1067=0;$$
    $$a=7 quad b=-20 quad c=-1067.$$
    (b=-20) — четный, поэтому воспользуемся дискриминантом деленным на 4:
    $$D_4=left(frac{b}{2}right)^2-ac=left(frac{-20}{2}right)^2-7*(-1067)=(-10)^2+7469=100+7469=7569;$$
    $$x_1=frac{-frac{b}{2}+sqrt{D_4}}{a}=frac{-frac{-20}{2}+sqrt{7569}}{7}=frac{10+87}{7}=frac{97}{7};$$
    $$x_2=frac{-frac{b}{2}-sqrt{D_4}}{a}=frac{-frac{-20}{2}-sqrt{7569}}{7}=frac{10-87}{7}=frac{-77}{7}=-11;$$
    Ответ: (x_1=frac{97}{7} quad и quad x_2=-11.)

    Возникает вопрос, зачем вообще нужен этот (D_4), если все можно считать через обычный дискриминант? Если бы мы считали пример №16 как обычно, то наш дискриминант, который и так получился не маленьким — ((D_4=7659)), был бы в четыре раза больше. А чем больше числа, тем сложнее расчеты.

    Теорема Виета для решения квадратных уравнений

    Теорема Виета — это еще один способ упростить решение полных квадратных уравнений. Ее очень часто используют для решения несложных квадратных уравнений в уме и для анализа квадратного многочлена, особенно это актуально в сложных заданиях с параметром в ЕГЭ.

    Прежде чем сформулировать теорему Виета, познакомимся с приведенными квадратными уравнениями.

    Приведенное квадратное уравнение

    Квадратные уравнения (ax^2+bx+c=0), у которых коэффициент (a) при (x^2) равен (1), называют приведенными.

    Например:
    $$x^2+4x-3=0;$$
    $$x^2-140x-65=0;$$
    Любое полное квадратное уравнение всегда можно свести к приведенному. Для этого надо поделить все уравнение на коэффициент (a):

    Пример 17
    Привести квадратное уравнение к приведенному.
    $$3x^2-15x+9=0;$$
    Разделим уравнение на (a=3). (Так можно делать: если левую и правую части уравнения поделить на одно и то же число, то корни уравнения от этого не изменятся.)
    $$frac{3x^2-15x+9}{3}=frac{0}{3};$$
    В результате каждое слагаемое поделится на (3):
    $$frac{3x^2}{3}-frac{15x}{3}+frac{9}{3}=0;$$
    $$x^2-5x+3=0;$$

    Формулы Виета

    Сумма корней приведенного квадратного уравнения (x^2+bx+c=0) равна второму коэффициенту (b) со знаком минус, а произведение корней равно свободному члену (c).

    Пусть (x_1), и (x_2) — корни квадратного уравнения (x^2+bx+c=0), тогда справедливы формулы:
    $$ begin{cases}
    x_1+x_2=-b; \
    x_1*x_2=c. \
    end{cases}$$
    На первый взгляд может показаться, что это очень запутанно, но на самом деле, теорема Виета часто помогает решить уравнение в уме. Попробуем на практике:

    Пример 18
    $$x^2+4x+3=0;$$
    $$a=1 quad b=4 quad c=3.$$
    Воспользуемся теоремой Виета и выпишем формулы:
    $$ begin{cases}
    x_1+x_2=-b; \
    x_1*x_2=c. \
    end{cases}$$
    Подставим коэффициенты:
    $$ begin{cases}
    x_1+x_2=-4; \
    x_1*x_2=3. \
    end{cases}$$

    Нужно найти такие (x_1) и (x_2), которые удовлетворяют и первому, и второму уравнениям в системе. Подобрать корни достаточно просто: рассмотрим второе уравнение, какие два числа дают при умножении (3ку)?

    Либо: (3=1*3);
    Либо: (3=(-1)*(-3)).

    Осталось проверить, будут ли найденные множители удовлетворять первому уравнению в системе, просто подставим их:
    $$1+3 neq -4;$$
    $$-1+(-3) = -4;$$
    Вот мы и нашли корни системы уравнений: (x_1=-1) и (x_2=-3). А самое главное, мы нашли корни исходного квадратного уравнения.
    Ответ: (x_1=-1 quad и quad x_2=-3.)

    Если потренироваться, то все эти вычисления можно легко проводить в уме, если коэффициенты небольшие. Главное запомнить, что произведение корней должно быть равно свободному члену (c), а сумма корней равна ((-b)).

    Теорема Виета, если (aneq1)

    По теореме Виета можно решать не только приведенные квадратные уравнения (у которых (a=1)). Но перед тем, как применять формулы Виета, надо привести уравнение к приведенному, поделив на первый коэффициент (a):
    $$ax^2+bx+c=0; quad mid :a$$
    $$frac{ax^2}{a}+frac{bx}{a}+frac{c}{a};$$
    $$x^2+frac{b}{a}*x+frac{c}{a};$$
    Получили приведенное квадратное уравнение, для которого можно записать формулы Виета, где вторым коэффициентом будет (frac{b}{a}), а свободным членом (frac{c}{a}):
    $$ begin{cases}
    x_1+x_2=-frac{b}{a}; \
    x_1*x_2=frac{c}{a}. \
    end{cases}$$

    Пример 19
    $$12x^2+x-1=0;$$
    $$a=12 quad b=1 quad c=-1.$$
    Коэффициент (a=12 neq 1), поэтому разделим все уравнение на (a=12):
    $$12x^2+x-1=0; quad mid :12$$
    $$x^2+frac{1}{12}x-frac{1}{12}=0;$$
    $$a=1 quad b=frac{1}{12} quad c=-frac{1}{12}.$$

    Теорема Виета:
    $$ begin{cases}
    x_1+x_2=-frac{1}{12}; \
    x_1*x_2=-frac{1}{12}. \
    end{cases}$$

    Подбираем корни:
    $$x_1=-frac{1}{3};$$
    $$x_2=frac{1}{4};$$

    Ответ: (x_1=-frac{1}{3} quad и quad x_2=frac{1}{4}.)

    Теорема Виета удобна, когда у квадратного уравнения небольшие коэффициенты и можно легко подобрать корни. В остальных случаях лучше пользоваться дискриминантом.

    Квадратное уравнение

    Это уравнение вида ax2+bx+c=0ax^2 + bx + c = 0,

    где aa – коэффициент перед x2x^2,

    bb – коэффициент перед xx,

    cc – свободное число.

    Существуют разные способы нахождения корней квадратного уравнения. Пожалуй, самый основной и распространенный способ – через вычисление дискриминанта. В этом случае он рассчитывается по формуле:

    D=b2–4acD = b^2 – 4ac

    Если второй коэффициент уравнения четный, можно решать уравнение через kk, тогда будет другая формула дискриминанта:

    D1=k2–acD_1 = k^2 – ac

    Если первый коэффициент уравнения равен 1, то можно воспользоваться теоремой Виета, которая имеет 2 условия:

    x1+x2=−bx_1 + x_2 = -b
    x1⋅x2=cx_1 cdot x_2 = c

    Но если мы захотим решить уравнение основным способом, ошибки не будет. Нахождение корней уравнения через дискриминант – универсальный способ, а остальные введены для удобства вычислений.

    Задача 1

    Решим уравнение: 3×2+7x−6=0.3x^2 + 7x — 6 = 0.

    Обозначим коэффициенты:

    a=3a = 3,

    b=7b = 7,

    c=−6c = -6

    Далее находим дискриминант по формуле:

    D=b2–4acD = b^2 – 4ac

    D=72–4∗3∗(−6)=49+72=121=112D = 7^2 – 4 * 3 * (-6) = 49 + 72 = 121 = {11}^2

    D>0D > 0 – значит, уравнение имеет 2 корня.

    Находим корни уравнения по следующим формулам:

    x1=(−b+√D)/2ax_1 = (-b + √D) / 2a
    x2=(−b−√D)/2ax_2 = (-b — √D) / 2a

    Подставляем численные значения:

    x1=(−7+11)/2∗3=4/6=23x_1 = (-7 + 11) / 2*3 = 4 / 6 = frac{2}{3}

    x2=(−7–11)/2∗3=−18/6=−3x_2 = (-7 – 11) / 2*3 = -18 / 6 = -3

    Ответ: x1=23x_1 = frac{2}{3}, x2=−3x_2 = -3.

    Задача 2

    Решим уравнение: −x2+7x+8=0.-x^2 + 7x + 8 = 0.

    Обозначим коэффициенты:

    a=−1a = -1,

    b=7b = 7,

    c=8.c = 8.

    Далее находим дискриминант по формуле:

    D=b2–4acD = b^2 – 4ac

    D=72–4⋅(−1)⋅8=49+32=81=92D = 7^2 – 4 cdot (-1) cdot 8 = 49 + 32 = 81 = 9^2

    D>0D > 0 – значит, уравнение имеет 2 корня.

    Находим корни уравнения по следующим формулам:

    x1=(−b+√D)/2ax_1 = (-b + √D) / 2a
    x2=(−b−√D)/2ax_2 = (-b — √D) / 2a

    Подставляем численные значения:

    x1=(−7+9)/2∗(−1)=2/(−2)=−1x_1 = (-7 + 9) / 2 * (-1) = 2 / (-2) = -1
    x2=(−7–9)/2∗(−1)=−16/(−2)=8x_2 = (-7 – 9) / 2 * (-1) = -16 / (-2) = 8

    Ответ: x1=−1x_1 = -1, x2=8x_2 = 8.

    Задача 3

    Решим уравнение: 4×2+4x+1=0.4x^2 + 4x + 1 = 0.

    Обозначим коэффициенты:
    a=4a = 4,

    b=4b = 4,

    c=1.c = 1.

    Далее находим дискриминант по формуле: D=b2–4acD = b^2 – 4ac

    D=42–4⋅4⋅1=16–16=0D = 4^2 – 4 cdot 4 cdot 1 = 16 – 16 = 0

    D=0D = 0 – значит, уравнение имеет 1 корень.

    Находим корень уравнения по следующей формуле: x=−b/2ax = -b / 2a

    Подставляем численные значения:

    x=−4/2⋅4=−4/8=−1/2=−0,5x = -4 / 2 cdot 4 = -4 / 8 = -1 / 2 = -0,5

    Ответ: x=−0,5.x = -0,5.

    Задача 4

    Решим уравнение: 2×2+x+1=0.2x^2 + x + 1 = 0.

    Обозначим коэффициенты:
    a=2a = 2,

    b=1b = 1,

    c=1.c = 1.

    Далее находим дискриминант по формуле: D=b2–4acD = b^2 – 4ac

    D=12–4∗2∗1=1–8=−7D = 1^2 – 4 * 2 * 1 = 1 – 8 = -7

    D<0D < 0 – значит, уравнение корней не имеет.

    Ответ: корней нет.

    Решение квадратного уравнения через k

    Если у квадратного уравнения коэффициент bb четный, то можно решать уравнение через kk, при этом k=12bk = frac{1}{2} b.

    Задача 5

    Решим уравнение: −x2+2x+8=0.-x^2 + 2x + 8 = 0.

    Обозначим коэффициенты:

    a=−1a = -1,

    b=2b = 2,

    c=8c = 8

    bb – четное.

    k=12b=1k = frac {1}{2} b = 1.

    Далее находим дискриминант по формуле: D1=k2–acD_1 = k^2 – ac

    D1=12–(−1)∗8=1+8=9=32D_1 = 1^2 – (-1) * 8 = 1 + 8 = 9 = 3^2

    D1>0D_1 > 0 – значит, уравнение имеет 2 корня.

    Находим корни уравнения по следующим формулам:

    x1=(−k+D1)/ax_1 = (-k + {sqrt D}_1) / a
    x2=(−k−D1)/ax_2 = (-k — {sqrt D}_1) / a

    Подставляем численные значения:

    x1=(−1+3)/(−1)=2/(−1)=−2x_1 = (-1 + 3) / (-1) = 2 / (-1) = -2
    x2=(−1–3)/(−1)=−4/(−1)=4x_2 = (-1 – 3) / (-1) = -4 / (-1) = 4

    Ответ: x_1 = -2, x_2 = 4.

    Задача 6

    Решим уравнение: 9×2–6x+1=0.9x^2 – 6x + 1 = 0.

    Обозначим коэффициенты:
    a=9a = 9,

    b=−6b = -6,

    c=1c = 1

    bb – четное.

    K=12b=−3.K = frac{1}{2} b = -3.

    Далее находим дискриминант по формуле: D1=k2–acD_1 = k^2 – ac

    D1=(−3)2–9∗1=9–9=0D_1 = {(-3)}^2 – 9 * 1 = 9 – 9 = 0

    D1=0D_1 = 0 – значит, уравнение имеет 1 корень.

    Находим корень уравнения по следующей формуле: x=−k/ax = -k / a

    Подставляем численные значения:

    x=3/9=13x = 3 / 9 = frac{1}{3}

    Ответ: x=13.x = frac{1}{3}.

    Нахождение корней уравнения по теореме Виета

    Если в квадратном уравнении a=1a = 1, то можно найти корни уравнения по теореме Виета.

    Задача 7

    Найдем корни уравнения: x2+3x+2=0.x^2 + 3x + 2 = 0.

    Обозначим коэффициенты:
    a=1a = 1,

    b=3b = 3,

    c=2c = 2.

    Запишем 2 условия теоремы Виета:

    x1+x2=−bx_1 + x_2 = -b
    x1∗x2=cx_1 * x_2 = c

    Теперь методом подбора найдем 2 числа, которые будут соответствовать этим условиям. Вероятно, это числа -2 и -1.

    Значит, корни уравнения равны:

    x1=−2x_1 = -2
    x2=−1x_2 = -1

    Ответ: x1=−2x_1 = -2, x2=−1x_2 = -1.

    Задача 8

    Найдем корни уравнения: x2–5x+6=0.x^2 – 5x +6 = 0.

    Обозначим коэффициенты:

    a=1a = 1,

    b=−5b = -5,

    c=6c = 6

    Запишем 2 условия теоремы Виета:

    x1+x2=−bx_1 + x_2 = -b
    x1∗x2=cx_1 * x_2 = c

    Теперь методом подбора найдем 2 числа, которые будут соответствовать этим условиям. Вероятно, это числа 2 и 3.

    Значит, корни уравнения равны:

    x1=2x_1 = 2
    x2=3x_2 = 3

    Ответ: x1=2x_1 = 2, x2=3.x_2 = 3.

    Тест по теме «Примеры решения квадратных уравнений»

    Понравилась статья? Поделить с друзьями:
  • Как составить географический план равнины
  • Как найти векторы через базис
  • Как найти свой телефон самсунг по imei
  • Как найти человека по аккаунту одноклассников
  • Компас как найти стрелку