Как составить квадратный трехчлен если известны его коэффициенты

Квадратный трехчлен – это многочлен вида (ax^2+bx+c)   ((a≠0)).

Пример:

(x^2-2x+1)
(3x^2-5x+6)

Почему его называют именно так? Потому что, наибольшая степень у него – квадрат, а состоит он из трех слагаемых (одночленов). Вот и получается – квадратный трехчлен.

квадратный трехчлен.png

Примеры не квадратных трехчленов:

(x^3-3x^2-5x+6) — кубический четырёхчлен
(2x+1) — линейный двучлен

Корень квадратного трехчлена:

Значение переменной (x), при котором квадратный трехчлен обращается в ноль, называют его корнем.

Пример:
У трехчлена (x^2-2x+1) корень (1), потому что (1^2-2·1+1=0)
У трехчлена (x^2+2x-3) корни (1) и (-3), потому что (1^2+2-3=0) и ((-3)^2-6-3=9-9=0)

Например:  если нужно найти корни для квадратного трехчлена (x^2-2x+1), приравняем его к нулю и решим уравнение (x^2-2x+1=0).

(D=4-4cdot1=0)
(x=frac{2-0}{2}=frac{2}{2}=1)

Готово. Корень равен (1).

Разложение квадратного трёхчлена на множители:

Квадратный трехчлен (ax^2+bx+c) можно разложить как (a(x-x_1 )(x-x_2)), если дискриминант уравнения (ax^2+bx+c=0) больше нуля (x_1) и (x_2) — корни того же уравнения).

Например, рассмотрим трехчлен (3x^2+13x-10).
У квадратного уравнения (3x^2+13x-10=0) дискриминант равен 289 (больше нуля), а корни равны (-5) и (frac{2}{3}). Поэтому (3x^2+13x-10=3(x+5)(x-frac{2}{3})). В верности этого утверждения легко убедится – если мы раскроем скобки, то получим исходный трехчлен.

Квадратный трехчлен (ax^2+bx+c) можно представить как (a(x-x_1)^2), если дискриминант уравнения (ax^2+bx+c=0) равен нулю.

Например, рассмотрим трехчлен (x^2+6x+9).
У квадратного уравнения (x^2+6x+9=0) дискриминант равен (0), а единственный корень равен (-3). Значит, (x^2+6x+9=(x+3)^2) (здесь коэффициент (a=1), поэтому перед скобкой не пишется – незачем). Обратите внимание, что тоже самое преобразование можно сделать и по формулам сокращенного умножения.

Квадратный трехчлен (ax^2+bx+c) не раскладывается на множители, если дискриминант уравнения (ax^2+bx+c=0) меньше нуля.

Например, у трехчленов (x^2+x+4) и (-5x^2+2x-1) – дискриминант меньше нуля. Поэтому разложить их на множители невозможно.

Пример. Разложите на множители (2x^2-11x+12).
Решение:
Найдем корни квадратного уравнения (2x^2-11x+12=0)

(D=11^2-4 cdot 2 cdot 12=121-96=25>0)
(x_1=frac{11-5}{4}=1,5;) (x_2=frac{11+5}{4}=4.)

Значит, (2x^2-11x+12=2(x-1,5)(x-4))
Ответ: (2(x-1,5)(x-4))

Полученный ответ, может быть, записать по-другому: ((2x-3)(x-4)).

Пример. (Задание из ОГЭ) Квадратный трехчлен разложен на множители (5x^2+33x+40=5(x++ 5)(x-a)). Найдите (a).
Решение:
(5x^2+33x+40=0)
(D=33^2-4 cdot 5 cdot 40=1089-800=289=17^2)
(x_1=frac{-33-17}{10}=-5)
(x_2=frac{-33+17}{10}=-1,6)
(5x^2+33x+40=5(x+5)(x+1,6))
Ответ: (-1,6)

Смотрите также:
Квадратный трехчлен (шпаргалка)

Разложение квадратного трёхчлена на множители

Как разложить на множители квадратный трёхчлен

Квадратный трёхчлен — это многочлен вида ax 2 + bx + c .

В прошлых уроках мы решали квадратные уравнения. Общий вид таких уравнений выглядел так:

Левая часть этого уравнения является квадратным трёхчленом.

Одним из полезных преобразований при решении задач является разложение квадратного трёхчлена на множители. Для этого исходный квадратный трёхчлен приравнивают к нулю и решают квадратное уравнение. В этом случае говорят, что выполняется поиск корней квадратного трёхчлена.

Полученные корни x1 и x2 следует подстáвить в следующее выражение, которое и станет разложением:

Таким образом, чтобы разложить квадратный трёхчлен на множители при помощи решения квадратного уравнения, нужно воспользоваться следующей готовой формулой:

Где левая часть — исходный квадратный трёхчлен.

Пример 1. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена. Для этого приравняем данный квадратный трёхчлен к нулю и решим квадратное уравнение:

В данном случае коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента. Чтобы сэкономить время, некоторые подробные вычисления можно пропустить:

Итак, x1 = 6 , x2 = 2 . Теперь воспользуемся формулой ax 2 + bx + c = a(xx1)(xx2). В левой части вместо выражения ax 2 + bx + c напишем свой квадратный трёхчлен x 2 8x + 12. А в правой части подставим имеющиеся у нас значения. В данном случае a = 1, x1 = 6, x2 = 2

Если a равно единице (как в данном примере), то решение можно записать покороче:

Чтобы проверить правильно ли разложен квадратный трёхчлен на множители, нужно раскрыть скобки у правой части получившегося равенства.

Раскроем скобки у правой части равенства, то есть в выражении (x − 6)(x − 2) . Если мы всё сделали правильно, то должен получиться квадратный трёхчлен x 2 8x + 12

Пример 2. Разложить на множители следующий квадратный трёхчлен:

Приравняем данный квадратный трёхчлен к нулю и решим уравнение:

Как и в прошлом примере коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента:

Итак, x1 = 4 , x2 = 3 . Приравняем квадратный трехчлен 2x 2 − 14x + 24 к выражению a(xx1)(xx2) , где вместо переменных a , x1 и x2 подстáвим соответствующие значения. В данном случае a = 2

Выполним проверку. Для этого раскроем скобки у правой части получившегося равенства. Если мы всё сделали правильно, то должен получиться квадратный трёхчлен 2x 2 − 14x + 24

Как это работает

Разложение квадратного трёхчлена на множители происходит, если вместо коэффициентов квадратного трёхчлена подстáвить теорему Виета и выполнить тождественные преобразования.

Для начала рассмотрим случай, когда коэффициент a квадратного трёхчлена равен единице:

Вспоминаем, что если квадратное уравнение является приведённым, то теорема Виета имеет вид:

Тогда приведённый квадратный трехчлен x 2 + bx + c можно разложить на множители следующим образом. Сначала выразим b из уравнения x1 + x2 = −b . Для этого можно умножить обе его части на −1

Переменную c из теоремы Виета выражать не нужно — она уже выражена. Достаточно поменять местами левую и правую часть:

Теперь подставим выраженные переменные b и c в квадратный трёхчлен x 2 + bx + c

Раскроем скобки там где это можно:

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

Из первых скобок вынесем общий множитель x , из вторых скобок — общий множитель −x2

Далее замечаем, что выражение ( xx1 ) является общим множителем. Вынесем его за скобки:

Но это был случай, когда исходный квадратный трёхчлен является приведённым. В нём коэффициент a равен единице. И соответственно, в формуле разложения такого квадратного трехчлена коэффициент a можно опустить.

Теперь рассмотрим случай, когда коэффициент a квадратного трёхчлена не равен единице. Это как раз тот случай, когда в формуле разложения присутствует перед скобками коэффициент a

Вспоминаем, что если квадратное уравнение не является приведённым, то есть имеет вид ax 2 + bx + c = 0 , то теорема Виета принимает следующий вид:

Это потому что теорема Виета работает только для приведённых квадратных уравнений. А чтобы уравнение ax 2 + bx + c = 0 стало приведённым, нужно разделить обе его части на a

Далее чтобы квадратный трёхчлен вида ax 2 + bx + c разложить на множители, нужно вместо b и c подставить соответствующие выражения из теоремы Виета. Но в этот раз нам следует использовать равенства и

Для начала выразим b и c . В первом равенстве умножим обе части на a . Затем обе части получившегося равенства умножим на −1

Теперь из второго равенства выразим c . Для этого умножим обе его части на a

Теперь подставим выраженные переменные b и с в квадратный трёхчлен ax 2 + bx + c . Для наглядности каждое преобразование будем выполнять на новой строчке:

Здесь вместо переменных b и c были подставлены выражения −ax1 − ax2 и ax1x2 , которые мы ранее выразили из теоремы Виета. Теперь раскроем скобки там где это можно:

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

Теперь из первых скобок вынесем общий множитель ax , а из вторых — общий множитель −ax2

Далее замечаем, что выражение x − x1 тоже является общим множителем. Вынесем его за скобки:

Вторые скобки содержат общий множитель a . Вынесем его за скобки. Его можно расположить в самом начале выражения:

Отметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители. Действительно, если не найдены корни квадратного трёхчлена, то нéчего будет подставлять в выражение a(xx1)(xx2) вместо переменных x1 и x2 .

Если квадратный трёхчлен имеет только один корень, то этот корень одновременно подставляется в x1 и x2 . Например, квадратный трёхчлен x 2 + 4x + 4 имеет только один корень −2

Тогда значение −2 в процессе разложения на множители будет подставлено вместо x1 и x2 . А значение a в данном случае равно единице. Её можно не записывать, поскольку это ничего не даст:

Скобки внутри скобок можно раскрыть. Тогда получим следующее:

При этом если нужно получить короткий ответ, последнее выражение можно записать в виде (x + 2) 2 поскольку выражение (x + 2)(x + 2) это перемножение двух сомножителей, каждый из которых равен (x + 2)

Примеры разложений

Пример 1. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения. В левой части напишем квадратный трёхчлен 3x 2 − 2x − 1 , а в правой части — его разложение в виде a(xx1)(xx2) , где вместо a , x1 и x2 подстáвим соответствующие значения:

Во вторых скобках можно заменить вычитание сложением:

Пример 2. Разложить на множители следующий квадратный трёхчлен:

Упорядочим члены так, чтобы старший коэффициент располагался первым, средний — вторым, свободный член — третьим:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения:

Упростим получившееся разложение. Вынесем за первые скобки общий множитель 3

Теперь воспользуемся сочетательным законом умножения. Напомним, что он позволяет перемножать сомножители в любом порядке. Умножим 3 на вторые скобки. Это позвóлит избавиться от дроби в этих скобках:

Пример 3. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения:

Пример 4. Найдите значение k , при котором разложение на множители трёхчлена 3x 2 − 8x + k содержит множитель (x − 2)

Если разложение содержит множитель (x − 2) , то один из корней квадратного трёхчлена равен 2 . Пусть корень 2 это значение переменной x1

Чтобы найти значение k , нужно знать чему равен второй корень. Для его определения воспользуемся теоремой Виета.

В данном случае квадратный трёхчлен не является приведённым, поэтому сумма его корней будет равна дроби , а произведение корней — дроби

Выразим из первого равенства переменную x2 и сразу подстáвим найденное значение во второе равенство вместо x2

Теперь из второго равенства выразим k . Так мы найдём его значение.

Пример 5. Разложить на множители следующий квадратный трёхчлен:

Перепишем данный трёхчлен в удобный для нас вид. Если в первом члене заменить деление умножением, то получим . Если поменять местами сомножители, то получится . То есть коэффициент a станет равным

Коэффициент b можно перевести в обыкновенную дробь. Так проще будет искать дискриминант:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения:

Задания для самостоятельного решения

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Квадратные уравнения

Решение неполных квадратных уравнений
Выделение полного квадрата
Дискриминант
Разложение квадратного трехчлена на множители
Формула для корней квадратного уравнения
Прямая и обратная теоремы Виета

Квадратным трёхчленом относительно переменной x называют многочлен

где a, b и c – произвольные вещественные числа, причем

Квадратным уравнением относительно переменной x называют уравнение

где a, b и c – произвольные вещественные числа, причем

Полным квадратным уравнением относительно переменной x называют уравнение

где a, b и c – произвольные вещественные числа, отличные от нуля.

Неполными квадратными уравнениями называют квадратные уравнения следующих типов:

Решение неполных квадратных уравнений

Покажем, как решаются неполные квадратные уравнения на примерах.

Пример 1 . Решить уравнение

Пример 2 . Решить уравнение

Решение . Вынося в левой части уравнения (3) переменную x за скобки, перепишем уравнение в виде

Поскольку произведение двух сомножителей равно нулю тогда и только тогда, когда, или первый сомножитель равен нулю, или второй сомножитель равен нулю, то из уравнения (4) получаем:

Ответ : .

Пример 3 . Решить уравнение

Ответ : .

Пример 4 . Решить уравнение

Решение . Поскольку левая часть уравнения (5) положительна при всех значениях переменной x , а правая часть равна 0, то уравнение решений не имеет.

Ответ : .

Выделение полного квадрата

Выделением полного квадрата называют представление квадратного трёхчлена (1) в виде:

Для того, чтобы получить формулу (6), совершим следующие преобразования:

Формула (6) получена.

Дискриминант

Дискриминантом квадратного трёхчлена (1) называют число, которое обозначается буквой D и вычисляется по формуле:

Дискриминант квадратного трёхчлена играет важную роль, и от того, какой знак он имеет, зависят различные свойства квадратного трёхчлена.

Используя дискриминант, формулу (6) можно переписать в виде

Разложение квадратного трёхчлена на множители

Утверждение . В случае, когда , квадратный трёхчлен (1) разлагается на линейные множители. В случае, когда D , квадратный трехчлен нельзя разложить на линейные множители.

Доказательство . В случае, когда D = 0 , формула (8) и является разложением квадратного трехчлена на линейные множители:

В случае, когда D > 0 , выражение, стоящее в квадратных скобках в формуле (8), можно разложить на множители, воспользовавшись формулой сокращенного умножения «Разность квадратов»:

Таким образом, в случае, когда D > 0 , разложение квадратного трехчлена (1) на линейные множители имеет вид

В случае, когда D , выражение, стоящее в квадратных скобках в формуле (8), является суммой квадратов и квадратный трёхчлен на множители не раскладывается.

Замечание . В случае, когда D , квадратный трехчлен всё-таки можно разложить на линейные множители, но только в области комплексных чисел, однако этот материал выходит за рамки школьного курса.

Формула для корней квадратного уравнения

Из формул (9) и (10) вытекает формула для корней квадратного уравнения .

Действительно, в случае, когда D = 0 , из формулы (9) получаем:

Следовательно, в случае, когда D = 0 , уравнение (1) обладает единственным корнем, который вычисляется по формуле

В случае, когда D > 0 , из формулы (10) получаем:

Таким образом, в случае, когда D > 0 , уравнение (1) имеет два различных корня , которые вычисляются по формулам

Замечание 1 . Формулы (12) и (13) часто объединяют в одну формулу и записывают так:

Замечание 2 . В случае, когда D = 0 , обе формулы (12) и (13) превращаются в формулу (11). Поэтому часто говорят, что в случае, когда D = 0 , квадратное уравнение (1) имеет два совпавших корня , вычисляемых по формуле (11), а саму формулу (11) переписывают в виде:

Замечание 3 . В соответствии с материалом, изложенным в разделе «Кратные корни многочленов», корень (11) является корнем уравнения (1) кратности 2.

В случае, когда D = 0 , разложение квадратного трехчлена на линейные множители (9) можно переписать по-другому, воспользовавшись формулой (15):

ax 2 + bx + c =
= a (x – x1) 2 .
(16)

В случае, когда D > 0 , разложение квадратного трехчлена на линейные множители (10) с помощью формул (12) и (13) переписывается так:

ax 2 + bx + c =
= a (x – x1) (x – x2) .
(17)

Замечание 4 . В случае, когда D = 0 , корни x1 и x2 совпадают, и формула (17) принимает вид (16).

Прямая и обратная теоремы Виета

Раскрывая скобки и приводя подобные члены в правой части формулы (17), получаем равенство

Отсюда, поскольку формула (17) является тождеством, вытекает, что коэффициенты многочлена

равны соответствующим коэффициентам многочлена

Таким образом, справедливы равенства

следствием которых являются формулы

Формулы (18) и составляют содержание теоремы Виета (прямой теоремы Виета) .

Словами прямая теорема Виета формулируется так: — «Если числа x1 и x2 являются корнями квадратного уравнения (1), то они удовлетворяют равенствам (18)».

Обратная теорема Виета формулируется так: — «Если числа x1 и x2 являются решениями системы уравнений (18), то они являются корнями квадратного уравнения (1)».

Для желающих ознакомиться с примерами решений различных задач по теме «Квадратные уравнения» мы рекомендуем наше учебное пособие «Квадратный трехчлен».

Графики парабол и решение с их помощью квадратных неравенств представлены в разделе «Парабола на координатной плоскости. Решение квадратных неравенств» нашего справочника.

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    источники:

    http://www.resolventa.ru/spr/algebra/kv.htm

    http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya

    Содержание:

    Квадратные уравнения

    В предыдущих классах вы уже научились составлять и решать уравнения, но лишь простейшие, к которым сводятся относительно несложные задачи. Для решения более сложных задач используют квадратные уравнения. Изучив эту тему, вы сможете решать прикладные задачи из разных отраслей знаний.

    В этой главе вы узнаете, что такое:

    • неполные квадратные уравнения;
    • формула корней квадратного уравнения;
    • теорема Виета;
    • разложение квадратного трёхчлена на множители.

    Неполные квадратные уравнения

    Пример:

    Одно из двух чисел больше другого на 6, а их произведение равно 112. Найдите эти числа.

    Решение:

    Обозначим меньшее искомое число буквой х. Тогда большее число равно х + 6. Их произведение — 112. Следовательно,

    х(х + 6) = 112, или х2 + 6х- 112 = 0.

    Это уравнение второй степени с одной переменной. Такие уравнения называют также квадратными.

    Квадратным называют уравнение вида ах2 + bх + c = 0, где х — переменная, а, b, с — данные числа, причём Квадратные уравнения - определение и вычисление с примерами решения

    Числа а, b, с — коэффициенты квадратного уравнения: а — первый коэффициент, b — второй, с — свободный член.

    По определению, первый коэффициент квадратного уравнения не может быть равен нулю. Если хотя бы один коэффициент (b или с) равен нулю, то квадратное уравнение называют неполным.

    Неполные квадратные уравнения бывают трёх видов:

    1) ах2 = 0; 2) ах2 + bх = 0; 3) ах2 + с = 0.

    1. Уравнение вида ах2 = О равносильно уравнению х2 = 0, и поэтому всегда имеет только один корень х = О.

    2. Уравнение вида ах2 + bх = 0 равносильно уравнению х(ах + b) = 0 и всегда имеет два корня: х1 = 0, х2 =Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение 2 + 4х = 0.

    Решение:

    Вынесем переменную х за скобки: х(5х + 4) = 0. Следовательно, х = О, или 5х + 4 = 0,отсюда х = -0,8. О т в е т. х1 = 0, х2 = -0,8.

    3. Квадратное уравнение вида ах2 + с = О равносильно уравнению х2 = Квадратные уравнения - определение и вычисление с примерами решения . Если Квадратные уравнения - определение и вычисление с примерами решения > 0 , то оно имеет два решения: если Квадратные уравнения - определение и вычисление с примерами решения<0 — ни одного решения.

    Пример:

    Решите уравнение 2 -3 = 0.

    Решение:

    Преобразуем данное уравнение: 2 = 3, Квадратные уравнения - определение и вычисление с примерами решения, х — число, квадрат которого равен Квадратные уравнения - определение и вычисление с примерами решения, то есть квадратный корень из числа Квадратные уравнения - определение и вычисление с примерами решения . Таких корней два: Квадратные уравнения - определение и вычисление с примерами решенияи Квадратные уравнения - определение и вычисление с примерами решения. Ответ. Квадратные уравнения - определение и вычисление с примерами решения. Если знаки коэффициентов а и с разные, то число Квадратные уравнения - определение и вычисление с примерами решения положительное, и уравнение имеет два корня. Если знаки коэффициентов а и с одинаковы, то число — отрицательное. Следовательно, уравнение ах2 + с = 0 не имеет корней.

    Хотите знать ещё больше?

    Некоторые квадратные уравнения (полные) можно решать приведением их к неполным квадратным уравнениям. Например, по формуле квадрата двучлена, уравнение х2 — 2х + 1 = 0 можно представить в виде (х — 1)2 = 0 и решить так: (х-1)2 равно нулю лишь в том случае, если х — 1 = 0, то есть х = 1.

    Таким способом можно решить любое квадратное уравнение, выразив его левую часть в виде квадрата двучлена.

    Например, Квадратные уравнения - определение и вычисление с примерами решения. Квадратные уравнения - определение и вычисление с примерами решения

    Выполним вместе!

    Пример:

    Решите квадратное уравнение: а) Зх2 — 6х = 0; б) 2у2 -72 = 0.

    Решение:

    а) Зх2 — 6х = 0; Зх(х — 2) = 0; х1 = 0; х-2 = 0; х2 = 2.

    б) 2 -72 = 0; 2(у2 36)-0; у2— 36 — 0; y1 = 6; y2 = -6. Ответ. a) x1 = 0, х2 = 2; б)у1=6, у2 =-6.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения, Квадратные уравнения - определение и вычисление с примерами решения, Квадратные уравнения - определение и вычисление с примерами решения, отсюда х1 = -20, х2 = 20.

    При этих значениях х знаменатель не равен нулю. Следовательно, х1 = — 20, х2 = 20 — корни уравнения. О т в е т. х1 = — 20, х2 = 20 .

    Формула корней квадратного уравнения

    Решим уравнение х2 + 6х-112=0, которое мы составили по условию задачи.

    Решение:

    Если к выражению х2 + 6х прибавить 9, то получим квадрат двучлена х + 3. Поэтому данное уравнение равносильно уравнению х2 + 6х + 9-9-112=0, или (х + 3)2 = 121. Следовательно, х + 3 = 11, отсюда х = 8; или х + 3 = -11, отсюда х = -14. Ответ. х1 = 8, х2 = -14.

    Такой способ решения квадратного уравнения называют способом выделения квадрата двучлена.

    Решим этим способом уравнение 5х2 — 2х — 3 = 0.

    Чтобы первый его член стал квадратом одночлена с целым коэффициентом, умножим обе части данного уравнения на 5: 25х2 -10х — 15=0, 25х2-2 . 5х + 1 — 1 — 15 = 0, (5х- 1)2 = 16.

    Следовательно, 5х — 1 = 4, отсюда 5х = 5, х = 1; или 5х — 1 = — 4, отсюда 5х = — 3, х = — 0,6. От в е т. х1 = 1, х2 = -0,6.

    Решим таким способом уравнение ах2 + bх + с = 0.

    Умножим обе части уравнения на 4а (помним, что Квадратные уравнения - определение и вычисление с примерами решения):

    2х2 + 4ах.b + 4ас = 0,

    (2ах)2 + 2 . 2ах . b + b2 — b2 + 4ас = 0,

    (2ах + b)2 = b2 — 4ас.

    Выражение b2 — 4ас называют дискриминантом (от латинскогоdiscriminans — различающий) данного квадратного уравнения и обозначают буквой D.

    Если D < 0, то данное уравнение не имеет корней: не существует такого значения х, при котором значение выражения (2ах + b)2 было бы отрицательным.

    Если D = 0, то 2ах + и = 0, отсюда х = Квадратные уравнения - определение и вычисление с примерами решения — единственный корень. Если D > 0, то данное квадратное уравнение равносильно уравнению Квадратные уравнения - определение и вычисление с примерами решения, отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    или Квадратные уравнения - определение и вычисление с примерами решения

    В этом случае уравнение имеет два корня, они отличаются только знаками перед Квадратные уравнения - определение и вычисление с примерами решения . Кратко их записывают так: Квадратные уравнения - определение и вычисление с примерами решения , где Квадратные уравнения - определение и вычисление с примерами решения.

    Это формула корней квадратного уравнения ах2 + bх + с = 0. Пользуясь ею, можно решить любое квадратное уравнение.

    Пример:

    Решите уравнение: а) Зх2 — 5х + 2 = 0; б) х2 + 6х + 9 = 0; в) 5х2 — х + 1 = 0.

    Решение:

    a) D = 25 — 24 = 1, D > 0,

    Квадратные уравнения - определение и вычисление с примерами решения;

    б) D = 36-36 = 0,

    Квадратные уравнения - определение и вычисление с примерами решения;

    в) D =1 — 20 = -19, D < 0. Уравнение корней не имеет.

    Ответ. а)х1 = 1, х2= Квадратные уравнения - определение и вычисление с примерами решения ; б) х = -3: в) уравнение корней не имеет. Формулу корней квадратного уравнения применяют при решении многих уравнений, которые-сводятся к квадратным.

    Пример:

    Решите уравнение: а) 4х4 — 9х2 +5=0; б) (Зх2 — x — 3)(3х2 — х + 5) = 9.

    Решение:

    Такие уравнения удобно решать путём введения вспомогательной переменной.

    a) 4x4 — 9x2 + 5 = 0. Пусть x2 — t, тогда x4 = t2, получим уравнение относительно переменной t: 4x2 — 9x2+ 5 = 0, D = (-9)2 — 4 .4 .5 = 81 — 80 = 1, D > 0,

    Квадратные уравнения - определение и вычисление с примерами решения/

    Вернёмся к переменной x: l) x2 = l, xl=-l, x2=l;

    2) Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение вида ax4 + bx2 + c=0 называют биквадратным. б) (Зх2 — х — 3)(3х2 — х + 5) = 9. Пусть 2 — х = t, тогда относительно переменной t получим уравнение: (t — 3)(t + 5) = 9, t2 + 2t — 15 = 9, t2 + 2t — 24 = 0, D= 4. 4 (-24) = 4 + 96 — 100, D > 0,

    Квадратные уравнения - определение и вычисление с примерами решения.

    1)3х2-х=-6,Зх2-х + 6-0, D = (-1)2-4. 3. 6=-71, D<0, следовательно, это уравнение корней не имеет. 2 ) Зх2 — х = 4, Зх2 — х — 4 — О, х1 = -1, х2 = Квадратные уравнения - определение и вычисление с примерами решения. Ответ. а) х1 = -1, х2 = 1, х3 = Квадратные уравнения - определение и вычисление с примерами решения, х4 = Квадратные уравнения - определение и вычисление с примерами решения; б) x1 = -1, x2 =Квадратные уравнения - определение и вычисление с примерами решения .

    Хотите знать ещё больше?

    Формулу корней уравнения ах2 + bх + с = 0 можно записать и в таком виде:

    Квадратные уравнения - определение и вычисление с примерами решения.

    Если второй коэффициент уравнения — чётное число, то есть уравнение имеет вид ах2 + 2kx + с = 0, то

    Квадратные уравнения - определение и вычисление с примерами решения.

    Если первый коэффициент квадратного уравнения равен 1, то такое уравнение называют приведённым. Приведённое квадрат ное уравнение имеет вид х2 + рх + q = 0, Формула его корней:

    Квадратные уравнения - определение и вычисление с примерами решения.

    Выведите эти формулы из основной формулы корней квадратного уравнения.

    Выполним вместе!

    Пример:

    Приведите уравнение (х — 4)(2х + 1) = Зх(х — 1) к квадратному и найдите его корни.

    Решение:

    (х- 4)(2х 4-1) = Зх(х-1). Раскроем скобки и сведём подобные слагаемые: 2 — 8х + х — 4 = 3х2 — 3х,

    Зх2 — 2х2 — 3х + 8х — х + 4 = 0, х2 +4х +4 = 0.

    Решим полученное уравнение, принимая во внимание, что в его левой части — квадрат двучлена: х2 + 2 . х . 2 + 22 = (х +2)2. Следовательно, (х +2)2 — 0, отсюда х + 2 = 0, х = -2.

    Ответ. х = -2.

    Пример:

    Решите дробное рациональное уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения Дробь равна нулю, если числитель равен нулю, а знаменатель не равен нулю, х2 — 5х + 6 = 0:

    D=25-4.6=1, Квадратные уравнения - определение и вычисление с примерами решения, х1 =2, х2 =3. Данное уравнение эти значения не удовлетворяют, поскольку при х = 2 знаменатель первой дроби равен 0, а при х = 3 знаменатель второй дроби равен 0. Ответ. Уравнение корней не имеет.

    Теорема Виета

    Квадратное уравнение называют приведённым, если первый его коэффициент равен единице. В таблице — примеры трёх приведённых квадратных уравнений, их корни, а также суммы и произведения корней:

    Квадратные уравнения - определение и вычисление с примерами решения

    Сравните сумму корней каждого приведённого квадратного уравнения с его вторым коэффициентом, а произведение корней — со свободным членом.

    Теорема Виета: Если приведённое квадратное уравнение имеет два корня, то их сумма равна второму коэффициенту уравнения, взятому с противоположным знаком, а произведение — свободному члену.

    Доказательство. Если уравнение х2 + рх + q = 0 имеет корни х1 и х2, то их можно найти по формулам:

    Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения где D = р2 — 4q — дискриминант уравнения.

    Сложим и перемножим эти корни:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Итак, x1 + х2 =— р, x1 . х2 = q, что и требовалось доказать. Примечание. Если р2 — 4q = 0, то уравнение х2+ рх + q = 0 имеет один корень Квадратные уравнения - определение и вычисление с примерами решения.

    Формулы (*) в этом случае дают Квадратные уравнения - определение и вычисление с примерами решенияи Квадратные уравнения - определение и вычисление с примерами решения Поэтому часто считают, что данное уравнение имеет два равных корня. Теорема Виета верна и для этого случая, поскольку

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Каждое квадратное уравнение вида Квадратные уравнения - определение и вычисление с примерами решения равносильно приведённому квадратному уравнению Квадратные уравнения - определение и вычисление с примерами решения Если такое уравнение имеет корни х1 и х2,то

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема (обратная теореме Виета). Если сумма m и n произведение чисел тип равны соответственно — р и q, то m и n тип — корни уравнения х2 + рх + q =0.

    Доказательство. Пусть m + n =-р и m . n =q. При данных условиях уравнение х2 + рх 4 q = 0 равно сильно уравнению х2 — (m + n)х + m n = 0.

    Подставим в это уравнение вместо переменной х числа m и n:

    m2 — (m +n)m + mn = m2m2nm + mn= 0,

    n2 — (m +n)n+ mn = n2mnn2 +mn = 0.

    Итак, m и n — корни данного уравнения, что и требовалось доказать. Из теоремы Виета следует: если р и q — целые числа, то целые решения уравнения х2 + рх + q= 0 — это делители числа q. Пользуясь обратной теоремой, можно проверить, является та или другая пара чисел корнями приведённого квадратного уравнения. Это даёт возможность устно решать такие уравнения.

    Пример:

    Решите уравнение х2 + 12х + 11 = 0.

    Решение:

    Если уравнение имеет целые корни, то их произведение равно 11. Это могут быть числа 1 и 11 либо — 1 и -11. Второй коэффициент уравнения положительный, поэтому корни отрицательные. Ответ. х1 = -1, х2 = -11.

    Хотите знать ещё?

    Теорема Виета верна не толоко для приведённого квадратного уравнения, но и для уравнений высших степеней Например, если уравнение третьей степени х3+4ах2 +bх + с = 0 имеет корни х1, х2 и х3, то

    x1+x2+x3=-a

    x1x2+x1x3+x2x3=b

    x1x2x3 = — c.

    Если такое уравнение с целыми коэффициентами имеет целые решения, то они являются делителями свободного члена.

    Выполним вместе!

    Пример:

    Найдите сумму и произведение корней уравнения:

    а) х2 + х-6 = 0; б)х2 + 2х + 3 = 0.

    Решение:

    а) D=1 +24 >0. Корни существуют, поэтому x1 + х2 = -1; x1 . х2 = -6;

    б) D= 4-12<0. Корней не существует. Ответ. а)х1 + х2 = -1,х1 -х2 = -6; б) корней не существует.

    Пример:

    При каких значениях m произведение корней уравнения х2 + 8х + m — 7 = 0 равно 3?

    Решение:

    m-7 = 3, m = 10. Ответ. m = 10.

    Пример:

    Не решая уравнение х2 — 4х + 1 = 0, найдите сумму квадратов его корней.

    Решение:

    D = 16 — 4 > 0. Корни существуют. x1 + х2 = 4; х1 .х2 = 1;

    (x1 + x2)2 = 16; x21+2x1x2+x22 =16;

    х12 +2. 1+x22 =16; x21 +x22 =16-2, х2122 =14.

    Ответ. x21+x22=14.

    Квадратный трёхчлен

    Квадратным трёхчленом называют многочлен вида ах2 + bх+ с, где х — не ременная, a, b, c — данные числа, причём Квадратные уравнения - определение и вычисление с примерами решения.

    Переменную квадратного трёхчлена можно обозначить любой буквой. Примеры квадратных трёхчленов:

    Квадратные уравнения - определение и вычисление с примерами решения

    Если квадратный трёхчлен приравнять к нулю, то получим квадратное уравнение. Его корни и дискриминант называют соответственно корнями и дискриминантом данного квадратного трёхчлена. Например, дискриминант и корни квадратного трёхчлена 2 — 7х — 6 равны соответственно 169, 2 и Квадратные уравнения - определение и вычисление с примерами решения , поскольку это дискриминант и корни уравне ния 2 — 7х — 6 = 0.

    Из теоремы Виета следует правило разложения квадратных трёхчленов на множители.

    Если m и n — корни уравнения x2+ рх + q = 0, то х2 + рх + q = (х-m)(х — n).

    Поскольку х2 + рх + q = х2 — (m -n)х 4+mn = х2 — mх — nх 4- mn = (y- m )(х — n).

    Пример:

    Разложите на множители трёхчлен: х2+4х- 21.

    Решение:

    а) Корни уравнения х2+4х- 21=0 равны 3 и -7. Поэтому

    х2+ 4х — 21 =(х- 3)(х +7).

    Ответ.(х- 3)(х +7).

    Верна и такая теорема.

    Если корни квадратного трёхчлена ах2 + bх + с равны m и n, то его можно разложить на множители:

    ах2 +bх + с = а(х — m)(х — n).

    Доказательство:

    Квадратные уравнения - определение и вычисление с примерами решения. Следовательно, корни m и n трёхчлена ах2+bx+c также являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения. По теореме Виета,

    Квадратные уравнения - определение и вычисление с примерами решения

    Поэтому

    Квадратные уравнения - определение и вычисление с примерами решения

    Например, если нужно разложить на множители трёхчлен Зх2+5х-2, то решаем уравнение Зх2+5х-2-0. Его дискриминант D = 25+24= 49, поэтому

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно,

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ можно записать и так;

    Зх2+ 5х 2 = (Зх 1 )(х+ 2).

    Разложение квадратных трёхчленов на множители применяется при сокращении дробей, приведении их к общему знаменателю и т. д. Например, чтобы сократить дробь Квадратные уравнения - определение и вычисление с примерами решения сначала следует разложить ее числитель и знаменатель на множители. Поскольку

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Каждый квадратный трёхчлен ах2 + bх + c можно представить в виде а(х-k)2+ р, где k и р некоторые числа. Такое преобразование называют выделением квадрата двучлена. Как выполнить подобное преобразование, покажем на примере. Чтобы выделить из квадратного трёхчлена 2х2 — 12х + 25 квадрат двучлена, сначала вынесем за скобки множитель 2:

    Квадратные уравнения - определение и вычисление с примерами решения Одночлен представим в виде произведения 2 . Зх, прибавим к нему 9 и отнимем 9: Квадратные уравнения - определение и вычисление с примерами решения

    В результате имеем: 2х2 — 12х + 25 = 2 (х — 3)2 + 7.

    Выделение квадрата двучлена даёт возможность решать задачи на нахождение наибольшего или наименьшего значения квадратного трёхчлена. Например, чтобы найти, при каком значении х значение выражения 2х2 -12х + 25 наименьшее, выделим из него квадрат двучлена:

    2— 12x+25 =2(х-3)2 + 7.

    Второе слагаемое полученной суммы — число 7, а первое имеет наименьшее значение, если равно 0, то есть х=3. Следовательно, трёхчлен 2— 12x+25 имеет наименьшее значение 7. если х = 3.

    Хотите знать ещё больше?

    Если квадратный трёхчлен имеет дробные корни, го при разложении его на линейные множители желательно первый коэффициент этого трёхчлена «внести в скобки» Например:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Выполним вместе!

    Пример:

    Найдите значение функцииКвадратные уравнения - определение и вычисление с примерами решения при х = 2008.

    Решение:

    Числитель формулы разложим на множители:

    Квадратные уравнения - определение и вычисление с примерами решения

    Если х = 2008, то у = 2008 — 1 = 2007. О т в е т. у = 2007.

    Решение задач составлением квадратных уравнений

    С помощью квадратных уравнений можно упростить решение многих задач.

    Пример:

    Найдите два числа, произведение и среднее арифметическое которых равны соответственно 108 и 10,5.

    Решение:

    Если среднее арифметическое двух чисел равно 10,5, то их сумма в 2 раза больше, то есть 21. Пусть одно из искомых чисел х, тогда другое равно 21-х.

    Имеем уравнение:

    х(21 — х) = 108, или х2 — 21х + 108 = 0.

    Решим это уравнение: D = 212 — 4. 108 = 9,

    Квадратные уравнения - определение и вычисление с примерами решения

    Если х = 9, то 21 — х = 12; если х = 12, то 21 — х = 9.

    Ответ. 9 и 12.

    Пример:

    Собственная скорость моторной лодки — 18 км/ч. Расстояние 12 км по течению реки она проходит на 9 мин быстрее, чем против течения. Найдите скорость течения реки.

    Решение:

    9 мин = 0,15 ч. Если скорость течения реки равна х км/ч, то скорость лодки по течению составляет (18 + х) км/ч, а против течения — (18 — х) км/ч. Расстояние 12 км по течению она проходит за Квадратные уравнения - определение и вычисление с примерами решенияч, а против течения — за Квадратные уравнения - определение и вычисление с примерами решенияч. Имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    отсюда 4(18 + х) — 4(18 — х) — 0,05(18 — х)(18 + х) = 0,

    х2 + 160х — 324 = 0, D = 1602 + 4.324 = 26 896.

    Квадратные уравнения - определение и вычисление с примерами решения

    Задачу удовлетворяет только положительный корень. Ответ. 2 км/ч.

    Пример:

    На плоскости n точек расположены таким образом, что никакие три из них не лежат на одной прямей. Если любую из этих точек соединить отрезком со всеми другими, то получим 351 отрезок. Найдите число n.

    Решение:

    Из одной точки выходит n — 1 отрезков, из всех n данных точек — n(n — 1) отрезков. При этом каждый отрезок повторяется дважды, поскольку имеет два конца. Следовательно, всего отрезков Квадратные уравнения - определение и вычисление с примерами решения

    Имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решим это уравнение: D = 1 + 4 .702 = 2809, Квадратные уравнения - определение и вычисление с примерами решения отсюда n1= 27, n2 = -26. Отрицательный корень задачу не удовлетворяет.

    Ответ. n = 27

    Хотите знать ещё больше?

    В задачах кроме числовых данных иногда бывают и параметры. В этом случае решение желательно дополнить соответствующими исследованиями — указать, какие значения могут принимать параметры. Например, решим такую задачу.

    Пример:

    Найдите стороны равнобедренного треугольника, если известно, что две его неравные высоты равны а и b.

    Решение:

    Обозначим стороны треугольника буквами: АС = АВ = х, СВ = у (рис. 62).

    Квадратные уравнения - определение и вычисление с примерами решенияРис. 62

    Воспользуемся теоремой Пифагора и формулой для вычисления площади треугольника и составим систему

    Квадратные уравнения - определение и вычисление с примерами решения

    Вычислим из второго уравнения с, подставим его в первое и получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решения.

    Следовательно,

    Квадратные уравнения - определение и вычисление с примерами решения

    Исследование. В полученных значениях x и у под знаком корня имеем разность 2 — b2, которая должна быть положительной, что возможно только при b < 2а.

    Следовательно, данное решение задачи верно не при любых положительных а и b, а лишь при b < 2а.

    Далее. Мы рассмотрели случай, когда на основание y и опущена высота а. Но для этих же значений а и b возможен иной вариант (рис. 63). Имеем:

    Квадратные уравнения - определение и вычисление с примерами решенияотсюда Квадратные уравнения - определение и вычисление с примерами решения

    В этом случае а < 2b. Ответ. Если a < 2b < 4а, то задача имеет два решения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения, тo задача имеет одно решение

    Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения, тo задача имеет также одно решение

    Квадратные уравнения - определение и вычисление с примерами решения

    Выполним вместе!

    Пример:

    Найдите три последовательных целых числа, сумма квадратов которых равна 509.

    Решение:

    Пусть искомые числа: х -1, х, х + 1. Тогда имеем уравнение: (х — 1)2 + х2 + (х + 1)2 =509. Решим его.

    Раскроем скобки и сведём подобные слагаемые: х2 -2х + 1+ х2+ х2+2х+1- 509=0,.

    2-507=0, отсюда х2 =169, х1= 13, х2=- 13

    = 0, отсюда х2 — 169, х, 13, х . = 13. Следовательно, два других числа: 12, 14 или -12, 14. Ответ. 12, 13, 14 или 12. -13, II.

    Следовательно, два других числа: 12,14 или -12, -14.

    Ответ. 12,13,14 или -12, 13, 14.

    ИСТОРИЧЕСКИЕ СВЕДЕНИЯ

    Квадратные уравнения простейших видов вавилонские математики умели решать ещё 4 тыс. лет тому назад. Со временем их решали также в Китае и Греции. Особое внимание квадратным уравнениям уделил Мухаммед аль-Хо-резми (IX в.). Он показал, как решать (при положительных а и b) уравнения видов х2 + ах = b, х2 + а = bх, ах + b = х2, не используя каких-либо выражений, даже числа записывал словами. Например, уравнение х2 + 21 = 10х учил решать так: «Раздели пополам корни, получится пять, и умножь это на равное ему — будет двадцать пять, и отними от этого двадцать один, то останется четыре, добудь из этого корень, будет два, и отними это от половины корней, то есть от пяти, — останется три; это и будет корень, который ты ищешь». Отрицательных корней тогда не вычисляли. Индийские учёные в решении этого вопроса пошли дальше. Они находили также отрицательные корни квадратных уравнений. Например, Бхаскара (1114 -1178), решая уравнение х2 — 45х = 250, находит два корня: 50 и 5. И только после этого делает замечание: «Второе значение в данном случае не следует брать, люди ведь не воспринимают отрицательных абстрактных чисел». Алгебраические задачи на составление уравнений индийские учёные записывали в стихотворной форме и рассматривали их как особый вид искусства. Они объясняли: «Как солнце затмевает звёзды своим светом, так и человек учёный способен затмить славу других на народных собраниях, предлагая алгебраические задачи и, тем более, решая их». Формулы корней квадратного уравнения вывел Франсуа Виет (1540—1603). Теорему, впоследствии названную его именем, учёный сформулировал так: «Если (В + В) А -А2 равно BD, то А равно В и равно В». Отрицательных корней он не рассматривал. Современные способы решения квадратных уравнений появились благодаря научным трудам Рене Декарта (1596— 1650) и Исаака Ньютона (1643—1727).

    ОСНОВНОЕ В ГЛАВЕ

    Уравнение — это равенство, которое содержит неизвестные числа, обозначенные буквами. Числа, удовлетворяющие уравнению, — его решения (или корни). Решить уравнение означает найти все его решения либо показать, что их не существует. Два уравнения называют равносильными, если каждое из них имеет те же решения, что и другое. Уравнения, не имеющие решений, также считают равносильными друг другу. Квадратным называют уравнения вида ах2 + bх + с = 0, где х — переменная, а, b, с — данные числа, причём Квадратные уравнения - определение и вычисление с примерами решения. Выражение D = b2 — 4ас — его дискриминант. Если Квадратные уравнения - определение и вычисление с примерами решения, то данное уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения Если D — 0, то эти корни равны. Если D < 0, то такое квадратное уравнение не имеет действительных корней. Если необходимо, например, решить квадратное уравнение 2 + 9х — 5 = 0, то находим его дискриминант: D = 92 — 4.2 .(-5) =121. Поэтому корни уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения Квадратное уравнение называют неполным, если хотя бы один его коэффициент, кроме первого, равен нулю. Уравнение: ах2 = 0 имеет единственный корень: х = 0;

    ax2 = 0 имеет единственный корень: х = 0; ах2 +bх = 0 имеет два корня: х1 = 0, х2=Квадратные уравнения - определение и вычисление с примерами решения; ах2 + с = 0 имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения , если с : а < 0, и ни одного, если с • а > 0.

    Квадратное уравнение называют приведенным, если его первый коэффициент равен единице. Если уравнение х2 + рх + q = 0 имеет два корня, то

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета Если приведённое квадратное уравнение х2 +рх + q = 0 имеет два корня, то их сумма равна р, а произведение — q.

    Квадратные уравнения

    • Изучив материал этого параграфа, вы научитесь решать уравнения вида Квадратные уравнения - определение и вычисление с примерами решения
    • Ознакомитесь с теоремой Виета для квадратного уравнения.
    • Овладеете приемами решения уравнений, сводящихся к квадратным.

    Вы умеете решать линейные уравнения, то есть уравнения вида Квадратные уравнения - определение и вычисление с примерами решения, где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа.

    Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения называют уравнением первой степени.

    Например, каждое из линейных уравнений Квадратные уравнения - определение и вычисление с примерами решения

    является уравнением первой степени. А вот линейные уравнения Квадратные уравнения - определение и вычисление с примерами решения не являются уравнениями первой степени.

    Числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения называют коэффициентами уравнения первой степени Квадратные уравнения - определение и вычисление с примерами решения.

    То, что множество уравнений первой степени является подмножеством множества линейных уравнений, иллюстрирует схема на рисунке 34.

    Вы также умеете решать некоторые уравнения, содержащие переменную во второй степени. Например, готовясь к изучению новой темы, вы решили уравнения Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения (упражнение 589). Каждое из этих уравнений имеет вид Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Определение: Квадратным уравнением называют уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения называют коэффициентами квадратного уравнения. Число Квадратные уравнения - определение и вычисление с примерами решения называют первым или старшим коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениявторым коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениясвободным членом.

    Например, квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет следующие коэффициенты: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным.

    Например, Квадратные уравнения - определение и вычисление с примерами решения — это приведенные квадратные уравнения.

    Поскольку в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения старший коэффициент не равен нулю, то неприведенное квадратное уравнение всегда можно преобразовать в приведенное, равносильное данному. Разделив обе части уравнения Квадратные уравнения - определение и вычисление с примерами решения на число Квадратные уравнения - определение и вычисление с примерами решения получим приведенное квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называют неполным квадратным уравнением.

    Существует три вида неполных квадратных уравнений.

    1. При Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения
    2. При Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения
    3. При Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Решим неполные квадратные уравнения каждого вида.

    1. Поскольку Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет единственный корень Квадратные уравнения - определение и вычисление с примерами решения
    2. Уравнение Квадратные уравнения - определение и вычисление с примерами решения представим в виде Квадратные уравнения - определение и вычисление с примерами решения Это уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения один из которых равен нулю, а другой является корнем уравнения первой степени Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения
    3. Уравнение Квадратные уравнения - определение и вычисление с примерами решения представим в виде Квадратные уравнения - определение и вычисление с примерами решения Поскольку Квадратные уравнения - определение и вычисление с примерами решения то возможны два случая: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения Очевидно, что в первом случае уравнение корней не имеет. Во втором случае уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения иКвадратные уравнения - определение и вычисление с примерами решения

    Обобщим полученные результаты:

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    При Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    или Квадратные уравнения - определение и вычисление с примерами решения Но корень Квадратные уравнения - определение и вычисление с примерами решения не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения Последнее уравнение не имеет корней.

    Ответ: 2.

    Формула корней квадратного уравнения

    Зная коэффициенты Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения уравнения первой степени Квадратные уравнения - определение и вычисление с примерами решения можно найти его корень по формуле Квадратные уравнения - определение и вычисление с примерами решения

    Выведем формулу, позволяющую по коэффициентам Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения находить его корни.

    Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения (1)

    Поскольку Квадратные уравнения - определение и вычисление с примерами решения то, умножив обе части этого уравнения на 4а, получим уравнение, равносильное данному:

    Квадратные уравнения - определение и вычисление с примерами решения

    Выделим в левой части этого уравнения квадрат двучлена: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения (2)

    Существование корней уравнения (2) и их количество зависят от знака значения выражения Квадратные уравнения - определение и вычисление с примерами решения Это значение называют дискриминантом квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения и обозначают буквой Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения Термин «дискриминант» происходит от латинского слова discriminare, что означает «различать», «разделять».

    Теперь уравнение (2) можно записать так:

    Квадратные уравнения - определение и вычисление с примерами решения (3)

    Возможны три случая: Квадратные уравнения - определение и вычисление с примерами решения

    1. Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение (3), а следовательно, и уравнение (1) корней не имеет. Действительно, при любом значении Квадратные уравнения - определение и вычисление с примерами решения выражение Квадратные уравнения - определение и вычисление с примерами решения принимает только неотрицательные значения.

    Вывод: если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение корней не имеет.

    2. Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение (3) принимает вид

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Вывод: если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет один корень Квадратные уравнения - определение и вычисление с примерами решения

    3. Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение (3) можно записать в виде

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Вывод: если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Применяют также краткую форму записи:

    Квадратные уравнения - определение и вычисление с примерами решения

    Эту запись называют формулой корней квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Полученную формулу можно применять и в случае, когда Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    При решении квадратных уравнений удобно руководствоваться следующим алгоритмом:

    Если второй коэффициент квадратного уравнения представить в виде Квадратные уравнения - определение и вычисление с примерами решения то можно пользоваться другой формулой, которая во многих случаях облегчает вычисления.

    Рассмотрим квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения Найдем его дискриминант: Квадратные уравнения - определение и вычисление с примерами решения Обозначим выражение Квадратные уравнения - определение и вычисление с примерами решения через Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то по формуле корней квадратного уравнения получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    то есть

    Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Для данного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Дискриминант уравнения

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    2) Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, данное уравнение имеет один корень:

    Квадратные уравнения - определение и вычисление с примерами решения

    Заметим, что данное уравнение можно решить другим способом. Умножив обе части уравнения на —2, получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 2.

    3) Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ можно записать одним из двух способов: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    4) Квадратные уравнения - определение и вычисление с примерами решения Следовательно, уравнение не имеет корней.

    Ответ: корней нет.

    5) Представим данное уравнение в виде Квадратные уравнения - определение и вычисление с примерами решения и применим формулу корней для уравнения вида Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения которое имеет

    корни —8 и 2, однако корень —8 не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения которое имеет корни —2 и 8, однако корень 8 не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: —2; 2.

    2) Поскольку Квадратные уравнения - определение и вычисление с примерами решения при Квадратные уравнения - определение и вычисление с примерами решения то искомые корни должны удовлетворять двум условиям одновременно: Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения В таком случае говорят, что данное уравнение равносильно системе Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет корни —2 и 12, но корень —2 не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 12.

    3) Данное уравнение равносильно системе Квадратные уравнения - определение и вычисление с примерами решения Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    При каком значении Квадратные уравнения - определение и вычисление с примерами решения имеет единственный корень уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Данное уравнение является квадратным. Оно имеет единственный корень, если его дискриминант равен нулю. Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    2) При Квадратные уравнения - определение и вычисление с примерами решения получаем линейное уравнение Квадратные уравнения - определение и вычисление с примерами решения имеющее один корень.

    При Квадратные уравнения - определение и вычисление с примерами решения данное уравнение является квадратным. Оно имеет единственный корень, если его дискриминант равен нулю:

    Квадратные уравнения - определение и вычисление с примерами решения

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения отсюда Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Несколько поколений учителей математики приобретали педагогический опыт, а их учащиеся углубляли свои знания, пользуясь чудесной книгой «Квадратные уравнения» блестящего украинского педагога и математика Николая Андреевича Чайковского. Н. А. Чайковский оставил значительное научное и педагогическое наследие. Его труды известны далеко за пределами Украины.

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета

    Готовясь к изучению этого пункта, вы выполнили упражнения 677, 678. Возможно, эти упражнения подсказали вам, каким образом сумма и произведение корней квадратного уравнения связаны с его коэффициентами.

    Теорема: (теорема Виета). Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Условием теоремы предусмотрено, что данное квадратное уравнение имеет корни. Поэтому его дискриминант Квадратные уравнения - определение и вычисление с примерами решения не может быть отрицательным.

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Применив формулу корней квадратного уравнения, запишем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пусть Квадратные уравнения - определение и вычисление с примерами решения В этом случае считают, что Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следствие. Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Иными словами, сумма корней приведенного квадратного уривнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

    Теорема: (обратная теореме Виета). Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Рассмотрим квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения Преобразуем его в приведенное:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Французский математик, по профессии юрист. В 1591 г. ввел буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений, благодаря чему стало возможным выражать свойства уравнений и их корни общими формулами. Среди своих открытий сам Виет особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений.

    Согласно условию теоремы это уравнение можно записать так: Квадратные уравнения - определение и вычисление с примерами решения (*)

    Подставим в левую часть этого уравнения вместо Квадратные уравнения - определение и вычисление с примерами решения сначала число Квадратные уравнения - определение и вычисление с примерами решения а затем число Квадратные уравнения - определение и вычисление с примерами решения Получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения (*), а следовательно, и корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Следствие. Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Это следствие позволяет решать некоторые квадратные уравнения устно, не используя формулу корней квадратного уравнения.

    Пример:

    Найдите сумму и произведение корней уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Выясним, имеет ли данное уравнение корни. Имеем: Квадратные уравнения - определение и вычисление с примерами решения Следовательно, уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Тогда по теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Найдите коэффициенты Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения уравнения Квадратные уравнения - определение и вычисление с примерами решения если его корнями являются числа —7 и 4.

    Решение:

    По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Составьте квадратное уравнение с целыми коэффициентами, корни которого равны: 1) 4 и Квадратные уравнения - определение и вычисление с примерами решения; 2) Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения.

    Решение:

    1) Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решения По теореме, обратной теореме Виета, числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения Умножив обе части этого уравнения на 7, получаем квадратное уравнение с целыми коэффициентами:

    Квадратные уравнения - определение и вычисление с примерами решения

    2) Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения Отсюда искомым является уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Известно, что Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения Не решая уравнения, найдите значение выражения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Тогда имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Число 4 является корнем уравнения Квадратные уравнения - определение и вычисление с примерами решения Найдите второй корень уравнения и значение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни данного уравнения, причем Квадратные уравнения - определение и вычисление с примерами решения По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Составьте квадратное уравнение, корни которого на 4 больше соответствующих корней уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни данного уравнения, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни искомого уравнения.

    По условию Квадратные уравнения - определение и вычисление с примерами решения

    По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Тогда имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, по теореме, обратной теореме Виета, искомым является уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратный трехчлен

    Определение: Квадратным трехчленом называют многочлен вида Квадратные уравнения - определение и вычисление с примерами решениягде Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Приведем примеры многочленов, являющихся квадратными трехчленами:

    Квадратные уравнения - определение и вычисление с примерами решения

    Заметим, что левая часть квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения является квадратным трехчленом.

    Определение: Корнем квадратного трехчлена называют значение переменной, при котором значение квадратного трехчлена равно нулю.

    Например, число 2 является корнем квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы найти корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения надо решить соответствующее квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Значение выражения Квадратные уравнения - определение и вычисление с примерами решения называют дискриминантом квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен корней не имеет. Если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен имеет один корень, если Квадратные уравнения - определение и вычисление с примерами решения — то два корня.

    Рассмотрим квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения Разложим его на множители методом группировки (подобное упражнение, 724, вы выполняли при подготовке к изучению этого пункта).

    Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    О таком тождественном преобразовании говорят, что квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения разложили на линейные множители Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Связь между корнями квадратного трехчлена и линейными множителями, на которые он раскладывается, устанавливает следующая теорема.

    Теорема: Если дискриминант квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения положительный, то данный трехчлен можно разложить на линейные множители:

    Квадратные уравнения - определение и вычисление с примерами решения

    где Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного трехчлена.

    Доказательство: Поскольку числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то по теореме Виета

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда

    Квадратные уравнения - определение и вычисление с примерами решения

    Замечание. Если дискриминант квадратного трехчлена равен нулю, то считают, что квадратный трехчлен имеет два равных корня, то есть Квадратные уравнения - определение и вычисление с примерами решения В этом случае разложение квадратного трехчлена на линейные множители имеет следующий вид:

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема:. Если дискриминант квадратного трехчлена отрицательный, то данный трехчлен нельзя разложить на линейные множители.

    Доказательство: Предположим, что квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения можно разложить на линейные множители. Тогда существуют такие числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения при которых выполняется равенство Квадратные уравнения - определение и вычисление с примерами решения Отсюда получаем, что тип — корни данного квадратного трехчлена. Следовательно, его дискриминант неотрицательный, что противоречит условию.

    Пример:

    Разложите на множители квадратный трехчлен:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Найдем корни данного трехчлена:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения

    2) Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения

    3) Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Сократите дробь Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Разложим на множители квадратный трехчлен, являющийся числителем данной дроби. Решив уравнение Квадратные уравнения - определение и вычисление с примерами решения получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Теперь можно записать:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    При каком значении Квадратные уравнения - определение и вычисление с примерами решения разложение на множители трехчленаКвадратные уравнения - определение и вычисление с примерами решения содержит множитель Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Поскольку разложение данного трехчлена на множители должно содержать множитель Квадратные уравнения - определение и вычисление с примерами решения то один из корней этого трехчлена равен —5. Тогда имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Решение уравнений, приводимых к квадратным уравнениям

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение.

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Подставив в исходное уравнение вместо Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения соответственно Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения, получим квадратное уравнение с переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решая это уравнение, находим: Квадратные уравнения - определение и вычисление с примерами решения

    Поскольку Квадратные уравнения - определение и вычисление с примерами решения то решение исходного уравнения сводится к решению двух уравнений:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Ответ можно записать двумя способами: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Определение: Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют биквадратным уравнением.

    Заменой Квадратные уравнения - определение и вычисление с примерами решения биквадратное уравнение сводится к квадратному уравнению Квадратные уравнения - определение и вычисление с примерами решения Такой способ решения уравнений называют методом замены переменной.

    Метод замены переменной можно использовать не только при решении биквадратных уравнений.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Выполним замену Квадратные уравнения - определение и вычисление с примерами решения Тогда исходное уравнение сводится к квадратному уравнению

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Теперь надо решить следующие два уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения Первое из них корней не имеет. Из второго уравнения получаем:

    Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 0; 1.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем: Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Получаем два уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Поскольку Квадратные уравнения - определение и вычисление с примерами решения то эти уравнения корней не имеют, а следовательно, и исходное уравнение корней не имеет.

    Ответ: корней нет.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Данное уравнение равносильно системе Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: —3.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, данное уравнение равносильно системе

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 7.

    Решение уравнений методом замены переменной

    В п. 22 вы ознакомились с решением уравнений методом замены переменной. Рассмотрим еще несколько примеров, иллюстрирующих эффективность этого метода.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения Это уравнение равносильно системе

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Теперь решение исходного уравнения сводится к решению двух уравнений

    Квадратные уравнения - определение и вычисление с примерами решения

    Решите эти уравнения самостоятельно.

    Ответ: —3; —1; 2; 6.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Преобразуем это уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Решив эти два квадратных уравнения, получаем ответ.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    С помощью проверки легко убедиться, что число 0 не является корнем данного уравнения. Тогда, разделив обе части данного уравнения на Квадратные уравнения - определение и вычисление с примерами решенияперейдем к равносильному уравнению:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Произведем замену: Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    С учетом замены получаем два уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решите эти уравнения самостоятельно.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Такая замена позволяет переписать исходное уравнение следующим образом:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Решите эти уравнения самостоятельно.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    С помощью проверки можно убедиться, что число 0 не является корнем данного уравнения. Следовательно, можно разделить обе части уравнения на Квадратные уравнения - определение и вычисление с примерами решения Получим уравнение, равносильное исходному:

    Квадратные уравнения - определение и вычисление с примерами решения

    Замена Квадратные уравнения - определение и вычисление с примерами решения приводит к квадратному уравнению

    Квадратные уравнения - определение и вычисление с примерами решения

    Завершите решение самостоятельно.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Может возникнуть вопрос: почему при решении примеров 1—5 мы не пытались упростить уравнения с помощью тождественных преобразований?

    Дело в том, что после тождественных преобразований нам пришлось бы решать уравнение вида Квадратные уравнения - определение и вычисление с примерами решения (вы можете убедиться в этом самостоятельно). При Квадратные уравнения - определение и вычисление с примерами решения такое уравнение называют уравнением четвертой степени, при Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решенияуравнением третьей степени. Частным случаем этого уравнения, когда Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения является биквадратное уравнение. Его вы решать умеете.

    В общем случае для решения уравнений третьей и четвертой степеней необходимо знать формулы нахождения их корней. С историей открытия этих формул вы можете ознакомиться в следующем рассказе.

    Секретное оружие Сципиона дель Ферро

    Вы легко решите каждое из следующих уравнений третьей степени:

    Квадратные уравнения - определение и вычисление с примерами решения

    Все они являются частными случаями уравнения вида Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения Вывести формулу его корней — задача сложная. Недаром появление этой формулы считают выдающимся математическим открытием XVI века.

    Первым изобрел способ решения уравнения вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — положительные числа, итальянский математик Сципион дель Ферро (1465-1526). Найденную формулу он хранил в секрете. Это было обусловлено тем, что карьера ученого того времени во многом зависела от его выступлений в публичных математических турнирах. Поэтому было выгодно хранить открытия в тайне, рассчитывая использовать их в математических соревнованиях как секретное оружие.

    После смерти дель Ферро его ученик Фиоре, владея секретной формулой, вызвал на математический поединок талантливого математика-самоучку Никколо Тарталья. За несколько дней до турнира Тарталья сам вывел формулу корней уравнения третьей степени. Диспут, на котором Тарталья одержал убедительную победу, состоялся 20 февраля 1535 года.

    Впервые секретная формула была опубликована в книге известного итальянского ученого Джероламо Кардан о «Великое искусство». В этой работе также описан метод решения уравнения четвертой степени, открытый Людовико Феррари (1522—1565).

    В XVTI-XVIII вв. усилия многих ведущих математиков были сосредоточены на поиске формулы для решения уравнений пятой степени. Получению результата способствовали работы итальянского математика Паоло Руффини (1765-1822) и норвежского математика Нильса Хенрика Абеля. Сам результат оказался абсолютно неожиданным: было доказано, что не существует формулы, с помощью которой можно выразить корни любого уравнения пятой и более высоких степеней через коэффициенты уравнения, используя лишь четыре арифметических действия и действие извлечения корня.

    Квадратные уравнения - определение и вычисление с примерами решения

    Рациональные уравнения как математические модели реальных ситуаций

    В п. 7 вы уже ознакомились с задачами, в которых рациональные уравнения служили математическими моделями реальных ситуаций. Теперь, когда вы научились решать квадратные уравнения, можно существенно расширить круг рассматриваемых задач.

    Пример:

    Из пункта Квадратные уравнения - определение и вычисление с примерами решения выехал велосипедист, а через 45 мин после этого в том же направлении выехал грузовик, догнавший велосипедиста на расстоянии 15 км от пункта Квадратные уравнения - определение и вычисление с примерами решения. Найдите скорость велосипедиста и скорость грузовика, если скорость грузовика на 18 км/ч больше скорости велосипедиста.

    Решение:

    Пусть скорость велосипедиста равна Квадратные уравнения - определение и вычисление с примерами решения км/ч, тогда скорость грузовика составляет Квадратные уравнения - определение и вычисление с примерами решения км/ч. Велосипедист проезжает 15 км за Квадратные уравнения - определение и вычисление с примерами решения ч, а грузовик — за Квадратные уравнения - определение и вычисление с примерами решения ч. Разность Квадратные уравнения - определение и вычисление с примерами решения показывает, на сколько часов грузовик проезжает 15 км быстрее, чем велосипедист. Поскольку грузовик проехал 15 км на 45 мин,

    то есть на Квадратные уравнения - определение и вычисление с примерами решения ч, быстрее, чем велосипедист, то получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решим это уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решив квадратное уравнение системы, получим Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Корень —30 не удовлетворяет условию задачи. Следовательно, скорость велосипедиста равна 12 км/ч, а скорость грузовика составляет: 12 + 18 = 30 (км/ч).

    Ответ: 12 км/ч, 30 км/ч.

    Пример:

    Одна бригада работала на ремонте дороги 7 ч, после чего к ней присоединилась вторая бригада. Через 2 ч их совместной работы ремонт был завершен. За сколько часов может отремонтировать дорогу каждая бригада, работая самостоятельно, если первой для этого требуется на 4 ч больше, чем второй?

    Решение:

    Пусть первая бригада может самостоятельно отремонтировать дорогу за Квадратные уравнения - определение и вычисление с примерами решения ч, тогда второй для этого нужно Квадратные уравнения - определение и вычисление с примерами решения ч. За 1 ч первая бригада ремонтирует Квадратные уравнения - определение и вычисление с примерами решения часть дороги, а вторая Квадратные уравнения - определение и вычисление с примерами решения часть дороги. Первая бригада работала 9 ч и отремонтировала Квадратные уравнения - определение и вычисление с примерами решения дороги, а вторая бригада работала 2 ч и отремонтировала соответственно Квадратные уравнения - определение и вычисление с примерами решения дороги. Поскольку в результате была отремонтирована вся дорога, то можно составить уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Полученное уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения (убедитесь в этом самостоятельно). Второй корень не удовлетворяет условию задачи, поскольку тогда вторая бригада могла бы отремонтировать дорогу за 3 — 4 = —1 (ч), что не имеет смысла.

    Следовательно, первая бригада может отремонтировать дорогу за 12 ч, а вторая — за 8 ч.

    Ответ: 12 ч, 8 ч.

    Пример:

    Водный раствор соли содержал 120 г воды. После того как в раствор добавили 10 г соли, его концентрация увеличилась на 5 %. Сколько граммов соли содержал раствор первоначально?

    Решение:

    Пусть исходный раствор содержал Квадратные уравнения - определение и вычисление с примерами решения г соли. Тогда его масса была равна Квадратные уравнения - определение и вычисление с примерами решения г, а концентрация соли составляла Квадратные уравнения - определение и вычисление с примерами решения

    После того как к раствору добавили 10 г соли, ее масса Квадратные уравнения - определение и вычисление с примерами решения

    в растворе составила Квадратные уравнения - определение и вычисление с примерами решения г, а масса раствора Квадратные уравнения - определение и вычисление с примерами решения г. Теперь концентрация соли составляет Квадратные уравнения - определение и вычисление с примерами решения что на 5 %, то есть на Квадратные уравнения - определение и вычисление с примерами решения больше, чем Квадратные уравнения - определение и вычисление с примерами решения Отсюда можно записать: Квадратные уравнения - определение и вычисление с примерами решения

    Полученное уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения (убедитесь в этом самостоятельно), из которых второй корень не удовлетворяет условию задачи.

    Следовательно, раствор содержал первоначально 30 г соли.

    Ответ: 30 г.

    ГЛАВНОЕ В ПАРАГРАФЕ 3

    Уравнение первой степени

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют уравнением первой степени.

    Квадратное уравнение

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют квадратным уравнением.

    Приведенное квадратное уравнение

    Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным.

    Неполное квадратное уравнение

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называют неполным квадратным уравнением.

    Решение неполного квадратного уравнения

    Квадратные уравнения - определение и вычисление с примерами решения

    Дискриминант квадратного уравнения

    Для уравнения вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения его дискриминант Квадратные уравнения - определение и вычисление с примерами решения — это значение выражения Квадратные уравнения - определение и вычисление с примерами решения

    Решение квадратного уравнения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение корней не имеет.

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет один корень Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета:

    Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    то Квадратные уравнения - определение и вычисление с примерами решения

    Теорема, обратная теореме Виета

    Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения иКвадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратный трехчлен

    Многочлен вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения— некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют квадратным трехчленом.

    Разложение квадратного трехчлена на множители

    Если дискриминант квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения положительный, то данный трехчлен можно разложить на линейные множители: Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного трехчлена.

    Биквадратное уравнение

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют биквадратным уравнением.

    ——

    Квадратные уравнения

    В этом разделе вы научитесь:

    • решать квадратные уравнения различными способами;
    • применять квадратные уравнения для решения задач;
    • по каким формулам находят площади треугольников и четырёхугольников;
    • применять формулы площадей при решении задач;
    • находить площадь сложных фигур, разделяя их на простые геометрические фигуры.

    Квадратные уравнения широко применяются в строительстве, финансах и дизайне.

    На практике также, широко применяются формулы для вычисления площадей.

    Это интересно!

    Великий учёный Востока аль — Хорезми в своём труде «Китаб мухтасаб ал-джабр и ва-л-мукабала», что в переводе означает «Книга о восполнении и противопоставлении» показал различные способы решения квадратных уравнений. Одним из них является метод подбора. Хорезми выбирал число и подставлял его в уравнение вместо неизвестного. После чего, становилось понятно, является ли данное число корнем уравнения.

    Например,

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения при Квадратные уравнения - определение и вычисление с примерами решения называется квадратным уравнением. Здесь Квадратные уравнения - определение и вычисление с примерами решения — постоянные, Квадратные уравнения - определение и вычисление с примерами решения — неизвестная. Квадратные уравнения - определение и вычисление с примерами решения — первый коэффициент, Квадратные уравнения - определение и вычисление с примерами решения — второй коэффициент, Квадратные уравнения - определение и вычисление с примерами решения — свободный член.

    Например, в уравнении Квадратные уравнения - определение и вычисление с примерами решения

    Если квадратное уравнение с обеих сторон разделить на Квадратные уравнения - определение и вычисление с примерами решения, то получим уравнение Квадратные уравнения - определение и вычисление с примерами решения Здесь, обозначив Квадратные уравнения - определение и вычисление с примерами решения можно записать

    Квадратные уравнения - определение и вычисление с примерами решения Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения называется приведённым квадратным уравнением. Например, разделив уравнение Квадратные уравнения - определение и вычисление с примерами решения на 2, получим равносильное ему приведённое квадратное уравнение

    Квадратные уравнения - определение и вычисление с примерами решения

    Неполные квадратные уравнения

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решенияили Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называется неполным квадратным уравнением.

    Уравнения, Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения являются неполными квадратными уравнениями.

    1) Решение уравнений вида Квадратные уравнения - определение и вычисление с примерами решения Разделив обе части уравнения на число Квадратные уравнения - определение и вычисление с примерами решенияполучим уравнение Квадратные уравнения - определение и вычисление с примерами решения Его корнями является Квадратные уравнения - определение и вычисление с примерами решения

    Пример 1. Разделим обе части уравнения Квадратные уравнения - определение и вычисление с примерами решения

    2) Решение уравнений вида Квадратные уравнения - определение и вычисление с примерами решения Для решения таких уравнений применяют вынесение общего множителя за скобку: Квадратные уравнения - определение и вычисление с примерами решенияПроизведение равно нулю, если хотя бы один из множителей равен нулю, т.е. Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения Отсюда следует, что уравнение Квадратные уравнения - определение и вычисление с примерами решенияимеет два корня, один из которых всегда равен Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Для решения уравнении Квадратные уравнения - определение и вычисление с примерами решения надо левую часть уравнения разложить на множители: Квадратные уравнения - определение и вычисление с примерами решения

    3) Решение уравнений вида Квадратные уравнения - определение и вычисление с примерами решения

    Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения имеют одинаковые знаки, то действительных корней нет (почему?). Если Квадратные уравнения - определение и вычисление с примерами решения имеют разные знаки, то уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения

    Пример 3. Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение квадратного уравнения методом разложения на множители

    Решение уравнения Квадратные уравнения - определение и вычисление с примерами решения методом разложения на множители

    Для разложения левой части уравнения Квадратные уравнения - определение и вычисление с примерами решения на множители надо найти два числа тип (если это возможно), чтобы их произведение было равно Квадратные уравнения - определение и вычисление с примерами решения а сумма Квадратные уравнения - определение и вычисление с примерами решения. Если Квадратные уравнения - определение и вычисление с примерами решения являются целыми числами, то Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — также целые числа. В этом случае, если Квадратные уравнения - определение и вычисление с примерами решения то заданной уравнение можно записать в виде : Квадратные уравнения - определение и вычисление с примерами решения

    Пример 1. Квадратные уравнения - определение и вычисление с примерами решения В уравнении Квадратные уравнения - определение и вычисление с примерами решения Так как Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решенияположительные числа, то надо найти два положительных числа, чтобы их произведение было равно 8, а сумма — равна 6. Это числа 2 и 4. Зная, что Квадратные уравнения - определение и вычисление с примерами решения то уравнение можно записать в виде Квадратные уравнения - определение и вычисление с примерами решенияОтсюда находим Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Квадратные уравнения - определение и вычисление с примерами решения Так как в уравнении Квадратные уравнения - определение и вычисление с примерами решения отрицательное число, а Квадратные уравнения - определение и вычисление с примерами решения положительное, то надо найти два отрицательных числа, чтобы их произведение было равно 18, а сумма была равна -9. Зная, что Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решениято уравнение можно записать так Квадратные уравнения - определение и вычисление с примерами решения Отсюда находим Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 3. Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 4. Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение уравнения вида Квадратные уравнения - определение и вычисление с примерами решения методом разложения на множители

    Для разложения левой части уравнения Квадратные уравнения - определение и вычисление с примерами решения на множители, надо найти два числа, чтобы их произведение было равно Квадратные уравнения - определение и вычисление с примерами решения а сумма Квадратные уравнения - определение и вычисление с примерами решения Тогда за-данное уравнение можно решить записав его в виде Квадратные уравнения - определение и вычисление с примерами решения

    Пример 1. Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения

    Числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения такие , что Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения В нём Квадратные уравнения - определение и вычисление с примерами решения тогда Квадратные уравнения - определение и вычисление с примерами решения а значит оба числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения отрицательные. Найдём два целых отрицательных, числа, произведение которых равно 40, а сумма равна -13. Это числа -5 и -8.

    Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 3. В трёхчлене Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения Составим список целых отрицательных множителей числа 16. Как видно целых чисел, которые удовлетворяют условию Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения не существует. Это говорит о том, что данный трёхчлен невозможно разложить на множители.

    Квадратные уравнения - определение и вычисление с примерами решения

    Метод выделения полного квадрата

    Для выделения полного квадрата из двухчленах Квадратные уравнения - определение и вычисление с примерами решения его надо дополнить членом Квадратные уравнения - определение и вычисление с примерами решения

    Это правило одинаково как для положительных, так и для отрицательных Квадратные уравнения - определение и вычисление с примерами решенияПример 1. Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения С обеих сторон дополним данное уравнение Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Для решения уравнения Квадратные уравнения - определение и вычисление с примерами решения методом выделения полного квадрата, сначала запишем его в виде Квадратные уравнения - определение и вычисление с примерами решения Для того, чтобы выражение слева соответствовало модели площади квадрата, не хватает всего одной единичной алгебраической карты. Значит, с каждой стороны следует добавить 1. Тогда выражение слева можно представить в виде квадрата двухчлена так

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение квадратного уравнения графическим методом

    Графический метод

    Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения Тогда решением уравнения будут абсциссы точек пересечения параболы Квадратные уравнения - определение и вычисление с примерами решения и прямой Квадратные уравнения - определение и вычисление с примерами решения При этом прямая может пересекаться с параболой (тогда уравнение имеет два различных корня), может касаться параболы (в этом случае уравнение удовлетворяется при единственном значении неизвестного) или может вообще не иметь общих точек с параболой (тогда уравнение не имеет действительных-корней).

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Графики пересекаются в двух точках. Абсциссы точек пересечения равны — 3 и 1. При проверке убеждаемся, что обе точки являются корнями уравнения.

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Для построения прямой Квадратные уравнения - определение и вычисление с примерами решения составим таблицу

    Квадратные уравнения - определение и вычисление с примерами решения

    Абсцисса точки касания прямой и параболы равна 1. Уравнение удовлетворяется при единственном значении неизвестного: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Графики не имеют точек пересечения. Это говорит о том, что данное уравнение не имеет действительных корней.

    Обе части квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения можно преобразовать в приведённое квадратное уравнение, разделив его на Квадратные уравнения - определение и вычисление с примерами решения которое затем удобно решить по способу, представленному выше. Обычно графическим способом находятся приближенные значения корней.

    Калькулятор для построения графиков

    Используя онлайн калькуляторы для построения графиков можно построить различные графики. На рисунке представлены графики функций Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения построенные при помощи графического калькулятора www.meta-calculator.com/online.

    Квадратные уравнения - определение и вычисление с примерами решения

    Решить квадратное уравнение также можно при помощи графического калькулятора, построив в одной системе координат параболу и прямую

    На рисунке корни уравнение Квадратные уравнения - определение и вычисление с примерами решения записанного в виде Квадратные уравнения - определение и вычисление с примерами решениянайдены графически при помощи графического калькулятора www.my.hrw.com/malh06_07/nsmedia/tools/Graph_Calcula-tor/graphCa lc.html

    Квадратные уравнения - определение и вычисление с примерами решения

    Формула для нахождения корней квадратного уравнения

    Мы уже научились находить корни квадратного уравнения методом разложения на множители и методом выделения полного квадрата. Для нахождения корней любого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения методом выделения полного квадрата можно записать обобщённую формулу.

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения эта формула является формулой корней квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Если в формуле для нахождения корней квадратного уравнения принять Квадратные уравнения - определение и вычисление с примерами решения то ее можно записать как Квадратные уравнения - определение и вычисление с примерами решения

    Наличие корней квадратного уравнения зависит от знака Квадратные уравнения - определение и вычисление с примерами решения называется дискриминантом (определителем) квадратного уравнения.

    1) Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение не имеет действительных корней.

    2) Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два равных корня. Квадратные уравнения - определение и вычисление с примерами решения

    3) Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два различных корня: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    В уравнении Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения а это значит, что уравнение имеет два различных действительных корня. Квадратные уравнения - определение и вычисление с примерами решения

    В уравнении Квадратные уравнения - определение и вычисление с примерами решения дискриминант находится по формуле для приведённого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения При Квадратные уравнения - определение и вычисление с примерами решения для корней приведённого квадратного уравнения, верны следующие формулы Квадратные уравнения - определение и вычисление с примерами решения

    Если второй коэффициент квадратного уравнения является четным числом (т.е. Квадратные уравнения - определение и вычисление с примерами решения), то уравнение Квадратные уравнения - определение и вычисление с примерами решения можно записать в виде Квадратные уравнения - определение и вычисление с примерами решенияТогда Квадратные уравнения - определение и вычисление с примерами решения Обозначим Квадратные уравнения - определение и вычисление с примерами решениятогда Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета

    Решим приведённое квадратное уравнение: Квадратные уравнения - определение и вычисление с примерами решения По формуле нахождения корней приведённого квадратного уравнения имеем Квадратные уравнения - определение и вычисление с примерами решения т.е. Квадратные уравнения - определение и вычисление с примерами решения

    Внимание! Если сложить найденные корни, то получим число противоположное коэффициенту при Квадратные уравнения - определение и вычисление с примерами решения На самом деле, из уравнения Квадратные уравнения - определение и вычисление с примерами решения с другой стороны Квадратные уравнения - определение и вычисление с примерами решения Если умножить полученные корни, получим число равное свободному члену уравнения: 3 • 4 = 12. Это свойство верно для любого приведённого квадратного уравнения.

    Теорема: В приведённом квадратном уравнении сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение, равно свободному члену Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Известно, что Квадратные уравнения - определение и вычисление с примерами решения корни приведённого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения Отсюда получим: Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, для уравнения Квадратные уравнения - определение и вычисление с примерами решения Если обе части любого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения разделить на Квадратные уравнения - определение и вычисление с примерами решения, то получим равносильное приведённое квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения Тогда к нему можно будет применить теорему Виета. Сумма корней Квадратные уравнения - определение и вычисление с примерами решения равна Квадратные уравнения - определение и вычисление с примерами решения а произведение равно Квадратные уравнения - определение и вычисление с примерами решения Теорема Виета остаётся в силе, если Квадратные уравнения - определение и вычисление с примерами решения (когда квадратное уравнение имеет два равных корня).

    Найдём корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения методом подбора. По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом корнями уравнения являются числа 4 и 5.

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема, обратная теореме Виета

    Обратная теорема. Если сумма чисел Квадратные уравнения - определение и вычисление с примерами решения равна Квадратные уравнения - определение и вычисление с примерами решения а произведение равно Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Эту теорему можно записать так: любые числа Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство. На самом деле, если принять, что Квадратные уравнения - определение и вычисление с примерами решения то получим: Квадратные уравнения - определение и вычисление с примерами решения т.е. число Квадратные уравнения - определение и вычисление с примерами решения действительно удовлетворяет уравнению. Таким же образом можно показать, что число Квадратные уравнения - определение и вычисление с примерами решениятакже является корнем уравнения.

    Пример:

    Составим квадратное уравнение, если известно, что числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются его корнями. Так как Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения то уравнение будет выглядеть как Квадратные уравнения - определение и вычисление с примерами решения

    Решение задач при помощи квадратных уравнений

    Задача. Один из катетов прямоугольного треугольника на 2 см больше другого и на 2 см меньше гипотенузы. Найдите периметр треугольника.

    1 этап — составление уравнения

    Обозначим длину одного из катетов через Квадратные уравнения - определение и вычисление с примерами решения тогда длина другого катета будет Квадратные уравнения - определение и вычисление с примерами решения а гипотенуза будет равна Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    2 этап — решение уравнения. Согласно теореме Пифагора получим уравнение Квадратные уравнения - определение и вычисление с примерами решения

    3 этап — решение уравнения. Преобразуем уравнение Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    4 этап — анализ результата.

    Решению задачи соответствует корень Квадратные уравнения - определение и вычисление с примерами решения т.к. длины сторон выражаются положительными числами. Тогда длина другого катета будет Квадратные уравнения - определение и вычисление с примерами решения а длина гипотенузы Квадратные уравнения - определение и вычисление с примерами решения Периметр: Квадратные уравнения - определение и вычисление с примерами решения Ответ: периметр треугольника равен 24 см.

    • Заказать решение задач по высшей математике

    Квадратные уравнения

    Квадратные уравнения. Неполные квадратные уравнения

    В математике, физике, экономике, практической деятельности человека встречаются задачи, математическими моделями которых являются уравнения, содержащие переменную во второй степени.

    Пример №256

    Длина земельного участка на 15 м больше ширины, а площадь равна Квадратные уравнения - определение и вычисление с примерами решения Найдите ширину участка.

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения м- ширина участка, тогда ее длина — Квадратные уравнения - определение и вычисление с примерами решения м. По условию задачи площадь участка равна Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Такое уравнение называют квадратным.

    Квадратным уравнением называют уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения —переменная, Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Например, уравнения Квадратные уравнения - определение и вычисление с примерами решения также являются квадратными.

    Числа Квадратные уравнения - определение и вычисление с примерами решения называют коэффициентами квадратного уравнения, число Квадратные уравнения - определение и вычисление с примерами решенияпервым коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениявторым коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениясвободным членом.

    В уравнении Квадратные уравнения - определение и вычисление с примерами решения коэффициенты следующие: Квадратные уравнения - определение и вычисление с примерами решения В уравнении Квадратные уравнения - определение и вычисление с примерами решения следующие: Квадратные уравнения - определение и вычисление с примерами решения а в уравнении Квадратные уравнения - определение и вычисление с примерами решения следующие: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным. Уравнение Квадратные уравнения - определение и вычисление с примерами решения — приведенное, а уравнение Квадратные уравнения - определение и вычисление с примерами решения — не является приведенным.

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называют неполным квадратным уравнением.

    Например, неполным квадратным уравнением, в котором Квадратные уравнения - определение и вычисление с примерами решения является уравнение Квадратные уравнения - определение и вычисление с примерами решения в котором Квадратные уравнения - определение и вычисление с примерами решения -уравнение Квадратные уравнения - определение и вычисление с примерами решения в котором Квадратные уравнения - определение и вычисление с примерами решения — уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, неполные квадратные уравнения бывают трех видов: Квадратные уравнения - определение и вычисление с примерами решения

    Рассмотрим решение каждого из них.

    1.Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения имеем уравнение Квадратные уравнения - определение и вычисление с примерами решения корнем которого является число 0.

    Следовательно, уравнение имеет единственный корень: Квадратные уравнения - определение и вычисление с примерами решения

    2.Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения

    Имеем Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения Так как Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение корней не имеет.

    Пример №257

    Решите уравнение:

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения 2) корней нет.

    3. Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения

    Разложим левую часть уравнения на множители и решим полученное уравнение Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Значит, уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения

    Пример №258

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Систематизируем данные о решениях неполного квадратного уравнения в виде схемы: Квадратные уравнения - определение и вычисление с примерами решения

    Формула корней квадратного уравнения

    Рассмотрим полное квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения и найдем его решения в общем виде.

    Умножим левую и правую части уравнения на Квадратные уравнения - определение и вычисление с примерами решения (так как Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Далее прибавим к обеим частям уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Выражение Квадратные уравнения - определение и вычисление с примерами решения называют дискриминантом квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Слово дискриминант происходит от латинского различающий. Дискриминант обозначают буквой Квадратные уравнения - определение и вычисление с примерами решения

    Учитывая, что Квадратные уравнения - определение и вычисление с примерами решения запишем уравнение в виде:

    Квадратные уравнения - определение и вычисление с примерами решения и продолжим его решать.

    Рассмотрим все возможные случаи в зависимости от значения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    (при делении на Квадратные уравнения - определение и вычисление с примерами решения учли, что Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет два различных корня:

    Квадратные уравнения - определение и вычисление с примерами решения

    Коротко это можно записать так:

    Квадратные уравнения - определение и вычисление с примерами решения

    Получили формулу корней квадратного уравнения.

    2) Квадратные уравнения - определение и вычисление с примерами решенияТогда имеем уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет один корень: Квадратные уравнения - определение и вычисление с примерами решенияЭтот корень можно было бы найти и по формуле корней квадратного уравнения, учитывая, что Квадратные уравнения - определение и вычисление с примерами решения Поэтому можно считать, что уравнение Квадратные уравнения - определение и вычисление с примерами решения при Квадратные уравнения - определение и вычисление с примерами решения имеет два одинаковых корня, каждый из которых равен Квадратные уравнения - определение и вычисление с примерами решения

    3) Квадратные уравнения - определение и вычисление с примерами решения В этом случае уравнение Квадратные уравнения - определение и вычисление с примерами решения не имеет корней, так как не существует такого значения Квадратные уравнения - определение и вычисление с примерами решения при котором значение выражения Квадратные уравнения - определение и вычисление с примерами решения было бы отрицательным.

    Систематизируем данные о решениях квадратного уравнения с помощью схемы: Квадратные уравнения - определение и вычисление с примерами решения

    Пример №259

    Решите уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример №260

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Умножим левую и правую части уравнения на Квадратные уравнения - определение и вычисление с примерами решения чтобы его коэффициенты стали целыми числами, получим уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения тогда Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Неполные квадратные уравнения и некоторые виды полных квадратных уравнений (например, вида Квадратные уравнения - определение и вычисление с примерами решения вавилонские математики умели решать еще 4 тыс. лет назад. В более поздние времена некоторые квадратные уравнения в Древней Греции и Индии математики решали геометрически. Приемы решения некоторых квадратных уравнений без применения геометрии изложил древнегреческий математик Диофант (III в.).

    Много внимания квадратным уравнениям уделял арабский математик Мухаммед ал-Хорезми (IX в.). Он нашел, как решить уравнения вида Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения (для положительных Квадратные уравнения - определение и вычисление с примерами решения и получить их положительные корни.

    Формулы, связывающие между собой корни квадратного уравнения и его коэффициенты, были найдены французским математиком Франсуа Виетом в 1591 году. Он пришел к следующему выводу (в современных обозначениях): «Корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения являются числа Квадратные уравнения - определение и вычисление с примерами решения

    После публикации трудов нидерландского математика А. Жирара (1595-1632), а также француза Р. Декарта (1596-1650) и англичанина И. Ньютона (1643-1727) формула корней квадратного уравнения приобрела современный вид.

    Теорема Виета

    Рассмотрим несколько приведенных квадратных уравнений, имеющих два различных корня. Внесем в таблицу следующие данные о них: само уравнение, его корни Квадратные уравнения - определение и вычисление с примерами решения сумму его корней Квадратные уравнения - определение и вычисление с примерами решения произведение его корней Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Обратим внимание, что сумма корней каждого из уравнений таблицы равна второму коэффициенту уравнения, взятому с противоположным знаком, а произведение корней равно свободному члену. Это свойство выполняется для любого приведенного квадратного уравнения, имеющего корни.

    Приведенное квадратное уравнение в общем виде обычно записывают так: Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней — свободному члену.

    Доказательство: Пусть Квадратные уравнения - определение и вычисление с примерами решения — корни приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения дискриминант которого Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два корня:

    Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет два одинаковых корня: Квадратные уравнения - определение и вычисление с примерами решения

    Найдем сумму и произведение корней:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения Теорема доказана.

    Эту теорему называют теоремой Виета — в честь выдающегося французского математика Франсуа Виета, который открыл это свойство. Его можно сформулировать следующим образом:

    Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Два последних равенства, показывающих связь между корнями и коэффициентами приведенного квадратного уравнения, называют формулами Виста.

    Используя теорему Виета, можно записать соответствующие формулы и для корней любого неприведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения разделим обе части уравнения на Квадратные уравнения - определение и вычисление с примерами решения Получим приведенное квадратное уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда по теореме Виета: Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения — корни неприведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример №261

    Не решая уравнения Квадратные уравнения - определение и вычисление с примерами решения найдите сумму и произведение его корней.

    Решение:

    Найдем дискриминант уравнения, чтобы убедиться, что корни существуют: Квадратные уравнения - определение и вычисление с примерами решения Очевидно, что Квадратные уравнения - определение и вычисление с примерами решения следовательно, уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения

    По теореме Виета: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Если в уравнении Квадратные уравнения - определение и вычисление с примерами решения коэффициент Квадратные уравнения - определение и вычисление с примерами решения является целым числом, то из равенства Квадратные уравнения - определение и вычисление с примерами решения следует, что целыми корнями этого уравнения могут быть только делители числа Квадратные уравнения - определение и вычисление с примерами решения

    Пример №262

    Найдите подбором корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения — корни данного уравнения. Тогда Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения — целые числа, то они являются делителями числа -4. Ищем среди этих делителей два таких, сумма которых равна -3. Нетрудно догадаться, что это числа 1 и -4. Таким образом, Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 1; -4.

    Пример №263

    Один из корней уравнения Квадратные уравнения - определение и вычисление с примерами решения равен 3. Найдите коэффициент Квадратные уравнения - определение и вычисление с примерами решения и второй корень уравнения.

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения— один из корней уравнения Квадратные уравнения - определение и вычисление с примерами решения — второй его корень. По теореме Виета: Квадратные уравнения - определение и вычисление с примерами решения Учитывая, что Квадратные уравнения - определение и вычисление с примерами решения имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №264

    Пусть Квадратные уравнения - определение и вычисление с примерами решения — корни уравнения Квадратные уравнения - определение и вычисление с примерами решения Не решая уравнения, найдите значение выражения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    По теореме Виета:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда: 1) Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Справедливо и утверждение, обратное теореме Виета.

    Теорема (обратная теореме Виета). Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: По условию Квадратные уравнения - определение и вычисление с примерами решения Поэтому уравнение Квадратные уравнения - определение и вычисление с примерами решения можно записать так: Квадратные уравнения - определение и вычисление с примерами решения

    Проверим, является ли число Квадратные уравнения - определение и вычисление с примерами решения корнем этого уравнения, для чего подставим в левую часть уравнения вместо переменной Квадратные уравнения - определение и вычисление с примерами решения число Квадратные уравнения - определение и вычисление с примерами решения Получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения — корень этого уравнения.

    Аналогично подставим в левую часть уравнения вместо переменной Квадратные уравнения - определение и вычисление с примерами решения число Квадратные уравнения - определение и вычисление с примерами решения Получим:

    Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения — также корень этого уравнения.

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения корни уравнения Квадратные уравнения - определение и вычисление с примерами решения что и требовалось доказать.

    Пример №265

    Составьте приведенное квадратное уравнение, корнями которого являются числа -5 и 2.

    Решение:

    Искомое квадратное уравнение имеет вид Квадратные уравнения - определение и вычисление с примерами решения По теореме, обратной теореме Виета:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения — искомое уравнение.

    Ответ, Квадратные уравнения - определение и вычисление с примерами решения

    Квадратное уравнение как математическая модель текстовых и прикладных задач

    В 7 классе мы уже знакомились с задачами, которые можно решить с помощью линейных уравнений или систем линейных уравнений. Для решения прикладной задачи сначала создают ее математическую модель, то есть записывают зависимость между известными и неизвестными величинами с помощью математических понятий, отношений, формул, уравнений и т. п. Математической моделью многих задач в математике, физике, технике, практической деятельности человека может быть не только линейное уравнение или система линейных уравнений, но и квадратное уравнение.

    Рассмотрим несколько примеров.

    Пример №266

    Разность кубов двух натуральных чисел равна 279. Найдите эти числа, если одно из них на 3 больше другого.

    Решение:

    Пусть меньшее из этих чисел равно Квадратные уравнения - определение и вычисление с примерами решения тогда большее равно Квадратные уравнения - определение и вычисление с примерами решения По условию задачи имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Упростим левую часть уравнения.

    Получим: Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения По условию задачи Квадратные уравнения - определение и вычисление с примерами решения Поэтому условию удовлетворяет только число 4. Следовательно, первое искомое число 4, а второе Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 4; 7.

    Пример №267

    В кинотеатре количество мест в ряду на 6 больше количества рядов. Сколько рядов в кинотеатре, если мест в нем 432?

    Решение:

    Пусть в кинотеатре Квадратные уравнения - определение и вычисление с примерами решения рядов, тогда мест в каждом ряду Квадратные уравнения - определение и вычисление с примерами решения Всего мест в зале Квадратные уравнения - определение и вычисление с примерами решения

    Имеем уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Перепишем уравнение в виде Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    По смыслу задачи значение Квадратные уравнения - определение и вычисление с примерами решения должно быть положительным. Этому условию удовлетворяет только Квадратные уравнения - определение и вычисление с примерами решения Следовательно, в кинотеатре 18 рядов.

    Ответ. 18 рядов.

    Пример №268

    У выпуклого многоугольника 54 диагонали. Найдите, сколько у него вершин.

    Решение:

    Пусть у многоугольника Квадратные уравнения - определение и вычисление с примерами решения вершин. Из каждой его вершины выходит Квадратные уравнения - определение и вычисление с примерами решения диагонали. Тогда из всех Квадратные уравнения - определение и вычисление с примерами решения его вершин выходит Квадратные уравнения - определение и вычисление с примерами решения диагонали. Но при этом каждую из его диагоналей посчитали дважды. Следовательно, всего диагоналей будет Квадратные уравнения - определение и вычисление с примерами решения

    Получим уравнение: Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решенияОтрицательный корень уравнения не может быть решением задачи.

    Ответ. 12.

    Пример №269

    Тело подбросили вертикально вверх со скоростью Квадратные уравнения - определение и вычисление с примерами решения Высота Квадратные уравнения - определение и вычисление с примерами решения (в м), на которой через Квадратные уравнения - определение и вычисление с примерами решения с будет тело, вычисляется по формуле Квадратные уравнения - определение и вычисление с примерами решения В какой момент времени тело окажется на высоте 15 м?

    Решение:

    По условию: Квадратные уравнения - определение и вычисление с примерами решения, следовательно, после упрощения имеем уравнение: Квадратные уравнения - определение и вычисление с примерами решения решив которое, найдем корни: Квадратные уравнения - определение и вычисление с примерами решения

    Оба корня являются решением задачи, так как на высоте 15 м тело окажется дважды: сначала при движении вверх (это произойдет через 1 с), а во второй раз — при падении (это произойдет через 3 с).

    Ответ. 1 с, 3 с.

    Пример №270

    В 9 часов утра из базового лагеря в восточном направлении отправилась группа туристов со скоростью Квадратные уравнения - определение и вычисление с примерами решения Через час из того же лагеря со скоростью Квадратные уравнения - определение и вычисление с примерами решения отправилась другая группа туристов, но в северном направлении. В котором часу расстояние между группами туристов будет 17 км? Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    За первый час первая группа туристов преодолеет 5 км: Квадратные уравнения - определение и вычисление с примерами решения (рис. 19). Дальше будут двигаться обе группы.

    Пусть расстояние в 17 км между группами будет через Квадратные уравнения - определение и вычисление с примерами решения часов после начала движения второй группы. Тогда за это время первая группа преодолеет Квадратные уравнения - определение и вычисление с примерами решения км, а вторая — Квадратные уравнения - определение и вычисление с примерами решения км, Квадратные уравнения - определение и вычисление с примерами решения Всего первая группа преодолеет расстояние Квадратные уравнения - определение и вычисление с примерами решения

    Из Квадратные уравнения - определение и вычисление с примерами решения по теореме Пифагора Квадратные уравнения - определение и вычисление с примерами решения тогда имеем уравнение: Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    Учитывая, что Квадратные уравнения - определение и вычисление с примерами решения получим Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, расстояние 17 км между группами туристов будет в 12 часов.

    Ответ. В 12 часов.

    В результате хозяйственной деятельности человека возникли прикладные задачи, решением которых люди занимаются уже на протяжении нескольких тысячелетий. Самые древние из известных нам письменных памятников, содержащих правила нахождения площадей и объемов, были составлены в Египте и Вавилоне приблизительно 4 тыс. лет назад. Около 2,5 тыс. лет назад греки переняли геометрические знания египтян и вавилонян и стали развивать теоретическую (чистую) математику.

    Также в древние времена математики использовали математические модели, в частности и для геометрических построений (метод подобия фигур).

    Современное понятие математической модели в качестве описания некоторого реального процесса языком математики стали использовать в середине XX в. в связи с развитием кибернетики — науки об общих законах получения, хранения, передачи и обработки информации. А раздел современной математики, изучающий математическое моделирование реальных процессов, даже выделили в отдельную науку — прикладную математику.

    Существенный вклад в развитие прикладной математики был сделан нашими выдающимися земляками — математиками М.П. Кравчуком и М.В. Остроградским.

    Развитие кибернетики связывают с именем академика Виктора Михайловича Глушкова — выдающегося математика, доктора физико-математических наук, профессора. В 1953 г. он возглавил лабораторию вычислительной техники Института математики, стал ее мозговым и энергетическим центром. На базе этой лаборатории в 1957 г. был создан Вычислительный центр, а в 1962 г. -Институт кибернетики который и возглавил В.М. Глушков. Лаборатория известна тем, что в 1951 г. в ней создали первую в Евразии Малую электронную счетную машину, а уже в Вычислительном центре завершили работу по созданию первой большой электронно-вычислительной машины. Сегодня Институт кибернетики носит имя В.М. Глушкова и является, в частности, разработчиком прикладных информационных технологий для решения неотложных практических задач, возникающих при моделировании экономических процессов, проектировании объектов теплоэнергетики, решении проблем экологии и защиты окружающей среды.

    Квадратный трехчлен. Разложение квадратного трехчлена на линейные множители

    Выражения Квадратные уравнения - определение и вычисление с примерами решения являются многочленами второй степени с одной переменной стандартного вида. Такие многочлены называют квадратными трехчленами.

    Квадратным трехчленом называют многочлен вида Квадратные уравнения - определение и вычисление с примерами решения переменная, Квадратные уравнения - определение и вычисление с примерами решения — числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Например, выражение Квадратные уравнения - определение и вычисление с примерами решения является квадратным трехчленом, у которого Квадратные уравнения - определение и вычисление с примерами решения

    Пример №271

    Рассмотрим квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения то его значение равно нулю. Действительно, Квадратные уравнения - определение и вычисление с примерами решения В таком случае число -1 называют корнем этого квадратного трехчлена.

    Корнем квадратного трехчлена называют значение переменной, при котором значение трехчлена обращается в нуль.

    Чтобы найти корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения нужно решить уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Пример №272

    Найдите корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения Получим: Квадратные уравнения - определение и вычисление с примерами решения Следовательно, Квадратные уравнения - определение и вычисление с примерами решения корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Квадратный трехчлен, как и квадратное уравнение, может иметь два различных корня, один корень (то есть два равных корня) или не иметь корней. Это зависит от знака дискриминанта квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения который также называют и дискриминантом квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен имеет два различных корня, если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен имеет один корень (то есть два равных корня), если Квадратные уравнения - определение и вычисление с примерами решениято квадратный трехчлен не имеет корней.

    Если корни квадратного трехчлена известны, то его можно разложить на линейные множители, то есть на множители, являющиеся многочленами первой степени.

    Теорема (о разложении квадратного трехчлена на множители). Если Квадратные уравнения - определение и вычисление с примерами решения корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения то справедливо равенство

    Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Если Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения (по теореме Виета).

    Для доказательства теоремы раскроем скобки в правой части равенства:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения что и требовалость доказать.

    Если же квадратный трехчлен не имеет корней, то на линейные множители его разложить нельзя.

    Пример №273

    Разложите на множители квадратный трехчлен:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Корни трехчлена Квадратные уравнения - определение и вычисление с примерами решения — числа -1 и 2,5. Поэтому Квадратные уравнения - определение и вычисление с примерами решения Это можно записать иначе, умножив первый в разложении множитель -2 на двучлен Квадратные уравнения - определение и вычисление с примерами решения Получим: Квадратные уравнения - определение и вычисление с примерами решения

    2) Квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения не имеет корней. Поэтому квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения на множители не разлагается.

    3) Квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет два одинаковых корня Квадратные уравнения - определение и вычисление с примерами решения Поэтому

    Квадратные уравнения - определение и вычисление с примерами решения

    Нетрудно заметить, что если квадратный трехчлен имеет два равных корня, то он представляет собой квадрат двучлена или произведение некоторого числа на квадрат двучлена.

    Пример №274

    Сократите дробь Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Числа 1 и -0,5 — корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения Поэтому Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    При решении некоторых задач, связанных с квадратным трехчленом Квадратные уравнения - определение и вычисление с примерами решения бывает удобно представить его в виде Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа. Такое преобразование называют выделением квадрата двучлена из квадратного трехчлена.

    Пример №275

    Выделите из трехчлена Квадратные уравнения - определение и вычисление с примерами решения квадрат двучлена.

    Решение:

    Вынесем за скобки множитель 2: Квадратные уравнения - определение и вычисление с примерами решения

    Воспользовавшись формулой квадрата суммы двух чисел Квадратные уравнения - определение и вычисление с примерами решенияпреобразуем выражение в скобках, считая, что Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения откуда определяем, что число 4 является вторым слагаемым квадрата суммы, то есть Квадратные уравнения - определение и вычисление с примерами решения поэтому добавим и вычтем Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №276

    Дан квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения При каком значении Квадратные уравнения - определение и вычисление с примерами решения он принимает наибольшее значение? Найдите это значение.

    Решение:

    Выделим из трехчлена квадрат двучлена:

    Квадратные уравнения - определение и вычисление с примерами решения

    Выражение Квадратные уравнения - определение и вычисление с примерами решения при любом значении Квадратные уравнения - определение и вычисление с примерами решения принимает не положительное значение, то есть Квадратные уравнения - определение и вычисление с примерами решения причем это выражение равно нулю только при Квадратные уравнения - определение и вычисление с примерами решения Поэтому при Квадратные уравнения - определение и вычисление с примерами решения значение данного в условии трехчлена равно 16 и является для него наибольшим.

    Таким образом, квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения принимает наибольшее значение, равное 16, при Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 16 при Квадратные уравнения - определение и вычисление с примерами решения

    Решение уравнений, сводящихся к квадратным

    Дробные рациональные уравнения

    Решение дробных рациональных уравнений часто сводится к решению квадратных уравнений. Вспомним один из методов решения дробного рационального уравнения

    Пример №277

    Решите уравнение

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Чтобы найти область допустимых значений переменной и общий знаменатель, разложим на множители знаменатели дробей в уравнении:

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножим обе части уравнения на общий знаменатель дробей — выражение Квадратные уравнения - определение и вычисление с примерами решения учитывая ОДЗ: Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения Получим: Квадратные уравнения - определение и вычисление с примерами решения

    откуда Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 3.

    Метод разложения многочлена на множители

    Некоторые уравнения, правая часть которых равна нулю, можно решить с помощью разложения левой части на множители.

    Пример №278

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Вынесем в левой части уравнения общий множитель Квадратные уравнения - определение и вычисление с примерами решения за скобки. Получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет три корня: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 0; 3; -5.

    Биквадратные уравнения

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения называют биквадратным уравнением. Его можно решить с помощью введения новой переменной, то есть обозначив Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения а исходное уравнение принимает вид:

    Квадратные уравнения - определение и вычисление с примерами решения

    Такой метод решения называют методом введения новой переменной или методом замены переменной.

    Пример №279

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Сделаем замену Квадратные уравнения - определение и вычисление с примерами решения получим уравнение Квадратные уравнения - определение и вычисление с примерами решения корнями которого являются числа Квадратные уравнения - определение и вычисление с примерами решения

    Вернемся к переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, корни исходного уравнения — числа 2 и -2.

    Ответ. 2; -2.

    Метод замены переменной

    Не только биквадратные, но и некоторые другие виды уравнений можно решить, используя замену переменной.

    Пример №280

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Если мы раскроем скобки в левой части уравнения, получим уравнение четвертой степени, которое не всегда возможно решить методами школьной математики. Поэтому скобки раскрывать не будем. Заметим, что в обеих скобках выражения, содержащие Квадратные уравнения - определение и вычисление с примерами решения одинаковы, поэтому можно воспользоваться заменой Квадратные уравнения - определение и вычисление с примерами решения Получим уравнение Квадратные уравнения - определение и вычисление с примерами решения которое является квадратным относительно переменной Квадратные уравнения - определение и вычисление с примерами решения Перепишем его в виде Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    Возвращаемся к переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, корнями исходного уравнения являются числа Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №281

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Раскроем скобки в каждой части уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Заметим, что выражения, содержащие переменную Квадратные уравнения - определение и вычисление с примерами решения в обеих частях уравнения одинаковы, поэтому сделаем замену Квадратные уравнения - определение и вычисление с примерами решения Получим уравнение с переменной Квадратные уравнения - определение и вычисление с примерами решения

    Найдем его корни: Квадратные уравнения - определение и вычисление с примерами решения

    Вернемся к переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, исходное уравнение имеет три корня: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Решение задач с помощью дробных рациональных уравнений

    Дробные рациональные уравнения также могут служить математическими моделями текстовых задач.

    Пример №282

    Из одного города в другой, расстояние между которыми 560 км, одновременно выехали легковой и грузовой автомобили. Скорость легкового была на Квадратные уравнения - определение и вычисление с примерами решения больше скорости грузового, поэтому он прибыл в пункт назначения на 1 ч раньше грузового. Найдите скорость каждого автомобиля.

    Решение:

    Пусть скорость грузового автомобиля Квадратные уравнения - определение и вычисление с примерами решения Систематизируем условие задачи в виде таблицы: Квадратные уравнения - определение и вычисление с примерами решения

    Так как значение величины Квадратные уравнения - определение и вычисление с примерами решения на 1 ч меньше значения величины Квадратные уравнения - определение и вычисление с примерами решения то можем составить уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    У него два корня: Квадратные уравнения - определение и вычисление с примерами решения Отрицательный корень не соответствует смыслу задачи, поэтому скорость грузового автомобиля 70 Квадратные уравнения - определение и вычисление с примерами решения Тогда скорость легкового автомобиля: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №283

    Мастер и его ученик, работая вместе, могут выполнить задание за 8 ч. За сколько часов может выполнить это задание самостоятельно каждый из них, если мастеру на это нужно на 12 ч меньше, чем его ученику?

    Решение:

    Пусть мастеру для самостоятельного выполнения задания нужно Квадратные уравнения - определение и вычисление с примерами решения ч, тогда ученику Квадратные уравнения - определение и вычисление с примерами решения ч. Если вид и объем работ в задачах на работу не конкретизирован (как в данном случае), его принято обозначать единицей. Напомним, что производительность труда — это объем работы, выполняемый за единицу времени. Тогда за 1 ч мастер выполнит Квадратные уравнения - определение и вычисление с примерами решения — часть задания, а ученик Квадратные уравнения - определение и вычисление с примерами решения часть, это и есть их производительности труда. По условию задачи мастер и ученик проработали 8 ч, поэтому мастер выполнил Квадратные уравнения - определение и вычисление с примерами решения часть задания, а ученик Квадратные уравнения - определение и вычисление с примерами решения Учитывая, что они выполнили все задание, имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    откуда Квадратные уравнения - определение и вычисление с примерами решения

    Второй корень не соответствует смыслу задачи, так как является отрицательным.

    Таким образом, мастер, работая отдельно, может выполнить задание за 12 ч, а его ученик — за Квадратные уравнения - определение и вычисление с примерами решения

    Условие этой задачи, как и предыдущей, можно также систематизировать в виде таблицы: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 12 ч и 24 ч.

    Обратите внимание, что условия большинства задач на движение или работу можно систематизировать в виде таблицы, что поможет избежать громоздких текстовых записей.

    «Желаю тебе стать вторым Остроградским…»

    Михаил Васильевич Остроградский родился 12 сентября 1801 года в д. Пашенная Полтавской губернии (в настоящее время деревня Пашеновка). Предки Михаила Васильевича служили в казацком войске, участвовали во многих боях, не раз проявляли военную доблесть и героизм. По-видимому, именно поэтому в детстве Михаил Васильевич так мечтал стать военным. Но ему суждено было стать всемирно известным ученым.

    В детстве Михаил обладал исключительной наблюдательностью и увлекался измерениями. Учился он в пансионе при Полтавской гимназии, потом в этой гимназии. Закончив ее, стал свободным слушателем Харьковского университета, а в дальнейшем и его студентом. После окончания университета с отличием в августе 1820 года, менее чем через год (в апреле 1821 года) получил степень кандидата наук за исследования в прикладной математике. В 1822 году Остроградский уезжает в Париж, чтобы усовершенствовать М.В. Остроградский свое математическое образование, и становится слушателем университета в Сорбонне.

    Именно там он публикует свои первые научные труды, становится известным ученым и заслуживает уважение французских математиков. За неимением средств Михаил Васильевич вынужден был покинуть Париж, преодолев пешком зимой 1828 года путь от Парижа до Петербурга.

    Научные круги Петербурга встретили молодого ученого с радостью и надеждой. Его авторитет среди петербургских деятелей науки был высоким и незыблемым. В том же 1828 году Остроградский начинает преподавательскую деятельность в Морском кадетском корпусе Петербурга, его избирают адъюнктом Петербургской академии наук. А с 1830 года преподает еще в четырех высших учебных заведениях Петербурга. В 1834 году Остроградский был избран членом Американской академии наук, в 1841 году — членом Туринской академии, в 1853 — членом Римской академии Линчей и в 1856 году -членом-корреспондентом Парижской академии наук.

    Лекции Остроградского посещали не только студенты, но и преподаватели, профессура, известные математики. Всем нравилась его система преподавания предмета — широта темы, но при этом выразительность и сжатость изложения, а также его остроумие. На лекциях он украшал свою речь словами, пословицами и поговорками. Поэтому студенты вспоминали его лекции с восторгом.

    Любимым писателем Остроградского был Т.Г. Шевченко, с которым он был лично знаком и значительную часть произведений которого, зная наизусть, охотно декламировал. В 1858 году, когда Тарас Григорьевич возвращался из ссылки на родину через Петербург, Михаил Васильевич предложил Кобзарю остановится в его петербургской квартире.

    Вернувшись из ссылки, Шевченко писал в «Дневнике»: «Великий математик принял меня с распростертыми объятиями, как земляка и как надолго выехавшего члена семьи».

    Михаил Васильевич был выдающимся, оригинальным, всесторонне одаренным человеком. Его ценили не только за ум, но и за независимость, демократизм, скромность, искренность и простоту, за уважение к людям труда. Находясь на вершине славы, отмеченный за свои научные труды во всей Европе, Остроградский был прост в общении и не любил говорить о своих заслугах.

    И какие бы проблемы не решал ученый (занимался он алгеброй, прикладной математикой, теорией чисел, теорией вероятностей, механикой и т. п.), все его научные труды отличаются глубиной мысли и оригинальностью, в них неизменно присутствует широта его взглядов, умение углубиться в суть проблемы, систематизировать и обобщить.

    На всю жизнь Михаил Васильевич сохранил любовь к родной Земле и родному языку. Почти ежегодно летом он выезжал с целью погрузиться в полное спокойствие и полюбоваться замечательными пейзажами. Летом 1861 года Остроградский, пребывая на родине, заболел и 1 января 1862 года умер.

    За свою почти 40-летнюю научную деятельность Михаил Васильевич написал свыше 50 трудов из разных отраслей математики: математического анализа, аналитической и небесной механики, математической физики, теории вероятностей. Свои педагогические взгляды М.В. Остроградский изложил в учебниках по элементарной и высшей математике.

    Именем М.В. Остроградского назван Кременчугский национальный университет.

    И хотя почти всю свою жизнь Михаил Остроградский занимался наукой, он был широко известен своим соотечественникам. Авторитет и популярность М.В. Остроградского были настолько значимыми, что родители, отдавая ребенка на учебу, желали ему «стать вторым Остроградским».

    Сведения из курса математики 5-6 классов и алгебры 7 класса

    Десятичные дроби

    Сложение и вычитание десятичных дробей выполняют поразрядно, записывая их одна под другой так, чтобы запятая размещалась под запятой.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы перемножить две десятичные дроби, надо выполнить умножение, не обращая внимания на запятые, а потом в произведении отделить занятой справа налево столько цифр, сколько их после занятой в обоих множителях вместе.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы разделить десятичную дробь на натуральное число, надо выполнить деление, не обращая внимания на запятую, но после окончания деления целой части делимого нужно в частном поставить занятую.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы разделить десятичную дробь на десятичную, нужно в делимом и делителе перенести запятую на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число.

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Обычные дроби

    Частное от деления числа Квадратные уравнения - определение и вычисление с примерами решения на число Квадратные уравнения - определение и вычисление с примерами решения можно записать в виде обычной дроби Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения числитель дроби, Квадратные уравнения - определение и вычисление с примерами решения — ее знаменатель.

    Основное свойство дроби: значение дроби не изменится, если ее числитель и знаменатель умножить или разделить на одно и то же натуральное число.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения (сократили дробь Квадратные уравнения - определение и вычисление с примерами решения на 5);

    Квадратные уравнения - определение и вычисление с примерами решения (привели дробь Квадратные уравнения - определение и вычисление с примерами решения к знаменателю 14).

    Дроби с одинаковыми знаменателями складывают и вычитают по формулам:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы сложить или вычесть дроби с разными знаменателями, их сначала приводят к общему знаменателю, а затем выполняют действие по правилу сложения или вычитания дробей с одинаковыми знаменателями.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    На следующих примерах показано, как выполнить сложение и вычитание смешанных чисел.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы умножить две дроби, нужно перемножить их числители и их знаменатели и первый результат записать числителем произведения, а второй — знаменателем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Положительные и отрицательные числа

    Модулем числа называют расстояние от начала отсчета до точки, изображающей это число на координатной прямой.

    Модуль положительного числа и числа нуль — само это число, а модуль отрицательного — противоположное ему число:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения Чтобы сложить два отрицательных числа, нужно сложить их модули и перед полученным результатом записать знак Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы сложить два числа с разными знаками, нужно из большего модуля слагаемых вычесть меньший модуль и перед полученным результатом записать знак слагаемого с большим модулем.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число, противоположное вычитаемому:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Произведение двух чисел с одинаковыми знаками равно произведению их модулей. Произведение двух чисел с разными знаками равно произведению их модулей, взятому со знаком «-».

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Частное двух чисел с одинаковыми знаками равно частному от деления их модулей. Частное двух чисел с разными знаками равно частному от деления их модулей, взятому со знаком «-».

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение

    Корнем, или решением, уравнения называют число, обращающее уравнение в правильное числовое равенство.

    Примеры:

    1) Число 3 является корнем уравнения Квадратные уравнения - определение и вычисление с примерами решения так как Квадратные уравнения - определение и вычисление с примерами решения

    2) Число -2 не является корнем уравнения Квадратные уравнения - определение и вычисление с примерами решения так как Квадратные уравнения - определение и вычисление с примерами решения

    Решить уравнение — значит найти все его корни или доказать, что корней нет.

    Два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и уравнения, не имеющие корней.

    Примеры:

    1) Уравнения Квадратные уравнения - определение и вычисление с примерами решения равносильны, так как каждое из них имеет единственный корень, равный 2.

    2) Уравнения Квадратные уравнения - определение и вычисление с примерами решения не являются равносильными, так как корень первого — число 1, а второго — число 2.

    Для решения уравнений используют следующие свойства:

    1) если в любой части уравнения раскрыть скобки или привести подобные слагаемые, получим уравнение, равносильное данному;

    2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, получим уравнение, равносильное данному;

    3) если обе части уравнения

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения числа, Квадратные уравнения - определение и вычисление с примерами решения переменная, называют линейным уравнением с одной переменной.

    Решение линейного уравнения представим в виде схемы:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    В большинстве случаев уравнения последовательными преобразованиями приводят к линейному уравнению, равносильному данному.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения Раскроем скобки: Квадратные уравнения - определение и вычисление с примерами решения Перенесем слагаемые, содержащие переменную, в левую часть уравнения, остальные — в правую, изменив знаки переносимых слагаемых на противоположные: Квадратные уравнения - определение и вычисление с примерами решения приведем подобные слагаемые: Квадратные уравнения - определение и вычисление с примерами решения решим полученное линейное уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножим обе части уравнения на наименьшее общее кратное знаменателей дробей — число 6:

    Квадратные уравнения - определение и вычисление с примерами решения

    Дальше решаем, как в предыдущем примере:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Любое число.

    Степень с натуральным показателем

    Степенью числа Квадратные уравнения - определение и вычисление с примерами решения с натуральным показателем Квадратные уравнения - определение и вычисление с примерами решения называют произведение Квадратные уравнения - определение и вычисление с примерами решения множителей, каждый из которых равен Квадратные уравнения - определение и вычисление с примерами решения Степенью числа Квадратные уравнения - определение и вычисление с примерами решения с показателем 1 называют само это число.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Свойства степени с натуральным показателем

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Используя свойства степени с натуральным показателем, можем существенно упростить вычисления.

    Квадратные уравнения - определение и вычисление с примерами решения

    Одночлен

    Целые выражения — числа, переменные, их степени и произведения называют одночленами.

    Например Квадратные уравнения - определение и вычисление с примерами решения — одночлены; выражения Квадратные уравнения - определение и вычисление с примерами решения Не одночлены.

    Если одночлен содержит только один числовой множитель, записанный первым, и содержит степени разных переменных, то такой одночлен называют одночленом стандартного вида.

    Например, Квадратные уравнения - определение и вычисление с примерами решения — одночлен стандартного вида, а одночлен Квадратные уравнения - определение и вычисление с примерами решения не является одночленом стандартного вида.

    Этот одночлен можно привести к одночлену стандартного вида:

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножение одночленов

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Возведение одночлена в степень

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Многочлен

    Многочленом называют сумму одночленов. Многочлен, являющийся суммой одночленов стандартного вида, среди которых нет подобных слагаемых, называют многочленом стандартного вида.

    Многочлен Квадратные уравнения - определение и вычисление с примерами решения не является многочленом стандартного вида, но его можно привести к стандартному виду:

    Квадратные уравнения - определение и вычисление с примерами решения

    Сложение и вычитание многочленов

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножение одночлена на многочлен

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножение многочлена на многочлен

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Формулы сокращенного умножения

    Квадратные уравнения - определение и вычисление с примерами решения

    Разложение многочленов на множители

    Вынесение общего множителя за скобки

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Способ группировки

    Квадратные уравнения - определение и вычисление с примерами решения

    Использование формул сокращенного умножения

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Функция

    Если каждому значению независимой переменной соответствует единственное значение зависимой переменной, то такую зависимость называют функциональной зависимостью, или функцией.

    Переменную Квадратные уравнения - определение и вычисление с примерами решения в этом случае называют независимой переменной (или аргументом), а переменную Квадратные уравнения - определение и вычисление с примерами решениязависимой переменной (или функцией от заданного аргумента).

    Все значения, которые принимает независимая переменная (аргумент), образуют область определения функции; все значения, которые принимает зависимая переменная (функция), образуют область значений функции.

    Линейной называют функцию, которую можно задать формулой вида Квадратные уравнения - определение и вычисление с примерами решения независимая переменная, Квадратные уравнения - определение и вычисление с примерами решения -некоторые числа.

    Графиком любой линейной функции является прямая. Для построения графика линейной функции достаточно найти координаты двух точек графика, отметить эти точки на координатной плоскости и провести через них прямую.

    Пример:

    Построим график функции Квадратные уравнения - определение и вычисление с примерами решения

    Составим таблицу для любых двух значений аргумента: Квадратные уравнения - определение и вычисление с примерами решения

    Отметим на координатной плоскости полученные точки и проведем через них прямую (рис. 20). Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Построим график функции Квадратные уравнения - определение и вычисление с примерами решения Любому значению Квадратные уравнения - определение и вычисление с примерами решения соответствует одно и то же значение Квадратные уравнения - определение и вычисление с примерами решения равное числу -2. Графиком функции является прямая, состоящая из точек с координатами Квадратные уравнения - определение и вычисление с примерами решения— любое число. Обозначим две любые такие точки, например Квадратные уравнения - определение и вычисление с примерами решения и проведем через них прямую (рис. 21).

    Квадратные уравнения - определение и вычисление с примерами решения

    Системы линейных уравнений с двумя переменными

    Если нужно найти общее решение двух (или более) уравнений, то говорят, что эти уравнения образуют систему уравнений.

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения система уравнений с двумя неизвестными Квадратные уравнения - определение и вычисление с примерами решения

    Решением системы уравнений с двумя переменными называют пару значений переменных, при которых каждое уравнение обращается в верное числовое равенство.

    Пара чисел Квадратные уравнения - определение и вычисление с примерами решения является решением данной выше системы, поскольку Квадратные уравнения - определение и вычисление с примерами решения

    Пара чисел Квадратные уравнения - определение и вычисление с примерами решения не является решением системы. Для этих значений переменных первое уравнение обращается в верное равенство Квадратные уравнения - определение и вычисление с примерами решения а второе — нет Квадратные уравнения - определение и вычисление с примерами решения

    Решить систему уравнений — значит найти все ее решения или доказать, что решений нет.

    Решение системы двух линейных уравнений с двумя переменными способом подстановки Решить систему уравнений Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Решение системы двух линейных уравнении с двумя переменными способом сложения

    Решить систему уравнений Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    • Неравенства
    • Числовые последовательности
    • Предел числовой последовательности
    • Предел и непрерывность числовой функции одной переменной
    • Разложение многочленов на множители
    • Системы линейных уравнений с двумя переменными
    • Рациональные выражения
    • Квадратные корни

    Вопросы
    занятия:

    ·  вспомнить, что
    называют квадратным трёхчленом;

    ·  вспомнить, как
    находят корни квадратного трёхчлена;

    · поговорить о разложении квадратного трёхчлена
    на множители.

    Материал урока

    Вам хорошо известны такие
    понятия, как одночлен и многочлен. Среди многочленов выделяют квадратный
    трёхчлен.

    Определение.

    Многочлен вида: ,
    где ,
     и
     –
    некоторые числа, причём ,
    называется квадратным трёхчленом.

    Числа ,
     и
     –
    коэффициенты квадратного трехчлена. Причём, число а называют первым
    (или старшим) коэффициентом
    , число  –
    вторым коэффициентом и число  –
    свободным членом.

    Задание.

    Найти среди многочленов
    те, которые являются квадратными трёхчленами, и назвать их коэффициенты.

    Квадратными трёхчленами
    будут многочлены: .
    Здесь ,
    ,
    .

    Многочлен: .
    Здесь коэффициент ,
    ,
    .

    И многочлен: .
    Здесь коэффициент ,
    ,
    .

    Теперь вспомним, как же
    находят корни квадратного трёхчлена.

    Определение.

    Вообще, значение
    переменной, при котором многочлен равен нулю, называют корнем
    многочлена.

    Понятно, что для того
    чтобы найти корни квадратного трёхчлена ,
    нужно решить квадратное уравнение ,
    т.е. найти его корни.

    Задание.

    Найти корни квадратных
    трёхчленов:

    ,         
    ,         
    .

    Решение:

    Напомним, что квадратный
    трёхчлен, как и квадратное уравнение, может иметь: 1 корень, 2 корня
    или не иметь корней вовсе.

    Перейдём к разложению
    квадратного трёхчлена на множители
    .

    Если дискриминант
    квадратного трёхчлена  положителен
    ,
    то трёхчлен можно представить в виде:

    где  и
     –
    корни уравнения .

    Если дискриминант
    квадратного трёхчлена  равен
    нулю ,
    то трёхчлен можно представить в виде:

    где  –
    корень уравнения .

    Формулы, которые вы
    видите на экране, называются формулами разложения квадратного трёхчлена на
    множители
    .

    Если же квадратный трёхчлен
     не
    имеет корней, то соответствующий многочлен  (со
    старшим коэффициентом 1) называется неприводимым многочленом второй степени
    (так как его невозможно разложить на множители меньшей степени).

    Задание.

    Разложить многочлены на
    множители:

    а) ;          
    б) ;             
       в) .

    Итак, первый квадратный
    трёхчлен: .

    Разложим на множители
    следующий квадратный трёхчлен: .

    И разложим на множители
    последний квадратный трёхчлен: .

    Задание.

    Составить квадратный
    трёхчлен, корнями которого являются числа 7 и ,
    а старший коэффициент равен 1.

    Итак, запишем квадратный
    трёхчлен в общем виде: .
    Если у него есть два корня, то можно разложить его на множители: .

    Числа 7 и  корни
    трёхчлена по условию.

    Подставим  и
     в
    формулу разложения квадратного трёхчлена на множители.

    Итоги урока

    На этом
    уроке мы рассмотрели тему «квадратный трёхчлен». Вспомнили, что называют
    квадратным трёхчленом. Как находят корни квадратного трёхчлена. А затем
    поговорили о разложении квадратного трёхчлена на множители.

    Квадратный трехчлен – это многочлен вида a x 2 + b x + c ( a ≠ 0 ).

    Исследование квадратного трёхчлена

    Задача:

    C аэростата, находящегося на высоте 1000 м, сбросили груз со скоростью 20 м в секунду. На каком расстоянии от земли этот груз будет через 15 сек.? (Сопротивление воздуха в расчёт не принимается.)

    Путь, проходимый падающим телом, вычисляется по формуле: Квадратный трехчлен (1)
    где Квадратный трехчлен — начальная скорость, a g=9,8 м/сек²—ускорение силы тяжести.

    В данном случае Квадратный трехчлен=20 м/сек² , и формула примет вид:
    s=20t+4,9t². (2)

    Такой путь пройдёт падающий груз за t секунд. Значит, через t секунд он будет находиться на высоте
    x=1000-20t— 4,9t² (3)
    метров от земли. Чтобы определить х — высоту груза над землёй через 15 сек., очевидно, достаточно в (3) подставить t = 15 и произвести вычисления. Получим:
    x = 1000-20∙15-4,9∙15²= —402,5.

    Отрицательное значение х здесь не имеет смысла, и, следовательно, наша задача не имеет решения. Почему так получилось? Чтобы ответить на этот вопрос, определим сначала, через сколько секунд сброшенный груз упадёт на землю? Очевидно, это произойдёт в тот момент, когда груз пройдёт путь, равный высоте, с которой он был сброшен, т. е. 1000 м. Значит, мы должны иметь:
    20t- 4,9t² =1000,
    или
    4,9t² +20t-1000= 0. (4)

    Решив это уравнение, найдём t =12,4 сек. (с точностью доКвадратный трехчлен). Берём только положительный корень. Значит, через 12,4 сек. груз уже упал на землю, а потому вопрос задачи не имеет смысла.

    При каких же значениях t задача допускает вполне определённое решение? Очевидно, только для тех значений, при которых путь, пройденный грузом, меньше 1000 м, т. е. при условии, что
    4,9t²+20t< 1000,
    или, что то же,
    4,9t2⅛20∕ — 1000 <0. (5)

    Значит, задача имеет решение только при таких (положительных) значениях /, при которых трёхчлен 4,9t²+20t— 1000 является отрицательным числом. Это будет при t<12,4.

    Во многих задачах, как в приведённой выше, требуется определить для данного трёхчлена, при каких значениях входящей в него буквы он является положительным и при каких отрицательным. В этом и заключается исследование квадратного трёхчлена.

    Квадратный трёхчлен, имеющий действительные различные корни

    Пример:

    Пусть дан трёхчлен:
    y=2x² — 7x+3. (1)

    Требуется определить, при каких значениях х этот трёхчлен будет иметь положительные и при каких отрицательные значения.

    Мы знаем, что всякий квадратный трёхчлен можно представить в виде произведения коэффициента при х² и разностей между переменным и корнями трёхчлена.

    Найдём корни данного трёхчлена, для чего решим уравнение
    2x² — 7x+3=0. (2)

    Получим: Квадратный трехчлен; x₂=3 (через x₁ будем в дальнейшем обозначать меньший из действительных корней). Тогда данный трёхчлен можно представить в таком виде:
    Квадратный трехчлен (3)

    Исследуем теперь, при каких значениях х это произведение будет числом положительным и при каких отрицательным. Разберём три случая.

    1. Пусть Квадратный трехчлен, тогда и подавно x<3. Отсюда, перенеся все члены в левую часть, получим:
    Квадратный трехчлен

    Следовательно, произведение Квадратный трехчлен, как произведение двух отрицательных чисел, является числом положительным. По умножении его на положительное число 2 получим опять положительное число. Отсюда следует, что при Квадратный трехчленвыражение (3), а значит и данный трёхчлен является положительным числом.

    2. Пусть
    Квадратный трехчленно х <3,
    т. е. значения х заключены между корнями данного трёхчлена. Из этих неравенств, после переноса членов в левую часть, получим:
    Квадратный трехчлен и х — 3<0.

    Стало быть, в произведении Квадратный трехчлен один сомножитель положителен, другой отрицателен. Значит, произведение будет отрицательно, и по умножении его на положительное число 2 получим отрицательное число. Итак, при
    Квадратный трехчлен

    выражение (3), а следовательно, и данный трёхчлен, является отрицательным числом.

    3. Пусть х>3, тогда и подавно Квадратный трехчлен. Отсюда получаем:
    х — 3 >> 0 и хКвадратный трехчлен

    Произведение Квадратный трехчлен, а следовательно, и произведение
    Квадратный трехчлен будут положительными числами. Значит, при х>3
    данный трёхчлен — число положительное. Итак, мы пришли к следующему выводу. Трёхчлен 2x²-7x+3 имеет положительные значения при всех значениях х, меньших Квадратный трехчлен, и при всех значениях х, больших 3. Трёхчлен имеет отрицательные значения при всех значениях х, заключённых между Квадратный трехчлен и 3.

    Проверка сделанных выводов на некоторых числовых значениях х дана в следующей таблице, где в верхней строке даны значения х, а в нижней — соответствующие значения трёхчлена:

    x -5 -3 -1 0 1 2 4 7 10
    2x²-7х+3 88 42 12 3 -2 -3 7 52 133

    К тем же результатам мы придём, если рассмотрим график трёхчлена 2x²-7х+3. Мы знаем, что этим графиком является парабола, пересекающая ось x-ов в точках, абсциссы которых равны Квадратный трехчлен и 3. Из рассмотрения графика (черт. 36) непосредственно видно, что точки параболы, абсциссы которых меньше Квадратный трехчлен или больше 3, расположены выше оси х-ов, и значит, их ординаты, т. е. значения y=2x²-7x+3, будут положительны.

    Точки же параболы, абсциссы которых заключены между Квадратный трехчлени 3, находятся ниже оси х-ов, и значит, их ординаты отрицательны.

    Квадратный трехчлен

    Черт. 36.

    Пример:

    Исследуем таким же способом трёхчлен:
    y=3x²-x-10.

    Решив квадратное уравнение Зх²-х-10=0, найдём корни данного трёхчлена. Они будут равны: Квадратный трехчлен и х₂=2. Тогда трёхчлен
    можно представить в таком виде:
    Квадратный трехчлен
    или
    Квадратный трехчлен

    Рассуждая так же, как и в первом примере, найдём:
    1) При Квадратный трехчлен будет также и x<2. Отсюда:
    Квадратный трехчлен и х-2<0.
    Следовательно, при этих значениях х произведение
    т. е. данный трёхчлен имеет положительные значения.

    2) При Квадратный трехчлен и x<2 будем иметь:
    Квадратный трехчлен и х-2<0.
    Следовательно,
    Квадратный трехчлен
    т. е. трёхчлен имеет отрицательные значения.

    3) При х>2 будет также и Квадратный трехчлен . Тогда будем иметь:
    Квадратный трехчлен и х — 2 > 0.
    Отсюда:
    Квадратный трехчлен
    и трёхчлен имеет положительные значения.

    Общий вывод будет такой же, как и в первом примере: трёхчлен имеет положительные значения при всех значениях х, меньших Квадратный трехчлен, и при всех значениях х, больших 2.

    Он имеет отрицательные значения для всех значений х, заключённых между Квадратный трехчлен и 2. Этот вывод подтверждается таблицей, а также графиком трёхчлена Зх² — х — 10 (черт. 37).

    Квадратный трехчлен

    Черт. 37.
    x -5 -2 -1 0 1 2 3 5
    Зх²-х-10 70 4 -6 -10 -8 0 14 60

    Пример:

    Рассмотрим теперь такой трёхчлен, у которого первый коэффициент (т. е. коэффициент при х²) является отрицательным
    числом. Пусть, например, дан трёхчлен:
    y=-2x²+4x+16.

    Найдя корни этого трёхчлена: x₁= — 2 и x₂=4, мы можем его переписать так:
    y=-2(x+2) (x-4)

    Исследуя знак этого произведения в том же порядке, как и в предыдущих примерах, мы найдём:

    1. При х < 2 будет также и х<4. Отсюда:
    x+2<0 и х-4<0.

    Произведение этих множителей (x+2) (х-4) положительно. Но при умножении этого положительного числа на —2 получим, очевидно, отрицательное число, и, значит, данный трёхчлен при х<-2 имеет отрицательные значения.

    2. При х>-2 и x<4 имеем:
    x+2> 0 и х — 4<0.

    Произведение (x+2) (x-4) — число отрицательное, а, значит, по умножении его на отрицательное число — 2 получится положительное число.

    Следовательно, при значениях х, заключённых между корнями трёхчлена — 2 и 4, данный трёхчлен имеет положительные значения.

    3. Наконец, при х>4 получим:
    x+2>0 и х-4>0.

    Произведение (x+2) (х-4) — число положительное. По умножении его на — 2 получим отрицательное число, и, значит, трёхчлен при х>4 имеет отрицательные значения.

    Мы видим, что в этом случае мы имеем положение, обратное тому, которое наблюдали в первых двух примерах: при значениях х, меньших — 2, и при значениях, больших 4, он имеет отрицательные значения; при значениях х, заключённых между корнями трёхчлена, он имеет положительные значения. Этот вывод подтверждает и таблица для отдельных числовых значений х.

    x -5 -3 -2 -1 0 1 3 4 5 8
    -2x²+4x+16 -54 -14 0 10 16 18 10 0 -14 -80

    К тому же выводу мы придём, если рассмотрим график трёхчлена -2x²+4x+16. Мы уже знаем, что при a<0 график трёхчлена αx²+bx+c будет обращён вершиной вверх и пересечёт ось х-ов в точках, абсциссы которых равны корням трёхчлена. В данном случае график имеет такой вид (черт. 38). Мы видим, что при х<-2 и при х> 4 ординаты точек кривой, т. е. значения у =- 2x²+4x+16, отрицательны, а при — 2<x< 4 — положительны.

    Сопоставляя третий пример с первым и со вторым, мы замечаем, что во всех трёх случаях при значениях х, меньших меньшего корня, а также больших большего корня, трёхчлен имеет тот же знак, что и коэффициент при x²; при значениях х, заключённых между корнями, трёхчлен имеет знак, противоположный знаку коэффициента при х².

    Квадратный трехчлен

    Черт. 38.

    Убедимся в том, что такой вывод верен для любых значений коэффициентов а, b и с в случае действительных и различных корней. Для этого исследуем квадратный трёхчлен в общем виде.

    Общий случай:

    Пусть дан трёхчлен:
    y=αx²+bx+c,
    где а, b и с — любые действительные числа, удовлетворяющие лишь тому условию, что трёхчлен имеет действительные и различные корни (и, конечно, α≠0). Обозначим эти корни через
    x₁ и x₂ (x₁<x₂)

    Тогда трёхчлен может быть представлен в таком виде:
    y=a(x-x₁) (x-x₂).

    Исследуем, какие значения имеет этот трёхчлен при различных значениях х.

    1. Пусть x<x₁, а значит, x<x₂ (так как x₁<x₂).
    Отсюда имеем:
    х-x₁<0 и х-x₂<0.

    Следовательно, произведение (х-x₁) (х-x₂) будет числом положительным. Отсюда следует, что а (х-x₁) (х-x₂) положительно, если а положительно, и отрицательно, если а отрицательно. Другими словами, при x<x₁ значение трёхчлена ax²+bx+c имеет тот же
    знак, что и коэффициент а.

    2. Пусть x<x₁ и x<x₂.
    Тогда:
    x-x₁>0 и x-x₂<0.
    Произведение (х — x₁) (х — x₂), как произведение чисел с разными знаками, будет числом отрицательным. Отсюда следует, что произведение а (х — x₁) (х — x₂) отрицательно при положительном а и положительно при отрицательном а.

    Значит, в этом случае значения трёхчлена имеют знак, противоположный знаку коэффициента а.

    3. Пусть х>х₂, а значит, и x>x₁ (так как x₂ >x₁).
    Тогда:
    х —x₂>0 и х —x₁>0

    Произведение (х — x₁) (х — x₂) будет положительным, а следовательно, произведение а (х — x₁) (х — x₂) положительно при а положительном и отрицательно при а отрицательном. Значит, в этом случае числовое значение трёхчлена имеет тот же знак, что и коэффициент а.

    Объединяя все три случая, мы можем теперь сделать такой общий вывод:

    Если квадратный трёхчлен ax²+bx+c имеет действительные различные корни, то при значениях х, меньших меньшего из корней, и при значениях х, больших большего из корней, он имеет тот же знак, что и коэффициент при x². При значениях х, заключённых между корнями трёхчлена, он имеет знак, противоположный знаку коэффициента при х².

    Примечание. Если условиться называть значения х<x₁ и х>x₂ значениями х вне промежутка между корнями, а значения x₁<x<x₂ значениями х внутри промежутка между корнями, то этот вывод можно ещё сформулировать так:

    Если трёхчлен ax²+bx+c имеет действительные различные корни x₁ и x₂, то при значениях х вне промежутка между корнями трёхчлен имеет тот же знак, что и коэффициент при х²; при значениях х внутри промежутка между корнями трёхчлен имеет знак, противоположный знаку коэффициента при x².

    Квадратный трёхчлен, имеющий равные корни

    Пример:

    Пусть требуется исследовать трёхчлен:
    y=2x²-8х+8.

    Найдём корни этого трёхчлена, для чего приравняем его нулю и решим уравнение:
    2х² —8x+8=0.

    Получим x₁= x₂=2. Значит, данный трёхчлен можно представить в таком виде:
    y=2(x-2) (х-2),
    или
    y=2 (х — 2)².

    Очевидно, что при любых действительных значениях x, кроме х=2, выражение (х — 2)² — число положительное. А значит, и по умножении его на положительное число 2 будем иметь положительное число. Следовательно, трёхчлен 2x²-8x+8 имеет положительные значения при всех значениях х, кроме значения, равного корню трёхчлена, т. е. при х=2.
    (При х=2 трёхчлен равен нулю.)

    Построив график трёхчлена 2x²-8x+8, мы замечаем (черт. 39), что при всех значениях х точки кривой расположены выше оси х, т. e. y>0, и только при x= 2 будет y=0. В этой точке кривая касается оси абсцисс.

    Пример:

    Исследуем трёхчлен:
    Квадратный трехчлен

    Найдём корни этого трёхчлена, для чего решим уравнение:
    Квадратный трехчлен

    Квадратный трехчлен

    Получим: x₁=x₂=3. Следовательно, данный трёхчлен можем представить в таком виде:
    Квадратный трехчлен
    или
    Квадратный трехчлен

    Как и в предыдущем примере, заключаем, что выражение (х-3)² при всех значениях х, кроме х=3, является числом положительным.

    По умножении его на Квадратный трехчленполучим отрицательное число.

    Таким образом, в этом случае при всех значениях х, кроме х=3, трёхчлен имеет отрицательные значения.

    Построив график трёхчлена Квадратный трехчлен, мы видим
    (черт. 40), что все точки параболы, кроме точки (3; 0), находятся ниже оси х-ов. Значит, ординаты всех этих точек, т. е. значения Квадратный трехчлен, будут отрицательны.

    Сопоставляя оба примера, мы замечаем, что в обоих случаях знак численной величины трёхчлена совпадает со знаком коэффициента при x². Чтобы убедиться, что это имеет место при любых коэффициентах (в случае равных корней), рассмотрим трёхчлен в общем виде.

    Общий случай: Пусть дан трёхчлен:
    y=ax²+bx+c,
    причём известно, что он имеет равные корни. Обозначив корень через x₁, представим трёхчлен в таком виде:
    y = α(x- x₁) (x-x₁),
    или
    y = α(x- x₁)²

    Отсюда заключаем: какова бы ни была разность x-x₁, если только она не равна нулю, квадрат этой разности является числом положительным. Значит, при положительном а произведение а (x-x₁ )², а следовательно, и у будут числами положительными, а при отрицательном а — отрицательными. Таким образом, мы можем сделать вывод:

    Если трёхчлен имеет равные корни, то при всех значениях х, кроме значения, равного корню трёхчлена, значения трёхчлена имеют тот же знак, что и коэффициент при х².

    Квадратный трёхчлен, имеющий мнимые корни

    Пример:

    Исследуем трёхчлен:
    y=2x²-3x+3.

    Решая уравнение 2x²-3x+3=0, мы получим:
    Квадратный трехчлен

    Корни трёхчлена оказались мнимыми. В этом случае разности x-x₁ и x-x₂ будут мнимыми числами. Так как вопрос о знаке мнимых чисел не имеет смысла, то мы проведём исследование данного случая другим способом. Вынесем сначала за скобки первый коэффициент, получим:
    Квадратный трехчлен

    Рассматривая теперь второй член Квадратный трехчлен, равный Квадратный трехчлен, как удвоенное произведение х и Квадратный трехчлендополним выражение
    Квадратный трехчлен
    до полного квадрата, прибавив, а затем вычтя Квадратный трехчлен

    Будем иметь:
    Квадратный трехчлен

    Исследуем теперь полученное выражение. Очевидно, что при любых значениях х выражение Квадратный трехчлен— число положительное и
    только при Квадратный трехчлен равно нулю. Второе слагаемое в прямых скобках Квадратный трехчлен — тоже положительное число. Значит, и вся сумма в прямых скобках положительна. От умножения её на положительное число 2 получим опять положительное число. Итак, в данном случае трёхчлен имеет положительные значения при всех значениях х.

    График трёхчлена y=2x²-3x+3 (черт. 41) показывает, что действительно все точки параболы расположены выше оси х-ов, т. е. их ординаты положительны.

    Пример:

    Исследуем трёхчлен:
    y= — 3x²+2x- 1.

    Решив уравнение —3x²+2x—1=0, найдём его корни.
    Имеем:
    Квадратный трехчлен

    Корни трёхчлена оказались мнимыми. Применим поэтому тот же способ исследования, что и в примере 1. Вынесем за скобки первый коэффициент и в скобках выделим квадрат двучлена:
    Квадратный трехчлен

    Выражение Квадратный трехчлен равно нулю при Квадратный трехчлени положительно при всех других значениях х. Значит, сумма Квадратный трехчлен всегда положительна.

    По умножении её на — 3 получим отрицательное число. Отсюда делаем вывод, что трёхчлен — 3x²+2x — 1 имеет отрицательные значения при всех значениях х. График трёхчлена (черт. 42) показывает, что все точки параболы расположены ниже оси х-ов, т. е. их ординаты отрицательны.

    Сопоставляя примеры 1 и 2, замечаем, что в обоих случаях знак численной величины трёхчлена совпадал со знаком коэффициента при х² при всех без исключения значениях переменного х. Покажем, что это будет иметь место для всякого трёхчлена, имеющего мнимые корни.

    Общий случай: Пусть дан трёхчлен:
    y=ax²+bx+c,

    Квадратный трехчлен

    причём известно, что он имеет мнимые корни. Мы знаем, что в этом случае должно быть
    b² — 4αc < 0.

    Преобразуем трёхчлен так же, как мы это делали в примерах 1 и 2:
    Квадратный трехчлен
    или
    Квадратный трехчлен

    Прибавим и вычтем по Квадратный трехчленполучим:
    Квадратный трехчлен
    Квадратный трехчлен

    При всех значениях х выражение Квадратный трехчленположительно или
    равно нулю Квадратный трехчлен. Посмотрим, какой знак имеет второе слагаемое Квадратный трехчлен. Мы уже знаем, что в случае мнимых корней выражение b² — 4ас отрицательно. Это значит, что противоположное ему число — (b²— 4ас), т. е. 4ас—b², будет числом положительным. Знаменатель 4α²— тоже число положительное. Следовательно, всё выражение —— является положительным числом. Итак, вся сумма, заключённая в прямые скобки, является положительным числом при всех (действительных) значениях х.

    Отсюда следует, что знак численной величины трёхчлена зависит только от знака а; при а положительном и трёхчлен имеет положительные значения, при отрицательном — отрицательные.

    Итак, мы можем сделать вывод:

    Если трёхчлен имеет мнимые корни, то при всех значениях х его численная величина имеет тот же знак, что и коэффициент при х².

    Общий вывод: Мы можем теперь подвести общий итог проведённого исследования квадратного трёхчлена. Но прежде сделаем следующие замечания.

    1. Мы разбили исследование трёхчлена на три случая в зависимости от того, какие корни имеет трёхчлен. Но мы знаем что корни квадратного уравнения связаны с его дискриминантом b²—4ас следующей зависимостью:
    1) Если b²— 4αc>0, то корни действительны и различны.
    2) Если b² — 4αc=0, то корни действительны и равны.
    3) Если b² — 4ас<0, то корни мнимы.

    Следовательно, вместо того чтобы говорить, например: „если корни трёхчлена действительны и различны’, — мы можем сказать короче: „если дискриминант больше нуля’; аналогично изменяем формулировку и в остальных двух случаях.

    2. Мы исследовали, какой знак имеет численная величина трёхчлена при различных численных значениях переменного. В дальнейшем для краткости вместо „знак численной величины трёхчлена’ условимся говорить короче: „знак трёхчлена’, помня, что речь идёт о знаке числа, которое получится, если вместо переменного подставить его численное значение. Точно так же вместо слов „трёхчлен имеет положительные (отрицательные) значения’ будем говорить короче: „трёхчлен положителен (отрицателен)’. Теперь мы можем сформулировать общий вывод так:

    1) Если дискриминант трёхчлена ax²+bx+c положителен, то при всех значениях х, заключённых внутри промежутка между корнями, он имеет знак, противоположный знаку коэффициента а; при всех значениях х, содержащихся вне этого промежутка, трёхчлен имеет тот же знак, что и коэффициент а.

    2) Если дискриминант трёхчлена равен нулю, то трёхчлен при всех значениях х, кроме значения, равного корню трёхчлена, имеет тот же знак, что и коэффициент а.

    3) Если дискриминант отрицателен, то при всех значениях х трёхчлен имеет тот же знак, что и коэффициент а.
    Этот вывод можно представить в виде следующей таблицы:

    Дискриминант Значение х Знак у = ax²+bx+c
    α>0 α<0
    b² — 4αc > 0 1) x₁<x<x₂
    2) x<x₁; x>x₂
    отрицательный положительный положительный отрицательный
    b² — 4ac = 0 любое, кроме
    x=x₁=x₂
    положительный отрицательный
    b² — 4αc<0 любое положительный отрицательный

    Примеры:

    1. у = x² -7x+10. Дискриминант: b²-4ac=49-40 = 9>0; α=1>0. Корни трёхчлена: x₁ = 2; x₂ = 5. Следовательно, при х<2 и при х>5 трёхчлен положителен, а при 2<x<5 — отрицателен.

    2. у =-2x²+6x+80. Дискриминант: 36+640=676>0;
    а=-2<0. Корни трёхчлена: x₁ =-5; x₂ =8. Следовательно, при -5<x<8 трёхчлен положителен; при х<-5 и при x>8 — отрицателен.

    3. у = —x²+4х-15. Дискриминант: 16- 4·15=-44 <0. Следовательно, при всех значениях х трёхчлен отрицателен.

    4. y=5x²-10x-5. Дискриминант: 10²-4∙5∙5=0. Корень трёхчлена: x₁= x₂=1; α=5>0. Следовательно, при всех значениях х, кроме х=1, трёхчлен положителен.

    5. Определить, при каких значениях m трёхчлен 2x²-6x+m будет иметь положительные значения при любом значении х. Так как здесь α=2>0, то трёхчлен будет иметь положительные значения при любом х в том случае, если b²— 4αc<0. Подставляя сюда значения: α=2, b=-6, с=m, получим: 36-4∙2m=36- 8m. Значит, должно быть 36 — 8m<0. Отсюда находим: m >Квадратный трехчлен. Итак, при m, большем Квадратный трехчлен, данный трёхчлен будет иметь положительные значения при любом значении х.

    6. Определить, при каких значениях р трёхчлен x²+(p— 2) x+4-2p+l будет иметь положительные значения при любом значении х.

    Дискриминант трёхчлена (р — 2)²—4(2p+1) =p²-12p=p(p—12). Следовательно, для того чтобы данный трёхчлен имел положительные значения при любом х, должно быть:
    p(p-12)<0.

    Решив уравнение:
    р (р -12)=0,
    найдём:
    p₁=0; p₂=12.

    Решим неравенство: р(р — 12) < 0. Оно будет верно при условии
    I p< 0 и р — 12 >0 или
    II р>0 и р—12≤0.

    Первая система неравенств несовместна (при р < 0, очевидно, и р-12 < 0). Вторая же система даёт решение:
    0<р< 12.

    Итак, при всех значениях р от 0 до 12, т. е. при условии 0<p<12, данный трёхчлен имеет положительные значения при любом значении х.

    Неравенства второй степени: Неравенствами второй степени с одним неизвестным называются неравенства вида:
    ax²+bx+c > 0 (1)
    и
    ax²+bx+c < 0, (2)
    где а, b и с — любые действительные числа, причём α≠0.

    Так как неравенство вида (2) всегда может быть приведено к виду (1) путём умножения его на —1, то мы можем в дальнейшем ограничиться рассмотрением неравенств вида (1).

    Решить неравенство — значит определить, при каких значениях х это неравенство справедливо. Для неравенства (1) это значит, что мы должны найти те значения х, при которых трёхчлен в левой части-является числом положительным.

    После того как было изложено относительно знака квадратного трёхчлена, ответ на этот вопрос не представляет затруднений.

    Решим несколько примеров.

    Пример:

    Пусть требуется решить неравенство:
    2х²-13x+15> 0. (1)

    Это значит, что нам нужно определить, при каких значениях х трёхчлен 2x²— 13x-f-15 является числом положительным. Решение проведём в таком порядке:

    а) Устанавливаем, что первый коэффициент положителен (α=2>0).
    б) Устанавливаем, что дискриминант трёхчлена 132 — 4∙2∙15>0.
    Отсюда заключаем , что неравенство (1) справедливо при всех значениях х, больших большего, и при всех значениях х, меньших меньшего из корней трёхчлена.
    в) Чтобы определить эти значения, решаем уравнение:
    2x² — 13x+15=0.

    Находим: x₁=Квадратный трехчлен; x₂=5.

    Следовательно, данное неравенство справедливо при значениях х, меньшихКвадратный трехчлен, и при значениях х, больших 5.

    Пример:

    Решить неравенство:
    — 4x²+4x-1 <0. (1)

    Умножив обе части на —1, получим равносильное неравенство:
    4x² — 4x+1 >0. (2)

    а) Коэффициент α=4>0.
    б) Дискриминант 4²-4·4=0.

    Следовательно, трёхчлен имеет равные корни. В этом случае, как мы знаем, трёхчлен (2) имеет положительные значения при всех значениях х, кроме значения, равного корню трёхчлена. Найдём этот корень, решив уравнение:
    4x² — 4x+1=0.

    Получим Квадратный трехчлен. Итак, данное неравенство (1) справедливо при всех значениях х, кроме Квадратный трехчлен.

    Пример:

    Решить неравенство:
    3x²- 5x+4 >0.

    а) Коэффициент α=3 > 0.
    б) Дискриминант 5²-4∙3∙4=-23 <0.
    Отсюда сразу заключаем, что неравенство справедливо при любых значениях х.

    Пример:

    Решить неравенство:
    (2х — 1) (x+3) — (x+7) (х-1) — 4х < 0.

    Раскрыв скобки и произведя упрощения, получим:
    x² -5x+4< 0, (1)
    или по умножении на — 1:
    — x²+5x-4>0. (2)

    а) Коэффициент
    а= —1 <0.
    б) Дискриминант
    5²-4-(— 1).(— 4)=9>0.

    Следовательно, неравенство (2), а значит, и (1) справедливо при всех значениях х, заключённых между корнями трёхчлена. Найдём эти корни:
    х² —5x+4=0,
    отсюда x₁=1, x₂=4. Итак, неравенство (1) справедливо при 1<х<4.

    Пример:

    Решить неравенство:
    Квадратный трехчлен-x+Квадратный трехчлен < 0. (1)

    Умножив обе части на —6, получим:
    — x²+6x- 9 > 0. (2)

    а) Коэффициент а=-1<0.
    б) Дискриминант 6²- 4·(—1)∙(—9)=0. Отсюда сразу заключаем, что неравенство (1) не имеет решений (при х=3 трёхчлен (2) равен 0, при всех остальных значениях — отрицателен).

    Пример:

    Решить неравенство:

    — 3x²+4x- 10 >0.

    Так как а=-3<0 и дискриминант 4²-120<0, то непосредственно заключаем, что неравенство решений не имеет.

    Решённые примеры, а также рассмотрение таблицы приводят к следующему общему выводу для неравенства:
    ax²+bx+-c>0.

    I. Если b²-4αc<0, то:
    а) при α > 0 неравенство справедливо при любых значениях х;
    б) при α < 0 неравенство не имеет решений.

    II. Если b²- 4αc=0, то:
    а) при α > 0 неравенство справедливо при всех значениях х, кроме значения, равного корню трёхчлена в левой части;
    б) при α < 0 не имеет решений.

    III. Если b² — 4ас > 0, то:
    а) при α > 0 неравенство справедливо при значениях х, больших большего, и при значениях х, меньших меньшего из корней трёхчлена в левой части (или, как мы условились говорить короче: „при значениях х вне промежутка между корнями трёхчлена»);
    б) при α< 0 неравенство справедливо при значениях х, заключённых между корнями трёхчлена в левой части (или при значениях х внутри промежутка между корнями).

    Примечание. Во всех приведённых примерах мы проводили решение, полностью основываясь на результатах исследования квадратного трёхчлена. Но, конечно, в каждом случае возможно и вполне самостоятельное исследование. Так, в примере 1, решив уравнение 2x²—13x+15=0 и найдя x₁=Квадратный трехчлен, x₂=5, мы могли данное неравенство представить в виде:
    Квадратный трехчлен

    Теперь решение данного неравенства привелось к решению двух систем неравенств первой степени:
    Квадратный трехчлен
    Квадратный трехчлен

    Первая система даёт х > 5, вторая: х <Квадратный трехчлен. Значит, данное неравенство справедливо при значениях х>5 и при значениях х<Квадратный трехчлен.
    Мы пришли к тому же результату, что и в первом примере, но гораздо более длинным путём.

    Решим теперь несколько неравенств более сложного вида.

    Пример:

    Решить неравенство:
    Квадратный трехчлен

    Решение этого неравенства приводится к решению двух систем:
    Квадратный трехчлен

    Решим первую систему неравенств. Так как 8²-4 ∙7=36>0, то трёхчлен x²-8x+7 имеет действительные и различные корни. Решив уравнение х²-8x+7=0, найдём: x₁=1; x₂=7. В таком случае, как мы знаем, неравенство (1) будет иметь место при x<1 и при х>7.

    Но решив неравенство (2), найдём х>3. Значит, обоим неравенствам удовлетворяют лишь значения х>7.

    Решим вторую систему. Неравенство (3) будет справедливо при всех значениях х, заключающихся между 1 и 7, т. е. при 1 < x < 7. Но неравенство (4) даёт x<3. Следовательно, обоим неравенствам вместе удовлетворяют лишь значения х, заключённые между 1 и 3, т. е. при 1 < x < 3. Теперь мы можем сделать общий вывод: данное неравенство справедливо:
    при 1< x< 3 и при х > 7.

    Проверьте правильность решения подстановкой в данное неравенство значений: x=- 1; 0; 1; 2; 4; 6; 8; 10.

    Пример:

    Решить неравенство:
    Квадратный трехчлен

    Решение приводится к решению систем:
    Квадратный трехчлен
    или
    Квадратный трехчлен

    Так как 9²-56=25>0 и 5²-16=9>0, то оба трёхчлена имеют действительные и различные корни. Решив соответствующие уравнения, найдём для первого трёхчлена: x₁=2; x₂=7, второго трёхчлена: x₁=1;x₂=4. Отсюда заключаем:

    1) Неравенство (1) справедливо при x<2 и х>7, а неравенство (2) — при х<1 и x>4. Следовательно, оба неравенства вместе будут верны лишь при х<4 и х >7.

    2) Неравенство (3) верно при 2<x<7, а неравенство (4)—при 1<х<4. Следовательно, оба неравенства одновременно будут иметь место лишь при 2<x<4. Итак, решениями данного неравенства будут следующие значения х: 1) х<1; 2) 2<x<4; 3) x>7.

    Замечание:

    Найдя корни обоих трёхчленов, мы могли данное неравенство представить в таком виде:
    Квадратный трехчлен

    Тогда решение этого неравенства свелось бы к решению двух систем:
    Квадратный трехчлен
    или
    Квадратный трехчлен

    Решение каждого из этих неравенств мы можем провести подобно тому, как это было сделано в первом примере. Очевидно, что мы пришли бы к тому же результату, как и выше, но ход решения был бы значительно более длинным.

    Пример:

    Решить неравенство:
    Квадратный трехчлен

    Решение сводится к решению систем:
    Квадратный трехчлен
    или
    Квадратный трехчлен

    Дискриминанты трёхчленов: 3²+4∙ 10=49>0 и 3²-4∙10= =-31<0. Отсюда сразу заключаем, что система I не имеет решений. Действительно, раз дискриминант трёхчлена (2) меньше нуля, то трёхчлен положителен при любых значениях х и, следовательно, неравенство (2) не может иметь места.

    Обращаемся к системе II. Мы уже знаем, что неравенство (4) верно при всех значениях х. Значит, остаётся решить неравенство (3). Найдя корни трёхчлена x²-Зх-10, получим: x₁=-2; x₂=5. Следовательно, решениями неравенства (3), а значит, и системы II будут лишь значения х, заключённые между -2 и 5.

    Итак, данное неравенство будет верно при —2≤x≤5.

    Квадратный трехчлен и квадратные неравенства

    Умение решать квадратные неравенства необходимо каждому учащемуся, готовящемуся к выпускным экзаменам в школе и вступительным экзаменам в вузе. Чтобы успешно решать квадратные неравенства и сводящиеся к ним, следует твердо знать свойства квадратного трехчлена и квадратичной функции.

    График квадратичной функции.

    Функцию

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    где а,b,с — действительные числа, причем Квадратный трехчлен и квадратные неравенства с примерами решения, называют квадратичной. Область ее определения — множество R действитель-ных чисел.

    Применив метод выделения полного квадрата, запишем квадратичную функцию (1) в виде

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    гдеКвадратный трехчлен и квадратные неравенства с примерами решения

    Введем следующие обозначения:

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    Тогда формула (1) примет вид

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    Из формулы (4) следует, что графиком квадратичной функции является такая же парабола, как Квадратный трехчлен и квадратные неравенства с примерами решения но сдвинутая вдоль оси Ох на |m| единиц и вдоль оси Оу на |l| единиц так, что ее вершина — точка А(m;l).

    Знак числа а определяет направление ветвей параболы: при а > 0 ветви параболы направлены вверх, при а < 0 — вниз. Ось симметрии параболы — прямая, параллельная оси Оу и проходящая через вершину А параболы.

    График функции Квадратный трехчлен и квадратные неравенства с примерами решения можно построить, используя следующую схему:

    1) найти координаты вершины А(m;l) параболы, пользуясь формулами (3) или применяя метод выделения полного квадрата;

    2) построить ось параболы;

    3) найти точки пересечения параболы с осью Оу и осью Ох (найти корни уравнения Квадратный трехчлен и квадратные неравенства с примерами решения, если Квадратный трехчлен и квадратные неравенства с примерами решения

    4) нарисовать эскиз графика функции, используя найденные точки и учитывая роль знака числа а.

    Для более точного изображения параболы найти координаты нескольких ее точек.

    На рис. 20.1 изображен график функции Квадратный трехчлен и квадратные неравенства с примерами решения

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Теорема:

    Квадратичная функция Квадратный трехчлен и квадратные неравенства с примерами решения принимает при Квадратный трехчлен и квадратные неравенства с примерами решения наименьшее значение, если а > 0, и наибольшее значение, если а < 0.

    Для доказательства этой теоремы можно воспользоваться формулой

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    где Квадратный трехчлен и квадратные неравенства с примерами решения

    Замечание:

    Эта теорема имеет простой геометрический смысл. Если а > 0, то самая нижняя точка параболы Квадратный трехчлен и квадратные неравенства с примерами решения(рис. 20.2) — ее вершина А(m;l). Ордината l вершины и есть наименьшее значение функции Квадратный трехчлен и квадратные неравенства с примерами решения т. е. Квадратный трехчлен и квадратные неравенства с примерами решения Значение l функция принимает при Квадратный трехчлен и квадратные неравенства с примерами решенияАналогично рассматривается случай а < 0.

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Исследование квадратного трехчлена

    Теорема:

    Если Квадратный трехчлен и квадратные неравенства с примерами решения то при всех Квадратный трехчлен и квадратные неравенства с примерами решения знак квадратичной функции Квадратный трехчлен и квадратные неравенства с примерами решения совпадает со знаком числа а (рис. 20.3 и 20.4).

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Теорема:

    Если D = 0, то при всех Квадратный трехчлен и квадратные неравенства с примерами решения, кроме Квадратный трехчлен и квадратные неравенства с примерами решения знак квадратичной функции Квадратный трехчлен и квадратные неравенства с примерами решения совпадает со знаком числа а; при Квадратный трехчлен и квадратные неравенства с примерами решения квадратичная функция обращается в нуль (рис. 20.5 и 20.6).

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Теорема:

    Если D > 0, то знак квадратичной функции Квадратный трехчлен и квадратные неравенства с примерами решения

    а) совпадает со знаком числа а для всех х, лежащих вне отрезка Квадратный трехчлен и квадратные неравенства с примерами решения где Квадратный трехчлен и квадратные неравенства с примерами решения — корни уравнения

    Квадратный трехчлен и квадратные неравенства с примерами решения

    такие, что Квадратный трехчлен и квадратные неравенства с примерами решения (рис. 20.7 и 20.8),

    б) противоположен знаку числа а при всех х таких, что Квадратный трехчлен и квадратные неравенства с примерами решения (рис. 20.7 и 20.8).

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Теоремы 2 и 3 можно доказать с помощью формулы (5), записанной в виде Квадратный трехчлен и квадратные неравенства с примерами решения

    а теорему 4 — с помощью разложения квадратного трехчлена на множители:

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Теорема:

    Квадратичная функция Квадратный трехчлен и квадратные неравенства с примерами решенияпринимает положительные значения при всех Квадратный трехчлен и квадратные неравенства с примерами решения тогда и только тогда, когда

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Доказательство:

    Достаточность следует из теоремы 2. В самом деле, если Квадратный трехчлен и квадратные неравенства с примерами решения то по теореме 2 знак у совпадает со знаком числа Квадратный трехчлен и квадратные неравенства с примерами решения при Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решенияпри Квадратный трехчлен и квадратные неравенства с примерами решения для всех Квадратный трехчлен и квадратные неравенства с примерами решения.

    Докажем необходимость, т. е. покажем, что если Квадратный трехчлен и квадратные неравенства с примерами решения при всех Квадратный трехчлен и квадратные неравенства с примерами решения , то Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения . Предположим, что условие Квадратный трехчлен и квадратные неравенства с примерами решения не выполняется, тогда Квадратный трехчлен и квадратные неравенства с примерами решения и поэтому квадратный трехчлен Квадратный трехчлен и квадратные неравенства с примерами решения имеет действительные корни Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения (Квадратный трехчлен и квадратные неравенства с примерами решения при Квадратный трехчлен и квадратные неравенства с примерами решения), т. е.

    Квадратный трехчлен и квадратные неравенства с примерами решения

    что противоречит условию ( Квадратный трехчлен и квадратные неравенства с примерами решения при всех Квадратный трехчлен и квадратные неравенства с примерами решения). Итак, Квадратный трехчлен и квадратные неравенства с примерами решения и в силу теоремы 2 имеем Квадратный трехчлен и квадратные неравенства с примерами решения.

    Квадратные неравенства.

    Пусть Квадратный трехчлен и квадратные неравенства с примерами решениягде Квадратный трехчлен и квадратные неравенства с примерами решения — заданные числа, причем Квадратный трехчлен и квадратные неравенства с примерами решения — неизвестное. Тогда неравенства вида

    Квадратный трехчлен и квадратные неравенства с примерами решения

    называют квадратными неравенствами или неравенствами второй степени, причем первые два из этих неравенств называют строгими, остальные — нестрогими.

    Перейдем к нахождению решений квадратных неравенств. Ограничимся рассмотрением строгих неравенств и заметим, что всякое строгое квадратное неравенство можно привести к одному из следующих видов:

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    Из теорем 2-4 следует:

    1) если Квадратный трехчлен и квадратные неравенства с примерами решения

    Квадратный трехчлен и квадратные неравенства с примерами решения

    то решениями неравенства (1) являются все действительные числа (см. рис. 20.3), а неравенство (2) не имеет решений;

    2) если Квадратный трехчлен и квадратные неравенства с примерами решения , то решениями неравенства (1) являются все действительные значения Квадратный трехчлен и квадратные неравенства с примерами решения, кроме Квадратный трехчлен и квадратные неравенства с примерами решения(см. рис. 20.5), а неравенство (2) не имеет решений;

    3) если Квадратный трехчлен и квадратные неравенства с примерами решения то решениями неравенства (1) являются все числа Квадратный трехчлен и квадратные неравенства с примерами решения такие, что Квадратный трехчлен и квадратные неравенства с примерами решения или Квадратный трехчлен и квадратные неравенства с примерами решения (см. рис. 20.7), где Квадратный трехчлен и квадратные неравенства с примерами решения иКвадратный трехчлен и квадратные неравенства с примерами решения— корни квадратного уравнения Квадратный трехчлен и квадратные неравенства с примерами решения т.е. все значения Квадратный трехчлен и квадратные неравенства с примерами решения, лежащие вне отрезка Квадратный трехчлен и квадратные неравенства с примерами решения решениями неравенства (2) являются числа Квадратный трехчлен и квадратные неравенства с примерами решениятакие, что Квадратный трехчлен и квадратные неравенства с примерами решения (см. рис. 20.7), т.е. все значения Квадратный трехчлен и квадратные неравенства с примерами решения из интервала Квадратный трехчлен и квадратные неравенства с примерами решения

    Примеры с решениями:

    Пример:

    Определить знаки чисел Квадратный трехчлен и квадратные неравенства с примерами решения если парабола Квадратный трехчлен и квадратные неравенства с примерами решения расположена так, как указано на рис. 20.9.

    Решение:

    Ветви параболы направлены вверх и поэтому Квадратный трехчлен и квадратные неравенства с примерами решения. Из рис. 20.9 видно, что абсцисса Квадратный трехчлен и квадратные неравенства с примерами решения вершины Квадратный трехчлен и квадратные неравенства с примерами решения параболы отрицательна, т. е. Квадратный трехчлен и квадратные неравенства с примерами решения, откуда следует, что Квадратный трехчлен и квадратные неравенства с примерами решения так как Квадратный трехчлен и квадратные неравенства с примерами решения.

    Наконец, Квадратный трехчлен и квадратные неравенства с примерами решения, поскольку Квадратный трехчлен и квадратные неравенства с примерами решения— ордината точки Квадратный трехчлен и квадратные неравенства с примерами решения, в которой парабола пересекает ось Квадратный трехчлен и квадратные неравенства с примерами решения

    Ответ. Квадратный трехчлен и квадратные неравенства с примерами решения

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Квадратичная функция Квадратный трехчлен и квадратные неравенства с примерами решенияпри Квадратный трехчлен и квадратные неравенства с примерами решенияпринимает наибольшее значение Квадратный трехчлен и квадратные неравенства с примерами решения равное Квадратный трехчлен и квадратные неравенства с примерами решения , а при Квадратный трехчлен и квадратные неравенства с примерами решения она обращается в нуль. Найти значение этой функции при Квадратный трехчлен и квадратные неравенства с примерами решения

    Решение:

    Так как Квадратный трехчлен и квадратные неравенства с примерами решения — значение функции Квадратный трехчлен и квадратные неравенства с примерами решенияпри Квадратный трехчлен и квадратные неравенства с примерами решения, то в формуле (5) Квадратный трехчлен и квадратные неравенства с примерами решения и поэтому Квадратный трехчлен и квадратные неравенства с примерами решенияПо условию Квадратный трехчлен и квадратные неравенства с примерами решения т. е. Квадратный трехчлен и квадратные неравенства с примерами решения откуда Квадратный трехчлен и квадратные неравенства с примерами решения Итак, Квадратный трехчлен и квадратные неравенства с примерами решения откуда находим Квадратный трехчлен и квадратные неравенства с примерами решения

    Ответ. Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Квадратный трехчлен Квадратный трехчлен и квадратные неравенства с примерами решения не имеет действительных корней, а его коэффициенты связаны условием Квадратный трехчлен и квадратные неравенства с примерами решения Определить знак числа Квадратный трехчлен и квадратные неравенства с примерами решения.

    Решение:

    По условию график квадратичной функции Квадратный трехчлен и квадратные неравенства с примерами решенияне пересекает ось Квадратный трехчлен и квадратные неравенства с примерами решения. Это означает, что либо Квадратный трехчлен и квадратные неравенства с примерами решения, либо Квадратный трехчлен и квадратные неравенства с примерами решения при всех Квадратный трехчлен и квадратные неравенства с примерами решения. Заметим, что Квадратный трехчлен и квадратные неравенства с примерами решения и поэтому Квадратный трехчлен и квадратные неравенства с примерами решения при всех Квадратный трехчлен и квадратные неравенства с примерами решения. В частности, Квадратный трехчлен и квадратные неравенства с примерами решения

    Ответ. Квадратный трехчлен и квадратные неравенства с примерами решения.

    Пример:

    Квадратичная функция Квадратный трехчлен и квадратные неравенства с примерами решения принимает при Квадратный трехчлен и квадратные неравенства с примерами решения положительное значение, а при Квадратный трехчлен и квадратные неравенства с примерами решения — отрицательное значение. Можно ли утверждать, что квадратный трехчлен Квадратный трехчлен и квадратные неравенства с примерами решения имеет действительные корни?

    Решение:

    Предположим, что квадратный трехчлен не имеет действительных корней. Тогда парабола Квадратный трехчлен и квадратные неравенства с примерами решения не пересекает ось Квадратный трехчлен и квадратные неравенства с примерами решения и поэтому либо Квадратный трехчлен и квадратные неравенства с примерами решения при всех Квадратный трехчлен и квадратные неравенства с примерами решения, либо Квадратный трехчлен и квадратные неравенства с примерами решения при всех Квадратный трехчлен и квадратные неравенства с примерами решения, что противоречит условиям данного примера. Следовательно, квадратный трехчлен имеет действительные корни.

    Пример:

    Решить неравенство:

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Решение:

    а) Неравенство Квадратный трехчлен и квадратные неравенства с примерами решения равносильно неравенству Квадратный трехчлен и квадратные неравенства с примерами решения а его Решениями являются все значения Квадратный трехчлен и квадратные неравенства с примерами решения.

    б) Неравенство Квадратный трехчлен и квадратные неравенства с примерами решения равносильно неравенству Квадратный трехчлен и квадратные неравенства с примерами решения и имеет единственное решение Квадратный трехчлен и квадратные неравенства с примерами решения

    в) Уравнение Квадратный трехчлен и квадратные неравенства с примерами решения имеет корни Квадратный трехчлен и квадратные неравенства с примерами решенияа решения неравенства Квадратный трехчлен и квадратные неравенства с примерами решения

    все числа Квадратный трехчлен и квадратные неравенства с примерами решения, лежащие вне отрезка Квадратный трехчлен и квадратные неравенства с примерами решения т.е. все значения Квадратный трехчлен и квадратные неравенства с примерами решениятакие, что Квадратный трехчлен и квадратные неравенства с примерами решения или Квадратный трехчлен и квадратные неравенства с примерами решения

    г) Уравнение Квадратный трехчлен и квадратные неравенства с примерами решенияимеет корни Квадратный трехчлен и квадратные неравенства с примерами решенияа решения неравенства Квадратный трехчлен и квадратные неравенства с примерами решения — все числа Квадратный трехчлен и квадратные неравенства с примерами решения из отрезка Квадратный трехчлен и квадратные неравенства с примерами решения т. е. Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Решить неравенство Квадратный трехчлен и квадратные неравенства с примерами решения

    Решение:

    Полагая Квадратный трехчлен и квадратные неравенства с примерами решения получаем неравенство Квадратный трехчлен и квадратные неравенства с примерами решения равносильное неравенству Квадратный трехчлен и квадратные неравенства с примерами решения откуда находим Квадратный трехчлен и квадратные неравенства с примерами решения Поэтому множество решений исходного неравенства — объединение множеств решений неравенств Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решениякоторые равносильны неравенствам Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения соответственно.

    Ответ. Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Найти все значения Квадратный трехчлен и квадратные неравенства с примерами решения , при которых неравенство

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    верно для всех Квадратный трехчлен и квадратные неравенства с примерами решения.

    Решение:

    Если Квадратный трехчлен и квадратные неравенства с примерами решения , то неравенство (3) справедливо Квадратный трехчлен и квадратные неравенства с примерами решения Если Квадратный трехчлен и квадратные неравенства с примерами решения то неравенство (3) имеет вид Квадратный трехчлен и квадратные неравенства с примерами решения и не является верным для всех Квадратный трехчлен и квадратные неравенства с примерами решения (например, число Квадратный трехчлен и квадратные неравенства с примерами решения не является решением этого неравенства).

    Пусть Квадратный трехчлен и квадратные неравенства с примерами решения т. е. Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения Тогда задачу можно сформулировать так: найти все значения Квадратный трехчлен и квадратные неравенства с примерами решения, при которых квадратичная функция

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    принимает положительные значения для всех Квадратный трехчлен и квадратные неравенства с примерами решения.

    По теореме 5 это имеет место тогда и только тогда, когда дискриминант квадратного трехчлена (4) отрицателен, а коэффициент при Квадратный трехчлен и квадратные неравенства с примерами решения положителен, т. е. для всех Квадратный трехчлен и квадратные неравенства с примерами решения, удовлетворя-ющих системе неравенств

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    Неравенство (5) равносильно каждому из неравенств Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решенияа его решения — значения Квадратный трехчлен и квадратные неравенства с примерами решения такие, что Квадратный трехчлен и квадратные неравенства с примерами решения или Квадратный трехчлен и квадратные неравенства с примерами решения

    Неравенство (6) справедливо при Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения Следовательно, решениями системы (5), (6) являются значения Квадратный трехчлен и квадратные неравенства с примерами решения такие, что Квадратный трехчлен и квадратные неравенства с примерами решения илиКвадратный трехчлен и квадратные неравенства с примерами решения

    Ответ.Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Найти все значения Квадратный трехчлен и квадратные неравенства с примерами решения, при которых неравенство

    Квадратный трехчлен и квадратные неравенства с примерами решения

    верно для всех значений Квадратный трехчлен и квадратные неравенства с примерами решения.

    Решение:

    Так как

    Квадратный трехчлен и квадратные неравенства с примерами решения

    для всех Квадратный трехчлен и квадратные неравенства с примерами решения, то, умножая обе части исходного неравенства на Квадратный трехчлен и квадратные неравенства с примерами решения получаем равносильное неравенство

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    Неравенство

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    равносильное неравенству (7), не является верным приКвадратный трехчлен и квадратные неравенства с примерами решения

    Если Квадратный трехчлен и квадратные неравенства с примерами решения то неравенство (8) является квадратным и справедливо для всех Квадратный трехчлен и квадратные неравенства с примерами решения тогда и только тогда, когда Квадратный трехчлен и квадратные неравенства с примерами решения и

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Отсюда следует, что Квадратный трехчлен и квадратные неравенства с примерами решения, т. е. Квадратный трехчлен и квадратные неравенства с примерами решения

    Ответ. Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Найти все значения Квадратный трехчлен и квадратные неравенства с примерами решения, при которых неравенство

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    верно для всех значений Квадратный трехчлен и квадратные неравенства с примерами решения

    Решение:

    Пусть неравенство (9) является верным для каждого Квадратный трехчлен и квадратные неравенства с примерами решения Тогда оно верно при Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения Подставляя эти значения в (9), получаем систему неравенств

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    Первому неравенству системы (10) удовлетворяют значения Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения, второму — значения Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения откуда следует, что множество решений системы (10) — совокупность промежутков

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    Таким образом, условия (11) являются необходимыми (искомыми значениями Квадратный трехчлен и квадратные неравенства с примерами решения могут быть только такие значения, которые содержатся в промежутках Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения).

    Покажем, что условия (11) являются достаточными. Пусть Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения; тогда Квадратный трехчлен и квадратные неравенства с примерами решения и, значит, неравенство (9) — верное.

    Пусть Квадратный трехчлен и квадратные неравенства с примерами решенияи Квадратный трехчлен и квадратные неравенства с примерами решения; тогда Квадратный трехчлен и квадратные неравенства с примерами решения и поэтому неравенство (9) справедливо.

    Ответ. Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Решить неравенство Квадратный трехчлен и квадратные неравенства с примерами решения

    Решение:

    Данное неравенство равносильно системе неравенств

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Квадратный трехчлен и квадратные неравенства с примерами решения

    которая равносильна следующей системе:

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Множество решений первого неравенства — интервал Квадратный трехчлен и квадратные неравенства с примерами решениявторое неравенство является верным при всех Квадратный трехчлен и квадратные неравенства с примерами решения

    Ответ. Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Решить неравенство Квадратный трехчлен и квадратные неравенства с примерами решения

    Решение:

    На рис. 20.10 изображены графики четных функций Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения Решив уравнение Квадратный трехчлен и квадратные неравенства с примерами решениянайдем его положительный корень Квадратный трехчлен и квадратные неравенства с примерами решения

    График функции Квадратный трехчлен и квадратные неравенства с примерами решения лежит выше графика функции Квадратный трехчлен и квадратные неравенства с примерами решения вне отрезка Квадратный трехчлен и квадратные неравенства с примерами решения Поэтому множество решений данного неравенства— совокупность промежутков Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения

    Ответ. Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Решить неравенство Квадратный трехчлен и квадратные неравенства с примерами решения

    Решение:

    Данное неравенство равносильно совокупности неравенств

    Квадратный трехчлен и квадратные неравенства с примерами решения

    и

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Множество решений первого неравенства, равносильного неравенству

    Квадратный трехчлен и квадратные неравенства с примерами решения

    представляет собой объединение промежутков Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения. Множество решений второго неравенства, равносильного неравенству

    Квадратный трехчлен и квадратные неравенства с примерами решения

    есть интервал Квадратный трехчлен и квадратные неравенства с примерами решения

    Ответ. Квадратный трехчлен и квадратные неравенства с примерами решения

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Решить неравенство Квадратный трехчлен и квадратные неравенства с примерами решения

    Решение:

    Первый способ. Число Квадратный трехчлен и квадратные неравенства с примерами решенияне является решением данного неравенства, а при Квадратный трехчлен и квадратные неравенства с примерами решения неравенство справедливо: его левая часть неотрицательна при всех Квадратный трехчлен и квадратные неравенства с примерами решения, а правая отрицательна.

    Если Квадратный трехчлен и квадратные неравенства с примерами решения, то исходное неравенство равносильно совокупности неравенств

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Эти неравенства равносильны неравенствам

    Квадратный трехчлен и квадратные неравенства с примерами решения

    соответственно. Решив систему

    Квадратный трехчлен и квадратные неравенства с примерами решения

    получаем Квадратный трехчлен и квадратные неравенства с примерами решения

    Аналогично, из системы

    Квадратный трехчлен и квадратные неравенства с примерами решения

    следует, что Квадратный трехчлен и квадратные неравенства с примерами решения. Итак, множество решений данного неравенства — объединение промежутков Квадратный трехчлен и квадратные неравенства с примерами решенияКвадратный трехчлен и квадратные неравенства с примерами решения

    Ответ.Квадратный трехчлен и квадратные неравенства с примерами решения

    Второй способ. Построим графики функций Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения (рис. 20.11).

    Эти графики имеют общую точку Квадратный трехчлен и квадратные неравенства с примерами решения. Две другие общие точки получим, найдя отрицательные корни уравнений Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения Такими корнями являются Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения При Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения график функции Квадратный трехчлен и квадратные неравенства с примерами решения лежит выше графика функции Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Решить неравенство

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Решение:

    Воспользуемся тем, что неравенство Квадратный трехчлен и квадратные неравенства с примерами решения равносильно каждому из неравенств Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения Тогда данное неравенство равносильно каждому из следующих неравенств Квадратный трехчлен и квадратные неравенства с примерами решенияКвадратный трехчлен и квадратные неравенства с примерами решенияКвадратный трехчлен и квадратные неравенства с примерами решения где Квадратный трехчлен и квадратные неравенства с примерами решенияКвадратный трехчлен и квадратные неравенства с примерами решения Отсюда находим множество решений неравенства:

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Ответ. Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Найти множество значений функции Квадратный трехчлен и квадратные неравенства с примерами решения, если:

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Решение:

    а) Число а принадлежит множеству значений функцииКвадратный трехчлен и квадратные неравенства с примерами решения тогда и только тогда, когда уравнение Квадратный трехчлен и квадратные неравенства с примерами решенияимеет действительные корни. Функция Квадратный трехчлен и квадратные неравенства с примерами решения определена при Квадратный трехчлен и квадратные неравенства с примерами решения, а уравнение

    Квадратный трехчлен и квадратные неравенства с примерами решения

    можно записать в виде Квадратный трехчлен и квадратные неравенства с примерами решения или в виде

    Квадратный трехчлен и квадратные неравенства с примерами решения Квадратный трехчлен и квадратные неравенства с примерами решения

    Уравнение (12) при Квадратный трехчлен и квадратные неравенства с примерами решения имеет корень Квадратный трехчлен и квадратные неравенства с примерами решения, а при Квадратный трехчлен и квадратные неравенства с примерами решения является квадратным и имеет действительные корни тогда и только тогда, когда Квадратный трехчлен и квадратные неравенства с примерами решения, где Квадратный трехчлен и квадратные неравенства с примерами решенияОтсюда получаем Квадратный трехчлен и квадратные неравенства с примерами решения

    Ответ.Квадратный трехчлен и квадратные неравенства с примерами решения

    б) Пусть Квадратный трехчлен и квадратные неравенства с примерами решения , тогда Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения где Квадратный трехчлен и квадратные неравенства с примерами решения

    График функции Квадратный трехчлен и квадратные неравенства с примерами решенияна отрезке Квадратный трехчлен и квадратные неравенства с примерами решения изображен на рис.20.12.

    Из рис. 20.12 видно, что Квадратный трехчлен и квадратные неравенства с примерами решения т. е. Квадратный трехчлен и квадратные неравенства с примерами решенияпричем функция Квадратный трехчлен и квадратные неравенства с примерами решения принимает все значения из отрезка Квадратный трехчлен и квадратные неравенства с примерами решенияСледовательно,

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Ответ. Квадратный трехчлен и квадратные неравенства с примерами решения

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Пример:

    Найти все значения Квадратный трехчлен и квадратные неравенства с примерами решения, при которых расстояние между вершинами парабол Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения меньше Квадратный трехчлен и квадратные неравенства с примерами решения.

    Решение:

    Для нахождения координат вершин парабол воспользуемся методом выделения полного квадрата. Получим

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Пусть Квадратный трехчлен и квадратные неравенства с примерами решения и Квадратный трехчлен и квадратные неравенства с примерами решения— вершины парабол, Квадратный трехчлен и квадратные неравенства с примерами решения—расстояние между вершинами. Тогда

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Пусть Квадратный трехчлен и квадратные неравенства с примерами решениятогда Квадратный трехчлен и квадратные неравенства с примерами решения По условию Квадратный трехчлен и квадратные неравенства с примерами решения, откуда Квадратный трехчлен и квадратные неравенства с примерами решенияили

    Квадратный трехчлен и квадратные неравенства с примерами решения

    Так как Квадратный трехчлен и квадратные неравенства с примерами решения то полученное неравенство равносильно неравенству Квадратный трехчлен и квадратные неравенства с примерами решения, откуда Квадратный трехчлен и квадратные неравенства с примерами решения

    Ответ. Квадратный трехчлен и квадратные неравенства с примерами решения

    Этот материал взят со страницы решения задач с примерами по всем темам предмета математика:

    Решение задач по математике

    Возможно вам будут полезны эти страницы:

    Квадратный трехчлен и алгоритм решения с примерами

    Почти вся теория квадратного трехчлена, а также решение многих задач, связанных с ним, основываются на приеме, называемом «выделение полного квадрата». Применяя этот прием к квадратному трехчлену Квадратный трехчлен приходим к равенству

    Квадратный трехчлен

    Нет необходимости эту формулу запоминать. Гораздо важнее в каждом конкретном случае уметь проделать соответствующие преобразования и выделить полный квадрат. Например,

    Квадратный трехчлен

    Выражение Квадратный трехчлен называется дискриминантом квадратного трехчлена Квадратный трехчлен Квадратное уравнение Квадратный трехчлен имеет соответственно 2, 1 или 0 решений в зависимости от того, будет его дискриминант положительным (D>0), равным нулю (D = 0), или отрицательным ( D <0). (Напомним, что по опреде­лению квадратного уравнения Квадратный трехчлен) Корни квадратного уравнения Квадратный трехчлен равны:

    Квадратный трехчлен

    Правда, нумерация корней условна. Обычно стараются за­ нумеровать их в порядке возрастания, но это не обязательно.

    Дадим два практических совета. Во-первых, если второй коэффициент (b) четный (причем он может быть просто четным числом, а может иметь вид b = 2k), то удобнее пользоваться для нахождения корней формулами

    Квадратный трехчлен

    Во-вторых, старайтесь по возможности «работать» с квадратным трехчленом, у которого старший коэффициент (а — коэффициент при Квадратный трехчлен) положительный. Этого всегда можно добиться при решении уравнений, неравенств с числовыми коэффициентами.

    Задачи, связанные с квадратным трехчленом, встречающиеся в школьной и конкурсной практике, чрезвычайно разнообразны.
    Нередки среди них такие, где основное, что требуется от учащегося,— это внимательность к формулировке. Например:

    1.Определить все значения параметра а, при которых уравнение Квадратный трехчлен имеет один корень.

    Решение:

    Здесь главное — не забыть про случай а = 0, поскольку в условии не сказано, что рассматривается квадратное уравнение. При а = 0 имеем линейное уравнение Квадратный трехчлен с единственным корнем Квадратный трехчлен. Остальные значения параметра а мы получим из уравнения D = 0, а лучше Квадратный трехчлен

    Квадратный трехчлен

    Ответ. Квадратный трехчлен

    К азбуке квадратного трехчлена относится и теорема Виета. Для того чтобы Квадратный трехчлен были корнями уравнения Квадратный трехчлен необходимо и достаточно выполнения равенств Квадратный трехчлен Квадратный трехчлен Обратите внимание на то, что здесь сформулировано два утверждения — прямое и обратное. Часто, формулируя теорему Виета, ограничиваются одним прямым утверждением: «Если Квадратный трехчлен— корни квадратного уравнения Квадратный трехчлен то выполняются равенства…»

    Некоторые логические и терминологические проблемы возникают в случае D = 0, но мы их не будем обсуждать. Заметим лишь, что выражения «квадратное уравнение, имеющее одно решение» и «квадратное уравнение с равными корнями» означают одно и то же.

    Из теоремы Виета следует следующее разложение на множители квадратного трехчлена:

    Квадратный трехчлен

    На теореме Виета основан целый ряд традиционных задач и методов решения.

    2.Решить уравнение Квадратный трехчлен

    Решение:

    Решение этого уравнения непосредственно по формуле корней квадратного уравнения приводит к большим вычислительным трудностям.

    Если же заметить, что 319-1988+1669 = 0, откуда следует, что Квадратный трехчлен является корнем уравнения, то по теореме Виета

    Квадратный трехчлен

    Ответ. Квадратный трехчлен

    Сталкиваясь с квадратным уравнением, решение которого требует громоздких арифметических или алгебраических пре­ образований, попытайтесь выяснить, не имеет ли это уравнение «хорошего» целого корня, в частности 1 (в этом случае имеет место равенство а+b + с = 0) или —1 (а —b + с = 0).

    3.Пусть Квадратный трехчлен — корни уравнения Квадратный трехчлен Выразить Квадратный трехчлен через р и q.

    Решение:

    Нам нужно выразить Квадратный трехчлен через Квадратный трехчлен— и Квадратный трехчлен Имеем

    Квадратный трехчлен

    Ответ. Квадратный трехчлен

    4. Разложить на множители выражение

    Квадратный трехчлен

    Решение:

    Данное выражение можно рассматривать как квадратное относительно любого входящего в него переменного. Сгруппируем его члены и расположим их по степеням х. Получим

    Квадратный трехчлен

    Коэффициент при х представляет собой квадратный трехчлен относительно у (можно z) Квадратный трехчлен Найдем его корни:

    Квадратный трехчлен

    Следовательно,

    Квадратный трехчлен

    Таким образом, в каждом из коэффициентов квадратного трех­ члена (1) есть множитель у — 2z. Вынося его за скобки, получим

    Квадратный трехчлен

    Квадратный трехчлен Квадратный трехчленимеет корни (проверьте): Квадратный трехчлен

    Ответ. Квадратный трехчлен

    Решая эту задачу, мы сознательно не стали использовать некоторые соображения, которые могли бы привести к цели быстрее. Так, например, выделив множитель (у — 2z), учитывая цикличность исходного выражения (оно не меняется при замене х на у, у на z, z на х), можно было сразу получить требуемое разложение на множители. В данном случае мы следовали по­ говоркам: «От добра добра не ищут» и «Тише едешь…» Однако в других, более сложных случаях подобного рода особенности могут сыграть решающую роль. И еще на одно очень важное обстоятельство следует обратить внимание: надо учиться «видеть» квадратный трехчлен в тех случаях, когда он не задан в стандарт­ ной канонической форме; уметь выделять переменное, параметр, алгебраическое выражение, относительно которого данное выражение представляет собой квадратный трехчлен; делать замену переменного, превращающую его в квадратный трехчлен.

    Существование корней квадратного уравнения. Знаки корней

    Как мы знаем, для того чтобы квадратное уравнение Квадратный трехчленКвадратный трехчлен имело корни, необходимо и достаточно выполнения неравенства Квадратный трехчлен Как правило, в случае необходимости доказать, что заданное квадратное уравнение имеет решение, начинают с вычисления его дискриминанта, с тем чтобы затем до­ казать его неотрицательность. Однако в некоторых случаях можно указать и иные, более простые способы доказательства существования решения квадратного уравнения. Эти способы основываются на очевидных графических соображениях. Так, если а>0, то для доказательства того, что уравнение Квадратный трехчленКвадратный трехчлен имеет два решения, достаточно указать одну точку Квадратный трехчлен в которой Квадратный трехчлен Чаще всего в качестве Квадратный трехчлен берут 0 (дает достаточное условие с<0), 1 (условие а+b+c<0) или—1 (условие а —6 + c<0). Например, чтобы убедиться в том, что уравнение Квадратный трехчленКвадратный трехчлен имеет два корня, заметим, что значение левой части при х=1 равно Квадратный трехчлен При этом мы избежим хотя и несложных, но громоздких вычислений. Похожая идея «работает» и в следующей задаче.

    5. Доказать, что при любом а уравнение

    Квадратный трехчлен

    имеет решение.

    Решение:

    Можно, конечно, попытаться найти дискрими­нант и доказать, что он положителен. Но не будем спешить.
    Обозначим левую часть данного уравнения через f (х). Сразу видно, что Квадратный трехчлен при любом а. Утверждение задачи будет доказано, если мы найдем Квадратный трехчлен для которого Квадратный трехчлен Попробуем Квадратный трехчлен. (Выбор такого значения выглядит естественным, поскольку в этом случае пропадают члены с Квадратный трехчлен) Квадратный трехчленКвадратный трехчленпри любом а. Теперь легко сделать вывод, что наше уравнение всегда имеет решение. Более того, если Квадратный трехчлен т. е. Квадратный трехчлен данное уравнение имеет два корня; при этом всегда имеется корень, удовлетворяющий неравенству 0<х< 1.

    Мы не будем обсуждать здесь проблему, в какой мере допустимо и законно использование тех или иных графических соображений в условиях конкурсного экзамена. Общими словами здесь не отделаешься — истина конкретна. К сожалению, четких и согласованных критериев, которых бы придерживались комиссии разных вузов (и даже члены одной комиссии), нет. Нам все же кажется, что степень обоснованности решений, аппелирующих к графическому образу квадратного трехчлена, зачастую гораздо выше, чем это считают некоторые чрезмерно педантичные экзаменаторы.

    Мы советуем ученикам почаще обращаться в процессе поиска решения к «картинкам», искать соответствующую графическую интерпретацию.

    Теорема Виета очевидным образом используется в задачах, в которых требуется определить знаки корней квадратного уравнения.

    6. При каких значениях параметра а уравнение

    Квадратный трехчлен

    имеет решение? Определить знаки корней в зависимости от а.

    Решение:

    Прежде всего, если Квадратный трехчлен то уравнение имеет корни разных знаков. (Дискриминант при этом «автоматически» положителен.) В остальных случаях или корней нет, или они одного знака. Отдельно надо рассмотреть случаи, когда корни равны или один из них равен 0. В случае положительности дискриминанта и свободного члена на основании теоремы Виета знаки обоих корней противоположны по знаку коэффициенту при х — второму коэффициенту уравнения. Значит, для того чтобы было Квадратный трехчлен необходимо и достаточно выполнения неравенств

    Квадратный трехчлен

    откуда а >5. Точно так же рассматриваются другие случаи.

    Ответ. Если а<1 или Квадратный трехчлен если а = 1 или а =2, то Квадратный трехчлен если Квадратный трехчлен то Квадратный трехчлен если Квадратный трехчлен если Квадратный трехчлен то корней нет; если а = 5, то Квадратный трехчлен если а>5, то Квадратный трехчлен

    Ответ выглядит сложнее, чем решение задачи.

    Расположение корней квадратного трехчлена

    Выделим прежде всего два наиболее распространенных типа задач, связанных с расположением корней квадратного трех­ члена. Первый тип — задачи, в которых изучается расположение корней относительно заданной точки А. Возможны три случая, не считая случая отсутствия корней: оба корня меньше А; один корень меньше, а другой больше А; оба корня больше А. Задачи первого типа без труда сводятся к проблеме,— определению знаков корней квадратного трехчлена. Это делается при помощи замены t = х —A, х =t+A, в результате которой трехчлен относительно х переходит в трехчлен относительно t. Знаки корней нового квадратного трехчлена очевидным образом определяют расположение корней исходного квадратного трехчлена относительно А. Мож­но и не делать замену.

    7. При каком значении параметра а один корень уравнения Квадратный трехчлен больше 1, а другой меньше 1?

    Решение:

    Решение легко получается на основании следующего простого графического соображения. График функции Квадратный трехчлен представляет собой параболу, ветви которой направлены вверх. По условию эта парабола должна пересекать ось х, причем отрезок Квадратный трехчлен должен содержать внутри себя точку 1 (рис. 7). Следовательно, значение квадратного трехчлена Квадратный трехчлен при х = 1 должно быть отрицательным. Это условие является необходимым и достаточным для того, чтобы выполнялись неравенства Квадратный трехчлен

    Ответ. а> —2.

    В общем случае для того, чтобы уравнение Квадратный трехчленКвадратный трехчлен имело бы один корень меньше A, а другой больше А, не­ обходимо и достаточно выполнения неравенства Квадратный трехчлен (Докажите

    Квадратный трехчлен

    Квадратный трехчлен

    это самостоятельно.) Не следует последнее условие заучивать. Необходимо понять принцип его получения и уметь провести необходимые рассуждения в конкретных задачах.

    8. При каких значениях параметра а оба корня уравнения
    Квадратный трехчлен больше 1?

    Решение:

    Для того чтобы оба корня уравнения

    Квадратный трехчлен

    были больше 1, необходимо и достаточно выполнения следующих условий:

    Квадратный трехчлен

    Необходимость условия 1) очевидна. Неравенство 2) означает, что знак f (х) при х=1 совпадает со знаком старшего коэффициента. Квадратные трехчлены, удовлетворяющие условиям 1) и 2), обладают тем свойством, что все они имеют два корня и оба эти корня либо меньше 1, либо больше 1 (рис. 8). Неравенство 3) выделяет из них те трехчлены, у которых оба корня больше 1. Оно означает, что вершина параболы расположена правее прямой х = 1.

    Система неравенств 1) —3) дает нам необходимое и достаточное условие для того, чтобы оба корня данного уравнения были больше 1. Неравенство 2) дает Квадратный трехчлен А из равенства 3) следует, что Квадратный трехчлен Таким образом, нам нет необходимости решать неравенство 1), поскольку уже неравенства 2) и 3) несовместимы.

    Ответ. Ни при каких.

    В задачах второго типа исследуется расположение корней квадратного трехчлена относительно заданного отрезка [А; В].
    Здесь можно выделить 6 возможных случаев расположения корней (оба меньше А, один меньше А, а другой на отрезке [А; В] и т. д.). Если же отдельно рассматривать ситуацию, когда D = 0, то добавится еще 3 случая. Мы вновь не будем заниматься по­ строением общей теории, а рассмотрим конкретные примеры.

    9. При каких значениях параметра а все решения уравне­ния Квадратный трехчлен удовлетворяют условию 0<х<3?

    Решение:

    Обозначим Квадратный трехчлен Необходимым и достаточным условием для того, чтобы f (х) (если Квадратный трехчлен) имела все свои корни внутри отрезка [0; 3], будет выполнение системы неравенств:

    Квадратный трехчлен

    (Проверьте, что если f (х) имеет корни на данном отрезке, то все неравенства выполняются. Проверьте обратное утверждение, что если выполняются все неравенства, то корни f (х) расположены на отрезке [0; 3]. Покажите, что ни одно из не­ равенств нельзя отбросить, т. е. если выполняются все неравенства, кроме одного, то квадратный трехчлен не удовлетворяет условию задачи.)

    Оба неравенства 2) и 3) выполняются при Квадратный трехчлен или а <0.
    Решим неравенство 4): Квадратный трехчленБудем иметь Квадратный трехчлен или Квадратный трехчлен

    Значит, система неравенств 2), 3), 4) имеет решение Квадратный трехчленили Квадратный трехчлен Условие Квадратный трехчлен дает нам Квадратный трехчлен или Квадратный трехчлен откуда Квадратный трехчлен а поскольку Квадратный трехчленили Квадратный трехчлен

    Отдельно рассматривается случай а=1.
    Ответ. Квадратный трехчлен

    Заметим, что если бы в условии требовалось, чтобы оба корня располагались на заданном отрезке, т. е. указывалось на наличие двух различных корней, то правое нестрогое неравенство ответа следовало бы заменить на строгое и исключить случай а= 1.

    10. Определить, как расположены корни уравнения Квадратный трехчленКвадратный трехчлен относительно отрезка [—I; 4].

    Решение:

    Решим эту задачу несколько иначе, способом, который можно назвать «обобщенным методом интервалов».
    Сначала определим, где обращается в ноль дискриминант урав­нения. Имеем

    Квадратный трехчлен

    При 1<а<9 корней у данного уравнения нет. Обозначив, как обычно, левую часть уравнения через f (х), найдем f (—1) = 6а+10, f(4) = 6a —5. Как видно, f(— 1) и f (4) меняют знаки соответственно при Квадратный трехчлен . Множество значений параметра а точками Квадратный трехчлен разбивается на четыре интервала и две полупрямые (рис. 9, а; к найденным ранее значениям параметра а добавлено значение, при котором обращается в 0 старший коэффициент, а = 0).

    Рассмотрим эти 6 случаев.

    1. Квадратный трехчлен Имеем Квадратный трехчлен Квадратный трехчлен Можно проверить, что при Квадратный трехчлен будет Квадратный трехчлен Значит, уравнение имеет корни, ветви

    Квадратный трехчлен

    параболы направлены вниз, значения f (х) при х= —1 и х=4 отрицательны, вершина параболы расположена между прямыми х=-1 и х = 4 (рис. 9,б). Следовательно, в этом случае оба корня расположены между — 1 и 4.

    2) Квадратный трехчлен (случай Квадратный трехчленрассматривается отдельно). Имеем Квадратный трехчлен А поскольку а<0, то (рис. 9, в) один корень меньше — 1, а другой расположен между — 1 и 4.
    Точно так же рассматриваются остальные случаи.

    Ответ. При Квадратный трехчлен имеем Квадратный трехчлен при Квадратный трехчлен имеем Квадратный трехчленпри Квадратный трехчлен имеем Квадратный трехчлен при Квадратный трехчленкорней нет. Если Квадратный трехчлен то Квадратный трехчлен если Квадратный трехчленто один корень Квадратный трехчлен если Квадратный трехчленто Квадратный трехчленесли Квадратный трехчлен если Квадратный трехчленКвадратный трехчлен

    11. Определить, как расположены корни уравнения

    Квадратный трехчлен

    относительно отрезка [1; 3].

    Решение:

    В данном случае приемы, которые мы использовали при решении предыдущего примера, не нужны; все гораздо проще, рассматриваемое уравнение всегда (при Квадратный трехчлен) имеет корни: Квадратный трехчлен (Проверьте. Здесь не обязательно Квадратный трехчлен) Теперь закончить решение не составляет труда.

    Вывод очевиден — при решении задач не стоит увлекаться общими теориями, следует попытаться сначала выявить специфику данного конкретного примера.

    Взаимное расположение корней двух квадратных трехчленов

    12. Найти все значения параметра а, при которых уравне­ния Квадратный трехчлен имеют хотя бы один общий корень.

    Решение:

    Решение основывается на следующей простой идее: если два уравнения Квадратный трехчлен имеют общий корень Квадратный трехчлен то при любых Квадратный трехчлен и Квадратный трехчлен уравнение Квадратный трехчлен имеет тот же корень Квадратный трехчлен

    Возьмем сначала Квадратный трехчлен и Квадратный трехчлен так, чтобы в комбинации исчез свободный член: Квадратный трехчлен Получим после сокращения на х, поскольку очевидно, что Квадратный трехчлен уравнение

    Квадратный трехчлен

    Затем выберем Квадратный трехчлен и Квадратный трехчлен так, чтобы исчез член с Квадратный трехчленКвадратный трехчлен

    Получим уравнение

    Квадратный трехчлен

    Так как х должен удовлетворять обоим полученным линейным уравнениям, для а должно выполняться соотношение

    Квадратный трехчлен

    Далее получаем Квадратный трехчлен Левая часть разлагается на множители:

    Квадратный трехчлен

    Ответ. Квадратный трехчлен

    Два замечания. 1. Для каждого из найденных значений а необ­ходимо убедиться, что соответствующие уравнения имеют решения, (Достаточно проверить существование корней у одного из них.) 2. Заданную пару квадратных уравнений можно рассматривать как систему из двух уравнений с неизвестными х и а.

    13. Расположить корни уравнений

    Квадратный трехчлен

    в порядке возрастания.

    Решение:

    Обозначим Квадратный трехчлен Квадратный трехчлен— корни уравнения Квадратный трехчлен— корни уравнения g(x) = 0. По смыслу задачи следует рассматривать лишь те значения параметра а, для которых оба уравнения имеют решения. Условие неотрицательности обоих дискриминантов дают нам неравенства.

    Квадратный трехчлен

    Найдем значения х, при которых Квадратный трехчлен Уравнения имеют общий корень, если Квадратный трехчлен откуда а=—3.

    Таким образом, множество значений параметра а, при которых оба уравнения имеют корни, разбито на три интервала (рис. 10, а). Концы интервалов удобнее рассматривать отдельно. Возникают три случая.

    1. Квадратный трехчлен Имеем Квадратный трехчлен

    Квадратный трехчлен

    С точностью до обозначений, какая из двух парабол соответст­вует f(х), а какая g (х), возможны два случая (рис. 10, б, в). Посмотрим, как расположены вершины каждой из парабол по отношению к прямой Квадратный трехчлен. Для f (х) имеем Квадратный трехчлен. На рассматриваемом интервале изменения а имеем Квадратный трехчлен (Докажите.) Вершина второй параболы также левее прямой Квадратный трехчлен (Проверьте правильность неравенства Квадратный трехчлен) Следовательно, имеет место случай, изображенный на рисунке 10, б. (На рис. 4, в вершины парабол расположены по разные стороны от прямой Квадратный трехчлен) Осталось выяснить, какая из двух парабол на этом рисунке соответствует f (х), а какая g (х).

    Если Квадратный трехчлен Квадратный трехчлен Значит, Квадратный трехчлен при Квадратный трехчлен идет выше Квадратный трехчленКвадратный трехчлен Если Квадратный трехчлен

    2) Квадратный трехчлен В этом случае Квадратный трехчлен Как и в предыдущем пункте, при Квадратный трехчлен т. е. графики f (х) и g(х) расположены так, как показано на рисунке 10, г, и Квадратный трехчлен Если Квадратный трехчлен

    3) Квадратный трехчлен Имеем Квадратный трехчлен Обе вершины — слева от прямой Квадратный трехчлен(рис. 10, д). Следовательно, Квадратный трехчлен Если Квадратный трехчлен

    Заметим, что получить правильный ответ в данном примере можно было бы несколько проще, хотя и менее законно. Из соображений непрерывности следует, что на каждом из трех интервалов имеет место один и тот же порядок следования корней (граничными точками такого рода интервалов являются: запрещенные значения параметра, в данном случае а = 0; нули дискриминантов— точки Квадратный трехчлен и значения параметра, при которых уравнения имеют один и тот же корень а = — 3; в общем случае сюда надо добавить значения параметра, при которых обращается в ноль коэффициент при Квадратный трехчлен). Для выявления этого порядка следования достаточно рассмотреть какое-либо значение параметра а из соответствующего интервала. В нашем случае для крайних интервалов можно взять даже их концы: Квадратный трехчлен а для среднего, например, а =— 1.

    Уравнения, неравенства и системы с параметром

    В большинстве задач, рассмотренных в предыдущих пунктах, требовалось узнать «при каких значениях параметра…?». Подобного рода вопрос для уравнений, неравенств, систем уравнений или неравенств с параметром не всегда фигурирует в условии задачи. Однако наличие параметра заранее предполагает специ­альную форму записи ответа, такую, чтобы по ней можно было указать, каков будет ответ для любого допустимого значения параметра.

    14. Решить уравнение Квадратный трехчлен

    Решение:

    Обозначим Квадратный трехчлен тогда Квадратный трехчленКвадратный трехчлен Для у получаем уравнение

    Квадратный трехчлен

    которое надо решить при условии Квадратный трехчлен Неотрицательность дискриминанта дает нам неравенство Квадратный трехчлен. Если Квадратный трехчлен корни уравнения, то по теореме Виета Квадратный трехчлен Следовательно, оба корня не могут быть отрицательными. При Квадратный трехчлен получаем одно решение: Квадратный трехчлен при Квадратный трехчлен два решения: Квадратный трехчленпри Квадратный трехчлен— одно решение: Квадратный трехчлен Теперь возвращаемся к неизвестному х.

    Ответ. Если Квадратный трехчленесли Квадратный трехчленКвадратный трехчлен если Квадратный трехчлен если Квадратный трехчлен, то решений нет.

    Если решать уравнение 14 более обычным путем, возводя в квадрат обе его части, то приходим к уравнению Квадратный трехчленКвадратный трехчлен при условии Квадратный трехчлен Технически этот путь несколько сложнее. (Доведите его до конца самостоятельно.)

    15. Решить уравнение Квадратный трехчлен

    Решение:

    Возводим обе части уравнения в квадрат (условие Квадратный трехчлен):

    Квадратный трехчлен

    Еще раз возводим в квадрат (условие Квадратный трехчлен). Получаем окончательно уравнение

    Квадратный трехчлен

    среди решений которого надо найти те, для которых Квадратный трехчлен Квадратный трехчлен Получившееся уравнение имеет четвертую степень относительно неизвестного х, но зато является квадратным относительно параметра а. (Умение «видеть» квадратный трехчлен!) Попробуем этим обстоятельством воспользоваться:

    Квадратный трехчлен

    Найдем дискриминант, надеясь, что он окажется полным квадратом:

    Квадратный трехчлен

    Итак, наши надежды оправдались. Теперь правая часть уравнения раскладывается на множители Квадратный трехчлен Наше уравнение распадается на два: Квадратный трехчленКвадратный трехчлен каждое из которых надо решить при условии, что Квадратный трехчлен Квадратный трехчлен

    Начнем с уравнения Квадратный трехчлен Поскольку Квадратный трехчленто из того, что Квадратный трехчлен следует, что Квадратный трехчлен Значит, нам достаточно найти лишь те решения, для которых х>0; тогда неравенство Квадратный трехчленбудет выполняться автоматически. Но сумма корней (если они есть) равна —1; следовательно, уравнение Квадратный трехчлен может иметь лишь один неотрицательный корень при условии Квадратный трехчлен Значит, при Квадратный трехчлен будет Квадратный трехчлен

    Перейдем ко второму уравнению Квадратный трехчлен Из этого уравнения Квадратный трехчлен Левая часть неположительна, правая неотрицательна. Равенство возможно лишь, если а = 0, х = 0.

    Ответ. Если Квадратный трехчлен если а = 0, то х = 0; при остальных а решений нет.

    16. Для каждого неотрицательного значения параметра а
    решить неравенство
    Квадратный трехчлен

    Решение:

    Левая часть неравенства представляет собой многочлен как относительно х, так и относительно параметра а. Степени соответственно равны 4 и 3. Однако если умножить многочлен на а, а затем сделать замену у = ах, то в новом многочлене максимальная степень параметра а будет равна 2. Случай а = 0 дает нам ответ Квадратный трехчлен. Будем теперь считать, что а>0. Умножив обе части неравенства на а и сделав замену у = ах, получим

    Квадратный трехчлен

    Левая часть представляет собой квадратный трехчлен относительно а:

    Квадратный трехчлен

    Раскладывая левую часть неравенства на множители, получим

    Квадратный трехчлен

    или

    Квадратный трехчлен

    Второй множитель положителен при всех у, если а>0. Приходим к неравенству Квадратный трехчлен откуда, если 0<а<2, Квадратный трехчлен или Квадратный трехчлен если Квадратный трехчлен у — любое. Возвращаясь к х, получим ответ.

    Ответ. Если а=0, то Квадратный трехчлен если Квадратный трехчлен Квадратный трехчлен любое.

    Очень часто уравнения, неравенства, системы с параметром сводятся к задачам о расположении корней одного или двух квадратных трехчленов. Основные методы решения подобных задач мы рассматривали в двух предыдущих пунктах.

    17. Решить систему неравенств Квадратный трехчлен

    Решение:

    Поскольку решением первого неравенства является Квадратный трехчлен то задача сводится (при Квадратный трехчлен) к выяснению расположения корней квадратного трехчлена Квадратный трехчленКвадратный трехчлен относительно отрезка [1; 2]. Имеем

    Квадратный трехчлен

    Область изменения параметра а оказалась разделенной на 4 части (не считая граничных точек).

    1) Если а Квадратный трехчлен, второе неравенство, а следовательно, и данная система не имеют решения. То же имеет место и при Квадратный трехчлен

    2) Если Квадратный трехчленДля вершины и
    параболы выполняется неравенство Квадратный трехчлен (рис. 11, а).
    Следовательно, множество решений второго неравенства не содержит

    Квадратный трехчлен

    Квадратный трехчлен

    точек отрезка [1; 2] Система не имеет решения. То же имеет место и при а = 0.

    3) Если 0<а<5, то f (1)<0, f(2)<0 (рис. 11, б). Значит, на всем отрезке [1; 2] f (х)<0. Система вновь не имеет решения.

    4) Если Квадратный трехчлен то Квадратный трехчлен (рис. 11, в). Решением системы будет Квадратный трехчлен где Квадратный трехчлен — больший корень уравнения f(x)=O.

    Ответ. Если а <5, система не имеет решения; если Квадратный трехчлен то Квадратный трехчлен

    18. Решить систему неравенств Квадратный трехчлен

    Решение:

    Задача, по существу, сводится к выяснению, в каком порядке следуют корни уравнений

    Квадратный трехчлен

    Вычисляя их дискриминанты, получим, что первое уравнение имеет корни, если Квадратный трехчлен второе — если Квадратный трехчлен. Найдем Квадратный трехчлен — абсциссу точки пересечения графиков Квадратный трехчленКвадратный трехчленИмеем следующие три случая.

    1) a<0 (рис. 12). Если Квадратный трехчлен и Квадратный трехчлен — корни уравнения Квадратный трехчлен — корни уравнения Квадратный трехчлен то Квадратный трехчлен Это следует из того, что при Квадратный трехчлен выполняется равенство Квадратный трехчленf(x), так как g (х) — f (х)= — 2x+6, и f (3) = g (3) = а<0. Значит, при а<0 решением системы будет Квадратный трехчлен или Квадратный трехчлен

    2) 0<а<1. В этом случае порядок следования корней будет Квадратный трехчлен (Докажите.) Система не имеет решений.
    Если Квадратный трехчлен Решений нет.

    3) Квадратный трехчлен. Второе неравенство, а значит, и система неравенств не имеют решения.

    Ответ. Если а<0, то Квадратный трехчлен если Квадратный трехчленто решений нет.

    Уравнения, неравенства и системы с параметром. Графические интерпретации

    Начнем с того, что еще раз решим систему неравенств 18.
    Эту систему можно переписать в виде двойного неравенства

    Квадратный трехчлен

    Рассмотрим координатную плоскость (х; а). Множество точек, координаты которых удовлетворяют нашей системе неравенств, ограничено графиками двух квадратных трехчленов Квадратный трехчлен и состоит из точек, расположенных выше первого графика и ниже второго. Графики этих двух квадратных трехчленов пересекаются в точке (3; 0) На рисунке 13 изображено это множество точек. Сразу «видно», что при Квадратный трехчленсистема не имеет решений.

    Чтобы найти решение системы неравенств при некотором Квадратный трехчлен рассмотрим горизонтальную прямую Квадратный трехчлен Эта прямая пересекает найденное нами множество по отрезку. Абсциссы концов этого отрезка и будут задавать интервал изменения х, при этом Квадратный трехчлен Понятно, что для нахождения этих абсцисс надо решить относительно х уравнения Квадратный трехчлени Квадратный трехчлен и взять большие корни этих уравнений. Таким образом, мы получим найденный выше ответ, причем, как нам кажется, с меньшими затратами.

    Квадратный трехчлен

    Рассмотрим еще несколько примеров.

    19. При каких значениях а уравнение х |х —2а| —За + 2=0 имеет один корень?

    Решение:

    Рассмотрим функцию у = х|х — 2а| — За + 2. Ее график состоит из частей двух парабол: если Квадратный трехчлен то Квадратный трехчлен если х<2а, то Квадратный трехчлен (рис. 14, а). Если Квадратный трехчлен то функция Квадратный трехчлен возрастает при х<а и х>2а и убывает на отрезке [а; 2а]. При а<0 эта функция возрастает на участках х<2а и х>а и убывает на отрезке [2а; а].

    Нетрудно сделать вывод, что, для того чтобы уравнение Квадратный трехчлен имело единственное решение, необходимо и достаточно, чтобы у (а) и у (2а) были одного знака (у (а) и у (2а) одновременно или выше, или ниже оси х), т. е. у (а) у (2d) > 0.
    Получаем неравенство для а:

    Квадратный трехчлен

    Найдем, где обращается в ноль первый множитель: а|а| — За + 2 =0. Если Квадратный трехчлен Если а<0, то Квадратный трехчлен (Другой корень положителен.)

    Второй множитель обращается в ноль при Квадратный трехчлен Легко видеть, что в каждой из этих четырех точек левая часть неравенства меняет знак. Расставим эти точки на числовой оси (рис. 14,6). При а>2 первый множитель положителен, второй

    Квадратный трехчлен

    Квадратный трехчлен

    отрицателен, т. е. (а|а| — За + 2)( — За + 2)<0. При переходе через отмеченные точки знак меняется.
    Ответ. Квадратный трехчлен

    20. Сколько корней в зависимости от а имеет уравнение Квадратный трехчлен

    Решение:

    Изобразим на плоскости (х; а) все точки, удовлетворяющие данному уравнению. Если Квадратный трехчлен то Квадратный трехчленКвадратный трехчлен если Квадратный трехчлен (рис. 15). (Аналитически мы нашли точки А и В — точки пересечения каждой параболы с прямой а = х и вершину первой параболы — точку С, вершина другой параболы совпала с точкой В. Затем от каждой параболы оставили ее часть, расположенную в нужной полу­ плоскости относительно прямой а = х.) Следовательно, если Квадратный трехчлен то уравнение имеет два решения. (Горизонтальная прямая, соответствующая этим значениям параметра, пересекает наш график дважды.) Если Квадратный трехчлен или а= — 1, решение единственное. Для остальных значений а уравнение не имеет решений.

    21. Решить неравенство Квадратный трехчлен

    Решение:

    Напомним, что неравенство Квадратный трехчленэквивалент­ но двойному неравенству Квадратный трехчлен В нашем случае после преобразований приходим к системе неравенств

    Квадратный трехчлен

    Изобразим на плоскости (х; а) множество точек, координаты которых удовлетворяют полученной системе (рис. 16). При конкретном значении параметра а =а, решением нашего неравенства будут абсциссы тех точек горизонтальной прямой а = а, которые находятся в заштрихованной области. Найдем точки пересечения А (2; 2), В ( — 2; —2) наших парабол и вершину С ( — 0,5; —4,25) параболы Квадратный трехчлен

    Далее получаем: если а>2, решений нет; горизонтальная прямая не пересекается с заштрихованной областью.

    Если Квадратный трехчлен то соответствующая прямая пересекается с заштрихованной областью по отрезку. Концами этого отрезка будут точки с абсциссами Квадратный трехчлен (больший корень уравнения Квадратный трехчлен (больший корень уравнения Квадратный трехчлен или Квадратный трехчлен

    Если Квадратный трехчлен то горизонтальная прямая, соответствующая таким а, пересекается с заштрихованной областью по двум отрезкам. Решением неравенства будет

    Квадратный трехчлен

    Если Квадратный трехчлен

    Подведем итог этому пункту. Мы рассмотрели здесь задачи, при решении которых использовались наглядно-графические соображения. Подчеркнем два характерных приема.

    Первый прием (использовался при решении задачи 19). На плоскости (х; у) рассматривается семейство кривых, зависящих от параметра a: y = f(x; а). Затем в этом семействе выделяется множество кривых, обладающих требуемым свойством. При этом очень часто поступают следующим образом: изучают, как перемещается кривая семейства при изменении параметра, и находят граничные значения параметра, отделяющие множество значений параметра, которым соответствуют кривые, имеющие нужное свойство. (Правда, в задаче 19 путь решения был несколько иной. Нам удалось сразу получить удобное необходимое и достаточное условие, выделяющее искомое множество кривых.)

    Второй прием состоит в том, что рассматривается плоскость (х; а), на которой изображается множество точек, координаты которых удовлетворяют данному уравнению или неравенству (см. решения задач 20 и 21). После этого, проводя прямые, параллельные оси х, находят решение этого уравнения или не­ равенства при соответствующем значении параметра. Значения параметра, при переходе через которые меняется формула, даю­щая решение, естественным образом определяются построенным множеством.

    Задачи на максимум-минимум. Доказательство неравенств

    Простейший прием нахождения наибольших и наименьших значений, основанный на свойствах квадратичной функции, состоит в том, что исследуемая функция при помощи преобразова­ний или замены переменной приводится к квадратичной, после чего выделяется полный квадрат.

    22. Найти наибольшее значение функции Квадратный трехчлен

    Решение:

    Обозначим Квадратный трехчлентогда Квадратный трехчленОтсюда Квадратный трехчлен. Переходя к переменной t, получаем, что надо найти
    наибольшее значение функции Квадратный трехчлен при условии Квадратный трехчлен Выделим полный квадрат: Квадратный трехчлен Наибольшее значение будет у=1 при t=1. Возвращаясь к х (в данной задаче это не обязательно), найдем, что наибольшее значение у=1 будет при х = 0.

    Другой прием иллюстрирует следующая задача.

    23. Найти наибольшее и наименьшее значения функции Квадратный трехчлен

    Решение:

    Рассмотрим данное равенство как уравнение с неизвестным х и параметром у. (Можно для создания большего психологического комфорта заменить у на а.) После преобразований получим

    Квадратный трехчлен

    Для того чтобы это уравнение имело решение, необходимо и достаточно, чтобы выполнялось неравенство

    Квадратный трехчлен

    откуда

    Квадратный трехчлен

    Слева в неравенстве стоит наименьшее значение у, справа — наибольшее.

    Интересно сравнить данное решение задачи с решением, использующим производные.

    Идея, на которой основано решение задачи 23, чрезвычайно проста. Чтобы найти наибольшее и наименьшее значения функции y=f(x) мы, рассматривая данное равенство как уравнение с неизвестным х, решаем задачу, при каких у это уравнение имеет решение.

    Рассмотрим еще два примера, в которых работает эта же идея с небольшими вариациями.

    24. Найти наибольшее и наименьшее значения выражения
    2х— Зу, если
    Квадратный трехчлен

    Решение:

    Обозначим 2х — 3y = s, тогда Квадратный трехчлен Заменим у через х и s в заданном соотношении. После упрощений получим

    Квадратный трехчлен

    Для того чтобы это уравнение (относительно х) имело решение, необходимо и достаточно выполнения неравенства

    Квадратный трехчлен

    откуда

    Квадратный трехчлен

    Как и в предыдущем случае, слева в двойном неравенстве стоит наименьшее значение s = 2x —Зу, справа — наибольшее.

    25. Найти наибольшее и наименьшее значения выражения Квадратный трехчлен при условии, что Квадратный трехчлен

    Решение:

    Задача сводится к определению наибольшего и наименьшего значений а, при которых система

    Квадратный трехчлен

    имеет решение.

    Левые части каждого из уравнений представляют собой однородные многочлены второй степени относительно х и у. Умножим первое уравнение на 4, второе на — а и сложим получившиеся уравнения. Получим

    Квадратный трехчлен

    Разделив это уравнение на Квадратный трехчлен, будем иметь квадратное относительно Квадратный трехчлен уравнение

    Квадратный трехчлен

    Нам необходимо, чтобы дискриминант этого уравнения был неотрицателен:

    Квадратный трехчлен

    откуда Квадратный трехчлен Осталось проверить, для любых ли а из этого отрезка система имеет решение. Подставляя во второе уравнение x = yt, получим уравнение Квадратный трехчлен которое имеет решение при любом t. Следовательно, если а таково, что квадратное уравнение, определяющее t, имеет неотрицательный дискриминант, то исходная система имеет решение.

    Ответ. Наименьшее значение Квадратный трехчлен при условии, что Квадратный трехчлен равно Квадратный трехчлен а наибольшее равно Квадратный трехчлен

    Рассмотрим еще две задачи, решение которых основывается на графических соображениях.

    26. Пусть М — точка на прямой у = 2х+1, а N — точка на параболе Квадратный трехчлен Чему равно наименьшее значение длины отрезка MN?

    Решение:

    Найдем уравнение прямой, параллельной данной прямой у = 2х+1 и касающейся параболы Квадратный трехчлен Для этого, учитывая, что прямая у = 2х+1 не параллельна оси параболы, надо среди прямых вида у = 2х + b найти ту, которая имеет единственную общую точку с параболой. Это означает, что уравнение

    Квадратный трехчлен

    имеет дискриминант, равный нулю: Квадратный трехчленПрямая у = 2х+1 и парабола Квадратный трехчлен расположены в разных полуплоскостях по отношению к прямой Квадратный трехчлен (За исключением одной точки Квадратный трехчлен на параболе, которая принадлежит также и прямой Квадратный трехчлен рис. 17.)

    Теперь очевидно, что наименьшее значение длины отрезка МN равно расстоянию между параллельными прямыми у = 2х+1 и Квадратный трехчленЭто расстояние равно Квадратный трехчлен Но tga = 2, следовательно, cos Квадратный трехчлен

    Ответ. Квадратный трехчлен

    Замечание:

    Возможно, более простым будет следующее решение. Найдем наименьшее значение разности Квадратный трехчлен где Квадратный трехчленКвадратный трехчлен (рис. 17). Поскольку Квадратный трехчлен

    Квадратный трехчлен

    искомое наименьшее значение равно Квадратный трехчлени достигается при Квадратный трехчлен Для нахождения расстояния между данными прямой и параболой надо Квадратный трехчленумножить на Квадратный трехчлен .

    27. Найти все значения параметра а, для которых наименьшее значение функции Квадратный трехчлен меньше —Квадратный трехчлен

    Решение:

    График данной функции состоит из частей двух парабол, «склеенных» в точке с абсциссой Квадратный трехчлен при Квадратный трехчлен Наименьшее значение эта функция принимает или при х= — 2 (соответствует вершине первой параболы), или при х= —1 (соответствует вершине второй параболы), или при х = а (абсцисса точки склейки).

    Мы перечислили все возможные значения аргумента, которые «подозреваются на минимум». (Не беда, если среди них окажутся лишние. Единственное следствие — некоторое увеличение объема вычислительной работы.) Следовательно» условию задачи удовлетворяют все те значения (и только те) параметра а, для которых выполняется хотя бы одно из трех неравенств

    Квадратный трехчлен

    Все три неравенства объединены квадратной скобкой, что означает, что нам надо, решив каждое из них, полученные ответы объединить (а не находить множество значений параметра а, удовлетворяющее всем трем одновременно, как это делается в системах уравнений или неравенств).

    Решая неравенства, получим для каждого из них соответ­ственно

    Квадратный трехчлен

    Ответ. Квадратный трехчлен

    Мы не будем здесь подробно рассматривать задачи на дока­зательство неравенств, решения которых основываются на использовании тех или иных свойств квадратного трехчлена. (Выделение полного квадрата, оценка дискриминанта и т. д.) Ограничимся одним известным и полезным неравенством, при доказательстве которого свойства квадратного трехчлена используются весьма нестандартно.

    28. Доказать, что для любых Квадратный трехчлен справедливо неравенство

    Квадратный трехчлен

    (неравенство Коши-Буняковского).

    Решение:

    Рассмотрим следующую квадратичную функцию от х:

    Квадратный трехчлен

    При всех х функция Квадратный трехчлен Следовательно, Квадратный трехчлен где D — дискриминант:

    Квадратный трехчлен

    Значит,

    Квадратный трехчлен

    откуда получаем требуемое неравенство. Легко видеть, что равенство в неравенстве Коши-Буняковского имеет место, если существует х, обращающий в ноль все слагаемые в выражении для Квадратный трехчлен иными словами, если наборы Квадратный трехчлен пропорциональны.

    Доказанное неравенство имеет очевидную геометрическую интерпретацию. Для n = 2; 3 оно выражает известный факт, что скалярное произведение двух векторов на плоскости и в прост­ранстве не превосходит произведения их длин. Так же можно
    интерпретировать неравенство Коши-Буняковского и для произвольных n.

    Из полученного неравенства можно получить следствия. На­ пример, возьмем Квадратный трехчлен Будем иметь неравенство

    Квадратный трехчлен

    Небольшой обзор различных типов и видов задач, относящихся к теме «Квадратный трехчлен», показывает, сколь разно­ образны по тематике, методам решения, уровню сложности за­ дачи, составляющие эту тему. Многие идеи, рассмотренные в нашем обзоре, носят достаточно общий характер и с успехом могут быть использованы при решении задач, относящихся к самым различным разделам алгебры и анализа.

    Решение заданий и задач по предметам:

    • Математика
    • Высшая математика
    • Математический анализ
    • Линейная алгебра

    Дополнительные лекции по высшей математике:

    1. Тождественные преобразования алгебраических выражений
    2. Функции и графики
    3. Преобразования графиков функций
    4. Квадратная функция и её графики
    5. Алгебраические неравенства
    6. Неравенства
    7. Неравенства с переменными
    8. Прогрессии в математике
    9. Арифметическая прогрессия
    10. Геометрическая прогрессия
    11. Показатели в математике
    12. Логарифмы в математике
    13. Исследование уравнений
    14. Уравнения высших степеней
    15. Уравнения высших степеней с одним неизвестным
    16. Комплексные числа
    17. Непрерывная дробь (цепная дробь)
    18. Алгебраические уравнения
    19. Неопределенные уравнения
    20. Соединения
    21. Бином Ньютона
    22. Число е
    23. Непрерывные дроби
    24. Функция
    25. Исследование функций
    26. Предел
    27. Интеграл
    28. Двойной интеграл
    29. Тройной интеграл
    30. Интегрирование
    31. Неопределённый интеграл
    32. Определенный интеграл
    33. Криволинейные интегралы
    34. Поверхностные интегралы
    35. Несобственные интегралы
    36. Кратные интегралы
    37. Интегралы, зависящие от параметра
    38. Производная
    39. Применение производной к исследованию функций
    40. Приложения производной
    41. Дифференциал функции
    42. Дифференцирование в математике
    43. Формулы и правила дифференцирования
    44. Дифференциальное исчисление
    45. Дифференциальные уравнения
    46. Дифференциальные уравнения первого порядка
    47. Дифференциальные уравнения высших порядков
    48. Дифференциальные уравнения в частных производных
    49. Тригонометрические функции
    50. Тригонометрические уравнения и неравенства
    51. Показательная функция
    52. Показательные уравнения
    53. Обобщенная степень
    54. Взаимно обратные функции
    55. Логарифмическая функция
    56. Уравнения и неравенства
    57. Положительные и отрицательные числа
    58. Алгебраические выражения
    59. Иррациональные алгебраические выражения
    60. Преобразование алгебраических выражений
    61. Преобразование дробных алгебраических выражений
    62. Разложение многочленов на множители
    63. Многочлены от одного переменного
    64. Алгебраические дроби
    65. Пропорции
    66. Уравнения
    67. Системы уравнений
    68. Системы уравнений высших степеней
    69. Системы алгебраических уравнений
    70. Системы линейных уравнений
    71. Системы дифференциальных уравнений
    72. Арифметический квадратный корень
    73. Квадратные и кубические корни
    74. Извлечение квадратного корня
    75. Рациональные числа
    76. Иррациональные числа
    77. Арифметический корень
    78. Квадратные уравнения
    79. Иррациональные уравнения
    80. Последовательность
    81. Ряды сходящиеся и расходящиеся
    82. Тригонометрические функции произвольного угла
    83. Тригонометрические формулы
    84. Обратные тригонометрические функции
    85. Теорема Безу
    86. Математическая индукция
    87. Показатель степени
    88. Показательные функции и логарифмы
    89. Множество
    90. Множество действительных чисел
    91. Числовые множества
    92. Преобразование рациональных выражений
    93. Преобразование иррациональных выражений
    94. Геометрия
    95. Действительные числа
    96. Степени и корни
    97. Степень с рациональным показателем
    98. Тригонометрические функции угла
    99. Тригонометрические функции числового аргумента
    100. Тригонометрические выражения и их преобразования
    101. Преобразование тригонометрических выражений
    102. Комбинаторика
    103. Вычислительная математика
    104. Прямая линия на плоскости и ее уравнения
    105. Прямая и плоскость
    106. Линии и уравнения
    107. Прямая линия
    108. Уравнения прямой и плоскости в пространстве
    109. Кривые второго порядка
    110. Кривые и поверхности второго порядка
    111. Числовые ряды
    112. Степенные ряды
    113. Ряды Фурье
    114. Преобразование Фурье
    115. Функциональные ряды
    116. Функции многих переменных
    117. Метод координат
    118. Гармонический анализ
    119. Вещественные числа
    120. Предел последовательности
    121. Аналитическая геометрия
    122. Аналитическая геометрия на плоскости
    123. Аналитическая геометрия в пространстве
    124. Функции одной переменной
    125. Высшая алгебра
    126. Векторная алгебра
    127. Векторный анализ
    128. Векторы
    129. Скалярное произведение векторов
    130. Векторное произведение векторов
    131. Смешанное произведение векторов
    132. Операции над векторами
    133. Непрерывность функций
    134. Предел и непрерывность функций нескольких переменных
    135. Предел и непрерывность функции одной переменной
    136. Производные и дифференциалы функции одной переменной
    137. Частные производные и дифференцируемость функций нескольких переменных
    138. Дифференциальное исчисление функции одной переменной
    139. Матрицы
    140. Линейные и евклидовы пространства
    141. Линейные отображения
    142. Дифференциальные теоремы о среднем
    143. Теория устойчивости дифференциальных уравнений
    144. Функции комплексного переменного
    145. Преобразование Лапласа
    146. Теории поля
    147. Операционное исчисление
    148. Системы координат
    149. Рациональная функция
    150. Интегральное исчисление
    151. Интегральное исчисление функций одной переменной
    152. Дифференциальное исчисление функций нескольких переменных
    153. Отношение в математике
    154. Математическая логика
    155. Графы в математике
    156. Линейные пространства
    157. Первообразная и неопределенный интеграл
    158. Линейная функция
    159. Выпуклые множества точек
    160. Система координат

    Понравилась статья? Поделить с друзьями:
  • Как найти фото принт скрин
  • Как найти период у графиков гармонических колебаний
  • Как найти обеспечение для кредита
  • Как найти обои по описанию
  • Как найти сайт наруто