Как составить квантовую ячейку


Загрузить PDF


Загрузить PDF

Электронная конфигурация атома — это численное представление его электронных орбиталей. Электронные орбитали — это области различной формы, расположенные вокруг атомного ядра, в которых математически вероятно нахождение электрона. Электронная конфигурация помогает быстро и с легкостью сказать читателю, сколько электронных орбиталей есть у атома, а также определить количество электронов, находящихся на каждой орбитали. Прочитав эту статью, вы освоите метод составления электронных конфигураций.

  1. 1

    Найдите атомный номер вашего атома. Каждый атом имеет определенное число электронов, связанных с ним. Найдите символ вашего атома в таблице Менделеева. Атомный номер — это целое положительное число, начинающееся от 1 (у водорода) и возрастающее на единицу у каждого последующего атома. Атомный номер — это число протонов в атоме, и, следовательно, это еще и число электронов атома с нулевым зарядом.

  2. 2

    Определите заряд атома. Нейтральные атомы будут иметь столько же электронов, сколько показано в таблице Менделеева. Однако заряженные атомы будут иметь большее или меньшее число электронов — в зависимости от величины их заряда. Если вы работаете с заряженным атомом, добавляйте или вычитайте электроны следующим образом: добавляйте один электрон на каждый отрицательный заряд и вычитайте один на каждый положительный.

    • Например, атом натрия с зарядом -1 будет иметь дополнительный электрон в добавок к своему базовому атомному числу 11. Иначе говоря, в сумме у атома будет 12 электронов.
    • Если речь идет об атоме натрия с зарядом +1, от базового атомного числа 11 нужно отнять один электрон. Таким образом, у атома будет 10 электронов.
  3. 3

    Запомните базовый список орбиталей. По мере того, как у атома увеличивается число электронов, они заполняют различные подуровни электронной оболочки атома согласно определенной последовательности. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов. Имеются следующие подуровни:

    • s-подуровень (любое число в электронной конфигурации, которое стоит перед буквой «s») содержит единственную орбиталь, и, согласно Принципу Паули, одна орбиталь может содержать максимум 2 электрона, следовательно, на каждом s-подуровне электронной оболочки может находиться 2 электрона.
    • p-подуровень содержит 3 орбитали, и поэтому может содержать максимум 6 электронов.
    • d-подуровень содержит 5 орбиталей, поэтому в нем может быть до 10 электронов.
    • f-подуровень содержит 7 орбиталей, поэтому в нем может быть до 14 электронов.
    • g-, h-, i- и k-подуровни являются теоретическими. Атомы, содержащие электроны в этих орбиталях, неизвестны. g-подуровень содержит 9 орбиталей, поэтому теоретически в нем может быть 18 электронов. В h-подуровне может быть 11 орбиталей и максимум 22 электрона; в i-подуровне —13 орбиталей и максимум 26 электронов; в k-подуровне — 15 орбиталей и максимум 30 электронов.
    • Запомните порядок орбиталей с помощью мнемонического приема:[1]

      Sober Physicists Don’t Find Giraffes Hiding In Kitchens (трезвые физики не находят жирафов, скрывающихся на кухнях).
  4. 4

    Разберитесь в записи электронной конфигурации. Электронные конфигурации записываются для того, чтобы четко отразить количество электронов на каждой орбитали. Орбитали записываются последовательно, причем количество атомов в каждой орбитали записывается как верхний индекс справа от названия орбитали. Завершенная электронная конфигурация имеет вид последовательности обозначений подуровней и верхних индексов.

    • Вот, например, простейшая электронная конфигурация: 1s2 2s2 2p6. Эта конфигурация показывает, что на подуровне 1s имеется два электрона, два электрона — на подуровне 2s и шесть электронов на подуровне 2p. 2 + 2 + 6 = 10 электронов в сумме. Это электронная конфигурация нейтрального атома неона (атомный номер неона — 10).
  5. 5

    Запомните порядок орбиталей. Имейте в виду, что электронные орбитали нумеруются в порядке возрастания номера электронной оболочки, но располагаются по возрастанию энергии. Например, заполненная орбиталь 4s2 имеет меньшую энергию (или менее подвижна), чем частично заполненная или заполненная 3d10, поэтому сначала записывается орбиталь 4s. Как только вы будете знать порядок орбиталей, вы сможете с легкостью заполнять их в соответствии с количеством электронов в атоме. Порядок заполнения орбиталей следующий: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.

    • Электронная конфигурация атома, в котором заполнены все орбитали, будет иметь следующий вид: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d107p6
    • Обратите внимание, что приведенная выше запись, когда заполнены все орбитали, является электронной конфигурацией элемента Uuo (унуноктия) 118, атома периодической системы с самым большим номером. Поэтому данная электронная конфигурация содержит все известные в наше время электронные подуровни нейтрально заряженного атома.
  6. 6

    Заполняйте орбитали согласно количеству электронов в вашем атоме. Например, если мы хотим записать электронную конфигурацию нейтрального атома кальция, мы должны начать с поиска его атомного номера в таблице Менделеева. Его атомный номер — 20, поэтому мы напишем конфигурацию атома с 20 электронами согласно приведенному выше порядку.

    • Заполняйте орбитали согласно приведенному выше порядку, пока не достигнете двадцатого электрона. На первой 1s орбитали будут находится два электрона, на 2s орбитали — также два, на 2p — шесть, на 3s — два, на 3p — 6, и на 4s — 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Иными словами, электронная конфигурация кальция имеет вид: 1s2 2s2 2p6 3s2 3p6 4s2.
    • Обратите внимание: орбитали располагаются в порядке возрастания энергии. Например, когда вы уже готовы перейти на 4-й энергетический уровень, то сначала записывайте 4s орбиталь, а затем 3d. После четвертого энергетического уровня вы переходите на пятый, на котором повторяется такой же порядок. Это происходит только после третьего энергетического уровня.
  7. 7

    Используйте таблицу Менделеева как визуальную подсказку. Вы, вероятно, уже заметили, что форма периодической системы соответствует порядку электронных подуровней в электронных конфигурациях. Например, атомы во второй колонке слева всегда заканчиваются на «s2«, а атомы на правом краю тонкой средней части оканчиваются на «d10» и т.д. Используйте периодическую систему как визуальное руководство к написанию конфигураций — как порядок, согласно которому вы добавляете к орбиталям соответствует вашему положению в таблице. Смотрите ниже:

    • В частности, две самые левые колонки содержат атомы, чьи электронные конфигурации заканчиваются s-орбиталями, в правом блоке таблицы представлены атомы, чьи конфигурации заканчиваются p-орбиталями, а в нижней части атомы заканчиваются f-орбиталями.
    • Например, когда вы записываете электронную конфигурацию хлора, размышляйте следующим образом: «Этот атом расположен в третьем ряду (или «периоде») таблицы Менделеева. Также он располагается в пятой группе орбитального блока p периодической системы. Поэтому, его электронная конфигурация будет заканчиваться на …3p5
    • Обратите внимание: элементы в области орбиталей d и f таблицы характеризуются энергетическими уровнями, которые не соответствуют периоду, в котором они расположены. Например, первый ряд блока элементов с d-орбиталями соответствует 3d орбиталям, хотя и располагается в 4 периоде, а первый ряд элементов с f-орбиталями соответствует орбитали 4f, несмотря на то, что он находится в 6 периоде.
  8. 8

    Выучите сокращения написания длинных электронных конфигураций. Атомы на правом краю периодической системы называются благородными газами. Эти элементы химически очень устойчивы. Чтобы сократить процесс написания длинных электронных конфигураций, просто записывайте в квадратных скобках химический символ ближайшего благородного газа с меньшим по сравнению с вашим атомом числом электронов, а затем продолжайте писать электронную конфигурацию последующих орбитальных уровней. Смотрите ниже:

    • Чтобы понять эту концепцию, полезно будет написать пример конфигурации. Давайте напишем конфигурацию цинка (атомный номер 30), используя сокращение, включающее благородный газ. Полная конфигурация цинка выглядит так: 1s2 2s2 2p6 3s2 3p6 4s2 3d10. Однако мы видим, что 1s2 2s2 2p6 3s2 3p6 — это электронная конфигурация аргона, благородного газа. Просто замените часть записи электронной конфигурации цинка химическим символом аргона в квадратных скобках ([Ar].)
    • Итак, электронная конфигурация цинка, записанная в сокращенном виде, имеет вид: [Ar]4s2 3d10.
    • Учтите, если вы пишете электронную конфигурацию благородного газа, скажем, аргона, писать [Ar] нельзя! Нужно использовать сокращение благородного газа, стоящего перед этим элементом; для аргона это будет неон ([Ne]).

    Реклама

  1. Изображение с названием ADOMAH Table v2

    1

    Освойте периодическую таблицу ADOMAH. Данный метод записи электронной конфигурации не требует запоминания, однако требует наличия переделанной периодической таблицы, поскольку в традиционной таблице Менделеева, начиная с четвертого периода, номер периода не соответствует электронной оболочке. Найдите периодическую таблицу ADOMAH — особый тип периодической таблицы, разработанный ученым Валерием Циммерманом. Ее легко найти посредством короткого поиска в интернете.[2]

    • В периодической таблице ADOMAH горизонтальные ряды представляют группы элементов, такие как галогены, инертные газы, щелочные металлы, щелочноземельные металлы и т.д. Вертикальные колонки соответствуют электронным уровням, а так называемые «каскады» (диагональные линии, соединяющие блоки s,p,d и f) соответствуют периодам.
    • Гелий перемещен к водороду, поскольку оба этих элемента характеризуются орбиталью 1s. Блоки периодов (s,p,d и f) показаны с правой стороны, а номера уровней приведены в основании. Элементы представлены в прямоугольниках, пронумерованных от 1 до 120. Эти номера являются обычными атомными номерами, которые представляют общее количество электронов в нейтральном атоме.
  2. 2

    Найдите ваш атом в таблице ADOMAH. Чтобы записать электронную конфигурацию элемента, найдите его символ в периодической таблице ADOMAH и вычеркните все элементы с большим атомным номером. Например, если вам нужно записать электронную конфигурацию эрбия (68), вычеркните все элементы от 69 до 120.

    • Обратите внимание на номера от 1 до 8 в основании таблицы. Это номера электронных уровней, или номера колонок. Игнорируйте колонки, которые содержат только вычеркнутые элементы. Для эрбия остаются колонки с номерами 1,2,3,4,5 и 6.
  3. 3

    Посчитайте орбитальные подуровни до вашего элемента. Смотря на символы блоков, приведенные справа от таблицы (s, p, d, and f), и на номера колонок, показанные в основании, игнорируйте диагональные линии между блоками и разбейте колонки на блоки-колонки, перечислив их по порядку снизу вверх. И снова игнорируйте блоки, в которых вычеркнуты все элементы. Запишите блоки-колонки, начиная от номера колонки, за которым следует символ блока, таким образом: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s (для эрбия).

    • Обратите внимание: Приведенная выше электронная конфигурация Er записана в порядке возрастания номера электронного подуровня. Ее можно также записать в порядке заполнения орбиталей. Для этого следуйте по каскадам снизу вверх, а не по колонкам, когда вы записываете блоки-колонки: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f12.
  4. 4

    Посчитайте электроны для каждого электронного подуровня. Подсчитайте элементы, в каждом блоке-колонке которые не были вычеркнуты, прикрепляя по одному электрону от каждого элемента, и запишите их количество рядом с символом блока для каждого блока-колонки таким образом: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f12 5s2 5p6 6s2. В нашем примере это электронная конфигурация эрбия.

  5. 5

    Учитывайте неправильные электронные конфигурации. Существует восемнадцать типичных исключений, относящихся к электронным конфигурациям атомов в состоянии с наименьшей энергией, также называемом основным энергетическим состоянием. Они не подчиняются общему правилу только по последним двум-трем положениям, занимаемым электронами. При этом действительная электронная конфигурация предполагает нахождение электронов в состоянии с более низкой энергией в сравнении со стандартной конфигурацией атома. К атомам-исключениям относятся:

    • Cr (…, 3d5, 4s1); Cu (…, 3d10, 4s1); Nb (…, 4d4, 5s1); Mo (…, 4d5, 5s1); Ru (…, 4d7, 5s1); Rh (…, 4d8, 5s1); Pd (…, 4d10, 5s0); Ag (…, 4d10, 5s1); La (…, 5d1, 6s2); Ce (…, 4f1, 5d1, 6s2); Gd (…, 4f7, 5d1, 6s2); Au (…, 5d10, 6s1); Ac (…, 6d1, 7s2); Th (…, 6d2, 7s2); Pa (…, 5f2, 6d1, 7s2); U (…, 5f3, 6d1, 7s2); Np (…, 5f4, 6d1, 7s2) и Cm (…, 5f7, 6d1, 7s2).

    Реклама

Советы

  • Чтобы найти атомный номер атома, когда он записан в форме электронной конфигурации, просто сложите все числа, которые идут за буквами (s, p, d, и f). Это работает только для нейтральных атомов, если вы имеете дело с ионом, то ничего не получится — вам придется добавить или вычесть количество дополнительных или потерянных электронов.
  • Число, идущее за буквой — это верхний индекс, не сделайте ошибку в контрольной.
  • «Стабильности полузаполненного» подуровня не существует. Это упрощение. Любая стабильность, которая относится к «наполовину заполненным» подуровням, имеет место из-за того, что каждая орбиталь занята одним электроном, поэтому минимизируется отталкивание между электронами.
  • Каждый атом стремится к стабильному состоянию, а самые стабильные конфигурации имеют заполненные подуровни s и p (s2 и p6). Такая конфигурация есть у благородных газов, поэтому они редко вступают в реакции и в таблице Менделеева расположены справа. Поэтому, если конфигурация заканчивается на 3p4, то для достижения стабильного состояния ей необходимо два электрона (чтобы потерять шесть, включая электроны s-подуровня, потребуется больше энергии, поэтому потерять четыре легче). А если конфигурация оканчивается на 4d3, то для достижения стабильного состояния ей необходимо потерять три электрона. Кроме того, полузаполненные подуровни (s1, p3, d5..) являются более стабильными, чем, например, p4 или p2; однако s2 и p6 будут еще более устойчивыми.
  • Когда вы имеете дело с ионом, это значит, что количество протонов не равно количеству электронов. Заряд атома в этом случае будет изображен сверху справа (как правило) от химического символа. Поэтому атом сурьмы с зарядом +2 имеет электронную конфигурацию 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p1. Обратите внимание, что 5p3 изменилось на 5p1. Будьте внимательны, когда конфигурация нейтрального атома заканчивается на подуровни, отличные от s и p. Когда вы забираете электроны, вы можете забрать их только с валентных орбиталей (s и p орбиталей). Поэтому, если конфигурация заканчивается на 4s2 3d7 и атом получает заряд +2, то конфигурация будет заканчиваться 4s0 3d7. Обратите внимание, что 3d7 не меняется, вместо этого теряются электроны s-орбитали.
  • Существуют условия, когда электрон вынужден «перейти на более высокий энергетический уровень». Когда подуровню не хватает одного электрона до половинной или полной заполненности, заберите один электрон из ближайшего s или p- подуровня и переместите его на тот подуровень, которому необходим электрон.
  • Имеется два варианта записи электронной конфигурации. Их можно записывать в порядке возрастания номеров энергетических уровней или в порядке заполнения электронных орбиталей, как было показано выше для эрбия.
  • Также вы можете записывать электронную конфигурацию элемента, записав лишь валентную конфигурацию, которая представляет собой последний s и p подуровень. Таким образом, валентная конфигурация сурьмы будет иметь вид 5s2 5p3.
  • Ионы не то же самое. С ними гораздо сложнее. Пропустите два уровня и действуйте по той же схеме в зависимости от того, где вы начали, и от того, насколько велико количество электронов.

Реклама

Об этой статье

Эту страницу просматривали 483 393 раза.

Была ли эта статья полезной?

Добавил:

Upload

Опубликованный материал нарушает ваши авторские права? Сообщите нам.

Вуз:

Предмет:

Файл:

Скачиваний:

171

Добавлен:

18.03.2015

Размер:

2.27 Mб

Скачать

Итак, каждое из четырех квантовых чисел «отвечает» за определенный аспект характеристики электронного состояния. Набор всех четырех квантовых чисел позволяет полностью охарактеризовать состояние электрона в атоме с позиций квантово-механической модели.

Существует очень простая и наглядная система обозначений, в которой принято символически изображать каждую орбиталь клеткой (так называемой квантовой ячейкой) (рис. 1.5.), а значения спинового квантового числа ото-

ждествлять с направлением стрелки: (ms = + ½), (ms = — ½).

Согласно правилу Хунда (принципу максимальной мультиплетности)

абсолютное значение суммарного спинового числа электронов данного энергетического подуровня должно быть максимальным.

s-подуровень

p-подуровень

d-подуровень

f-подуровень

Рис. 1.5. Квантовые ячейки

Другими словами, в основном состоянии атома (такое состояние отвечает его минимальной энергии) максимальное число квантовых ячеек должно быть занято электронами, поэтому при построении схемы распределения электронов по квантовым ячейкам следует сначала помещать по одному электрону в каждую из них (спины всех электронов данного подуровня должны быть па-

29

раллельными), и только после того, как одиночные электроны заполнят все ячейки, в них помещается второй электрон с антипараллельным спином.

Например, единственно верным вариантом распределения четырех электронов на d-энергетический подуровень является следующий:

↑ ↑ ↑

d-подуровень

т.к. именно в этом случае суммарное спиновое число достигает максимального значения: +½+½+½+½ = +4/2.

Электроны с одинаковыми значениями квантового числа ms (т.е. электроны с параллельными спинами) называют неспаренными. Именно эти электроны играют решающую роль в процессе образования химической связи между атомами, определяя их валентные состояния.

Если же число электронов превышает количество квантовых ячеек, то нахождение электронов в одной и той же квантовой ячейке возможно лишь в том случае, если значения спиновых квантовых чисел этих электронов противоположны (такие электроны с антипараллельными спинами называют спаренными). Например, семь электронов заполняют ячейки d-состояния следующим образом:

d-подуровень

При получении атомом дополнительной энергии он переходит из основного в возбужденное состояние. При этом электроны из полностью заполненных орбиталей переходят на вакантные орбитали того же энергетического подуровня. Число неспаренных электронов при этом увеличивается, и валентные возможности атома изменяются.

Из принципа Паули следует, что в одной и той же квантовой ячейке (квантовые числа n, ℓ, mдля таких электронов уже совпадают) могут находиться максимум два электрона с противоположными значениями спинового

30

квантового числа ms. Это позволяет установить предельную емкость каждого энергетического подуровня (рис. 1.6.).

s-подуровень

↑ ↓

2

электрона

p-подуровень

6

электронов

↑ ↓

↑ ↓

↑ ↓

d-подуровень

10 электронов

↑ ↓

↑ ↓

↑ ↓

↑ ↓

↑ ↓

f-подуровень

14 электронов

↑ ↓

↑ ↓

↑ ↓

↑ ↓

↑ ↓

↑ ↓

↑ ↓

Рис. 1.6. Максимальная емкость энергетических подуровней

Итак, каждый энергетический подуровень имеет ограничения по количеству электронов, которые его заполняют.

1.8. Электронные формулы атомов

Представить электронное строение многоэлектронного атома – это значит в условной форме дать распределение электронов этого атома по энергетическим уровням и подуровням, т.е. составить так называемую электронную формулу атома. Электронная формула – это своего рода шифр, основу которого составляют квантовые числа. Электронная формула атома строится из блоков вида:

nℓx,

где: n – главное квантовое число (номер энергетического уровня, его зна чение указывается цифрой 1,2,3, 4,5,…), ℓ – орбитальное квантовое число (его значение обозначается соответствующей латинской буквой s, p, d, f), x – число электронов, находящихся в данном квантовом состоянии.

31

Например, запись 4d7 означает, что семь электронов занимают четвертый энергетический уровень, d-подуровень, т.е. для этих семи электронов n=4 и ℓ=2.

Электронная формула атома составляется для его основного состояния, т.е. для состояния, которому отвечает минимальная энергия. При составлении электронных формул следует производить заполнение энергетических подуровней в порядке роста их энергии, низшие по энергии подуровни всегда заполняются первыми (принцип наименьшей энергии).

Энергия подуровней растет в соответствии с ростом суммарного значения квантовых чисел n + ℓ, а в случае их равенства первым заполняется подуровень с меньшим значением n.

Порядок заполнения легко вывести из диаграммы, представленной на рис. 1.7.

1s

Ó

2s

Ó

2p Ó

3s

Ó

3p Ó

3d

Ó

4s

Ó

4p Ó

4d

Ó

4f

Ó

5s

Ó

5p

Ó

5d

Ó

5f

Ó

6s

Ó

6p

Ó

6d

Ó

6f

7s

Ó

7p

Ó

7d

7f

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f,…

энергия

Рис. 1.7. Диаграмма энергетических подуровней

32

В этой диаграмме в столбик выписаны энергетические подуровни каждого из семи уровней. При движении справа налево по диагонали данной диаграммы Вы получаете порядок, в котором следует заполнять энергетические подуровни электронами при составлении электронных формул атомов.

Учитывая рассмотренные выше закономерности, электронные формулы атомов алюминия (порядковый номер элемента 13, атом содержит 13 электронов) и скандия (порядковый номер элемента 21, атом содержит 21 электрон) можно представить в виде:

13Al 1s2 2s2 2p6 3s2 3p1

21Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 или 21Sc 1s2 2s2 2p6 3s2 3p6 3d1 4s2,

если чисто формально скомпоновать подуровни третьего энергетического уровня вместе.

Электронные формулы многоэлектронных атомов можно представить в более краткой форме, если учесть, что полностью застроенные оболочки характеризуют электронное состояние благородных газов – элементов, завершающих каждый период периодической системы Д. И. Менделеева:

He (1s2),

Ne (1s22s22p6),

Ar (1s22s22p63s23p6),

Kr (1s22s22p63s23p63d104s24p6),

Xe (1s22s22p63s23p63d104s24p64d105s25p6),

Rn (1s22s22p63s23p63d104s24p64d104f145s25p65d106s26p6).

Поэтому в электронных формулах можно указать символ соответствующего благородного газа в квадратных скобках, а далее привести рас-

33

пределение тех электронов атома, число которых превышает число электронов в атоме этого благородного газа. Для рассмотренных выше полных электронных формул алюминия и скандия такая модификация дает следующий результат:

13Al [Ne] 3s2 3p1

21Sc [Ar] 3d1 4s2

Электроны внешнего (последнего) энергетического уровня и, как правило, предвнешнего (предпоследнего) уровня d-подуровня, если он застроен не-

полностью, называют валентными электронами.

Так, валентными электронами Al считаются 3s2 3p1, а Sc — 3d14s2.

Наряду с электронными формулами атомов используют и так называемые электронно-графические формулы, основанные на рассмотренных выше представлениях о квантовых ячейках. В этом случае каждый энергетический подуровень представляется набором соответствующих квантовых ячеек, которые заполняют электронами согласно требованиям принципа Паули и правила Хунда.

Например, электронно-графические формулы атомов алюминия и скандия выглядят так:

13Al

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

1s2

2s2

2p 6

3s2

3p1

21Sc

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

↑↓

1s2

2s2

2p6

3s2

3p6

↑↓

3d1

4s2

34

Соседние файлы в папке Доп материалы

  • #
  • #

    18.03.20150 б3Смолова К практич зан по химии.pdf

Атомно-молекулярное учение

Мы приступаем к изучению химии — мира молекул и атомов. В этой статье мы рассмотрим базисные понятия и разберемся с электронными
формулами элементов.

Атом (греч. а — отриц. частица + tomos — отдел, греч. atomos — неделимый) — электронейтральная частица вещества микроскопических
размеров и массы, состоящая из положительно заряженного ядра (протонов) и отрицательно заряженных электронов (электронные орбитали).

Описываемая модель атома называется «планетарной» и была предложена в 1913 году великими физиками: Нильсом Бором и Эрнестом Резерфордом

Планетарная модель атома

Протон (греч. protos — первый) — положительно заряженная (+1) элементарная частица, вместе с нейтронами образует ядра атомов
элементов. Нейтрон (лат. neuter — ни тот, ни другой) — нейтральная (0) элементарная частица, присутствующая в ядрах всех
химических элементов, кроме водорода.

Электрон (греч. elektron — янтарь) — стабильная элементарная частица с отрицательным электрическим зарядом (-1), заряд атома —
порядковый номер в таблице Менделеева — равен числу электронов (и, соответственно, протонов).

Запомните, что в невозбужденном состоянии атом содержит одинаковое число электронов и протонов. Так у кальция (порядковый номер 20)
в ядре находится 20 протонов, а вокруг ядра на электронных орбиталях 20 электронов.

Электроны и протоны

Я еще раз подчеркну эту важную деталь. На данном этапе будет отлично, если вы запомните простое правило:
порядковый номер элемента = числу электронов. Это наиболее важно для практического применения и изучения следующей темы.

Электронная конфигурация атома

Электроны атома находятся в непрерывном движении вокруг ядра. Энергия электронов отличается друг от друга, в соответствии с этим
электроны занимают различные энергетические уровни.

Энергетические уровни подразделяются на несколько подуровней:

  • Первый уровень
  • Состоит из s-подуровня: одной «1s» ячейки, в которой помещаются 2 электрона (заполненный электронами — 1s2)

  • Второй уровень
  • Состоит из s-подуровня: одной «s» ячейки (2s2) и p-подуровня: трех «p» ячеек (2p6), на которых
    помещается 6 электронов

  • Третий уровень
  • Состоит из s-подуровня: одной «s» ячейки (3s2), p-подуровня: трех «p» ячеек (3p6) и d-подуровня:
    пяти «d» ячеек (3d10), в которых помещается 10 электронов

  • Четвертый уровень
  • Состоит из s-подуровня: одной «s» ячейки (4s2), p-подуровня: трех «p» ячеек (4p6), d-подуровня:
    пяти «d» ячеек (4d10) и f-подуровня: семи «f» ячеек (4f14), на которых помещается 14
    электронов

Энергетические уровни

Зная теорию об энергетических уровнях и порядковый номер элемента из таблицы Менделеева, вы должны расположить определенное число
электронов, начиная от уровня с наименьшей энергией и заканчивая к уровнем с наибольшей. Чуть ниже вы увидите несколько примеров, а
также узнаете об исключении, которое только подтверждает данные правила.

Подуровни: «s», «p» и «d», которые мы только что обсудили, имеют в определенную конфигурацию в пространстве. По этим подуровням, или
атомным орбиталям, движутся электроны, создавая определенный «рисунок».

S-орбиталь похожа на сферу, p-орбиталь напоминает песочные часы, d-орбиталь — клеверный лист.

Атомные орбитали

Правила заполнения электронных орбиталей и примеры

Существует ряд правил, которые применяют при составлении электронных конфигураций атомов:

  • Сперва следует заполнить орбитали с наименьшей энергией, и только после переходить к энергетически более высоким
  • На орбитали (в одной «ячейке») не может располагаться более двух электронов
  • Орбитали заполняются электронами так: сначала в каждую ячейку помещают по одному электрону, после чего орбитали дополняются
    еще одним электроном с противоположным направлением
  • Порядок заполнения орбиталей: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s
  • Должно быть, вы обратили внимание на некоторое несоответствие: после 3p подуровня следует переход к 4s, хотя логично было
    бы заполнить до конца 4s подуровень. Однако природа распорядилась иначе.

    Запомните, что, только заполнив 4s подуровень двумя электронами, можно переходить к 3d подуровню.

Без практики теория мертва, так что приступает к тренировке. Нам нужно составить электронную конфигурацию атомов углерода и
серы. Для начала определим их порядковый номер, который подскажет нам число их электронов. У углерода — 6, у серы — 16.

Теперь мы располагаем указанное количество электронов на энергетических уровнях, руководствуясь правилами заполнения.

Электронные конфигурации углерода и серы

Обращаю ваше особе внимание: на 2p-подуровне углерода мы расположили 2 электрона в разные ячейки, следуя одному из правил.
А на 3p-подуровне у серы электронов оказалось много, поэтому сначала мы расположили 3 электрона по отдельным ячейкам, а оставшимся
одним электроном дополнили первую ячейку.

Таким образом, электронные конфигурации наших элементов:

  • Углерод — 1s22s22p2
  • Серы — 1s22s22p63s23p4
Внешний уровень и валентные электроны

Количество электронов на внешнем (валентном) уровне — это число электронов на наивысшем энергетическом уровне, которого достигает элемент. Такие электроны называются валентными: они могут быть спаренными или неспаренными. Иногда
для наглядного представления конфигурацию внешнего уровня записывают отдельно:

  • Углерод — 2s22p2 (4 валентных электрона)
  • Сера -3s23p4 (6 валентных электронов)

Неспаренные валентные электроны способны к образованию химической связи. Их число соответствует количеству связей, которые данный атом может образовать с другими атомами. Таким образом неспаренные валентные электроны тесно связаны с валентностью — способностью атомов образовывать определенное число химических связей.

Валентные электроны углерода и серы

  • Углерод — 2s22p2 (2 неспаренных валентных электрона)
  • Сера -3s23p4 (2 неспаренных валентных электрона)
Тренировка

Потренируйтесь и сами составьте электронную конфигурацию для магния и скандия. Определите число электронов на внешнем (валентном) уровне и число неспаренных
электронов. Ниже будет дано наглядное объяснение этой задаче.

Электронные конфигурации магния и фтора и их валентные электроны

Запишем получившиеся электронные конфигурации магния и скандия:

  • Магний — 1s22s22p63s2
  • Скандий — 1s22s22p63s23p64s23d1

В целом несложная и интересная тема электронных конфигураций отягощена небольшим исключением — провалом электрона, которое только подтверждает общее
правило: любая система стремится занять наименее энергозатратное состояние.

Провал электрона

Провалом электрона называют переход электрона с внешнего, более высокого энергетического уровня, на предвнешний, энергетически более
низкий. Это связано с большей энергетической устойчивостью получающихся при этом электронных конфигураций.

Подобное явление характерно лишь для некоторых элементов: медь, хром, серебро, золото, молибден. Для примера выберем хром, и рассмотрим
две электронных конфигурации: первую «неправильную» (сделаем вид, будто мы не знаем про провал электрона) и вторую правильную, написанную
с учетом провала электрона.

Провал электрона

Теперь вы понимаете, что кроется под явлением провала электрона. Запишите электронные конфигурации хрома и меди самостоятельно еще раз и
сверьте с представленными ниже.

Провал электрона у хрома и меди

Основное и возбужденное состояние атома

Основное и возбужденное состояние атома отражаются на электронных конфигурациях. Возбужденное состояние связано с движением электронов
относительно атомных ядер. Говоря проще: при возбуждении пары электронов распариваются и занимают новые ячейки.

Возбужденное состояние является для атома нестабильным, поэтому долгое время в нем он пребывать не может. У некоторых атомов: азота,
кислорода , фтора — возбужденное состояние невозможно, так как отсутствуют свободные орбитали («ячейки») — электронам некуда перескакивать, к тому
же d-орбиталь у них отсутствует (они во втором периоде).

У серы возможно возбужденное состояние, так как она имеет свободную d-орбиталь, куда могут перескочить электроны. Четвертый энергетический
уровень отсутствует, поэтому, минуя 4s-подуровень, заполняем распаренными электронами 3d-подуровень.

Основное и возбужденное состояние атома

По мере изучения основ общей химии мы еще не раз вернемся к этой теме, однако хорошо, если вы уже сейчас запомните, что возбужденное состояние
связано с распаривание электронных пар.

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Атом – электронейтральная система, состоящая из положительно заряженного ядра и отрицательно заряженных электронов. Электроны располагаются в атоме, образуя энергетические уровни и подуровни.

Электронная формула атома – это распределение электронов в атоме по энергетическим уровням и подуровням в соответствии с принципом наименьшей энергии (Клечковского), принципом Паули, правилом Гунда.

Электронные формулы атомов

Состояние электрона в атоме описывается с помощью квантово-механической модели – электронного облака, плотность соответствующих участков которого пропорциональна вероятности нахождения электрона. Обычно под электронным облаком понимают область околоядерного пространства, которая охватывает примерно 90% электронного облака. Эта область пространства называется также орбиталью.

Атомные орбитали образуют энергетический подуровень. Орбиталям и подуровням присвоены буквенные обозначения. Каждый подуровень имеет определенное число атомных орбиталей. Если атомную орбиталь изобразить в виде магнитно-квантовой ячейки, то атомные орбитали, находящиеся на подуровнях, можно представить следующим образом:

энергетический подуровень s p d f
атомные орбитали Электронные формулы атомов химических элементов (109) .

На каждой атомной орбитали могут находиться одновременно не более двух электронов, различающихся спином (принцип Паули). Это различие обозначается стрелками ¯­.

Зная, что на s-подуровне одна s-орбиталь, на р-подуровне три р-орбитали, на d-подуровне пять d-орбиталей, на f-подуровне семь f-орбиталей, можно найти максимальное количество электронов на каждом подуровне и уровне.

Так, на s-подуровне, начиная с первого энергетического уровня, 2 электрона; на р-подуровне, начиная со второго энергетического уровня, 6 электронов; на d-подуровне, начиная с третьего энергетического уровня, 10 электронов; на f-подуровне, начиная с четвертого энергетического уровня, 14 электронов. Электроны на s-, p-, d-, f-подуровнях называются соответственно s-, р-, d-, f-электронами.

Согласно принципу наименьшей энергии, последовательное заполнение энергетических подуровней электронами происходит таким образом, что каждый электрон в атоме занимает подуровень с наиболее низкой энергией, отвечающей его прочной связи с ядром. Изменение энергии подуровней может быть представлено в виде ряда Клечковского или шкалы энергии:

Источник: https://megaobuchalka.ru/9/32691.html

Электронная формула химических элементов

Наиболее часто электронные формулы записывают для атомов в основном или возбужденном состоянии и для ионов.

Существует несколько правил, которые необходимо учитывать при составлении электронной формулы атома химического элемента. Это принцип Паули, правила Клечковского или правило Хунда.

При составление электронной формулы следует учитывать, что номер периода химического элемента определяет число энергетических уровней (оболочек) в атоме, а его порядковый номер количество электронов.

Согласно правилу Клечковского, заполнение энергетических уровней происходит в порядке возрастания суммы главного и орбитального квантовых чисел (n + l), а при равных значениях этой суммы – в порядке возрастания n:

1s < 2s < 2p < 3s < 3p < 4s ≈ 3d < 4p < 5s ≈ 4d < 5p < 6s ≈ 5d ≈ 4f < 6p и т.д.

Так, значению n + l = 5 соответствуют энергетические подуровни 3d (n = 3, l=2), 4d (n=4, l=1) и 5s (n=5, l =0). Первым из этих подуровней заполняется тот, у которого ниже значение главного квантового числа.

Поведение электронов в атомах подчиняется принципу запрета, сформулированному швейцарским ученым В. Паули: в атоме не может быть двух электронов, у которых были бы одинаковыми все четыре квантовых числа.

Согласно принципу Паули, на одной орбитали, характеризуемой определенными значениями трех квантовых чисел (главное, орбитальное и магнитное), могут находиться только два электрона, отличающиеся значением спинового квантового числа.

Из принципа Паули вытекает следствие: максимально возможное число электронов на каждом энергетическом уровне равно удвоенному значению квадрата главного квантового числа.

Электронная формула атома

Электронную формулу атома изображают следующим образом: каждому энергетическому уровню соответствует определенное главное квантовое число n, обозначаемое арабской цифрой; за каждой цифрой следует буква, соответствующая энергетическому подуровню и обозначающая орбитальное квантовое число. Верхний индекс у буквы показывает число электронов, находящихся в подуровне. Например, электронная формула атома натрия имеет следующий вид:

11N 1s22s22p63s1.

При заполнение электронами энергетических подуровней также необходимо соблюдать правило Хунда: в данном подуровне электроны стремятся занять энергетические состояния таким образом, чтобы суммарный спин был максимальным (это наиболее наглядно отражается при составлении электронно-графических формул).

Источник: http://ru.solverbook.com/spravochnik/formuly-po-ximii/elektronnaya-formula/

Содержание

  1. Электронная и электронно-графическая формула
  2. Что такое электронная и электронно-графическая формула
  3. Составление электронной и электронно-графической формулы
  4. Примеры решения задач
  5. Электронная формула элемента.
  6. Химия. Строение атома и составление электронно-графических формул.

Электронная и электронно-графическая формула

Что такое электронная и электронно-графическая формула

Наиболее часто электронные формулы записывают для атомов в основном или возбужденном состоянии и для ионов.

Существует несколько правил, которые необходимо учитывать при составлении электронной формулы атома химического элемента. Это принцип Паули, правила Клечковского или правило Хунда.

Составление электронной и электронно-графической формулы

При составление электронной формулы следует учитывать, что номер периода химического элемента определяет число энергетических уровней (оболочек) в атоме, а его порядковый номер количество электронов.

Согласно правилу Клечковского, заполнение энергетических уровней происходит в порядке возрастания суммы главного и орбитального квантовых чисел (n + l), а при равных значениях этой суммы – в порядке возрастания n:

При заполнение электронами энергетических подуровней также необходимо соблюдать правило Хунда: в данном подуровне электроны стремятся занять энергетические состояния таким образом, чтобы суммарный спин был максимальным, что наиболее наглядно отражается при составлении электронно-графических формул.

Электронно-графические формулы обычно изображают для валентных электронов. В такой формуле все электроны помечаются стрелочками, а ячейками (квадратиками) – орбитали. В одной ячейке не может находиться более двух электронов. Рассмотрим на примере ванадия. Сначала записываем электронную формулу и определяем валентные электроны:

Внешний энергетический уровень атома вольфрама содержит 6 электронов, которые являются валентными. Энергетическая диаграмма основного состояния принимает следующий вид:

Примеры решения задач

Задание Изобразите электронную и электронно-графическую формулу химического элемента алюминия.
Ответ Алюминий имеет порядковый номер 13 и расположен в третьем периоде Периодической системы Д.И. Менделеева, следовательно, атом этого химического элемента состоит из положительно заряженного ядра, внутри которого находится 13 протонов, а вокруг ядра имеется три оболочки, по которым движутся 13 электронов.

Электронная формула алюминия выглядит следующим образом:

На внешнем энергетическом уровне алюминия находится три электрона, все электроны 3-го подуровня. Электронно-графическая формула имеет следующий вид:

Задание Изобразите электронную и электронно-графическую формулу химического элемента хлора.
Ответ Хлор имеет порядковый номер 18 и расположен в третьем периоде Периодической системы Д.И. Менделеева, следовательно, атом этого химического элемента состоит из положительно заряженного ядра, внутри которого находится 17 протонов, а вокруг ядра имеется три оболочки, по которым движутся 17 электронов.

Электронная формула хлора выглядит следующим образом:

На внешнем энергетическом уровне атома хлора находится семь электронов, все они считаются валентными. Электронно-графическая формула имеет следующий вид:

Источник

Электронная формула элемента.

Алгоритм составления электронной формулы элемента:

2. По номеру периода, в котором расположен элемент, определите число энергетических уровней; число электронов на последнем электронном уровне соответствует номеру группы.

3. Уровни разбить на подуровни и орбитали и заполнить их электронами в соответствии с правилами заполнения орбиталей:

Необходимо помнить, что на первом уровне находится максимум 2 электрона 1s 2 , на втором – максимум 8 (два s и шесть р: 2s 2 2p 6 ), на третьем – максимум 18 ( два s, шесть p, и десять d: 3s 2 3p 6 3d 10 ).

  • Главное квантовое число n должно быть минимально.
  • Первым заполняется s-подуровень, затем р-, d- b f-подуровни.
  • Электроны заполняют орбитали в порядке возрастания энергии орбиталей (правило Клечковского).
  • В пределах подуровня электроны сначала по одному занимают свободные орбитали, и только после этого образуют пары (правило Хунда).
  • На одной орбитали не может быть больше двух электронов (принцип Паули).

1. Составим электронную формулу азота. В периодической таблице азот находится под №7.

Энергетическая диаграмма азота.

2. Составим электронную формулу аргона. В периодической таблице аргон находится под №18.

Энергетическая диаграмма аргона.

3. Составим электронную формулу хрома. В периодической таблице хром находится под №24.

Энергетическая диаграмма цинка.

4. Составим электронную формулу цинка. В периодической таблице цинк находится под №30.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10

Обратим внимание, что часть электронной формулы, а именно 1s 2 2s 2 2p 6 3s 2 3p 6 – это электронная формула аргона.

Электронную формулу цинка можно представить в виде:

Источник

Химия. Строение атома и составление электронно-графических формул.

Прежде, чем перейти непосредственно к составлению электронно-графических формул, стоит кратко сказать о природе электрона. Дело в том, что электрон не представляет собой материальную частицу, и сказать, где он находится в данный момент времени нельзя. Вместо этого оперируют таким понятием, как атомная орбиталь.

Атомная орбиталь — область вокруг ядра атома, в которой вероятность нахождения электрона максимальна (более 90%).

В настоящее время достоверно известно о четырех видах орбиталей: s, p, d, f. Элементы, в которых превалирует та или иная орбиталь изображены в периодической системе.

Как правило, s-элементы обозначают красным, p-элементы — желтым, d-элементы — синим или зеленым, f-элементы — зеленым или фиолетовым.

У каждой орбитали имеется своя форма. s — шар, p — «восьмерка», d — две перекрещенные «восьмерки», f — «восьмерка» с описанной торой (фигура, похожая на бублик).

Для описания состояния конкретного электрона используются так называемые квантовые числа. Всего их четыре:

1) главное квантовое число (N) — описывает энергию, которую имеет электрон, и принимает значения от 1 до бесконечности. Когда N равно бесконечности, электрон отрывается от атома.

2) побочное квантовое число (l) — отвечает за количество подуровней. Принимает значения, равные N-1.

3) магнитное квантовое число(m(l)) — отвечает за форму орбитали и принимает значения от -l до l, включая l=0. Также это число отвечает за число возможных положений орбитали в пространстве.

Эти положения изображаются в виде так называемых квантовых ячеек, и их количество равно числу положений.

4) Спиновое число (m(s)) — отвечает за направление вращения электрона (спин). Принимает значения +1/2 или -1/2.

Переходим непосредственно к заполнению атома электронами. Оно выполняется по следующим правилам:

1) Принцип наименьшей энергии — сначала заполняются уровни, энергия которых минимальна. 1s

2) Правило Гунда — суммарный спин электронов должен быть максимальным. Высчитать его просто: нужно сложить спин всех электронов. Стрелка, направленная вверх обозначает спин +1/2, вниз — -1/2.

3) Принцип Паули — в атоме не може быть двух электронов, обладающих одинаковым набором квантовых чисел.

Источник

Понравилась статья? Поделить с друзьями:
  • Как найти картинку скользко
  • Как найти ставку процента в банке
  • Как составить пароль для входа примеры
  • Как найти восьмую часть числа ответ
  • Как найти линейную скорость в физике