Как составить модель корреляционной зависимости

Корреляции для начинающих

Время на прочтение
6 мин

Количество просмотров 207K

Апдейт для тех, кто сочтет статью полезной и занесет в избранное. Есть приличный шанс, что пост уйдет в минуса, и я буду вынужден унести его в черновики. Сохраняйте копию!

Краткий и несложный материал для неспециалистов, рассказывающий в наглядной форме о различных методах поиска регрессионных зависимостей. Это все и близко не академично, зато надеюсь что понятно. Прокатит как мини-методичка по обработке данных для студентов естественнонаучных специальностей, которые математику знают плохо

, впрочем как и автор

. Расчеты в Матлабе, подготовка данных в Экселе — так уж повелось в нашей местности

Введение

Зачем это вообще надо? В науке и около нее очень часто возникает задача предсказания какого-то неизвестного параметра объекта исходя из известных параметров этого объекта (предикторов) и большого набора похожих объектов, так называемой учебной выборки. Пример. Вот мы выбираем на базаре яблоко. Его можно описать такими предикторами: красность, вес, количество червяков. Но как потребителей нас интересует вкус, измеренный в попугаях по пятибалльной шкале. Из жизненного опыта нам известно, что вкус с приличной точностью равен 5*красность+2*вес-7*количество червяков. Вот про поиск такого рода зависимостей мы и побеседуем. Чтобы обучение пошло легче, попробуем предсказать вес девушки исходя из ее 90/60/90 и роста.

Исходные данные

В качестве объекта исследования возьму данные о параметрах фигуры девушек месяца Плейбоя. Источник — www.wired.com/special_multimedia/2009/st_infoporn_1702, слегка облагородил и перевел из дюймов в сантиметры. Вспоминается анекдот про то, что 34 дюйма — это как два семнадцатидюймовых монитора. Также отделил записи с неполной информацией. При работе с реальными объектами их можно использовать, но сейчас они нам только мешают. Зато их можно использовать для проверки адекватности полученных результатов. Все данные у нас непрерывные, то есть грубо говоря типа float. Они приведены к целым числам только чтобы не загромождать экран. Есть способы работы и с дискретными данными — в нашем примере это например может быть цвет кожи или национальность, которые принимают одно из фиксированного набора значений. Это больше имеет отношение к методам классификации и принятия решений, что тянет еще на один мануал. Data.xls В файле два листа. На первом собственно данные, на втором — отсеянные неполные данные и набор для проверки нашей модели.

Обозначения

W — вес реальный
W_p — вес, предсказанный нашей моделью
S — бюст
T — талия
B — бедра
L — рост
E — ошибка модели

Как оценить качество модели?

Задача нашего упражнения — получить некую модель, которая описывает какой-либо объект. Способ получения и принцип работы конкретной модели нас пока не волнует. Это просто функция f(S, T, B, L), которая выдает вес девушки. Как понять, какая функция хорошая и качественная, а какая не очень? Для этого используется так называемая fitness function. Самая классическая и часто используемая — это сумма квадратов разницы предсказанного и реального значения. В нашем случае это будет сумма (W_p — W)^2 для всех точек. Собственно, отсюда и пошло название «метод наименьших квадратов». Критерий не лучший и не единственный, но вполне приемлемый как метод по умолчанию. Его особенность в том, что он чувствителен по отношению к выбросам и тем самым, считает такие модели менее качественными. Есть еще всякие методы наименьших модулей итд, но сейчас нам это пока не надо.

Простая линейная регрессия

Самый простой случай. У нас одна переменная-предиктор и одна зависимая переменная. В нашем случае это может быть например рост и вес. Нам надо построить уравнение W_p = a*L+b, т.е. найти коэффициенты a и b. Если мы проведем этот расчет для каждого образца, то W_p будет максимально совпадать с W для того же образца. То есть у нас для каждой девушки будет такое уравнение:
W_p_i = a*L_i+b
E_i = (W_p-W)^2

Общая ошибка в таком случае составит sum(E_i). В результате, для оптимальных значений a и b sum(E_i) будет минимальным. Как же найти уравнение?

Матлаб

Для упрощения очень рекомендую поставить плагин для Excel под названием Exlink. Он в папке matlab/toolbox/exlink. Очень облегчает пересылку данных между программами. После установки плагина появляется еще одно меню с очевидным названием, и автоматически запускается Матлаб. Переброс информации из Экселя в Матлаб запускается командой «Send data to MATLAB», обратно, соответственно, — «Get data from MATLAB». Пересылаем в Матлаб числа из столбца L и отдельно из W, без заголовков. Переменные назовем так же. Функция расчета линейной регрессии — polyfit(x,y,1). Единица показывает степень аппроксимационного полинома. У нас он линейный, поэтому единица. Получаем наконец-то коэффициенты регрессии: regr=polyfit(L,W,1). a мы можем получить как regr(1), b — как regr(2). То есть мы можем получить наши значения W_p: W_p=L*repr(1)+repr(2). Вернем их назад в Эксель.

Графичек


Мда, негусто. Это график W_p(W). Формула на графике показывает связь W_p и W. В идеале там будет W_p = W*1 + 0. Вылезла дискретизация исходных данных — облако точек клетчатое. Коэффициент корреляции ни в дугу — данные слабо коррелированы между собой, т.е. наша модель плохо описывает связь веса и роста. По графику это видно как точки, расположенные в форме слабо вытянутого вдоль прямой облака. Хорошая модель даст облако растянутое в узкую полосу, еще более плохая — просто хаотичный набор точек или круглое облако. Модель необходимо дополнить. Про коэффициент корреляции стоит рассказать отдельно, потому что его часто используют абсолютно неправильно.

Расчет в матричном виде

Можно и без всяких полифитов справиться с построением регрессии, если слегка дополнить столбец с величинами роста еще одним столбцом, заполненным единицами: L(:,2)=1. Двойка показывает номер столбца, в который пишутся единицы. Тогда коэффициенты регрессии можно будет найти по такой формуле: repr=inv(L'*L)*L'*W. И обратно, найти W_p: W_p=L*repr. Когда осознаешь магию матриц, пользоваться функциями становится неприкольно. Единичный столбец нужен для расчета свободного члена регрессии, то есть просто слагаемого без умножения на параметр. Если его не добавлять, то в регрессии будет всего один член: W_p=a*L. Достаточно очевидно, что она будет хуже по качеству, чем регрессия с двумя слагаемыми. В целом, избавляться от свободного члена надо только в том случае, если он точно не нужен. По умолчанию он все-таки присутствует.

Мультилинейная регрессия

В русскоязычной литературе прошлых лет упоминается как ММНК — метод множественных наименьших квадратов. Это расширение метода наименьших квадратов для нескольких предикторов. То есть у нас в дело идет не только рост, но и все остальные, так сказать, горизонтальные размеры. Подготовка данных точно такая же: обе матрицы в матлаб, добавление столбца единиц, расчет по той же самой формуле. Для любителей функций есть b = regress(y,X). Эта функция также требует добавления столбца единиц. Повторяем расчет по формуле из раздела про матрицы, пересылаем в Эксель, смотрим.

Попытка номер два


А так получше, но все равно не очень. Как видим, клетчатость осталась только по горизонтали. Никуда не денешься, исходные веса были целыми числами в фунтах. То есть после конверсии в килограммы они ложатся на сетку с шагом около 0.5. Итого финальный вид нашей модели:

W_p = 0.2271*S + 0.1851*T + 0.3125*B + 0.3949*L — 72.9132

Объемы в сантиметрах, вес в кг. Поскольку у нас все величины кроме роста в одних единицах измерения и примерно одного порядка по величине (кроме талии), то мы можем оценить их вклады в общий вес. Рассуждения примерно в таком духе: коэффициент при талии самый маленький, равно как и сами величины в сантиметрах. Значит, вклад этого параметра в вес минимален. У бюста и особенно у бедер он больше, т.е. сантиметр на талии дает меньшую прибавку к массе, чем на груди. А больше всего на вес влияет объем задницы. Впрочем, это знает любой интересующийся вопросом мужчина. То есть как минимум, наша модель реальной жизни не противоречит.

Валидация модели

Название громкое, но попробуем получить хотя бы ориентировочные веса тех девушек, для которых есть полный набор размеров, но нет веса. Их 7: с мая по июнь 1956 года, июль 1957, март 1987, август 1988. Находим предсказанные по модели веса: W_p=X*repr

Что ж, по крайней мере в текстовом виде выглядит правдоподобно. А насколько это соответствует реальности — решать вам

Применимость

Если вкратце — полученная модель годится для объектов, подобных нашему набору данных. То есть по полученным корреляциям не стоит считать параметры фигур женщин с весом 80+, возрастом, сильно отличающимся от среднего по больнице итд. В реальных применениях можно считать, что модель пригодна, если параметры изучаемого объекта не слишком отличаются от средних значений этих же параметров для исходного набора данных. Могут возникнуть (и возникнут) проблемы, если у нас предикторы сильно коррелированы между собой. То есть, например это рост и длина ног. Тогда коэффициенты для соответствующих величин в уравнении регрессии будут определены с малой точностью. В таком случае надо выбросить один из параметров, или воспользоваться методом главных компонент для снижения количества предикторов. Если у нас малая выборка и/или много предикторов, то мы рискуем попасть в переопределенность модели. То есть если мы возьмем 604 параметра для нашей выборки (а в таблице всего 604 девушки), то сможем аналитически получить уравнение с 604+1 слагаемым, которое абсолютно точно опишет то, что мы в него забросили. Но предсказательная сила у него будет весьма невелика. Наконец, далеко не все объекты можно описать мультилинейной зависимостью. Бывают и логарифмические, и степенные, и всякие сложные. Их поиск — это уже совсем другой вопрос.

Планы на будущее

Если хорошо пойдет, то постараюсь в том же стиле изложить метод главных компонент для снижения размерности данных, регрессию на главные компоненты, метод PLS, начала кластерного анализа и методов классификации объектов. Если хабрапублика не очень хорошо примет, то буду стараться учесть замечания. Если вообще никак — то забью на просвещение ширнармасс вообще, мне и своих студентов хватит. До новых встреч!

Прежде чем приступить к изучению новой
темы, давайте повторим некоторые важные моменты из прошлых уроков.

Итак, в течение последних нескольких
уроков мы с вами изучаем «Информационное моделирование». Как вы помните, в информационной
модели отражаются знания человека об объекте моделирования. А информационная
модель
– это описание в той или иной форме объекта моделирования.

Математические модели также относятся к
информационным моделям. Математической моделью называется совокупность
математических соотношений, уравнений, неравенств, описывающих основные
закономерности изучаемого объекта, процесса или явления.

Статистика
— это род практической деятельности людей цель, которой сбор, обработка и
анализ информации.

Также на прошлых уроках мы научились
строить математическую модель по статистическим данным, а затем делать прогноз
по полученной модели методом вычислений.

Есть два способа прогнозирования по
регрессионной модели.

Первый способ.
Если прогноз рассчитывается в пределах экспериментальных значений независимой
переменной. Такой прогноз называется восстановлением значения.

Второй способ.
Если прогноз рассчитывается за пределами экспериментальных данных. Такой
прогноз называется экстраполяцией.

То есть на прошлых уроках, при построении
регрессионной математической модели, мы с вами точно знали, что зависимость
между двумя факторами существует.

А что делать, если нужно рассмотреть и построить
модель по сложно системе? В которой на один важный фактор влияют многие другие
факторы?

Сегодня на уроке мы с вами будем
разбираться со следующими вопросами:

·       Что
такое корреляционная зависимость?

·       Какие
возможности даёт корреляционный анализ?

·       А
также разберёмся, какие задачи можно решать с помощью корреляционного анализа.

Важнейшей целью статистики является
изучение объективно существующих связей между явлениями.
Например,
на прошлом уроке мы рассматривали связь между содержанием угарного газа в
воздухе и числом заболевших людей астмой.

В ходе статистического исследования связей
между явлениями, необходимо показать причинно-следственные зависимости между
показателями, т.е. насколько изменение одних показателей зависит от изменения
других показателей. В нашем примере как влияет увеличение содержания угарного
газа в воздухе на число больных астмой.

Существует два вида зависимостей. Вам уже
хорошо знакомая — функциональная (если определённому значению переменной «x»
соответствует строго определённое значение «y»).

Помните, мы рассматривали зависимость пути
от времени.

Однако далеко не всегда зависимость может
быть простой (или относительно простой). Часто случается так, что данному
значению одной величины соответствует целый ряд значений другой, причём при
изменении данной величины меняются и другие значения, а также и его среднее.

В таких случаях говорят о корреляционной
зависимости.

Корреляционная зависимость
– это зависимость между величинами, каждая из которых подвергается
неконтролируемому разбросу.

Образцовым примером такой зависимости
является связь между ростом отцов и детей. Конечно, у высокого отца может быть
низкорослый сын, а у низкорослого — высокий, но в большинстве случаев
прослеживается склонность увеличения роста детей с увеличением роста отцов.

Также примерами корреляционных
зависимостей являются: зависимость между количеством удобрений и урожайностью,
спросом на товары и ценой на рынке. Зависимость стажа работы на
производительность труда рабочего.

Естественно, стаж влияет на
производительность, но он не может определять её полностью, так как на
производительность также влияют квалификация и образование рабочего, возраст и
его состояние здоровья, да и другие факторы.

То есть можно сделать вывод, что стаж
далеко не единственный фактор производительности. И связь между этими
переменными – корреляционная.

Раздел математической статистики, который
исследует корреляционные зависимости, называется корреляционным анализом.

Пусть важным свойством какой-то сложной
системы является фактор А.

На А могут оказывать влияние многие другие
факторы, например, B, C
и D.

При изучении корреляционных зависимостей
мы рассмотрим два вида задач.

Первый вид
– Оказывает ли фактор В какое-либо заметное постоянное влияние на фактор А?

И второй – Какие из
факторов B, C
или D оказывают наибольшее
влияние на фактор А?

Рассмотрим пример сложной системы на
предприятии: здесь факторам А будет производительность труда
рабочих, то есть количество продукции, выпущенной работниками за единицу
времени.

Фактором B
рассмотрим так называемую «Энерговооружённость труда», то есть
количество всех видов энергии (электрической, тепловой и других), приходящееся
на какую-либо производственную единицу.

Специалисты по статистике знают, что для
того, чтобы выявить зависимость от какого-то определённого фактора, нужно
максимально исключить влияние других факторов. Иначе говоря, мы будем
рассматривать предприятия, которые занимаются выпуском подобной продукции, но с
разной энерговооружённостью. То есть предприятие может быть прибыльным или
убыточным. Иметь широкий рынок сбыта продукции, или узкий.

Будем рассматривать производительность
труда в тысячах рублей и энерговооружённость в киловаттах, в расчёте на одного
работающего, для 14 предприятий.

Напомним, статистические данные являются
относительными или усреднёнными.

Итак, перед нами таблица сбора данных по
14 предприятиям. Построим по этим данным точечную диаграмму. Для этого выделяем
диапазон ячеек А2 B 15. На вкладке Вставка в
разделе Диаграммы выбираем тип диаграммы – точечная, вид – точечная с
маркерами.

Обратите внимание, значения обеих величин:
производительность труда и энерговооружённость – имеют существенный разброс. И
кажется, что никакой взаимосвязи между ними нет, но она вполне может быть.

Мы получили графическое представление
корреляционной зависимости.

Корреляционный анализ
изучает вероятностную зависимость каждой из величин, при которой изменение
одной величины ведёт к изменению распределения другой, а также меру такой
зависимости.

Оценку корреляции величин начинают с
высказывания гипотезы о возможном характере зависимости между их значениями.

Чаще всего считают, что это линейная
зависимость. Тогда мера корреляционной зависимости – это величина, которая
называется коэффициентом корреляции.

Коэффициент корреляции (обычно обозначают
греческой буквой ƍ) характеризует величину отражающую степень взаимосвязи
двух переменных между собой.

Он может изменяться в пределах от -1 до
+1. (здесь и далее читать: единица)

Если ƍ равно нулю то, это говорит об
отсутствии корреляционных связей между величинами. Причём, если ƍ близко к
1 (или -1) то говориться о сильной корреляции, а если близко к 0, то о слабой.

Если ƍ близко к + 1, то это означает
что при увеличении (или уменьшении) значений одной переменной будет
закономерное увеличение (или уменьшение) другой переменной т.е. взаимосвязи
типа увеличение-увеличение (или уменьшение-уменьшение).

Если ƍ близко к — 1, то это означает,
что при увеличении (или уменьшении) значений одной переменной будет
закономерное уменьшение (или увеличение) другой переменной т.е. взаимосвязи
типа увеличение-уменьшение (уменьшение-увеличение).

Для построения корреляционных
зависимостей, а также для вычисления коэффициента корреляции ƍ удобно
пользоваться табличным процессором Excel.

В Excel функция вычисления коэффициента
корреляции называется CORREL
и входит в группу статистических функций.

Давайте вычислим коэффициент корреляции
для нашей зависимости.

Поместим курсор в любую свободную ячейку, например,
B 17. Теперь на вкладке Формулы в
разделе Библиотека функций нажимаем вставить функцию. В открывшемся окне
мастера функций введём в окошко Поиск функции название функции CORREL
и нажимаем поиск. Далее в окошке Выберите функцию нажимаем два раза мышкой по
необходимой нам функции. В открывшемся окне функции CORREL
в окошко Массив 1 укажем диапазон значений для фактора А, то есть А2 А15. В
окошко Массив 2 укажем диапазон значений для фактора B,
то есть B 2 B
15. И нажимаем Ок.

Теперь в ячейке Бэ 17 мы увидим ответ: ƍ
равно ноль целых восемьсот девяносто восемь тысяч триста девяносто четыре
миллионных (0, 898394)

Эта величина находится ближе к плюс
единице, следовательно, можно сделать вывод, что корреляция сильная.

Наличие зависимости между производительность
труда рабочих и энерговооружённостью нетрудно понять. Рабочие с удовольствием
будут работать на предприятии, где сделан ремонт, обновлено и исправно рабочее
оборудование, в помещениях хорошее освещение. На таких предприятиях люди работают
легко и с удовольствием и, естественно, производительность их труда будет выше.

А сейчас давайте повторим главные моменты
из сегодняшнего урока:

·       Корреляционная
зависимость
– это зависимость между величинами,
каждая из которых подвергается неконтролируемому разбросу.

·       Раздел
математической статистики, который исследует корреляционные зависимости,
называется корреляционным анализом.

·       Коэффициент
корреляции
ƍ, характеризует величину отражающую степень
взаимосвязи двух переменных между собой. Он может изменяться в пределах от -1
до +1.

Лекция № 24 МОДЕЛИРОВАНИЕ
КОРРЕЛЯЦИОННЫХ ЗАВИСИМОСТЕЙ

ПЛАН

1.    
Моделирование
корреляционных зависимостей

    а) Корреляционные зависимости.

         б)  Корреляционный анализ.

         в) Коэффициент  корреляции.

1 Моделирование
корреляционных зависимостей

Регрессионные
математические модели строятся в тех случа­ях, когда известно, что зависимость
между двумя факторами су­ществует и требуется получить ее математическое
описание. А сейчас мы рассмотрим задачи другого рода. Пусть важной харак­теристикой
некоторой сложной системы является фактор А.  На него могут оказывать влияние одновременно
многие другие фак­торы: В, С, D и т. д.

Мы рассмотрим два типа
задач.

1) Оказывает ли фактор В
какое-либо заметное регулярное вли­яние на фактор А?

2) Какие из факторов В,
С, D и т. д. оказывают наибольшее влияние на фактор А?

В качестве примера
сложной системы будем рассматривать школу. Пусть для первого типа задач
фактором А является сред­няя успеваемость учащихся школы, фактором В —
финансовые расходы школы на хозяйственные нужды : ремонт здания, обнов­ление
мебели, эстетическое оформление помещения и т. п. Здесь влияние фактора В на
фактор А не очевидно. Наверное, гораздо сильнее на успеваемость влияют другие причины
: уровень квали­фикации учителей, контингент учащихся, уровень технических
средств обучения и др.

Специалисты по статистике
знают, что для того, чтобы вы­ явить зависимость от какого-то определенного
фактора, нужно максимально исключить влияние других факторов. Проще говоря,

собирая информацию из разных
школ, нужно выбирать такие школы, в которых приблизительно одинаковый
контингент учени­ков, квалификация учителей и пр., но хозяйственные расходы раз­ные
(у одних школ могут быть богатые спонсоры, у других — нет).

Итак, пусть хозяйственные
расходы школы выражаются ко­личеством рублей, отнесенных к числу учеников в
школе (руб. /чел.), потраченных за определенный период времени (на­ пример, за
последние 5 лет). Успеваемость же пусть оценивается средним баллом учеников школы
по результатам окончания по­следнего учебного года. Еще раз обращаем ваше
внимание на то, что в статистических расчетах обычно используются относитель­ные
и усредненные величины.

Итоги сбора данных по 20
школам, введенные в электронную таблицу, представлены на рис.3.7. На рис.3.8
приведена точеч­ная диаграмма, построенная по этим данным.

Рис. 3.7.
Статистические данные

Рис. 3.8.
Точечная диаграмма

Значения обеих величин:
финансовых затрат и успеваемости учеников — имеют значительный разброс и, на
первый взгляд, взаимосвязи между ними не видно. Однако она вполне может су­ществовать.

Зависимости между
величинами, каждая из которых подвергается не контролируемому полностью
разбросу, называются корреляционными зависимостями.

Раздел математической
статистики, который исследует такие зависимости, называется корреляционным
анализом
. Корреляци­онный анализ изучает усредненный закон поведения каждой
из величин в зависимости от значений другой величины, а также меру такой
зависимости.

Оценку корреляции величин
начинают с высказывания гипотезы о возможном характере зависимости между их
значениями. Чаще всего допускают наличие линейной зависимости. В таком случае
мерой корреляционной зависимости является величина, которая называется коэффициентом
корреляции
. Как и прежде, мы не будем писать формулы, по которым этот
коэффициент вы­числяется; их написать нетрудно, гораздо труднее понять, почему
они именно такие . На данном этапе достаточно знать следующее:

• коэффициент корреляции
(обычно обозначаемый греческой буквой р) есть число из диапазона от -1 до + 1;

• если это число по
модулю близко к 1, то имеет место силь­ная корреляция; если к 0, то слабая;

• близость р к + 1
означает, что возрастанию значений одного набора соответствует возрастание
значений другого набора, близость р к -1 означает, что возрастанию значений
одного набора соответствует убывание значений другого набора;

• значение р легко найти
с помощью Excel, так как в эту про­ грамму встроены соответствующие формулы.

В Excel функция вычисления
коэффициента корреляции на­зывается КОРРЕЛ и входит в группу статистических
функций. Покажем, как ею воспользоваться. На том же листе Excel, где находится
таблица, представленная на рис . 3 . 7, надо установить курсор на любую
свободную ячейку и запустить функцию КОРРЕЛ. Она запросит два диапазона
значений. Укажем, соответ­ственно, В2 :В21 и С2:С21. После их ввода будет
выведен ответ: р = 0, 5002 73843 . Эта величина говорит о среднем уровне
корреля­ции.

Наличие зависимости между
хозяйственными затратами шко­лы и успеваемостью нетрудно понять. Ученики с
удовольствием ходят в чистую, красивую, уютную школу, чувствуют там себя, как
дома, и поэтому лучше учатся.

В следующем примере
проводится исследование по определе­нию зависимости успеваемости учащихся
старших классов от двух факторов: обеспеченности школьной библиотеки учебниками
и оснащения школы компьютерами. И та, и другая характеристи­ка количественно
выражается в процентах от нормы. Нормой обеспеченности учебниками является их
полный комплект, т. е. такое количество, когда каждому ученику выдаются из
библиоте­ки все нужные ему для учебы книги. Нормой оснащения компью­терами
будем считать такое их количество, при котором на каж­дых четырех
старшеклассников в школе приходится один ком­пьютер. Предполагается, что
компьютерами ученики пользуются не только на информатике, но и на других
уроках, а также во внеурочное время.

В таблице, изображенной
на рис .3.9, приведены результаты измерения обоих факторов в 11 разных школах.
Напомним, что влияние каждого фактора исследуется независимо от других (т. е.
влияние других существенных факторов должно быть приблизи­тельно одинаковым).

Рис. 3.9.
Сравнение двух корреляционных зависимостей

Для обеих зависимостей
получены коэффициенты линейной корреляции. Как видно из таблицы, корреляция
между обеспе­ченностью учебниками и успеваемостью сильнее, чем корреляция жду
компьютерным обеспечением и успеваемостью (хотя и тот, и другой коэффициенты
корреляции не очень большие). Отсюда можно сделать вывод, что пока еще книга
остается более значи­тельным источником знаний, чем компьютер.

Система основных понятий

Содержание:

Корреляционный анализ:

Связи между различными явлениями в природе сложны и многообразны, однако их можно определённым образом классифицировать. В технике и естествознании часто речь идёт о функциональной зависимости между переменными x и у, когда каждому возможному значению х поставлено в однозначное соответствие определённое значение у. Это может быть, например, зависимость между давлением и объёмом газа (закон Бойля—Мариотта).

В реальном мире многие явления природы происходят в обстановке действия многочисленных факторов, влияния каждого из которых ничтожно, а число их велико. В этом случае связь теряет свою однозначность и изучаемая физическая система переходит не в определённое состояние, а в одно из возможных для неё состояний. Здесь речь может идти лишь о так называемой статистической связи. Статистическая связь состоит в том, что одна случайная переменная реагирует на изменение другой изменением своего закона распределения. Следовательно, для изучения статистической зависимости нужно знать аналитический вид двумерного распределения. Однако нахождение аналитического вида двумерного распределения по выборке ограниченного объёма, во-первых, громоздко, во-вторых, может привести к значительным ошибкам. Поэтому на практике при исследовании зависимостей между случайными переменными X и У обычно ограничиваются изучением зависимости между одной из них и условным математическим ожиданием другой, т.е. Корреляционный анализ - определение и вычисление с примерами решения

Вопрос о том, что принять за зависимую переменную, а что — за независимую, следует решать применительно к каждому конкретному случаю.

Знание статистической зависимости между случайными переменными имеет большое практическое значение: с её помощью можно прогнозировать значение зависимой случайной переменной в предположении, что независимая переменная примет определенное значение. Однако, поскольку понятие статистической зависимости относится к осредненным условиям, прогнозы не могут быть безошибочными.    Применяя некоторые вероятностные методы, как будет показано далее, можно вычислить вероятность того, что ошибка прогноза не выйдет за определенные границы.

Введение в корреляционный анализ

Связь, которая существует между случайными величинами разной природы, например, между величиной X и величиной Y, не обязательно является следствием прямой зависимости одной величины от другой (так называемая функциональная связь).

В некоторых случаях обе величины зависят от целой совокупности разных факторов, общих для обеих величин, в результате чего и формируется связанные друг с другом закономерности. Когда связь между случайными величинами обнаружена с помощью статистики, мы не можем утверждать, что обнаружили причину происходящего изменения параметров, скорее мы лишь увидели два взаимосвязанных следствия.

Например, дети, которые чаще смотрят по телевизору американские боевики, меньше читают. Дети, которые больше читают, лучше учатся. Не так-то просто решить, где тут причины, а где следствия, но это и не является задачей статистики.

Статистика может лишь, выдвинув гипотезу о наличии связи, подкрепить ее цифрами. Если связь действительно имеется, говорят, что между двумя случайными величинами есть корреляция. Если увеличение одной случайной величины связано с увеличением второй случайной величины, корреляция называется прямой.

Например, количество прочитанных страниц за год и средний балл (успеваемость). Если, напротив рост одной величины связано с уменьшением другой, говорят об обратной корреляции. Например, количество боевиков и количество прочитанных страниц. Взаимная связь двух случайных величин называется корреляцией, корреляционный анализ позволяет определить наличие такой связи, оценить, насколько тесна и существенна эта связь. Все это выражается количественно.

Как определить, есть ли корреляция между величинами? В большинстве случаев, это можно увидеть на обычном графике. Например, по каждому ребенку из нашей выборки можно определить величину Корреляционный анализ - определение и вычисление с примерами решения (число страниц) и Корреляционный анализ - определение и вычисление с примерами решения (средний балл годовой оценки), и записать эти данные в виде таблицы. Построить оси X и Y, а затем нанести на график весь ряд точек таким образом, чтобы каждая из них имела определенную пару координат (Корреляционный анализ - определение и вычисление с примерами решения,Корреляционный анализ - определение и вычисление с примерами решения) из нашей таблицы. Поскольку мы в данном случае затрудняемся определить, что можно считать причиной, а что следствием, не важно, какая ось будет вертикальной, а какая горизонтальной.

Корреляционный анализ - определение и вычисление с примерами решения

Корреляционный анализ - определение и вычисление с примерами решения

Если график имеет вид а), то это говорит о наличии прямой корреляции, в случае, если он имеет вид б) — корреляция обратная. Отсутствие корреляции тоже можно приблизительно определить по виду графика — это случай в).

С помощью коэффициента корреляции можно посчитать насколько тесная связь существует между величинами.

Пусть, существует корреляция между ценой и спросом на товар. Количество купленных единиц товара в зависимости от цены у разных продавцов показано в таблице: Корреляционный анализ - определение и вычисление с примерами решения Видно, что мы имеем дело с обратной корреляцией. Для количественной оценки тесноты связи используют коэффициент корреляции: Корреляционный анализ - определение и вычисление с примерами решения

Коэффициент r мы считаем в Excel, с помощью функции Корреляционный анализ - определение и вычисление с примерами решения далее статистические функции, функция KOPPEЛ. По подсказке программы вводим мышью в два соответствующих поля два разных массива (X и Y). В нашем случае коэффициент корреляции получился r = -0,988.

Надо отметить, что чем ближе к 0 коэффициент корреляции, тем слабее связь между величинами. Наиболее тесная связь при прямой корреляции соответствует коэффициенту r, близкому к +1. В нашем случае, корреляция обратная, но тоже очень тесная, и коэффициент близок к -1.

Что можно сказать о случайных величинах, у которых коэффициент имеет промежуточное значение? Например, если бы мы получили r = 0,65. В этом случае, статистика позволяет сказать, что две случайные величины частично связаны друг с другом. Скажем на 65% влияние на количество покупок оказывала цена, а на 35% — другие обстоятельства. И еще одно важное обстоятельство надо упомянуть.

Поскольку мы говорим о случайных величинах, всегда существует вероятность, что замеченная нами связь — случайное обстоятельство. Причем вероятность найти связь там, где ее нет, особенно велика тогда, когда точек в выборке мало, а при оценке Вы не построили график, а просто посчитали значение коэффициента корреляции на компьютере. Так, если мы оставим всего две разные точки в любой произвольной выборке, коэффициент корреляции будет равен или +1 или -1. Из школьного курса геометрии мы знаем, что через две точки можно всегда провести прямую линию. Для оценки статистической достоверности факта обнаруженной Вами связи полезно использовать так называемую корреляционную поправку: Корреляционный анализ - определение и вычисление с примерами решения

Связь нельзя считать случайной, если: Корреляционный анализ - определение и вычисление с примерами решения

В то время как задача корреляционного анализа — установить, являются ли данные случайные величины взаимосвязанными, цель регрессионного анализа — описать эту связь аналитической зависимостью, т.е. с помощью уравнения. Мы рассмотрим самый несложный случай, когда связь между точками на графике может быть представлена прямой линией. Уравнение этой прямой линии Корреляционный анализ - определение и вычисление с примерами решения Корреляционный анализ - определение и вычисление с примерами решения

Зная уравнение прямой, мы можем находить значение функции по значению аргумента в тех точках, где значение X известно, a Y — нет. Эти оценки бывают очень нужны, но они должны использоваться осторожно, особенно, если связь между величинами не слишком тесная. Отметим также, что из сопоставления формул для b и r видно, что коэффициент не дает значение наклона прямой, а лишь показывает сам факт наличия связи.

Определение формы связи. Понятие регрессии

Определить форму связи — значит выявить механизм получения зависимой случайной переменной. При изучении статистических зависимостей форму связи можно характеризовать функцией регрессии (линейной, квадратной, показательной и т.д.).

Условное математическое ожидание Корреляционный анализ - определение и вычисление с примерами решенияслучайной переменной К, рассматриваемое как функция х, т.е. Корреляционный анализ - определение и вычисление с примерами решения, называется

функцией регрессии случайной переменной Y относительно X (или функцией регрессии Y по X). Точно так же условное математическое ожидание

Корреляционный анализ - определение и вычисление с примерами решения случайной переменной X, т.е. Корреляционный анализ - определение и вычисление с примерами решения называется функцией регрессии случайной переменной X относительно Y (или функцией регрессии X по Y).

На примере, дискретного распределения найдём функцию регрессии.

Функция регрессии имеет важное значение при статистическом анализе зависимостей между переменными и может быть использована для прогнозирования одной из случайных переменных, если известно значение другой случайной переменной. Точность такого прогноза определяется дисперсией условного распределения.

Несмотря на важность понятия функции регрессии, возможности её практического применения весьма ограничены. Для оценки функции регрессии необходимо знать аналитический вид двумерного распределения (X, Y). Только в этом случае можно точно определить вид функции регрессии, а затем оценить параметры двумерного распределения. Однако для подобной оценки мы чаще всего располагаем лишь выборкой ограниченного объема, по которой нужно найти вид двумерного распределения (X, Y), а затем вид функции регрессии. Это может привести к значительным ошибкам, так как одну и ту же совокупность точекКорреляционный анализ - определение и вычисление с примерами решенияна плоскости можно одинаково успешно описать с помощью различных функций. Именно поэтому возможности практического применения функции регрессии ограничены. Для характеристики формы связи при изучении зависимости используют понятие кривой регрессии.

Кривой регрессии Y по X (или Y на А) называют условное среднее значение случайной переменной У, рассматриваемое как функция определенного класса, параметры которой находят методом наименьших квадратов по наблюдённым значениям двумерной случайной величины (х, у), т.е.
Корреляционный анализ - определение и вычисление с примерами решения

Аналогично определяется кривая регрессии X по Y (X на Y):

Корреляционный анализ - определение и вычисление с примерами решения

Кривую регрессии называют также эмпирическим уравнением регрессии или просто уравнением регрессии. Уравнение регрессии является оценкой соответствующей функции регрессии.

Возникает вопрос:    почему для определения кривой регрессии

используют именно условное среднееКорреляционный анализ - определение и вычисление с примерами решения Функция у(х) обладает одним замечательным свойством: она даёт наименьшую среднюю погрешность оценки прогноза. Предположим, что кривая регрессии — произвольная функция. Средняя погрешность прогноза по кривой регрессии определяется математическим ожиданием квадрата разности между измеренной величиной и вычисленной по формуле кривой регрессии, т.е. Корреляционный анализ - определение и вычисление с примерами решения. Естественно потребовать вычисления такой кривой регрессии, средняя погрешность прогноза по которой была бы наименьшей. Таковой являетсяКорреляционный анализ - определение и вычисление с примерами решения Это следует из свойств минимальности рассеивания около центра распределенияКорреляционный анализ - определение и вычисление с примерами решения

Если рассеивание вычисляется относительноКорреляционный анализ - определение и вычисление с примерами решения то средний квадрат отклонения увеличивается. Поэтому можно сказать, что кривая регрессии, выражаемая как Корреляционный анализ - определение и вычисление с примерами решения минимизирует среднеквадратическую погрешность прогноза величины Y по X.

Основные положения корреляционного анализа

Статистические связи между переменными можно изучать методом корреляционного и регрессионного анализа. С помощью этих методов решают разные задачи; требования, предъявляемые к исследуемым переменным, в каждом методе различны.

Основная задача корреляционного анализа — выявление связи между случайными переменными путём точечной и интервальной оценки парных коэффициентов корреляции, вычисления и проверки значимости множественных коэффициентов корреляции и детерминации, оценки частных коэффициентов корреляции. Корреляционный анализ позволяет также оценить функцию регрессии одной случайной переменной на другую.

Предпосылки корреляционного анализа следующие:  

  •  1) переменные величины должны быть случайными;
  • 2) случайные величины должны иметь совместное нормальное распределение.

Рассмотрим простейший случай корреляционного анализа — двумерную модель. Введём основные понятия и опишем принцип проведения корреляционного анализа. Пусть X и Y — случайные переменные, имеющие совместное нормальное распределение. В этом случае связь между X и Y можно описать коэффициентом корреляции p;. Этот коэффициент определяется как ковариация между X и Y, отнесённая к их среднеквадратическим отклонениям:
Корреляционный анализ - определение и вычисление с примерами решения(1.1)

Оценкой коэффициента корреляции является выборочный коэффициент корреляции r. Для его нахождения необходимо знать оценки следующих параметров:   Корреляционный анализ - определение и вычисление с примерами решения.    Наилучшей оценкой

математического ожидания является среднее арифметическое, т.е.Корреляционный анализ - определение и вычисление с примерами решения

Оценкой дисперсии служит выборочная дисперсия, т.е.

Корреляционный анализ - определение и вычисление с примерами решения
Тогда выборочный коэффициент корреляции
Корреляционный анализ - определение и вычисление с примерами решения

Коэффициент р называют также парным коэффициентом корреляции, а r— выборочным парным коэффициентом корреляции.

При совместном нормальном законе распределения случайных величин X и Y, используя рассмотренные выше параметры распределения и коэффициент корреляции, можно получить выражение для условного математического ожидания, т. е, записать выражение для функции регрессии одной случайной величины на другую. Так, функция регрессии Y на X имеет вид:

Корреляционный анализ - определение и вычисление с примерами решения

функция регрессии X на Y — следующий вид:

Корреляционный анализ - определение и вычисление с примерами решения
ВыраженияКорреляционный анализ - определение и вычисление с примерами решения — называют коэффициентами регрессии.

Подставив в (1.3) соответствующие оценки параметров, получим уравнения регрессии, график которых — прямая линия, проходящая через точку Корреляционный анализ - определение и вычисление с примерами решенияЗапишем уравнение регрессии у на х и х на у:
Корреляционный анализ - определение и вычисление с примерами решения
Таким образом, в корреляционном анализе на основе оценок параметров двумерной нормальной совокупности получаем оценки тесноты связи между случайными переменными и можем оценить регрессию одной переменной на другую. Особенностью корреляционного анализа является строго линейная зависимость между переменными. Это обусловливается исходными предпосылками. На практике корреляционный анализ можно применять для обработки наблюдений, сделанных на предприятиях при нормальных условиях работы, если случайные изменения свойства сырья или других факторов вызывают случайные изменения свойств продукции.

Свойства коэффициента корреляции

Коэффициент корреляции является одним из самых распространенных способов измерения связи между случайными переменными. Рассмотрим некоторые свойства этого коэффициента.

Теорема 1. Коэффициент корреляции принимает значения на интервале (-1, +1).

Доказательство. Докажем справедливость утверждения для случая дискретных переменных. Запишем явно неотрицательное выражение:
Корреляционный анализ - определение и вычисление с примерами решения
Возведём выражение под знаком суммы в квадрат:

Корреляционный анализ - определение и вычисление с примерами решения

Первое и третье из слагаемых равны единице, поскольку из определения дисперсии следует, что Корреляционный анализ - определение и вычисление с примерами решения

Таким образом, окончательно получаемКорреляционный анализ - определение и вычисление с примерами решения

Если коэффициент корреляции положителен, то связь между переменными также положительна и значения переменных увеличиваются или уменьшаются одновременно. Если коэффициент корреляции имеет отрицательное значение, то при увеличении одной переменной уменьшается другая.

Приведём следующее важное свойство коэффициента корреляции: коэффициент корреляции не зависит от выбора начала отсчёта и единицы измерения, т. е. от любых постоянных Корреляционный анализ - определение и вычисление с примерами решения таких, чтоКорреляционный анализ - определение и вычисление с примерами решения т.е.

Корреляционный анализ - определение и вычисление с примерами решения

Таким образом, переменные X и У можно уменьшать или увеличивать в а раз, а также вычитать или прибавлять к значениям X и У одно и то же число b. В результате величина коэффициента корреляции не изменится.

Если коэффициент корреляции Корреляционный анализ - определение и вычисление с примерами решения то случайные переменные некоррелированы. Понятие некоррелированности не следует смешивать с понятием независимости, независимые величины всегда некоррелированы. Однако обратное утверждение невероятно: некоррелированные величины могут быть зависимы и даже функционально, однако эта связь не линейная.

Выборочный коэффициент корреляции вычисляют по формуле (1.2). Имеется несколько модификаций этой формулы, которые удобно использовать при той или иной форме представления исходной информации. Так, при малом числе наблюдений выборочный коэффициент корреляции удобно вычислять по формуле

Корреляционный анализ - определение и вычисление с примерами решения

Если информация имеет вид корреляционной таблицы (см. п 1.5), то удобно пользоваться формулой

Корреляционный анализ - определение и вычисление с примерами решения

гдеКорреляционный анализ - определение и вычисление с примерами решения — суммарная частота наблюдаемого значенияпризнака х при всех значениях Корреляционный анализ - определение и вычисление с примерами решения — суммарная частота наблюдаемого значения признака упри всех значениях х; Корреляционный анализ - определение и вычисление с примерами решения — частота появления пары признаков (x, у).

Из формулы (1.2) очевидно, что Корреляционный анализ - определение и вычисление с примерами решения т.е. величина выборочного коэффициента корреляции не зависит от порядка следования переменных, поэтому обычно пишут просто r.

Поле корреляции. Вычисление оценок параметров двумерной модели

На практике для вычисления оценок параметров двумерной модели удобно использовать корреляционную таблицу и поле корреляции. Пусть, например, изучается зависимость между объёмом выполненных работ (у) и накладными расходами (x). Имеем выборку из генеральной совокупности, состоящую из 150 пар переменных Корреляционный анализ - определение и вычисление с примерами решения   Считаем, что предпосылки корреляционного анализа выполнены.

Пару случайных чисел   Корреляционный анализ - определение и вычисление с примерами решения можно изобразить графически в виде точки с координатамиКорреляционный анализ - определение и вычисление с примерами решения. Аналогично можно изобразить весь набор пар случайных чисел (всю выборку). Однако при большом объёме выборки это затруднительно. Задача упрощается, если выборку упорядочить, т.е. переменные сгруппировать. Сгруппированные ряды могут быть как дискретными, так и интервальными.

По осям координат откладывают или дискретные значения переменных, или интервалы их изменения. Для интервального ряда наносят координатную сетку. Каждую пару переменных из данной выборки изображают в виде точки с соответствующими координатами для дискретного ряда или в виде точки в соответствующей клетке для интервального ряда. Такое изображение корреляционной зависимости называют полем корреляции. На рис. 1.1 изображено поле корреляции для выборки, состоящей из 150 пар переменных (ряд интервальный).
 

Корреляционный анализ - определение и вычисление с примерами решения

Если вычислить средние значения у в каждом интервале изменения х [обозначим их Корреляционный анализ - определение и вычисление с примерами решения)], нанести эти точки на рис. 1.1 и соединить между собой, то получим ломаную линию, по виду которой можно судить, как в среднем меняются у в зависимости от изменения х. По виду этой линии можно также сделать предположение о форме связи между переменными. В данном случае ломаную линию можно аппроксимировать прямой линией, так как она достаточно хорошо приближается к ней. По выборочным данным можно построить также корреляционную табл. 1.1.

Корреляционный анализ - определение и вычисление с примерами решения

Корреляционную таблицу, как и поле корреляции, строят по
сгруппированному ряду (дискретному или интервальному). Табл. 1.1 построена на основе интервального ряда. В первой строке и первом столбце таблицы помещают интервалы изменения х и у и значения середин интервалов. Так, например, 1,5 — середина интервала изменения *=1-2,15— середина интервала изменения у= 10-20. В ячейки, образованные пересечением строк и столбцов, заносят частоты попадания пар значений (л у) в соответствующие интервалы по х и у. Например, частота 4 означает, что в интервал изменения у от 10 до 20 попало 4 пары наблюдавшихся значений. Эти частоты обозначают Корреляционный анализ - определение и вычисление с примерами решения В 9-й строке и 10-м столбце находятся значения Корреляционный анализ - определение и вычисление с примерами решения — суммы Корреляционный анализ - определение и вычисление с примерами решенияпо соответствующим столбцу и строке.

Как будет показано в дальнейшем, корреляционно таблицей удобно пользоваться при вычислении коэффициентов корреляций и параметров уравнений регрессии.

Корреляционная таблица построена на основе интервального ряда, поэтому для оценок параметров воспользуемся формулами гл. 1 для вычисления средней арифметической и дисперсии. Имеем:

Корреляционный анализ - определение и вычисление с примерами решения(1.6)
 

Проверка гипотезы о значимости коэффициента корреляции

На практике коэффициент корреляции р обычно неизвестен. По результатам выборки может быть найдена его точечная оценка — выборочный коэффициент корреляции r.

Равенство нулю выборочного коэффициента корреляции ещё не свидетельствует о равенстве нулю самого коэффициента корреляции, а следовательно, о некоррелированности случайных величин X и Y. Чтобы выяснить, находятся ли случайные величины в корреляционной зависимости, нужно проверить значимость выборочного коэффициента корреляции г, т.е. установить, достаточна ли его величина для обоснованного вывода о наличии корреляционной связи. Для этого проверяют нулевую гипотезу Корреляционный анализ - определение и вычисление с примерами решения. Предполагается наличие двумерного нормального распределения случайных переменных; объём выборки может быть любым. ВычисляютКорреляционный анализ - определение и вычисление с примерами решения
которая имеет распределение Стьюдента с k=n-2
степенями свободы. Для проверки нулевой гипотезы по уровню значимости а и числу степеней свободы к находят по таблицам распределения Стьюдента (t-распределение; см. табл. 1 приложения) критическое значение Корреляционный анализ - определение и вычисление с примерами решения удовлетворяющее условиюКорреляционный анализ - определение и вычисление с примерами решения, то нулевую гипотезу об отсутствии корреляционной связи между переменными X и Y следует отвергнуть. Переменные считают зависимыми. ПриКорреляционный анализ - определение и вычисление с примерами решения нет оснований отвергать нулевую гипотезу.

В случае значимого выборочного коэффициента, корреляции есть смысл построить доверительный интервал для коэффициента корреляций р. Однако для этого нужно знать закон распределения выборочного коэффициента корреляции r.

Плотность вероятности выборочного коэффициента корреляции имеет сложный вид, поэтому прибегают к специально подобранным функциям от выборочного коэффициента корреляции, которые сводятся к хорошо изученным распределениям, например нормальному или Стьюдента. Чаще всего для подбора функции применяют преобразование Фишера. Вычисляют статистику:
Корреляционный анализ - определение и вычисление с примерами решения
где r=thz — гиперболический тангенс от z.

Распределение статистики z хорошо аппроксимируется нормальным распределением с параметрами
Корреляционный анализ - определение и вычисление с примерами решения

В этом, случае доверительный интервал для римеетвидКорреляционный анализ - определение и вычисление с примерами решения Величины Корреляционный анализ - определение и вычисление с примерами решениянаходят по таблицам по следующим значениям:

Корреляционный анализ - определение и вычисление с примерами решения

где Корреляционный анализ - определение и вычисление с примерами решения— нормированная функция Лапласа для q % доверительного интервала (см. табл. 2 приложений значение функции Корреляционный анализ - определение и вычисление с примерами решения

Если коэффициент корреляции значим, то коэффициенты регрессии также значимо отличаются от нуля, а интервальные оценки для них можно получить по следующим формулам:

Корреляционный анализ - определение и вычисление с примерами решения

где Корреляционный анализ - определение и вычисление с примерами решения имеет распределение Стьюдента с k=n—2 степенями свободы.
 

Корреляционное отношение

На практике часто предпосылки корреляционного анализа нарушаются: один из признаков оказывается величиной не случайной, или признаки не имеют совместного нормального распределения. Однако статистическая зависимость между ними существует. Для изучения связи между признаками в этом случае существует общий показатель зависимости признаков, основанный на показателе изменчивости — общей (или полной) дисперсии.

Полной называется дисперсия признака относительно его математического ожидания. Так, для признака Y это Корреляционный анализ - определение и вычисление с примерами решенияДисперсию Корреляционный анализ - определение и вычисление с примерами решения можно разложить на две составляющие, одна из которых характеризует влияние фактора X на Y, другая — влияние прочих факторов.

Очевидно, чем меньше влияние прочих факторов, тем теснее связь, тем более приближается она к функциональной. Представим Корреляционный анализ - определение и вычисление с примерами решения в следующем виде:

Корреляционный анализ - определение и вычисление с примерами решения

Первое слагаемое обозначимКорреляционный анализ - определение и вычисление с примерами решенияЭто дисперсия функции регрессии относительно математического ожидания признака (в данном случае признака У);.она измеряет влияние признака X на Y. Второе слагаемое обозначимКорреляционный анализ - определение и вычисление с примерами решения. Это дисперсия признака Y относительно функции регрессии. Её называют также средней из условных дисперсий или остаточной дисперсией Корреляционный анализ - определение и вычисление с примерами решения измеряет влияние на Y прочих факторов.

Покажем, что Корреляционный анализ - определение и вычисление с примерами решения действительно можно разложить на два таких слагаемых:

Корреляционный анализ - определение и вычисление с примерами решения

Для простоты полагаем распределение дискретным. Имеем Корреляционный анализ - определение и вычисление с примерами решения

так как при любом х справедливо равенство

Корреляционный анализ - определение и вычисление с примерами решения

Третье слагаемое в равенстве (1.10) равно нулю, поэтому равенство (1.9) справедливо. Поскольку второе слагаемое в равенстве (1.9) оценивает влияние признака X на Y, то его можно использовать для оценки тесноты связи между X и Y. Тесноту связи удобно оценивать в единицах общей дисперсии Корреляционный анализ - определение и вычисление с примерами решения т.е. рассматривать отношениеКорреляционный анализ - определение и вычисление с примерами решения. Эту величину обозначают Корреляционный анализ - определение и вычисление с примерами решения и называют теоретическим корреляционным отношением. Таким образом,

Корреляционный анализ - определение и вычисление с примерами решения
Разделив обе части равенства (1.9) на Корреляционный анализ - определение и вычисление с примерами решения получим
Корреляционный анализ - определение и вычисление с примерами решения
Из последней формулы имеем
Корреляционный анализ - определение и вычисление с примерами решения

Поскольку Корреляционный анализ - определение и вычисление с примерами решениятак как Корреляционный анализ - определение и вычисление с примерами решения— составная часть Корреляционный анализ - определение и вычисление с примерами решениято из равенства (1.12) следует, что значение Корреляционный анализ - определение и вычисление с примерами решения всегда заключено между нулем и единицей.

Все сделанные выводы справедливы и для Корреляционный анализ - определение и вычисление с примерами решения   Из равенства (1.12)
следует, что Корреляционный анализ - определение и вычисление с примерами решения только тогда, когда Корреляционный анализ - определение и вычисление с примерами решения, т.е. отсутствует влияние прочих факторов и всё распределение сконцентрировано на кривой регрессии Корреляционный анализ - определение и вычисление с примерами решения. В этом случае между Y и X существует функциональная зависимость.

Далее, из равенства (1.12) следует, что Корреляционный анализ - определение и вычисление с примерами решения тогда и только тогда, когда

Корреляционный анализ - определение и вычисление с примерами решения = const, т.е. линия регрессии У по X — горизонтальная прямая, проходящая через центр распределения. В этом случае можно сказать, что переменная У не коррелирована с X (рис. 1.2,а, б, в).

Корреляционный анализ - определение и вычисление с примерами решения

Корреляционный анализ - определение и вычисление с примерами решения

Аналогичными свойствами обладаетКорреляционный анализ - определение и вычисление с примерами решения— показатель тесноты связи между X и У.

Часто используют величину
Корреляционный анализ - определение и вычисление с примерами решения
Считают, что она не может быть отрицательной. Значения величины Корреляционный анализ - определение и вычисление с примерами решения также могут находиться лишь в пределах от нуля до единицы. Это очевидно из формулы (1.13).

ЗначенияКорреляционный анализ - определение и вычисление с примерами решения лежащие в интервалеКорреляционный анализ - определение и вычисление с примерами решенияявляются показателями тесноты группировки точек около кривой регрессии независимо от её вида (формы связи). Корреляционное отношение Корреляционный анализ - определение и вычисление с примерами решения связано Корреляционный анализ - определение и вычисление с примерами решения следующим образом: Корреляционный анализ - определение и вычисление с примерами решения В случае линейной зависимости между переменными Корреляционный анализ - определение и вычисление с примерами решения

РазностьКорреляционный анализ - определение и вычисление с примерами решения может быть использована как показатель нелинейности связи между переменными.

При вычислении Корреляционный анализ - определение и вычисление с примерами решения по выборочным данным получаем выборочное корреляционное отношение. Обозначим егоКорреляционный анализ - определение и вычисление с примерами решения. Вместо дисперсий в этом случае используются их оценки. Тогда формула (1.12) принимает видКорреляционный анализ - определение и вычисление с примерами решения
 

Понятие о многомерном корреляционном анализе

Частный коэффициент корреляции. Основные понятия корреляционного анализа, введенные для двумерной модели, можно распространить на многомерный случай. Задачи и предпосылки корреляционного анализа были сформулированы в п. 1.3. Однако если при изучении взаимосвязи переменных по двумерной модели мы ограничивались рассмотрением парных коэффициентов корреляции, то для многомерной модели этого недостаточно. Многообразие связей между переменными находит отражение в частных и множественных коэффициентах корреляции.

Пусть имеется многомерная нормальная совокупность с m признаками Корреляционный анализ - определение и вычисление с примерами решения В этом случае взаимозависимость между признаками

можно описать корреляционной матрицей. Под корреляционной матрицей будем понимать, матрицу, составленную из парных коэффициентов корреляции (вычисляются по формуле (1,1)):Корреляционный анализ - определение и вычисление с примерами решения

где Корреляционный анализ - определение и вычисление с примерами решения — парные коэффициенты корреляции; m — порядок матрицы.

Оценкой парного коэффициента корреляции является выборочный парный коэффициент корреляции, определяемый по формуле (1.2), однако для m признаков формула (9.2) принимает вид

Корреляционный анализ - определение и вычисление с примерами решения

где Корреляционный анализ - определение и вычисление с примерами решения— порядковые номера признаков.

Как и в двумерном случае, для оценки коэффициента корреляции необходимо оценить математические ожидания и дисперсии. В многомерном корреляционном анализе имеем т математических ожиданий и m дисперсий, а также m(m—1)/2 парных коэффициентов корреляции. Таким образом, нужно произвести оценку 2m+m(m—1)/2 параметров.

В случае многомерной корреляции зависимости между признаками более многообразны и сложны, чем в двумерном случае. Одной корреляционной матрицей нельзя полностью описать зависимости между признаками. Введём понятие частного коэффициента корреляции l-го порядка.

Пусть исходная совокупность состоит из т признаков. Можно изучать зависимости между двумя из них при фиксированном значении l признаков из m-2 оставшихся. Рассмотрим, например, систему из 5 признаков. Изучим зависимости между Корреляционный анализ - определение и вычисление с примерами решения при фиксированном значении признака Корреляционный анализ - определение и вычисление с примерами решения В этом случае имеем частный коэффициент корреляции первого порядка, так как фиксируем только один признак.

Рассмотрим более подробно структуру частных коэффициентов корреляции на примере системы из трёх признаков Корреляционный анализ - определение и вычисление с примерами решения. Эта система позволяет изучить частные коэффициенты корреляции только первого порядка, так как нельзя фиксировать больше одного признака. Частный коэффициент корреляции первого порядка для признаковКорреляционный анализ - определение и вычисление с примерами решения при фиксированном значении Корреляционный анализ - определение и вычисление с примерами решениявыражается через парные коэффициенты
корреляции и имеет видКорреляционный анализ - определение и вычисление с примерами решения

Частный коэффициент корреляции, так же как и парный коэффициент корреляции, изменяется от —1 до +1, В общем виде, когда система состоит из m признаков, частный коэффициент корреляции l-го порядка может быть найден из корреляционной матрицы. Если 1=m—2, то рассматривается матрица порядка m, приКорреляционный анализ - определение и вычисление с примерами решения— подматрица порядкаl+2, составленная из элементов матрицы Корреляционный анализ - определение и вычисление с примерами решения, которые отвечают индексам коэффициента частной
корреляции. Например, корреляционная матрица системы из пяти признаков имеет вид

Корреляционный анализ - определение и вычисление с примерами решения

Для определения частного коэффициента корреляции второго порядка, напримерКорреляционный анализ - определение и вычисление с примерами решения следует использовать подматрицу четвертого порядка,
вычеркнув из исходной матрицы Корреляционный анализ - определение и вычисление с примерами решения третью строку и третий столбец, так как признак Корреляционный анализ - определение и вычисление с примерами решения не рассматривают.

В общем виде формулу частного коэффициента корреляции l-го порядка (1=m—2) можно записать в виде
Корреляционный анализ - определение и вычисление с примерами решения
где Корреляционный анализ - определение и вычисление с примерами решения— алгебраические дополнения к элементу Корреляционный анализ - определение и вычисление с примерами решения корреляционной
матрицы Корреляционный анализ - определение и вычисление с примерами решения — алгебраические дополнения к элементам Корреляционный анализ - определение и вычисление с примерами решенияи ркк корреляционной матрицы Корреляционный анализ - определение и вычисление с примерами решения

Очевидно, что выражение (1.16) является частым случаем выражения (1.17), в чём легко убедиться, рассмотрев корреляционную матрицуКорреляционный анализ - определение и вычисление с примерами решения

Оценкой частного коэффициента корреляции l-го порядка является выборочный частный коэффициент корреляции l-го порядка. Он вычисляется на основе корреляционной матрицы, составленной из выборочных парных коэффициентов корреляции:
Корреляционный анализ - определение и вычисление с примерами решения
Формула выборочного частного коэффициента корреляции имеет вид
Корреляционный анализ - определение и вычисление с примерами решения
где Корреляционный анализ - определение и вычисление с примерами решения— алгебраические дополнения к соответствующим элементам матрицы (1.18).

Частный коэффициент корреляции l-го порядка, вызволенный на основе п наблюдений над признаками, имеет такое же распределение, что и парный коэффициент корреляции, вычисленный Корреляционный анализ - определение и вычисление с примерами решения наблюдениям. Поэтому значимость частных коэффициентов корреляции оценивают так же, как и в п. 1.6.

Множественный коэффициент корреляции

Часто представляет интерес оценить связь одного из признаков со всеми остальными. Это можно сделать с помощью множественного, или совокупного, коэффициента корреляции
Корреляционный анализ - определение и вычисление с примерами решения
где Корреляционный анализ - определение и вычисление с примерами решения—определитель корреляционной матрицыКорреляционный анализ - определение и вычисление с примерами решения—алгебраическое
дополнение к элементу Корреляционный анализ - определение и вычисление с примерами решения

Квадрат коэффициента множественной корреляции Корреляционный анализ - определение и вычисление с примерами решенияназывается

множественным коэффициентом детерминации. Коэффициенты множественной корреляции и детерминации — величины положительные, принимающие значения в интервалеКорреляционный анализ - определение и вычисление с примерами решения Оценками этих

коэффициентов являются выборочные множественные коэффициенты корреляции и детерминации, которые обозначают соответственно Корреляционный анализ - определение и вычисление с примерами решения и

Корреляционный анализ - определение и вычисление с примерами решения Формула для вычисления выборочного множественного коэффициента корреляции имеет вид

Корреляционный анализ - определение и вычисление с примерами решения
где Корреляционный анализ - определение и вычисление с примерами решения —определитель корреляционной матрицы, составленной из выборочных парных коэффициентов корреляции; Корреляционный анализ - определение и вычисление с примерами решения алгебраическое дополнение к элементу Корреляционный анализ - определение и вычисление с примерами решения

Многомерный корреляционный анализ позволяет получить оценку функции регрессии — уравнение регрессии. Коэффициенты в уравнении регрессии можно найти непосредственно через выборочные парные коэффициенты корреляции или воспользоваться методом многомерной регрессии, который мы рассмотрим в вопросе 2.7. В этом случае все предпосылки регрессионного анализа оказываются выполненными и, кроме того, связь между переменными строго линейна.

Ранговая корреляция

В некоторых случаях встречаются признаки, не поддающиеся количественной оценке (назовём такие признаки объектами). Попытаемся, например, оценить соотношение между математическими и музыкальными способностями группы учащихся. «Уровень способностей» является переменной величиной в том смысле; что он варьирует от одного индивидуума к другому. Его можно измерить, если выставлять каждому индивидууму отметки. Однако этот способ лишен объективности, так как разные экзаменаторы могут выставить одному и тому же учащемуся разные отметки. Элемент субъективизма можно исключить, если учащиеся будут ранжированы. Расположим учащихся по порядку, в соответствии со степенью способностей и присвоим каждому из них порядковый номер, который назовем рангом. Корреляция между рангами более точно отражает соотношение между способностями учащихся, чем корреляция между отметками.

Тесноту связи между рангами измеряют так же, как и между признаками. Рассмотрим уже известную формулу коэффициента корреляции

Корреляционный анализ - определение и вычисление с примерами решения

Пусть    Корреляционный анализ - определение и вычисление с примерами решения  тогда,    учитывая,

чтоКорреляционный анализ - определение и вычисление с примерами решения,можно записать

Корреляционный анализ - определение и вычисление с примерами решения

В зависимости от того, что принять за меру различия между величинами Корреляционный анализ - определение и вычисление с примерами решения можно получить различные коэффициенты связи между рангами. Обычно используют коэффициент корреляции рангов Кэнделла Корреляционный анализ - определение и вычисление с примерами решения и коэффициент корреляции рангов Спирмэна р.

Введём следующую меру различия между объектами: будем считать Корреляционный анализ - определение и вычисление с примерами решенияПоясним сказанное на примере. Имеем две последовательности:

Корреляционный анализ - определение и вычисление с примерами решения

Рассмотрим отдельно каждую из них. В последовательности X первой паре элементов —2; 4 припишем значение +1, так какКорреляционный анализ - определение и вычисление с примерами решения второй паре 2; 5 также припишем значение +1, третьей паре 2; 1 припишем значение —1, поскольку Корреляционный анализ - определение и вычисление с примерами решения и т.д. Последовательно перебираем все пары, причём каждая пара должна быть учтена один раз. Так, если учтена пара 2; 1, то не следует учитывать пару 1;    2. Аналогичные действия проделаем с последовательностью У, причём порядок перебора пар должен в точности повторять порядок перебора пар в последовательности X. Результаты этих действий представим в виде табл. 1.3.
Корреляционный анализ - определение и вычисление с примерами решения

Рассмотрим формулу (    1 .22). В нашем случаеКорреляционный анализ - определение и вычисление с примерами решения и равна

количеству пар, участвовавших в переборе. Каждая пара встречается только один раз, поэтому их общее количество равно числу сочетаний из n по 2, т.е.Корреляционный анализ - определение и вычисление с примерами решения Обозначая Корреляционный анализ - определение и вычисление с примерами решенияполучаем формулу коэффициента корреляции рангов Кэнделла:

Корреляционный анализ - определение и вычисление с примерами решения

Теперь рассмотрим другую меру различия между объектами. Если обозначить через Корреляционный анализ - определение и вычисление с примерами решения средний ранг последовательности X, через Корреляционный анализ - определение и вычисление с примерами решения— средний ранг последовательности Т, тоКорреляционный анализ - определение и вычисление с примерами решенияПоскольку ранги последовательности X и Y есть числа натурального ряда, то их сумма равна Корреляционный анализ - определение и вычисление с примерами решения    а    средний    ранг    Корреляционный анализ - определение и вычисление с примерами решения
ТогдаКорреляционный анализ - определение и вычисление с примерами решения Сумма
чисел натурального ряда равнаКорреляционный анализ - определение и вычисление с примерами решения

Тогда Корреляционный анализ - определение и вычисление с примерами решения

Корреляционный анализ - определение и вычисление с примерами решения
Введём новую величину d, равную разности между рангами: d=X—Y, и определим через неё величинуКорреляционный анализ - определение и вычисление с примерами решения. Имеем:Корреляционный анализ - определение и вычисление с примерами решения

Коэффициент корреляции рангов Спирмэна

Корреляционный анализ - определение и вычисление с примерами решения
У коэффициентов Корреляционный анализ - определение и вычисление с примерами решения разные масштабы, они отличаются шкалами измерений. Поэтому на практике нельзя ожидать, что они совпадут. Чаще всего, если значения обоих коэффициентов не слишком, близки к 1, p; по абсолютной величине примерно на 50% превышаетКорреляционный анализ - определение и вычисление с примерами решения Выведены неравенства, связывающиеКорреляционный анализ - определение и вычисление с примерами решения Например, при больших n можно пользоваться следующим приближённым соотношением:   Корреляционный анализ - определение и вычисление с примерами решения    или

Корреляционный анализ - определение и вычисление с примерами решения Коэффициент p легче рассчитать, однако с теоретической точки зрения больший интерес представляет коэффициентКорреляционный анализ - определение и вычисление с примерами решения

При вычислении коэффициента корреляций рангов Кэнделла для подсчёта s можно использовать следующий приём:    одну из последовательностей упорядочивают так, чтобы её элементы были числами натурального ряда; соответственно изменяют и другую последовательность. Тогда суммуКорреляционный анализ - определение и вычисление с примерами решения можно подсчитывать лишь по последовательности К, так как все Корреляционный анализ - определение и вычисление с примерами решенияравны +1.

Если нельзя установить ранговое различие нескольких объектов, говорят, что такие объекты являются связанными. В этом случае объектам приписывается средний ранг. Например, если связанными являются объекты 4 и 5, то им приписывают ранг 4.5; если связанными являются объекты 1, 2, 3, 4 и 5, то их средний ранг (1+2+3+4+5)/5=3. Сумма рангов связанных объектов должна быть равна сумме рангов при ранжировании без связей. Формулы коэффициентов корреляции для Корреляционный анализ - определение и вычисление с примерами решенияв этом случае также можно вывести из формулы обобщённого коэффициента корреляции, только знаменатель выражения (1.21) в этом случае не равен n(n—1)/2. Если / последовательных членов связаны, то все оценки, относящиеся к любой вобранной из них паре, равны нулю; число таких пар t(t—1), Следовательно,

Корреляционный анализ - определение и вычисление с примерами решенияСоответственно для другой последовательности
Корреляционный анализ - определение и вычисление с примерами решения
где t и u—число связанных пар в последовательностях.

Обозначая Корреляционный анализ - определение и вычисление с примерами решенияполучаем

Корреляционный анализ - определение и вычисление с примерами решения

Аналогично находим выражение для р. Только в этом случае

Корреляционный анализ - определение и вычисление с примерами решения , где е и г — число связанных пар в
последовательностях, а
Корреляционный анализ - определение и вычисление с примерами решения
Если имеется несколько последовательностей, то возникает необходимость определить общую меру согласованности между ними. Такой мерой является коэффициент копкордации.

Пусть ь — число последовательностей, т — количество рангов в каждой последовательности. Тогда коэффициент конкордации

Корреляционный анализ - определение и вычисление с примерами решения
где d — фактически встречающееся отклонение от среднего значения суммы рангов одного объекта.

Коэффициент корреляции рангов может быть использован для быстрого оценивания взаимосвязи между признаками, не имеющими нормального распределения, и полезен в тех случаях, когда признаки поддаются ранжированию, но не могут быть точно измерены.

Пример:

Для данных табл. 13 найти выборочный коэффициент корреляции, проверить его значимость на уровне Корреляционный анализ - определение и вычисление с примерами решения

Решение. Для вычислений составим таблицу. Находим суммы

Корреляционный анализ - определение и вычисление с примерами решения и заносим их в таблицу. Вычислим

Корреляционный анализ - определение и вычисление с примерами решения

Корреляционный анализ - определение и вычисление с примерами решения

Подставляя полученные значения сумм в (8), найдем выборочный коэффициент корреляции

Корреляционный анализ - определение и вычисление с примерами решения

Проверим значимость Корреляционный анализ - определение и вычисление с примерами решения на уровне Корреляционный анализ - определение и вычисление с примерами решения Для этого вычислим статистику

Корреляционный анализ - определение и вычисление с примерами решения

По таблице распределения П6 Стьюдента Корреляционный анализ - определение и вычисление с примерами решения находим критическое значение Корреляционный анализ - определение и вычисление с примерами решения Так как Корреляционный анализ - определение и вычисление с примерами решения то считаем Корреляционный анализ - определение и вычисление с примерами решения значимым.

Пример:

Для данных табл. 13 найти корреляционное отношение Корреляционный анализ - определение и вычисление с примерами решения

Для вычисления эмпирического корреляционного отношения найдем групповые средние Корреляционный анализ - определение и вычисление с примерами решения

Корреляционный анализ - определение и вычисление с примерами решения

Тогда

Корреляционный анализ - определение и вычисление с примерами решения

Вычисляем корреляционное отношение
Корреляционный анализ - определение и вычисление с примерами решения

  • Статистические решающие функции
  • Случайные процессы
  • Выборочный метод
  • Статистическая проверка гипотез
  • Доверительный интервал для математического ожидания
  • Доверительный интервал для дисперсии
  • Проверка статистических гипотез
  • Регрессионный анализ

Описание презентации по отдельным слайдам:

  • ГБОУ ПО «Губернский лицей-интернат для одарённых детей» г. Пензы

Моделирован...

    1 слайд

    ГБОУ ПО «Губернский лицей-интернат для одарённых детей» г. Пензы

    Моделирование корреляционных зависимостей

    2016 год

    учитель информатики Незгода Е.А.

  • Цели урока
1.Систематизация представлений  по корреляционному моделированию;...

    2 слайд

    Цели урока

    1.Систематизация представлений по корреляционному моделированию;

    2. Развитие системно-аналитического стиля мышления на основе использования анализа, сравнения, обобщения, формализации информации, выявление причинно-следственных связей.

  • Задачи1. Научиться определять с помощью табличного процессора и статистически...

    3 слайд

    Задачи
    1. Научиться определять с помощью табличного процессора и статистических функций наличие зависимости между факторами;

    2. Применить метод корреляционного моделирования при определении наличия зависимости между успеваемостью учащихся и их общим интеллектом.

  • АктуальностьВостребованность учащихся в будущем во многом зависит от их обще...

    4 слайд

    Актуальность
    Востребованность учащихся в будущем во многом зависит от их общего интеллекта. Корреляционное исследование может помочь ответить на вопрос, есть ли зависимость между успеваемостью учащихся и их общим интеллектом?

  • Зависимости между величинами, каждая из которых подвергается не контрол...

    5 слайд

    Зависимости между величинами, каждая из которых подвергается не контролируемому полностью разбросу, называются корреляционными зависимостями.

    Прямая корреляция
    Обратная корреляция
    Отсутствие корреляции

  • Этапы корреляционного анализа: Формирование совокупности однородных объектов...

    6 слайд

    Этапы корреляционного анализа:

    Формирование совокупности однородных объектов и сбор исходной информации;

    Отбор основных влияющих параметров-аргументов (факторов);

    Принятие гипотезы о форме связи;

    Математическая обработка данных и получение моделей, а также статистических характеристик; Оценка и истолкование результатов.

  • Мерой корреляционной зависимости является величина, которая называется коэффи...

    7 слайд

    Мерой корреляционной зависимости является величина, которая называется коэффициентом корреляции.
    коэффициент корреляции р есть число из диапазона от -1 до +1;
    если |p|приближается к 1, то имеет место сильная корреляция, если к 0, то слабая;

    Формула Пирсона

  • Алгоритм вычисления p в Exсel:

ввести базовую информацию – столбец значений...

    8 слайд

    Алгоритм вычисления p в Exсel:

    ввести базовую информацию – столбец значений х и столбец значений у;
    в инструментах выбрать и открыть вкладку «Формулы»; в открывшейся вкладке выбрать «Вставка функции fx»;
    1

  • в открывшемся диалоговом окне выбирать статистическую функцию «Коррел», позво...

    9 слайд

    в открывшемся диалоговом окне выбирать статистическую функцию «Коррел», позволяющаую выполнить расчет корреляционного коэффициента между 2 массивами данных;
    в открывшееся окно внести данные: массив 1 – диапазон значений столбца х (данные выделить), массив 2 – диапазон значений столбца у;
    2

  • нажать клавишу «ок», в строке «значение» появляется результат расчета коэффиц...

    10 слайд

    нажать клавишу «ок», в строке «значение» появляется результат расчета коэффициента;
    вывод относительно наличия корреляционной связи между 2 массивами данных и её силе.
    3
    4

  • Зависимость между уровнем интеллекта и успеваемостью.

    11 слайд

    Зависимость между уровнем интеллекта и успеваемостью.

  • ВыводыРезультаты данных исследований могут использовать классные руководители...

    13 слайд

    Выводы
    Результаты данных исследований могут использовать классные руководители при анализе успеваемости учащихся и поиске резервов её повышения, а также психологи для выявления учащихся с недостаточной учебной мотивацией и дальнейшей работы с ними.

  • Спасибо за внимание

    14 слайд

    Спасибо за внимание

Понравилась статья? Поделить с друзьями:
  • Как можно найти нулевую скорость
  • Как найти географическую долготу на атласе
  • Как составить анкету на тему выборов
  • Как найти свои фото в почте
  • Заломы над верхней губой после увеличения как исправить