Как составить общее уравнение прямой в пространстве

1. Общее уравнение прямой.

Прямая в пространстве
может быть задана как пересечение двух
плоскостей:

.
(1)

О1.
Геометрическое место точек пространства,
удовлетворяющих системе уравнений (1),
называется
прямой
в пространстве
,
а
система уравнений (1) называется общим
уравнением прямой
.

З1. Для того чтобы
система уравнений (1) определяла прямую
в пространстве необходимо и достаточно,
чтобы нормальные вектора плоскостей,

определяющих
прямую,
ибыли неколлинеарными, т.е. выполняется
одно из неравенств:или.

Пусть прямая
проходит через точку

параллельно вектору
,
который называется направляющим
вектором прямой

(см. Лекцию
№ 7
),
тогда ее уравнение называется каноническим
и имеет вид:

.
(2)

З2. Если в уравнении
(2) одна из проекций направляющего вектора
равна 0, то это означает, что прямая
перпендикулярна соответствующей
координатной оси.

Пример 1.
Как расположена прямая
относительно координатных осей.

Согласно замечанию
2 эта прямая будет перпендикулярна осям
абсцисс и ординат (параллельна оси
аппликат) и будет проходить через точку

.

Приравняв каждую
дробь уравнения (2) параметру
,
получимпараметрическое
уравнение прямой:

Пример 2.
Записать уравнение прямой
в параметрическом виде.

Приравняем каждую
дробь к параметру
:.
Если пря-

мая проходит через
две известные точки
и,
то ее уравнение имеет вид (см.Лекцию
№ 7
):
и назы-ваетсяуравнением
прямой
,
проходящей
через две заданные точки
.

2. Основные задачи.

а) Переход
от общего уравнения прямой к каноническому.

Пусть прямая задана общим уравнением
.
Для того, чтобы перейти от этого уравнения
прямой к каноническому, поступают
следующим образом:

находят
координаты любой точки, удовлетворяющие
приведенной системе, для чего одну из
переменных величин, например
,
полагают равной нулю и решают систему
линейных алгебраических уравнений
относительно оставшихся переменных
величин;

направляющий
вектор
прямой находят как векторное произведение
нормальных векторов

и
:

;

зная
точку, через которую проходит прямая,
и направляющий вектор прямой записывают
каноническое уравнение прямой.

Пример 3.
Записать уравнение прямой
в каноническом и параметрическом виде.

Положив
,
получим СЛАУСкладывая уравнения, найдем.
Подставив это значение переменнойво второе уравнение системы, по-лучим.
Таким образом, прямая проходит через
точку
.
Найдем направляющий вектор прямой как
векторное произведение нормальных
векторов заданных плоскостей:

б)
Угол
между пересекающимися прямыми.

Угол
между двумя пересека-ющимися прямыми
определяется как угол между их
направляющими векторами
.
Если прямые
иимеют направляющие вектора

и
,

соответственно,
то угол между прямыми определяется по
формуле:

.

Сл1.
Если
прямые перпендикулярны (),
тоусловием
перпен-дикулярности
прямых
является
равенство:
.

Сл2.
Если прямые параллельны, то направляющие
вектора коллинеарны, следовательно,
условие
параллельности прямых
:

.

в)
Координаты
точки пересечения прямой и плоскости.

Пусть прямая
задана общим уравнением,
а плоскостьуравнением.Так
как точка пересечения прямой и плоскости
принадлежит одновременно обоим этим
объектам, то ее координаты находят из
решения системы уравнений
:

.

Если прямая
задана
каноническим уравнением,

а плоскость
уравнением,
то поступают по следующей

схеме:

переходят
от канонического уравнения прямой к
параметрическому, т.е. записывают
уравнение прямой в виде
;

полученные
выражения подставляют в уравнение
заданной плоскости

и
находят параметр
:
.

Рассмотрим возможные
случаи:

1) если
выполняются условия
,
то прямая не пересекает плоскость
(прямая параллельна плоскости);

2) при
условиях
прямая лежит на плоскости;

3) если
,
прямая пересекает плоскость в одной
точке.

вычисляют
координаты точки пересечения, подставив
найденное значение
в параметрическое уравнение прямой


.

г)
Угол
между прямой и плоскостью.

Пусть дана плоскость
с нормальным вектороми пересекающая ее прямаяс направляющим вектором

(Рис.
53).

Рис.
53.
Угол между
прямой

и
плоскостью.

Угол
является углом между прямойи плоскостью.
Угол между нормальным вектором плоскости
и прямой обозначим через.
Из рисунка видно, что.
Следовательно,

.

Сл1.
Если прямая
перпендикулярна плоскости (),
тоусловие
перпендикулярности прямой и плоскости
имеет вид
:

.

Сл2.
Если прямая
параллельна плоскости (),
то направляющий вектор прямой и нормальный
вектор плоскости перпендикулярны (),
следовательно,условие
параллельности прямой и плоскости
:

.

21

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Прямая в пространстве – это линия, которая проходит от одной точки к другой, а также за пределы этих точек в бесконечность. Есть несколько видов уравнения прямой в пространстве: каноническое, параметрическое, угол между двумя прямыми в пространстве и т. д. Про это расскажем в данной статье и для наглядности предоставим несколько примеров.

Параметрическое и каноническое уравнение прямой в пространстве

Параметрическое и каноническое уравнение прямой рассматривается практически так, как и для прямой на плоскости. Значит, нужно составить уравнение прямой L, которая проходит через данную точку M_{1} (x_{1}, y_{1}, z_{1}) параллельно направляющему вектору overline{S} = (l, m, p).

Пусть, M(x, y, z) in{L} – произвольная точка прямой, тогда векторы overline{M_{1}M} = (x - x_{1}, y - y_{1}, z - z_{1}) и overline{S} коллинеарные, а это значит, что координаты их пропорциональны, поэтому получаем:

{x - x_{1}over{l}} = {y - y_{1}over{m}} = {z - z_{1}over{p}}

(1)

это и есть канонические уравнения прямой.

Приравнивая каждую из дробей (1) к параметру t, запишем параметрические уравнения прямой:

left{ begin{aligned} x = lt + x_{0}\ y = mt + y_{0}\ z = pt + z_{0} end{aligned}

(2)

Уравнение прямой в пространстве, которая проходит через две заданные точки

Уравнение прямой в пространстве – тема очень лёгкая, так как здесь самое важное – знать нужную формулу. Тогда легко можно решить любую задачу.

Итак, через две точки M_{1}(x_{1}, y_{1}z_{1} и M_{2}(x_{2}, y_{2}, z_{2}) можно не только геометрично провести линию, но и сложить её уравнения.

За направляющий вектор возьмём overline{S} =  overline{M_{1}M} = (x_{2} - x_{1}, y_{2} - y_{1}, z_{2} - z_{1}), тогда по формуле (1) у нас получается:

{x - x_{1}over{x_{2} - x_{1}}} = {y - y_{1}over{y_{2} - y_{1}}} = {z - z_{1}over{z_{2} - z_{1}}}

(3)

 уравнение прямой в пространстве, которые проходят через две заданные точки.

Нужна помощь в написании работы?

Написание учебной работы за 1 день от 100 рублей. Посмотрите отзывы наших клиентов и узнайте стоимость вашей работы.

Подробнее

Общее уравнение прямой – переход к каноническому уравнению

Объяснение про общее уравнение прямой начнём с прямой, которая задана двумя плоскостями, что пересекаются по этой прямой.

Пусть известны их уравнения:

left{begin{aligned}A_{1}x + B_{1}y + C_{1}z + D_{1} = 0\A_{2}x + B_{2}y + C{2}z + D_{2} = 0 end{aligned}

(4)

Тогда система (4) называется общим уравнением прямой.

Чтобы перейти к каноническим уравнениям вида (1), необходимо найти вектор overline{S} и точку M_{0} этой прямой.

Точку M_{0} находим, как один из решений системы (4). Например, положив в (4) z = 0 находим x_{0}, y_{0}, тогда и точку M_{0} (x_{0}, y_{0}, 0). Направляющий вектор overline{S}, который параллелен к каждой из плоскостей P_{1} и P_{2} и перпендикулярен к их нормальным векторам overline{n_{1}} = (A_{1}, B_{1}, C_{1}) и overline{n_{2}} = (A_{2}, B_{2}, C_{2}), то есть overline{S}perp{overline{n_{1}}}, overline{S}perp{overline{n_{2}}}. (см. рис. 1). Поэтому вектор overline{S} можно найти при помощи векторного произведения overline{n_{1}} и overline{n_{2}}

overline{S} = overline{n}_{1} x overline{n}_{2} = begin{vmatrix} overline{i}&overline{j}&overline{k}\ A_{1}&B_{1}&C_{1}\ A_{2}&B_{2}&C_{2} end{vmatrix}

Найдены координаты M_{0} и overline{S} подставим в каноническое уравнение (1).

Например, от общих уравнений прямой:

left{begin{aligned} 2x + 7y - z - 4 = 0\ 4x - 9y - 2z - 8 = 0 end{aligned}

Перейдём к каноническим, положив в системе y = 0 (при нём относительно больше коэффициенты). найдём x = 2, z = 0, M_{0} (2, 0, 0). Нормальные векторы overline{n_{1}} = (2, 7, -1) и overline{n_{2}} = (4, -9, -2). Тогда направляющий вектор

Уравнение прямой

Рис. 1

 overline{S} = overline{n}_{1} x overline{n}_{2} = begin{vmatrix} overline{i}&overline{j}&overline{k}\ 2&7&-1\ 4&-9&-2 end{vmatrix} = -23overline{i} - 0overline{j} - 46overline{k},

и канонические уравнения станут:

{x - 2over{-23}} = {y - 0over{0}} = {z - 0over{-46}}arrowvert * (-23)to{x - 1over{1}} = {yover{0}} = {zover{2}}.

Угол между двумя прямыми в пространстве. Условия параллельности и перпендикулярности прямых

Угол между двумя прямыми (varphi):

{x - x_{1}over{l_{1}}} = {y - y_{1}over{m_{1}}} = {z - z_{1}over{p_{1}}} и {x - x_{2}over{l_{2}}} = {y - y_{2}over{m_{2}}} = {z - z_{2}over{p_{2}}}

равен углу между их направляющими векторами overline{S_{1}} = (l_{1}, m_{1}, p_{1}) и overline{S_{2}} = (l_{2}, m_{2}, p_{2}), поэтому

{cosvarphi = cos(overline{S}_{1}}, overline{S}_{2}}) = {l_{1}l_{2} + m_{1}m_{2} + p_{1}p_{2}}over{sqrt{l_{1}^2 + m_{1}^2 + p_{1}^2}} * {sqrt{l_{2}^2 + m_{2}^2 + p_{2}^2}}

(5)

Условия параллельности и перпендикулярности прямых соответственно запишутся:

{l_{1}over{l_{2}}} = {m_{1}over{m_{2}}} = {p_{1}over{p_{2}}} и l_{1}l_{2} + m_{1}m_{2} + p_{1}p_{2} = 0.

(6)

Примеры решения задач

Давайте рассмотрим первый пример, где можно двумя способами построить прямую:

Задача

При точке M (1, 5, 2) и направляющем векторе overline{S} = (3, 0, 4) необходимо:

  1. составить каноническое уравнение прямой;
  2. построить эту прямую.

Решение

1) По формуле (1) запишем каноническое уравнение прямой l:

{x - 1over{3}} = {y - 5over{0}} = {z - 2over{4}} = (t).

2) Рассмотрим два способа построения прямой l.

Первый способ

В системе координат XYZ строим вектор overline{S} = (3, 0, 4) и точку M (1, 5, 2) и проводим через точку M прямую параллельную вектору overline{S}.

Второй способ

По формуле (2) запишем каноническое уравнение прямой в параметрическом виде:

left{begin{aligned} x = 3t + 1\ y = 0 * t + 5\ z = 4t + 2 end{aligned} right

Уравнение прямой

На рисунке видно, что при произвольных значениях t из системы находим координаты соответствующих точек, которые принадлежат прямой l. Так при t = 1 находим координаты M_{1}(4, 5, 6).  Через две точки M и M_{1} проводим прямую l.

Очевидно, что найти острый угол между прямыми совершенно не сложно при знании темы и определённых формул. Давайте разберём такой пример:

Задача

Найти острый угол между прямыми:

{x - 4over{6}} = {y + 2over{-2}} = {zover{3}}, {x + {2}over{-2}} = {y - {5}over{-1}} = {z + 1over{-2}}

(7)

Решение

По формуле (7) получаем:

costheta = {6 * (-2) + (-2)(-1) + 3 * (-2)}over{sqrt{6^2 + (-2)^2 + 3^2} * sqrt{(-2)^2 + (-1)^2 + (-2)^2} = {-12 +2 -6over{7 * 3}} = -{16over21}.

Так как costheta = -{16over{21}} < 0, тогда угол theta тупой, theta = arccos (-{16over{21}}, а острый угол varphi = 180^0 - theta.

Ответ

varphi = arccos{16over{21}}.

Рассмотрим последний пример, где нужно составить уравнение. Здесь, как и в каждой задаче, важно знать и понимать, какой формулой нужно воспользоваться.

Задача

Составить уравнение прямой l,  которая проходит через точку M(2, -4, 3) и параллельна прямой x = -5t + 4, y = 2t, z = 8t - 5.

Решение

От параметрического уравнения  переходим к каноническому {x - 4over{(-5)}} = {yover{2}} = {z + 5over{8}}tooverline{S} = (-5, 2, 8) При условии параллельности прямых overline{S}||overline{S_{1}} то есть направляющим вектором новой прямой может служить известный вектор overline{S} = (-5, 2, 8) и по формуле (1) у нас получается:

{x - 2over{-5}} = {y - 4over{2}} = {z - 3over{8}}.

Ответ

{x - 2over{-5}} = {y - 4over{2}} = {z - 3over{8}}.

Уравнения прямых в пространстве

Уравнение прямой как линии пересечения двух плоскостей

Пусть в координатном пространстве Oxyz (в прямоугольной системе координат) две плоскости заданы общими уравнениями

begin{aligned}rho_{1}colon & ,A_{1}cdot x+B_{1}cdot y+C_{1}cdot z+D_{1}=0;\[2pt] rho_{2}colon & ,A_{2}cdot x+B_{2}cdot y+C_{2}cdot z+D_{2}=0,end{aligned}

в которых коэффициенты при неизвестных непропорциональны, т.е. operatorname{rang}!begin{pmatrix}A_{1}&B_{1}&C_{1}\A_{2}&B_{2}&C_{2}end{pmatrix}=2. Это условие означает, что плоскости rho_{1} и rho_{2}пересекаются (см. условие (4.25)), поскольку их нормали vec{n}_{1}=A_{1}vec{i}+B_{1}vec{j}+C_{1}vec{k} и vec{n}_{2}=A_{2}vec{i}+B_{2}vec{j}+C_{2}vec{k} неколлинеарны (рис.4.25). Тогда линия пересечения плоскостей описывается системой уравнений

begin{cases} A_{1}cdot x+D_{1}cdot y+C_{1}cdot z+D_{1}=0,\ A_{2}cdot x+D_{2}cdot y+C_{2}cdot z+D_{2}=0. end{cases}

(4.31)

Система (4.31) называется общим уравнением прямой в пространстве.

Общее уравнение прямой в пространстве как пересечение двух плоскостей


Пример 4.13. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1;2;3), B(3;0;2), C(7;4;6) треугольника (рис.4.26). Требуется составить уравнение прямой, содержащей высоту AH треугольника.

Решение. Прямая AH является линией пересечения двух плоскостей: плоскости rho_{1}, треугольника ABC и плоскости rho_{2}, проходящей через точку A перпендикулярно вектору overrightarrow{BC} (рис.4.26). По формуле (4.21) составим уравнение плоскости rho_{1}, проходящей через три точки A,,B,,C:

begin{vmatrix}x-1&y-2&z-3\3-1&0-2&2-3\7-1&4-2&6-3end{vmatrix}= begin{vmatrix} x-1&y-2&z-3\ 2&-2&-1\ 6&2&3 end{vmatrix}=0 quad Leftrightarrow quad x+3y-4z+5=0.

По формуле (4.14) составим уравнение плоскости rho_{2}, проходящей через точку A перпендикулярно вектору overrightarrow{BC}=(7-3)vec{i}+(4-0)vec{j}+(6-2)vec{k}=4vec{i}+4vec{j}+4vec{k}:

4cdot(x-1)+4cdot(y-2)+4cdot(z-3)=0 quad Leftrightarrow quad x+y+z-6=0.

Следовательно, общее уравнение (4.31) прямой AH имеет вид begin{cases}x+3y-4z+5=0,\x+y+z-6=0.end{cases}


Параметрическое уравнение прямой в пространстве

Напомним, что направляющий вектором прямой называется ненулевой вектор, коллинеарный этой прямой, т.е. принадлежащий или параллельный ей.

Пусть в координатном пространстве Oxyz заданы точка M_{0}(x_{0}, y_{0}, z_{0}) и ненулевой вектор vec{p}= avec{i}+ bvec{j}+ cvec{k} (рис.4.27). Требуется составить уравнение прямой, коллинеарной вектору vec{p} и проходящей через точку M_{0}(x_{0},y_{0},z_{0}).

Выберем на прямой произвольную точку M_{0}(x,y,z). Обозначим vec{r}=overrightarrow{OM}, vec{r}_{0}=overrightarrow{OM_{0}} — радиус-векторы точек M(x,y,z) и M_{0}(x_{0},y_{0},z_{0}) (рис.4.28).

Параметрическое уравнение прямой в пространстве и направляющий вектор прямой

Точка M принадлежит заданной прямой тогда и только тогда, когда векторы overrightarrow{M_{0}M} и vec{p} коллинеарны. Запишем условие коллинеарности: overrightarrow{M_{0}M}=tvec{p}, где t — некоторое действительное число (параметр). Учитывая, что overrightarrow{M_{0}M}=vec{r}-vec{r}_{0}, получим векторное параметрическое уравнение прямой в пространстве:

vec{r}=vec{r}_{0}+tcdotvec{p}, quad tinmathbb{R},,

(4.32)

где vec{p} — направляющий вектор прямой, а vec{r}_{0} — радиус-вектор заданной точки M_{0}(x_{0},y_{0},z_{0}) принадлежащей прямой.

Координатная форма записи уравнения (4.32) называется параметрическим уравнением прямой в пространстве

begin{cases}x=x_{0}+acdot t,\y=y_{0}+bcdot t,\z=z_{0}+ccdot t,end{cases}tinmathbb{R},,

(4.33)

где a,b,c — координаты направляющего вектора vec{p} прямой. Параметр t в уравнениях (4.32),(4.33) имеет следующий геометрический смысл: величина t пропорциональна расстоянию от заданной точки M_{0}(x_{0}, y_{0}, z_{0}) до точки M(x,y,z)equiv M(x_{0}+at,y_{0}+bt,z_{0}+ct). Физический смысл параметра t в параметрических уравнениях (4.32),(4.33) — это время при равномерном и Прямолинейном движении точки M(x,y,z) по прямой. При t=0 точка M(x,y,z) совпадает с заданной точкой M_{0}. При возрастании параметра t движение происходит в направлении направляющего вектора.


Каноническое уравнение прямой в пространстве

Выразим параметр t из каждого уравнения системы (4.33): t=frac{x-x_{0}}{a},, t=frac{y-y_{0}}{b},, t=frac{z-z_{0}}{c}, а затем исключим этот параметр:

frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{c}, quad a^2+b^2+c^2ne0.

(4.34)

Уравнение (4.34) называется каноническим уравнением прямой в пространстве. В этом уравнении коэффициенты a,b,c не равны нулю одновременно, так как это координаты направляющего вектора прямой.


Замечания 4.6.

1. Если один или два из трех знаменателей дробей в (4.34) равны нулю, то считается, что соответствующий числитель дроби равен нулю. Например:

а) каноническое уравнение frac{x-x_{0}}{0}=frac{y-y_{0}}{0}=frac{z-z_{0}}{c} — это уравнение begin{cases}x=x_{0},\y=y_{0}end{cases} прямой, параллельной оси аппликат (рис.4.29,а);

б) каноническое уравнение frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{0} — это уравнение begin{cases}z=z_{0},\dfrac{x-x_{0}}{a}=dfrac{y-y_{0}}{b}end{cases} прямой, параллельной координатной плоскости Oxy (рис.4.29,б).

Прямые в пространстве, параллельные координатным плоскостям

2. Направляющий вектор vec{p} прямой определяется неоднозначно. Например, любой ненулевой вектор lambdacdotvec{p}, где lambdainmathbb{R}, также является направляющим вектором для той же прямой.

Переход от общего уравнение к каноническому

3. Для перехода от общего уравнения прямой (4.31) к каноническому (4.34) нужно выполнить следующие действия:

1) найти любое решение (x_{0},y_{0},z_{0}) системы begin{cases} A_{1}cdot x+B_{1}cdot y+C_{1}cdot z+D_{1}=0,\ A_{2}cdot x+B_{2}cdot y+C_{2}cdot z+D_{2}=0, end{cases} определяя тем самым координаты точки M_{0}(x_{0},y_{0},z_{0}), принадлежащей прямой;

2) найти направляющий вектор vec{p} прямой как векторное произведение нормалей vec{n}_{1}=A_{1}vec{i}+B_{1}vec{j}+C_{1}vec{k}, vec{n}_{2}= A_{2}vec{i}+ B_{2}vec{j}+ C_{2}vec{k}, заданных плоскостей:

vec{p}= begin{bmatrix}vec{n}_{1},vec{n}_{2}end{bmatrix}= acdotvec{i}+ bcdotvec{j}+ ccdotvec{k}= begin{vmatrix} vec{i}&vec{j}&vec{k}\ A_{1}&B_{1}&C_{1}\ A_{2}&B_{2}&C_{2} end{vmatrix}.

3) записать каноническое уравнение (4.34) с учетом пунктов 1 и 2.

4. Чтобы перейти от канонического уравнения к общему, достаточно двойное равенство (4.34) записать в виде системы

left{!begin{aligned}frac{x-x_{0}}{a}&=frac{y-y_{0}}{b},,\frac{y-y_{0}}{b}&=frac{z-z_{0}}{c},,end{aligned}right. и привести подобные члены.

5. Чтобы перейти от канонического уравнения к параметрическому, следует приравнять каждую дробь в уравнении (4.34) параметру t и записать полученные равенства в виде системы (4.33):

frac{x-x_{0}}{a}=frac{y-y_{0}}{b}=frac{z-z_{0}}{c}=t quad Leftrightarrow quad begin{cases}x=x_{0}+acdot t,\y=y_{0}+bcdot t,\z=z_{0}+ccdot t,end{cases} tinmathbb{R},.

6. Если в каноническом уравнении (4.34) прямой фиксировать координаты x_{0},y_{0},z_{0} точки M_{0}, а коэффициентам a,b,c придавать произвольные значения (не равные нулю одновременно), то получим уравнение связки прямых с центром в точке M_{0}(x_{0},y_{0},z_{0}), т.е. совокупность всех прямых, проходящих через точку M_{0}.

7. Параметрическое (4.33) и каноническое (4.34) уравнения прямой, полученные в прямоугольной системе координат, имеют тот же вид в любой другой аффинной системе координат. Геометрический смысл коэффициентов в уравнениях остается прежним.


Пример 4.14. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1;2;3), B(3;0;2), C(7;4;6) треугольника (рис. 4.30). Требуется:

В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1,2,3), B(3,0,2), C(7,4,6) треугольника

а) составить каноническое уравнение прямой, содержащей высоту AH треугольника;

б) составить общее уравнение прямой, содержащей биссектрису AL треугольника.

Решение. а) Общее уравнение прямой AH получено в примере 4.13: begin{cases}x+3cdot y-4cdot z+5=0,\x+y+z-6=0.end{cases} Перейдем от общего уравнения к каноническому.

1) Найдем любое решение (x_{0},y_{0},z_{0}) системы, например, x_{0}=1, y_{0}=2, z_{0}=3 (это координаты точки A(1;2;3)).

2) Найдем направляющий вектор vec{p} прямой как векторное произведение нормалей vec{n}_{1}=vec{i}+3vec{j}-4vec{k}, vec{n}_{2}=vec{i}+vec{j}+vec{k} заданных плоскостей

vec{p}= begin{bmatrix}vec{n}_{1},vec{n}_{2}end{bmatrix}= begin{vmatrix} vec{i}&vec{j}&vec{k}\ 1&3&-4\ 1&1&1 end{vmatrix}= 7cdotvec{i}-5cdotvec{j}-2cdotvec{k},.

3) Запишем каноническое уравнение (4.34): frac{x-1}{7}=frac{y-2}{-5}=frac{z-3}{-2}.

б) Сначала составим каноническое уравнение прямой AL. Для этого нужно найти направляющий вектор vec{l} этой прямой. Учитывая, что диагональ ромба является биссектрисой, vec{l}=vec{b}+vec{c}, где vec{b} и vec{c} — единичные векторы, одинаково направленные с векторами overrightarrow{AB} и overrightarrow{AC} соответственно. Находим

begin{gathered}overrightarrow{AB}= 2cdotvec{i}-2cdotvec{j}-1cdotvec{k}, quad begin{vmatrix}overrightarrow{AB}end{vmatrix}=3, quad vec{b}= frac{overrightarrow{AB}}{begin{vmatrix} overrightarrow{AB}end{vmatrix}}= frac{2}{3}cdot vec{i}-frac{2}{3} cdotvec{j}-frac{1}{3}cdot vec{k},;\[3pt] overrightarrow{AC}= 6cdot vec{i}+ 2cdotvec{j}+3cdotvec{k}, quad begin{vmatrix} overrightarrow{AC} end{vmatrix}=7, quad vec{c}= frac{overrightarrow{AC}}{begin{vmatrix} overrightarrow{AC}end{vmatrix}}= frac{6}{7}cdotvec{i}+ frac{2}{7}cdotvec{j}+ frac{3}{7}cdotvec{k},;\[3pt] vec{l}=vec{a}+vec{c}= left(frac{2}{3}cdotvec{i}-frac{2}{3}cdotvec{j}-frac{1}{3}cdotvec{k}right)+ left(frac{6}{7}cdotvec{i}+frac{2}{7}cdotvec{j}+frac{3}{7}cdotvec{k}right)= frac{32}{21}cdotvec{i}-frac{8}{21}cdotvec{j}+frac{2}{21}cdotvec{k},. end{gathered}

Составляем каноническое уравнение прямой ALcolon,frac{x-1}{32/21}=frac{y-2}{-8/21}=frac{z-3}{2/21}.

Записывая двойное равенство в виде системы, получаем общее уравнение прямой AL:

left{!begin{aligned}frac{x-1}{32/21}&=frac{y-2}{-8/21},\ frac{y-2}{-8/21}&=frac{z-3}{2/21},end{aligned}right.  quad Leftrightarrow quad begin{cases}x+4cdot y-9=0,\ y+4cdot z-14=0.end{cases}


Расстояние от точки до прямой, заданной каноническим уравнением

Расстояние от точки до прямой в пространстве

Найдем расстояние d от точки M_{1}(x_{1},y_{1},z_{1}) до прямой l, заданной каноническим уравнением (рис.4.31)):

lcolon, frac{x-x_{0}}{a}= frac{y-y_{0}}{b}= frac{z-z_{0}}{c},.

Искомое расстояние равно высоте параллелограмма, построенного на векторах

vec{p}=avec{i}+bvec{j}+cvec{k} и vec{m}=overrightarrow{M_{0}M_{1}}=(x_{1}-x_{0})vec{i}+(y_{1}-y_{0})vec{j}+(z_{1}-z_{0})vec{k}, то есть.

d=frac{begin{vmatrix}begin{bmatrix}vec{m},vec{p}end{bmatrix}end{vmatrix}}{begin{vmatrix}vec{p}end{vmatrix}}= frac{sqrt{begin{vmatrix}x_{1}-x_{0}&y_{1}-y_{0}\a&bend{vmatrix}^2+ begin{vmatrix}y_{1}-y_{0}&z_{1}-z_{0}\b&cend{vmatrix}^2+ begin{vmatrix}x_{1}-x_{0}&z_{1}-z_{0}\a&cend{vmatrix}^2}}{sqrt{a^2+b^2+c^2}},.

(4.35)


Уравнение прямой, проходящей через две заданные точки

Уравнение прямой в пространстве, проходящей через две заданные точки

Пусть в координатном пространстве Oxyz заданы две точки M_{0}(x_{0},y_{0},z_{0}) и M_{1}(x_{1},y_{1},z_{1}). Требуется составить уравнение прямой, проходящей через заданные точки.

Как показано в разд., точка M(x,y,z) принадлежит прямой M_{0}M_{1} тогда и только тогда, когда ее радиус-вектор overrightarrow{OM} удовлетворяет условию (рис.4.32): overrightarrow{OM}= (1-t)cdot overrightarrow{OM_{0}}+ tcdotoverrightarrow{OM_{1}}, где t — некоторое действительное число (параметр). Это уравнение, а также его координатную форму

begin{pmatrix}x\y\zend{pmatrix}= (1-t)cdot!begin{pmatrix}x_{0}\y_{0}\z_{0}end{pmatrix}+tcdot!begin{pmatrix}x_{1}\y_{1}\z_{1}end{pmatrix}! quad Leftrightarrow quad !begin{cases} x=(1-t)cdot x_{0}+tcdot x_{1},\ y=(1-t)cdot y_{0}+tcdot y_{1},\ z=(1-t)cdot z_{0}+tcdot z_{1}.end{cases} tinmathbb{R}

(4.36)

будем называть аффинным уравнением прямой, проходящей через две точки M_{0}(x_{0},y_{0},z_{0}) и M_{1}(x_{1},y_{1},z_{1}).

Выражая параметр t из каждого уравнения системы (4.36), получаем: frac{x-x_{0}}{x_{1}-x_{0}}=frac{y-y_{0}}{y_{1}-y_{0}}=frac{z-z_{0}}{z_{1}-z_{0}}=t. Исключая параметр t, приходим к уравнению прямой, проходящей через две точки M_{0}(x_{0},y_{0},z_{0}) и M_{1}(x_{1},y_{1},z_{1}):

frac{x-x_{0}}{x_{1}-x_{0}}=frac{y-y_{0}}{y_{1}-y_{0}}=frac{z-z_{0}}{z_{1}-z_{0}},.

(4.37)

Уравнение (4.37) можно получить из канонического уравнения (4.34), выбирая в качестве направляющего вектора vec{p}=avec{i}+bvec{j}+cvec{k} вектор overrightarrow{M_{0}M_{1}}=(x_{1}-x_{0})vec{i}+(y_{1}-y_{0})vec{j}+(z_{1}-z_{0})vec{k}, т.е. подставляя a=x_{1}-x_{0}, b=y_{1}-y_{0}, c=z_{1}-z_{0}.


Треугольник в пространстве по координатам вершин, его высота и медиана

Пример 4.15. В координатном пространстве Oxyz (в прямоугольной системе координат) заданы вершины A(1;2;3), B(3;0;2), C(7;4;6) треугольника (рис.4.33). Требуется:

а) составить уравнение прямой BC;

б) составить уравнение прямой, содержащей медиану AM треугольника;

в) найти высоту h=|AH| треугольника, опущенную на сторону BC.

Решение. а) Записываем уравнение (4.37) прямой, проходящей через точки B(3;0;2), C(7;4;6):

frac{x-3}{7-3}=frac{y-0}{4-0}=frac{z-2}{6-2}~ Leftrightarrow~ frac{x-3}{1}=frac{y}{1}=frac{z-2}{1},.

б) Находим координаты середины M стороны BCcolon M(5;2;4). Составляем уравнение (4.37) прямой AM:

frac{x-1}{5-1}=frac{y-2}{2-2}=frac{z-3}{4-3}~ Leftrightarrow~ frac{x-1}{4}=frac{y-2}{0}=frac{z-3}{1},.

в) Искомую высоту h находим по формуле (4.35), полагая vec{m}=overrightarrow{BA}=-2vec{i}+2vec{j}+vec{k} и vec{p}=vec{i}+vec{j}+vec{k}:

h=|AH|=frac{begin{vmatrix}begin{bmatrix}vec{m},vec{p}end{bmatrix}end{vmatrix}}{begin{vmatrix}vec{p}end{vmatrix}}= frac{sqrt{begin{vmatrix}-2&2\1&1end{vmatrix}^2+begin{vmatrix}2&1\1&1end{vmatrix}^2+begin{vmatrix}-2&1\1&1end{vmatrix}^2}}{sqrt{1^2+1^2+1^2}}=frac{sqrt{16+1+9}}{sqrt{3}}= sqrt{frac{26}{3}},.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Содержание:

Плоскость в пространстве

Общее уравнение плоскости

Определение: Уравнение вида Плоскость и прямая в пространстве с примерами решения

Определение: Порядок поверхности определяется по высшему показателю степени переменных х, у и z или по сумме показателей степени в произведении этих величин.

Определение: Уравнение вида Ax+By+Cz+D=O называется общим уравнением плоскости.

Рассмотрим частные случаи приведенного уравнения:

1. D = 0; Ах + By + Сz = 0. Из этого уравнения видно, что точка О(0; 0; 0) удов- летворяет этому уравнению, следовательно, это уравнение описывает плоскость, проходящую через начало координат (Рис. 36). Плоскость и прямая в пространстве с примерами решения

Рис. 36. Плоскость, проходящая через начало координат.

2. С = 0; Ах + Ву + D = 0. Этому уравнению удовлетворяет любое значение переменной z, поэтому данное уравнение описывает плоскость, которая параллельна оси аппликат (Oz) (Рис. 37). Плоскость и прямая в пространстве с примерами решения

Рис. 37. Плоскость, проходящая параллельно оси аппликат.

Замечание: При отсутствии в уравнении плоскости одной из переменных величин говорит о том, что плоскость параллельна соответствующей координатной оси.

3. С=0; D=0; Ах+ By=0 — плоскость проходит через начало отсчета параллельно оси аппликат (Рис. 38). Плоскость и прямая в пространстве с примерами решения

Рис. 38. Плоскость, проходящая через начало координат параллельно оси аппликат.

4. Плоскость и прямая в пространстве с примерами решения — плоскость проходит через точку Плоскость и прямая в пространстве с примерами решения параллельно плоскости Плоскость и прямая в пространстве с примерами решения (Pис. 39). Плоскость и прямая в пространстве с примерами решения

Рис. 39. Плоскость, проходящая параллельно координатной плоскости Плоскость и прямая в пространстве с примерами решения

5. В = С = D = 0; Ах = 0=>х = 0 — уравнение описывает плоскость Плоскость и прямая в пространстве с примерами решения (Рис. 40).

Плоскость и прямая в пространстве с примерами решения

Рис. 40. Координатная плоскость Плоскость и прямая в пространстве с примерами решения.

Другие уравнения плоскости

1. Уравнение плоскости в отрезках. Пусть в уравнении Плоскость и прямая в пространстве с примерами решениякоэффициент Плоскость и прямая в пространстве с примерами решения тогда выполним следующие преобразования

Плоскость и прямая в пространстве с примерами решения

Введем следующие обозначения Плоскость и прямая в пространстве с примерами решения тогда уравнение примет вид Плоскость и прямая в пространстве с примерами решения которое называется уравнением плоскости в отрезках. Найдем точки пересечения плоскости с координатными осями:Плоскость и прямая в пространстве с примерами решения

Откладывая на координатных осях точки М, N и Р, соединяя их прямыми лучим изображение данной плоскости (для определенности принято, что параметры а, b, с положительные) (Рис. 41): Плоскость и прямая в пространстве с примерами решения

Рис. 41. Отрезки, отсекаемые плоскостью на координатных осях.

Из рисунка видно, что числа а, b, с показывают отрезки, отсекаемые плоскостью на координатных осях, считая от начала координат.

2. Уравнение плоскости, проходящей через заданную точку перпендикулярно к заданному вектору. Пусть задана точка Плоскость и прямая в пространстве с примерами решения через которую проходит плоскость перпендикулярно к заданному вектору Плоскость и прямая в пространстве с примерами решения ОЗ. Вектор Плоскость и прямая в пространстве с примерами решения называется нормальным вектором плоскости, если он перпендикулярен любой паре неколлинеарных векторов, лежащих на плоскости.

Возьмем на плоскости произвольную точку Плоскость и прямая в пространстве с примерами решения и образуем вектор Плоскость и прямая в пространстве с примерами решениясоединяющий точку Плоскость и прямая в пространстве с примерами решения с точкой М (Рис. 42). Тогда Плоскость и прямая в пространстве с примерами решения Плоскость и прямая в пространстве с примерами решения

Рис. 42. Плоскость, проходящая через заданную точку перпендикулярно к нормальному вектору.

В силу того, вектор Плоскость и прямая в пространстве с примерами решения лежит в плоскости, то он перпендикулярен нормальному вектору Плоскость и прямая в пространстве с примерами решения Используя условие перпендикулярности векторов Плоскость и прямая в пространстве с примерами решения в проекциях перемножаемых векторов, получим уравнение плоскости, проходящая через заданную точку перпендикулярно к нормальному вектору: Плоскость и прямая в пространстве с примерами решения

Пример:

Составить уравнение плоскости, проходящей через т. Плоскость и прямая в пространстве с примерами решения параллельно плоскости Плоскость и прямая в пространстве с примерами решения

Решение:

Так как искомая плоскость параллельна плоскости (Q), то нормальный вектор этой плоскости Плоскость и прямая в пространстве с примерами решения (см. коэффициенты при переменных величинах х, у и z в уравнении плоскости Плоскость и прямая в пространстве с примерами решения) перпендикулярен к искомой плоскости и может быть взят в качестве нормального вектора этой плоскости. Используя уравнение плоскости, проходящей через заданную точку перпендикулярно к данному вектору, получаем: Плоскость и прямая в пространстве с примерами решения

Пример:

Составить уравнение плоскости, проходящей через точки А(—1; 1 ;2) и В(0; —1; —1) параллельно вектору Плоскость и прямая в пространстве с примерами решения = (0; 0; -2):

Плоскость и прямая в пространстве с примерами решения

Решение:

Построим на искомой плоскости вектор Плоскость и прямая в пространстве с примерами решения и вычислим нормальный вектор Плоскость и прямая в пространстве с примерами решения как векторное произведение векторов Плоскость и прямая в пространстве с примерами решения Плоскость и прямая в пространстве с примерами решения

Уравнение плоскости, проходящей через заданную точку Плоскость и прямая в пространстве с примерами решения перпендикулярно к заданному векторуПлоскость и прямая в пространстве с примерами решения имеет вид:Плоскость и прямая в пространстве с примерами решения

Отметим, что при выборе точки, через которую проходит искомая плоскость из точек Плоскость и прямая в пространстве с примерами решения брать как точку, через которую проходит искомая плоскость.

3. Уравнение плоскости, проходящей через три заданные точки. Пусть плоскость проходит через 3 известные точки Плоскость и прямая в пространстве с примерами решения Возьмем произвольную точку плоскости М(х; у; z) и образуем векторы Плоскость и прямая в пространстве с примерами решения

Плоскость и прямая в пространстве с примерами решения Плоскость и прямая в пространстве с примерами решения

Рис. 43. Плоскость, проходящая через три заданные точки.

Вектора Плоскость и прямая в пространстве с примерами решения компланарные, используя условие компланарности векторов Плоскость и прямая в пространстве с примерами решения получим уравнение плоскости, проходящей через 3 известные точки: Плоскость и прямая в пространстве с примерами решения

Замечание: Полученный определитель третьего порядка раскрывается по элементам первой строки.

Пример:

Составить уравнение плоскости, проходящей через три заданные точки Плоскость и прямая в пространстве с примерами решения

Решение:

Составим определитель третьего порядка Плоскость и прямая в пространстве с примерами решения Раскроем определитель по элементам первой строки Плоскость и прямая в пространстве с примерами решения Вычислим определители второго порядка: -7(x-l) + 5y + 4(z + 2) = 0. Умножив уравнение на (-1) и раскрыв скобки, получим окончательный ответ:Плоскость и прямая в пространстве с примерами решения

Основные задачи о плоскости в пространстве

1. Угол между пересекающимися плоскостями. Пусть даны две пересекающиеся плоскости Плоскость и прямая в пространстве с примерами решения которые имеют нормальные векторы

Плоскость и прямая в пространстве с примерами решения

Пусть линия пересечения плоскостей определяется прямой (l). Из одной точки этой прямой проведем два перпендикулярных к прямой вектора Плоскость и прямая в пространстве с примерами решенияМеньший угол между этими векторами определяет угол между плоскостями (Рис.44):

Плоскость и прямая в пространстве с примерами решения

Рис.44. Угол между плоскостями.

В силу того, что Плоскость и прямая в пространстве с примерами решения то угол между нормальными векторами равен углу между векторами Плоскость и прямая в пространстве с примерами решения Из векторной алгебры известно, что угол между векторами определяется формулой: Плоскость и прямая в пространстве с примерами решения

Следствие: Если плоскости перпендикулярны (Плоскость и прямая в пространстве с примерами решения), то условием перпендикулярности плоскостей является равенство: Плоскость и прямая в пространстве с примерами решения.

Следствие: Если плоскости параллельны, то нормальные вектора коллинеарны, следовательно, условие параллельности плоскостей: Плоскость и прямая в пространстве с примерами решения

2. Расстояние от данной точки до заданной плоскости. Расстояние от данной точки Плоскость и прямая в пространстве с примерами решения до заданной плоскости Плоскость и прямая в пространстве с примерами решения определяется по формуле: Плоскость и прямая в пространстве с примерами решения

Пример:

На каком расстоянии от плоскости Плоскость и прямая в пространстве с примерами решения находится точка Плоскость и прямая в пространстве с примерами решения

Решение:

Воспользуемся приведенной формулой: Плоскость и прямая в пространстве с примерами решения

Прямая в пространстве

Общее уравнение прямой

Прямая в пространстве может быть задана как пересечение двух плоскостей: Плоскость и прямая в пространстве с примерами решения

Определение: Геометрическое место точек пространства, удовлетворяющих системе уравнений (1), называется прямой в пространстве, а система уравнений (1) называется общим уравнением прямой.

Замечание: Для того чтобы система уравнений (1) определяла прямую в пространстве необходимо и достаточно, чтобы нормальные вектора плоскостей, определяющих прямую, Плоскость и прямая в пространстве с примерами решения были неколлинеарными, т.е. выполняется одно из неравенств: Плоскость и прямая в пространстве с примерами решения

Пусть прямая проходит через точку Плоскость и прямая в пространстве с примерами решения параллельно вектору Плоскость и прямая в пространстве с примерами решения который называется направляющим вектором прямой (см. Лекцию Ле 7), тогда ее уравнение называется каноническим и имеет вид:

Плоскость и прямая в пространстве с примерами решения

Замечание: Если в уравнении (2) одна из проекций направляющего вектора равна 0, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Пример:

Как расположена прямая Плоскость и прямая в пространстве с примерами решения относительно координатных осей.

Решение:

Согласно замечанию эта прямая будет перпендикулярна осям абсцисс и ординат (параллельна оси аппликат) и будет проходить через точку Плоскость и прямая в пространстве с примерами решения Приравняв каждую дробь уравнения (2) параметру t, получим параметрическое уравнение прямой:

Плоскость и прямая в пространстве с примерами решения

Пример:

Записать уравнение прямой Плоскость и прямая в пространстве с примерами решения в параметрическом виде.

Решение:

Приравняем каждую дробь к параметру t: Плоскость и прямая в пространстве с примерами решенияЕсли прямая проходит через две известные точки Плоскость и прямая в пространстве с примерами решения то ее уравнение имеет вид: Плоскость и прямая в пространстве с примерами решения и называется уравнением прямой, проходящей через две заданные точки.

Пример:

Составить канонические и параметрические уравнения прямых, проходящих через точки А (— 1; 1; 2 ), В (0; -1; -1) И С (1; 0; -1), D (l; 0; 1 ).

Решение:

Составим каноническое уравнение прямой линии, проходящей через точки Плоскость и прямая в пространстве с примерами решения

Плоскость и прямая в пространстве с примерами решения Перейдём к параметрическому уравнению Плоскость и прямая в пространстве с примерами решения или Плоскость и прямая в пространстве с примерами решения Составим каноническое уравнение прямой линии, проходящей через точки Плоскость и прямая в пространстве с примерами решения

Плоскость и прямая в пространстве с примерами решения Перейдём к параметрическому уравнению прямой Плоскость и прямая в пространстве с примерами решения

Плоскость и прямая в пространстве с примерами решения

Основные задачи о прямой в пространстве

1. Переход от общего уравнения прямой к каноническому. Пусть прямая задана общим уравнениемПлоскость и прямая в пространстве с примерами решения Для того, чтобы перейти от этого уравнения прямой к каноническому, поступают следующим образом:

Пример:

Записать уравнение прямой Плоскость и прямая в пространстве с примерами решенияв каноническом и параметрическом виде.

Решение:

Положив х = 0, получим СЛАУПлоскость и прямая в пространстве с примерами решения Складывая уравнения, найдем у = -4. Подставив это значение переменной у во второе уравнение системы, получим z = —5. Таким образом, прямая проходит через точку Плоскость и прямая в пространстве с примерами решения Найдем направляющий вектор прямой как векторное произведение нормальных векторов заданных плоскостей:

Плоскость и прямая в пространстве с примерами решения

Запишем каноническое Плоскость и прямая в пространстве с примерами решения и параметрическое уравнения прямой:

Плоскость и прямая в пространстве с примерами решения

Угол между пересекающимися прямыми

Угол между двумя пересекающимися прямыми определяется как угол между их направляющими векторами. Если прямые Плоскость и прямая в пространстве с примерами решения имеют направляющие вектора

Плоскость и прямая в пространстве с примерами решения

соответственно, то угол между прямыми определяется по формуле: Плоскость и прямая в пространстве с примерами решения

Следствие: Если прямые перпендикулярны (Плоскость и прямая в пространстве с примерами решения), то условием перпендикулярности прямых является равенство: Плоскость и прямая в пространстве с примерами решения

Следствие: Если прямые параллельны, то направляющие вектора коллинеарны, следовательно, условие параллельности прямых: Плоскость и прямая в пространстве с примерами решения

Координаты точки пересечения прямой и плоскости

Пусть прямая (L) задана общим уравнением Плоскость и прямая в пространстве с примерами решения а плоскость (Q) уравнением Ax+By+Cz+D=0. Так как точка пересечения прямой и плоскости принадлежит одновременно обоим этим объектам, то ее координаты находят из системы уравнений: Плоскость и прямая в пространстве с примерами решения Если прямая (L) задана каноническим уравнением Плоскость и прямая в пространстве с примерами решения а плоскость (Q)

Рассмотрим возможные случаи:

  1. если выполняются условия Плоскость и прямая в пространстве с примерами решения, то прямая не пересекает плоскость (прямая параллельна плоскости);
  2. при условиях Плоскость и прямая в пространстве с примерами решения прямая лежит на плоскости;
  3. если Плоскость и прямая в пространстве с примерами решения, прямая пересекает плоскость в одной точке.

Пример:

Найти координаты точки пересечения прямой (L), заданной уравнением Плоскость и прямая в пространстве с примерами решения и плоскости (Q): 2x-y+3z-4=0.

Решение:

Перепишем уравнение прямой (L) в параметрическом виде Плоскость и прямая в пространстве с примерами решения Подставим найденные величины в уравнение плоскости (Q)? получим

Плоскость и прямая в пространстве с примерами решения

Найденное значение параметра Плоскость и прямая в пространстве с примерами решения подставим в параметрическое уравнение прямой Плоскость и прямая в пространстве с примерами решения Таким образом, прямая пересекает заданную плоскость в точке Плоскость и прямая в пространстве с примерами решения

  • Заказать решение задач по высшей математике

Угол между прямой и плоскостью

Пусть дана плоскость (Q) с нормальным вектором Плоскость и прямая в пространстве с примерами решения и пересекающая ее прямая (L) с направляющим вектором Плоскость и прямая в пространстве с примерами решения (Рис.45). Плоскость и прямая в пространстве с примерами решения

Рис. 45. Угол между прямой и плоскостью.

Угол Плоскость и прямая в пространстве с примерами решения является углом между прямой (L) и плоскостью (Q). Угол между нормальным вектором плоскости и прямой обозначим через Плоскость и прямая в пространстве с примерами решения Из рисунка видно, что Плоскость и прямая в пространстве с примерами решения Следовательно,

Плоскость и прямая в пространстве с примерами решения

Следствие: Если прямая перпендикулярна плоскости (Плоскость и прямая в пространстве с примерами решения), то условие перпендикулярности прямой и плоскости имеет вид: Плоскость и прямая в пространстве с примерами решения

Следствие: Если прямая параллельна плоскости (Плоскость и прямая в пространстве с примерами решения), то направляющий вектор прямой и нормальный вектор плоскости перпендикулярны (Плоскость и прямая в пространстве с примерами решения), следовательно, условие параллельности прямой и плоскости: Плоскость и прямая в пространстве с примерами решения.

Плоскость и прямая в пространстве

Всякое уравнение первой степени относительно координат Плоскость и прямая в пространстве с примерами решения Плоскость и прямая в пространстве с примерами решения задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости.

Вектор Плоскость и прямая в пространстве с примерами решения ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты А, В, С одновременно не равны 0.

Особые случаи уравнения (3.1):

  1. D = 0, Ах + By + Cz = 0 — плоскость проходит через начало координат.
  2. С = 0, Ах + By + D = 0 — плоскость параллельна оси Oz.
  3. С = D = 0, Ах + By = 0 — плоскость проходит через ось Oz.
  4. С = В = 0, Ах + D = 0 — плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: Плоскость и прямая в пространстве с примерами решения

Прямая в пространстве может быть задана:

  1. как линия пересечения двух плоскостей, т.е. системой уравнений:Плоскость и прямая в пространстве с примерами решения
  2. двумя своими точками Плоскость и прямая в пространстве с примерами решения тогда прямая, через них проходящая, задается уравнениями:Плоскость и прямая в пространстве с примерами решения
  3. точкой Плоскость и прямая в пространстве с примерами решения ей принадлежащей, и вектором Плоскость и прямая в пространстве с примерами решения ей коллинеарным.

Тогда прямая определяется уравнениями: Плоскость и прямая в пространстве с примерами решения

Уравнения (3.4) называются каноническими уравнениями прямой.

Вектор Плоскость и прямая в пространстве с примерами решения называется направляющим вектором прямой.

Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t: Плоскость и прямая в пространстве с примерами решения Решая систему (3.2) как систему линейных уравнений относительно неизвестных х и у, приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой.Плоскость и прямая в пространстве с примерами решения

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения: Плоскость и прямая в пространстве с примерами решения

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор Плоскость и прямая в пространстве с примерами решенияПлоскость и прямая в пространстве с примерами решения — нормальные векторы заданных плоскостей. Если один из знаменателей Плоскость и прямая в пространстве с примерами решения в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система Плоскость и прямая в пространстве с примерами решения равносильна системе Плоскость и прямая в пространстве с примерами решения такая прямая перпендикулярна к оси Ох. Система Плоскость и прямая в пространстве с примерами решенияравносильна системе Плоскость и прямая в пространстве с примерами решенияпрямая параллельна оси Oz.

Пример:

Составьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.

Решение:

По условию задачи вектор Плоскость и прямая в пространстве с примерами решения является нормальным вектором плоскости, тогда ее уравнение можно записать в виде Плоскость и прямая в пространстве с примерами решения Подставив координаты точки А(1,-1,3), принадлежащей плоскости, найдем D: Плоскость и прямая в пространстве с примерами решения Итак, Плоскость и прямая в пространстве с примерами решения

Пример:

Составьте уравнение плоскости, проходящей через ось Oz и образующей с плоскостью Плоскость и прямая в пространстве с примерами решения

Решение:

Плоскость, проходящая через ось Oz, задается уравнениемПлоскость и прямая в пространстве с примерами решенияодновременно не обращаются в нуль. Пусть В не равно 0, Плоскость и прямая в пространстве с примерами решенияПо формуле косинуса угла В между двумя плоскостями Плоскость и прямая в пространстве с примерами решения

Решая квадратное уравнение Плоскость и прямая в пространстве с примерами решения находим его корни Плоскость и прямая в пространстве с примерами решения откуда получаем две плоскости Плоскость и прямая в пространстве с примерами решения

Пример:

Составьте канонические уравнения прямой: Плоскость и прямая в пространстве с примерами решения Плоскость и прямая в пространстве с примерами решения

Решение:

Канонические уравнения прямой имеют вид:

Плоскость и прямая в пространстве с примерами решения где Плоскость и прямая в пространстве с примерами решения— координаты направляющего вектора прямой, Плоскость и прямая в пространстве с примерами решения— координаты какой-либо точки, принадлежащей прямой. Прямая задана как линия пересечения двух плоскостей. Чтобы найти точку, принадлежащую прямой, фиксируют одну из координат (проще всего положить, например, х = 0) и полученную систему решают как систему линейных уравнений с двумя неизвестными. Итак, пусть х = 0, тогда у + z = 0, Зу-2z + 5 = 0 , откуда у = -l, z = l. Координаты точки Плоскость и прямая в пространстве с примерами решения принадлежащей данной прямой, мы нашли: М(0,-1,1). Направляющий вектор прямой легко найти, зная нормальные векторы исходных плоскостей Плоскость и прямая в пространстве с примерами решенияТогда

Плоскость и прямая в пространстве с примерами решения Канонические уравнения прямой имеют вид: Плоскость и прямая в пространстве с примерами решения

Пример:

В пучке, определяемом плоскостями Плоскость и прямая в пространстве с примерами решениянайти две перпендикулярные плоскости, одна из которых проходит через точку М (1,0,1).

Решение:

Уравнение пучка, определяемого данными плоскостями, имеет вид Плоскость и прямая в пространстве с примерами решениягде Плоскость и прямая в пространстве с примерами решения не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом: Плоскость и прямая в пространстве с примерами решения

Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим: Плоскость и прямая в пространстве с примерами решения

Тогда уравнение плоскости, содержащей М, найдем, подставив Плоскость и прямая в пространстве с примерами решения в уравнение пучка: Плоскость и прямая в пространстве с примерами решения

Т.к. и Плоскость и прямая в пространстве с примерами решения (иначе v=0, а это противоречит определению пучка), то имеем уравнение плоскости Плоскость и прямая в пространстве с примерами решения Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей: Плоскость и прямая в пространстве с примерами решения

Значит, уравнение второй плоскости имеет вид: Плоскость и прямая в пространстве с примерами решенияили Плоскость и прямая в пространстве с примерами решения

  • Определитель матрицы
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Производная сложной функции
  • Пределы в математике
  • Функции многих переменных
  • Уравнения прямых и кривых на плоскости

Получить уравнение прямой, проходящей через две точки помогут созданные нами калькуляторы. Предлагаем найти каноническое и параметрическое уравнение прямой, а также уравнение прямой с угловым коэффициентом как на плоскости, так и в пространстве.

Прямая — это бесконечная линия, по которой проходит кратчайший путь между любыми двумя её точками.

Уравнения прямой, проходящей через две точки могут быть следующих видов:

  • каноническое уравнение,
  • параметрическое уравнение,
  • общее уравнение прямой,
  • уравнение прямой с угловым коэффициентом,
  • уравнение прямой в полярных координатах и другие.

Для получения уравнений введите координаты двух точек прямой. Онлайн-калькулятор найдет уравнения и выдаст результат с подробным решением.

Каноническое уравнение прямой на плоскости

{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}

xa и ya — координаты первой точки A,

xb и yb — координаты второй точки B

Параметрическое уравнение прямой на плоскости

{begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases}}

xa, ya — координаты точки, лежащей на прямой,

{l;m} — координаты направляющего вектора прямой,

t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.

Каноническое уравнение прямой в пространстве

{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a} = dfrac{z-z_a}{z_b-z_a}}

xa, ya и za — координаты первой точки A,

xb, yb и zb — координаты второй точки B

Параметрическое уравнение прямой в пространстве

{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a \ z=n cdot t + z_a end{cases} }

xa, ya и za — координаты точки, лежащей на прямой,

{l;m;n} — координаты направляющего вектора прямой,

t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.

Пример нахождения уравнения прямой, проходящей через две точки

Найдем уравнения прямой, проходящей через точки A(1,2) и B(3,8).

Каноническое уравнение прямой

Каноническое уравнение прямой, проходящей через две точки имеет вид {dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}

Подставим в формулу координаты точек A и B: {dfrac{x-1}{3-1} = dfrac{y-2}{8-2}}

Получаем каноническое уравнение прямой: {dfrac{x-1}{2} = dfrac{y-2}{4}}

Уравнение прямой с угловым коэффициентом

Из канонического уравнения получаем уравнение прямой с угловым коэффициентом: {y=3x-1}

Параметрическое уравнение прямой

Параметрическое уравнение прямой имеет вид:

{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases} }

где {x_a, y_b} — координаты точки, лежащей на прямой, {{l;m}} — координаты направляющего вектора прямой, t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении. В качестве координат используем координаты точки {A(x_a, y_b)}.

Найдем координаты направляющего вектора:

overline{AB} = {x_b — x_a; y_b — y_a} = {3-1; 8-2} = {2; 6}

Получаем параметрическое уравнение:

begin{cases} x=2 t + 1 \ y=6 t + 2 end{cases}

Используем калькулятор для проверки полученного ответа.

Понравилась статья? Поделить с друзьями:
  • Как найти кпп банка тинькофф
  • Как найти позицию подстроки в строке
  • Как найти лобовое стекло по вин коду
  • Как найти медкарту в айфоне
  • Как найти количество заряд электрона