Как составить определитель системы

  1. Определители и системы линейных уравнений

1.1.
Системы двух линейных уравнений и
определители второго порядка

Рассмотрим
систему двух линейных уравнений с двумя
неизвестными:

Коэффициенты

при неизвестных
и
имеют два индекса: первый указывает
номер уравнения, второй – номер
переменной.

Главным
определителем системы называется
таблица, составленная из коэффициентов
при неизвестных и заключенная в прямые
скобки:

Вспомогательным
определителем называют определитель,
полученный из главного определителя
заменой одного из столбцов на столбец
свободных членов:

Главнаядиагональ определителя – это диагональ,
направленная из левого верхнего угла
в правый нижний угол. Вторая диагональ
называетсяпобочной.

Определитель
второго порядка равен разности между
произведением элементов главной
диагонали и произведением элементов
побочной диагонали:

Правило
Крамера:
Решение системы находят
путем деления вспомогательных
определителей на главный определитель
системы

,

Замечание
1.
Использование правила Крамера
возможно, если определитель системы
не равен нулю.

Замечание
2.
Формулы Крамера обобщаются и на
системы большего порядка.

Пример
1.
Решить систему:
.

Решение.

;

;

;

Проверка:

Вывод:
Система решена верно:
.

1.2. Системы трех линейных уравнений и определители третьего порядка

Рассмотрим
систему трех линейных уравнений с тремя
неизвестными:

Определитель,
составленный из коэффициентов при
неизвестных, называется определителем
системы или главным определителем:

.

Если

то система имеет единственное решение,
которое определяется по формулам
Крамера:

где

где
определители
– называются вспомогательными и
получаются из определителя
путем замены его первого, второго или
третьего столбца столбцом свободных
членов системы.

Пример
2.
Решить систему
.

Сформируем
главный и вспомогательные определители:

Осталось
рассмотреть правила вычисления
определителей третьего порядка. Их три:
правило дописывания столбцов, правило
Саррюса, правило разложения.

а)
Правило дописывания первых двух столбцов
к основному определителю:

.

Вычисление
проводятся следующим образом: со своим
знаком идут произведения элементов
главной диагонали и по параллелям к
ней, с обратным знаком берут произведения
элементов побочной диагонали и по
параллелям к ней.

б)
Правило Саррюса:

Со
своим знаком берут произведения элементов
главной диагонали и по параллелям к
ней, причем недостающий третий элемент
берут из противоположного угла. С
обратным знаком берут произведения
элементов побочной диагонали и по
параллелям к ней, третий элемент берут
из противоположного угла.

в)
Правило разложения по элементам строки
или столбца:

Определитель
равен сумме произведений элементов
какой-нибудь строки (столбца) на их
соответствующие алгебраические
дополнения.

Если

,
тогда
.

Алгебраическое
дополнение
– это определитель более
низкого порядка, получаемый путем
вычеркивания соответствующей строки
и столбца и учитывающий знак
,
где– номер строки,– номер столбца.

Например,

,

,
и т.д.

Вычислим
по этому правилу вспомогательные
определители
и
,
раскрывая их по элементам первой строки.

Вычислив
все определители, по правилу Крамера
найдем переменные:

Проверка:

Вывод:
система решена верно:
.

    1. Основные
      свойства определителей

Необходимо
помнить, что определитель – это число,
найденное по некоторым правилам. Его
вычисление может быть упрощено, если
пользоваться основными свойствами,
справедливыми для определителей любого
порядка.

Свойство
1.
Значение определителя не изменится
от замены всех его строк соответствующими
по номеру столбцами и наоборот.

Операция
замены строк столбцами называется
транспонированием. Из этого свойства
вытекает, что всякое утверждение,
справедливое для строк определителя,
будет справедливым и для его столбцов.

Свойство
2.
Если в определителе поменять
местами две строки (столбца), то знак
определителя поменяется на противоположный.

Свойство
3.
Если все элементы какой-нибудь
строки определителя равны 0, то определитель
равен 0.

Свойство
4.
Если элементы строки определителя
умножить (разделить) на какое-нибудь
число
,
то и значение определителя увеличится
(уменьшится) в
раз.

Если
элементы какой-нибудь строки, имеют
общий множитель, то его можно вынести
за знак определителя.

Свойство
5.
Если определитель имеет две
одинаковые или пропорциональные строки,
то такой определитель равен 0.

Свойство
6.
Если элементы какой-нибудь строки
определителя представляют собой сумму
двух слагаемых, то определитель равен
сумме двух определителей.

Свойство
7.
Значение определителя не изменится,
если к элементам какой-нибудь строки
добавить элементы другой строки,
умноженной на одно и то же число.

В
этом определителе вначале ко второй
строке прибавили третью, умноженную на
2, затем из третьего столбца вычли второй,
после чего вторую строку прибавили к
первой и третьей, в результате получили
много нулей и упростили подсчет.

Элементарными
преобразованиями определителя
называются упрощения его благодаря
использованию указанных свойств.

Пример
1.
Вычислить определитель

Непосредственный
подсчет по одному из рассмотренных выше
правил приводит к громоздким вычислениям.
Поэтому целесообразно воспользоваться
свойствами:

а)
из І строки вычтем вторую, умноженную
на 2;

б)
из ІІ строки вычтем третью, умноженную
на 3.

В
результате получаем:

Разложим
этот определитель по элементам первого
столбца, содержащего лишь один ненулевой
элемент.

.

    1. Системы
      и определители высших порядков

Систему

линейных уравнений с
неизвестными можно записать в таком
виде:

Для
этого случая также можно составить
главный и вспомогательные определители,
а неизвестные определять по правилу
Крамера. Проблема состоит в том, что
определители более высокого порядка
могут быть вычислены только путем
понижения порядка и сведения их к
определителям третьего порядка. Это
может быть осуществлено способом прямого
разложения по элементам строк или
столбцов, а также с помощью предварительных
элементарных преобразований и дальнейшего
разложения.

Пример
4.
Вычислить определитель четвертого
порядка

Решение
найдем двумя способами:

а)
путем прямого разложения по элементам
первой строки:

б)
путем предварительных преобразований
и дальнейшего разложения

а)
из І строки вычтем ІІІ

б)
ІІ строку прибавим к ІV

а)
из IV строки вынесем 2

б)
сложим III и IV столбцы

в)
умножим на 2 III столбец и прибавим ко
II

Пример
5.
Вычислить определитель пятого
порядка, получая нули в третьей строке
с помощью четвертого столбца

из
первой строки вычтем вторую, из третьей
вычтем вторую, из четвертой вычтем
вторую, умноженную на 2.

из
второго столбца вычтем третий:

из
второй строки вычтем третью:

Пример
6.
Решить систему:

Решение.Составим определитель системы и, применив
свойства определителей, вычислим его:

(из
первой строки вычтем третью, а затем в
полученном определителе третьего
порядка из третьего столбца вычитаем
первый, умноженный на 2). Определитель

,
следовательно, формулы Крамера применимы.

Вычислим
остальные определители:

Четвертый
столбец умножили на 2 и вычли из остальных

Четвертый
столбец вычли из первого, а затем, умножив
на 2, вычли из второго и третьего столбцов.

.

Здесь
выполнили те же преобразования, что и
для
.

.

При
нахождении
первый столбец умножили на 2 и вычли из
остальных.

По
правилу Крамера имеем:

.

После
подстановки в уравнения найденных
значений убеждаемся в правильности
решения системы.

2.
МАТРИЦЫ и
ИХ
ИСПОЛЬЗОВАНИЕ

В
РЕШЕНИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Содержание:

Методы решения систем линейных алгебраических уравнений (СЛАУ)

Метод Крамера

Определение: Системой линейных алгебраических уравнений (СЛАУ) называется выражение

Определение: Определитель, составленный из коэффициентов при неизвестных, называется главным определителем системы

Крамер предложил следующий метод решения СЛАУ: умножим главный определитель на для этого умножим все элементы первого столбца на эту неизвестную:

Второй столбец умножим на третий столбец — на -ый столбец — на и все эти произведения прибавим к первому столбцу, при этом произведение не изменится:

Согласно записи СЛАУ первый столбец получившегося определителя представляет собой столбец свободных коэффициентов, т.е.

Определение: Определитель называется первым вспомогательным определителем СЛАУ.

Поступая аналогично тому, как описано выше, найдем все вспомогательные определители СЛАУ:

31. Для того чтобы найти вспомогательный определитель i, надо в главном определителе СЛАУ заменить столбец i на столбец свободных коэффициентов.

Определение: Полученные выше соотношения называются формулами Крамера. Используя формулы Крамера, находят неизвестные величины Проанализируем полученные формулы:

Пример:

Решить СЛАУ методом Крамера

Решение:

Прежде всего, обращаем внимание на то, что в последнем уравнении переменные записаны в неправильном порядке, в этом случае говорят, что СЛАУ записана в ненормализованном виде. Нормализуем СЛАУ, для чего запишем неизвестные в последнем уравнении системы в правильном порядке, чтобы одноименные неизвестные были записаны друг под другом

Найдем главный определитель СЛАУ (раскрываем по первой строке)

Так как главный определитель системы отличен от нуля, то СЛАУ имеет единственное решение. Найдем три вспомогательных определителя

Воспользуемся формулами Крамера

Замечание: После нахождения решения СЛАУ надо обязательно провести проверку, для чего найденные числовые значения неизвестных подставляется в нормализованную систему линейных алгебраических уравнений.

Выполним проверку Отсюда видно, что СЛАУ решена верно.

Матричный способ решения СЛАУ

Для решения СЛАУ матричным способом введем в рассмотрение матрицу, составленную из коэффициентов при неизвестных матpицы-столбцы неизвестных и свободных коэффициентов

Тогда СЛАУ можно записать в матричном виде Матричный способ решения СЛАУ состоит в следующем: умножим слева матричное уравнение на обратную матрицу к матрице А, получим в силу того, что произведение найдем Таким образом, для нахождения неизвестных матричным способом, надо найти обратную к А матрицу после чего надо умножить эту матрицу на матрицу-столбец свободных коэффициентов.

Пример:

Решить СЛАУ матричным способом

Решение:

Введем в рассмотрение следующие матрицы

Найдем матрицу (см. Лекцию № 2): найдем детерминант матрицы А.

Пример:

Решение:

Найдем алгебраические дополнения всех элементов Запишем обратную матрицу (в правильности нахождения обратной матрицы убедиться самостоятельно). Подействуем пай денной матрицей на матрицу-столбец свободных коэффициентов В:

Отсюда находим, что х = 1; y = l; z = l.

Метод Гаусса

Метод Гаусса или метод исключения неизвестных состоит в том, чтобы за счет элементарных преобразований привести СЛАУ к треугольному виду. Покажем использование расширенной матрицы, составленной из коэффициентов при неизвестных и расширенной за счет столбца свободных коэффициентов, для приведения СЛАУ к треугольному виду на примере системы, рассматриваемой в этой лекции. Расширенная матрица для СЛАУ имеет вид:

Замечание: В методе Гаусса желательно, чтобы первая строка расширенной матрицы начиналась с единицы.

Обменяем в расширенной матрице первую и вторую строки местами, получим Приведем матрицу к треугольному виду, выполнив следующие преобразования: умножим элементы первой строки на (-2) и прибавим к соответствующим элементам второй строки Разделим все элементы второй строки на (-5), получим эквивалентную матрицу

Умножим элементы первой строки на (—1) и прибавим к соответствующим элементам третьей строки Разделим все элементы третьей строки на (-3), получим Таким образом, эквивалентная СЛАУ имеет вид (напомним, что первый столбец это коэффициенты при неизвестной х, второй — при неизвестной у, третий — при неизвестной z, а за вертикальной чертой находится столбец свободных коэффициентов):

Из первого уравнения находим, что х = 1.

Вывод: Из вышеизложенного материала следует, что вне зависимости от

способа решения СЛАУ всегда должен получаться один и тот же ответ.

Замечание: После нахождения решения СЛАУ надо обязательно выполнить проверку, то есть подставить полученные значения неизвестных в заданную СЛАУ и убедиться в тождественности левой части всех равенств системы соответствующим правым частям. Отметим, что задание СЛАУ всегда верно, то есть, если проверка показывает нарушение оговоренной тождественности, то надо искать ошибку в проведенных вычислениях.

Ранг матрицы. Теорема Кронекера-Капелли

Определение: Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы.

Если то среди всевозможных миноров этой матрицы есть хотя бы один минор порядка r, который отличен от нулю, а все миноры порядков больших, чем r, равны нулю.

При вычислении ранга необходимо начинать вычислять миноры 2 порядка, затем миноры 3 порядка и так далее, пока не будут найдены миноры, обращающиеся в нуль. Если все миноры порядка p равны нулю, то и все миноры, порядок которых больше p, равны нулю.

Пример:

Найти ранг матрицы

Решение:

Очевидно, что среди миноров второго порядка есть миноры отличные от нуля, например, среди миноров третьего порядка также есть миноры, которые не равны нулю, например, Очевидно, что определитель четвертого порядка равен нулю, так как он будет содержать строку, состоящую из одних нулей (см. свойство для определителей). Следовательно, ранг матрицы А равен 3.

Теорема Кронекера-Капелли (критерий совместности СЛАУ). Для совместности системы линейных алгебраических уравнений (СЛАУ) необходимо и достаточно, чтобы ранг расширенной матрицы совпадал с рангом основной матрицы, составленной из коэффициентов при неизвестных величинах.

Следствия из теоремы Кронекера — Капелли

Следствие: Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение (то есть она определенная).

Следствие: Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений (т.е. она неопределенная).

В случае неопределенной системы решения ищут следующим образом: выбираются главные неизвестные, число которых равно рангу, а остальные неизвестные считаются свободными; далее главные неизвестные выражаются через свободные и получают множество решений, зависящих от свободных неизвестных. Это множество решений называется общим решением системы. Придавая свободным неизвестным различные произвольные значения, получим бесчисленное множество решений, каждое из которых называется частным решением системы.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Экстремум функции

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Метод Крамера – теорема, примеры решений

Метод Крамера часто применяется для систем линейных алгебраических уравнений (СЛАУ). Этот способ решения один из самых простых. Как правило, данный метод применяется только для тех систем, где по количеству неизвестных столько же, сколько и уравнений. Чтобы получилось решить уравнение, главный определитель матрицы не должен равняться нулю.

Габриель Крамер – математик, создатель одноименного метода решения систем линейных уравнений

Габриель Крамер – известный математик, который родился 31 июля 1704 года. Ещё в детстве Габриель поражал своими интеллектуальными способностями, особенно в области математики. Когда Крамеру было 20 лет, он устроился в Женевский университет штатным преподавателем.

Во время путешествия по Европе Габриель познакомился с математиком Иоганном Бернулли, который и стал его наставником. Только благодаря Иоганну, Крамер написал много статей по геометрии, истории математики и философии. А в свободное от работы время изучал математику всё больше и больше.

Наконец-то наступил тот день, когда Крамер нашёл способ, при помощи которого можно было бы легко решать не только лёгкие, но и сложные системы линейных уравнений.

В 1740 году у Крамера были опубликованы несколько работ, где доступно изложено решение квадратных матриц и описан алгоритм, как находить обратную матрицу. Далее математик описывал нахождения линейных уравнений разной сложности, где можно применить его формулы. Поэтому тему так и назвали: «Решение систем линейных уравнений методом Крамера».

Учёный умер в возрасте 48 лет (в 1752 году). У него было ещё много планов, но, к сожалению, он так и не успел их осуществить.

Вывод формулы Крамера

Пусть дана система линейных уравнений такого вида:

где , , – неизвестные переменные, – это числовые коэффициенты, в – свободные члены.

Решением СЛАУ (систем линейных алгебраических уравнение) называются такие неизвестные значения при которых все уравнения данной системы преобразовываются в тождества.

Если записать систему в матричном виде, тогда получается , где

В данной главной матрице находятся элементы, коэффициенты которых при неизвестных переменных,

Это матрица-столбец свободных членов, но есть ещё матрица-столбец неизвестных переменных:

После того, когда найдутся неизвестные переменные, матрица и будет решением системы уравнений, а наше равенство преобразовывается в тождество. . Если умножить , тогда . Получается: .

Если матрица – невырожденная, то есть, её определитель не равняется нулю, тогда у СЛАУ есть только одно единственное решение, которое находится при помощи метода Крамера.

Как правило, для решения систем линейных уравнений методом Крамера, нужно обращать внимания на два свойства, на которых и основан данный метод:

1. Определитель квадратной матрицы равняется сумме произведений элементов любой из строк (столбца) на их алгебраические дополнения:

, здесь – 1, 2, …, n; – 1, 2, 3, …, n.

2. Сумма произведений элементов данной матрицы любой строки или любого столбца на алгебраические дополнения определённых элементов второй строки (столбца) равняется нулю:

,

,

где – 1, 2, …, n; – 1, 2, 3, …, n. .

Итак, теперь можно найти первое неизвестное . Для этого необходимо умножить обе части первого уравнения системы на , части со второго уравнения на , обе части третьего уравнения на и т. д. То есть, каждое уравнение одной системы нужно умножать на определённые алгебраические дополнения первого столбца матрицы :

Теперь прибавим все левые части уравнения, сгруппируем слагаемые, учитывая неизвестные переменные и приравняем эту же сумму к сумме правых частей системы уравнения:

.

Можно обратиться к вышеописанным свойствам определителей и тогда получим:

И предыдущее равенство уже выглядит так:

Откуда и получается .

Аналогично находим . Для этого надо умножить обе части уравнений на алгебраические дополнения, которые находятся во втором столбце матрицы .

Теперь нужно сложить все уравнения системы и сгруппировать слагаемые при неизвестных переменных. Для этого вспомним свойства определителя:

Откуда получается .

Аналогично находятся все остальные неизвестные переменные.

тогда получаются формулы, благодаря которым находятся неизвестные переменные методом Крамера:

, , .

Замечание.

Тривиальное решение при может быть только в том случае, если система уравнений является однородной . И действительно, если все свободные члены нулевые, тогда и определители равняются нулю, так как в них содержится столбец с нулевыми элементами. Конечно же, тогда формулы , , дадут

Нужна помощь в написании работы?

Написание учебной работы за 1 день от 100 рублей. Посмотрите отзывы наших клиентов и узнайте стоимость вашей работы.

Метод Крамера – теоремы

Прежде чем решать уравнение , необходимо знать:

  1. теорему аннулирования;
  2. теорему замещения.

Теорема замещения

Сумма произведений алгебраических дополнений любого столбца (строки) на произвольные числа равняется новому определителю, в котором этими числами заменены соответствующие элементы изначального определителя, что отвечают данным алгебраическим дополнениям.

=

где – алгебраические дополнения элементов первого столбца изначального определителя:

Теорема аннулирования

Сумма произведений элементов одной строки (столбца) на алгебраические дополнения соответствующих элементов другой строки (столбца) равняется нулю.

Алгоритм решения уравнений методом Крамера

Метод Крамера – простой способ решения систем линейных алгебраических уравнений. Такой вариант применяется исключительно к СЛАУ, у которых совпадает количество уравнений с количеством неизвестных, а определитель отличен от нуля.

Итак, когда выучили все этапы, можно переходить к самому алгоритму решения уравнений методом Крамера. Запишем его последовательно:

Шаг 1. Вычисляем главный определитель матрицы

и необходимо убедиться, что определитель отличен от нуля (не равен нулю).

Шаг 2. Находим определители

Это и есть определители матриц, которые получались из матрицы при замене столбцов на свободные члены.

Шаг 3. Вычисляем неизвестные переменные

Теперь вспоминаем формулы Крамера, по которым вычисляем корни (неизвестные переменные):

, , .

Шаг 4. Выполняем проверку

Выполняем проверку решения при помощи подстановки в исходную СЛАУ. Абсолютно все уравнения в системе должны быть превращены в тождества. Также можно высчитать произведение матриц . Если в итоге получилась матрица, которая равняется , тогда система решена правильно. Если же не равняется , скорей всего в одном из уравнений есть ошибка.

Давайте для начала рассмотрим систему двух линейных уравнений, так как она более простая и поможет понять, как правильно использовать правило Крамера. Если вы поймёте простые и короткие уравнения, тогда сможете решить более сложные системы трёх уравнений с тремя неизвестными.

Кроме всего прочего, есть системы уравнений с двумя переменными, которые решаются исключительно благодаря правилу Крамеру.

Итак, дана система двух линейных уравнений:

Для начала вычисляем главный определитель (определитель системы):

Значит, если , тогда у системы или много решений, или система не имеет решений. В этом случае пользоваться правилом Крамера нет смысла, так как решения не получится и нужно вспоминать метод Гаусса, при помощи которого данный пример решается быстро и легко.

В случае, если , тогда у система есть всего одно решение, но для этого необходимо вычислить ещё два определителя и найти корни системы.

Часто на практике определители могут обозначаться не только , но и латинской буквой , что тоже будет правильно.

Корни уравнения найти просто, так как главное, знать формулы:

,

Так как мы смогли решить систему двух линейных уравнений, теперь без проблем решим и систему трёх линейных уравнений, а для этого рассмотрим систему:

Здесь алгебраические дополнения элементов – первый столбец . Во время решения не забывайте о дополнительных элементах. Итак, в системе линейных уравнений нужно найти три неизвестных – при известных других элементах.

Создадим определитель системы из коэффициентов при неизвестных:

Умножим почленно каждое уравнение соответственно на , , – алгебраические дополнения элементов первого столбца (коэффициентов при ) и прибавим все три уравнения. Получаем:

Согласно теореме про раскладывание, коэффициент при равняется . Коэффициенты при и будут равняться нулю по теореме аннулирования. Правая часть равенства по теореме замещения даёт новый определитель, который называется вспомогательным и обозначается

После этого можно записать равенство:

Для нахождения и перемножим каждое из уравнений изначальной системы в первом случае соответственно на , во втором – на и прибавим. Впоследствии преобразований получаем:

,

Если , тогда в результате получаем формулы Крамера:

= , = , =

Порядок решения однородной системы уравнений

Отдельный случай – это однородные системы:

Среди решений однородной системы могут быть, как нулевые решения , так и решения отличны от нуля.

Если определитель однородной системы (3) отличен от нуля , тогда у такой системы может быть только одно решение.

Действительно, вспомогательные определители , как такие у которых есть нулевой столбец и поэтому, за формулами Крамера

Если у однородной системы есть отличное от нуля решение, тогда её определитель равняется нулю

Действительно, пусть одно из неизвестных , например, , отличное от нуля. Согласно с однородностью Равенство (2) запишется: . Откуда выплывает, что

Примеры решения методом Крамера

Рассмотрим на примере решение методом Крамера и вы увидите, что сложного ничего нет, но будьте предельно внимательно, так как частые ошибки в знаках приводят к неверному ответу.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

Первое, что надо сделать – вычислить определитель матрицы:

Как видим, , поэтому по теореме Крамера система имеет единственное решение (система совместна). Далее нужно вычислять вспомогательные определители. Для этого заменяем первый столбец из определителя на столбец свободных коэффициентов. Получается:

Аналогично находим остальные определители:

,

.

Ответ

, .

Задача

Решить систему уравнений методом Крамера:

Решение

Ответ

= = = = = =

Проверка

* = * = =

* = * = =

* = * = =

Уравнение имеет единственное решение.

Ответ

= = =

Задача

Решить систему методом Крамера

Решение

Как вы понимаете, сначала находим главный определитель:

Как мы видим, главный определитель не равняется нулю и поэтому система имеет единственное решение. Теперь можно вычислить остальные определители:

При помощи формул Крамера находим корни уравнения:

, , .

Чтобы убедиться в правильности решения, необходимо сделать проверку:

Как видим, подставив в уравнение решённые корни, у нас ответ получился тот же, что и в начале задачи, что говорит о правильном решении уравнений.

Ответ

Система уравнений имеет единственное решение: , , .

Есть примеры, когда уравнение решений не имеет. Это может быть в том случае, когда определитель системы равен нулю, а определители при неизвестных неравны нулю. В таком случае говорят, что система несовместна, то есть не имеет решений. Посмотрим на следующем примере, как такое может быть.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

Как и в предыдущих примерах находим главный определитель системы:

В этой системе определитель равняется нулю, соответственно, система несовместна и определенна или же несовместна и не имеет решений. Чтобы уточнить, надо найти определители при неизвестных так, как мы делали ранее:

Мы нашли определители при неизвестных и увидели, что все они не равны нулю. Поэтому система несовместна и не имеет решений.

Ответ

Система не имеет решений.

Часто в задачах на системы линейных уравнений встречаются такие уравнения, где есть не одинаковые буквы, то есть, кроме букв, которые обозначают переменные, есть ещё и другие буквы и они обозначают некоторое действительное число. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных – буквы. Давайте и рассмотрим такой пример.

Задача

Решить систему линейных уравнений методом Крамера:

Решение

В этом примере – некоторое вещественное число. Находим главный определитель:

Находим определители при неизвестных:

Используя формулы Крамера, находим:

, .

Ответ

,

.

И наконец, мы перешли к самой сложной системе уравнений с четырьмя неизвестными. Принцип решения такой же, как и в предыдущих примерах, но в связи с большой системой можно запутаться. Поэтому рассмотрим такое уравнение на примере.

Задача

Найти систему линейных уравнений методом Крамера:

Здесь действуют система определителей матрицы высших порядков, поэтому вычисления и формулы рассмотрены в этой теме, а мы сейчас просто посчитаем систему уравнений с четырьмя неизвестными.

Решение

В изначальном определители из элементов второй строки мы отнимали элементы четвёртой строки, а из элементов третьей строки отнимались элементы четвёртой строки, которые умножались на 2. Также отнимали из элементов четвёртой строки элементы первой строки, умноженной на два. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Теперь можно находить определители при неизвестных:

Для преобразований определителя при четвёртом неизвестном из элементов первой строки мы вычитали элементы четвёртой строки.

Теперь по формулам Крамера нужно найти:

,

,

,

.

Ответ

Итак, мы нашли корни системы линейного уравнения:

,

,

,

.

Подведём итоги

При помощи метода Крамера можно решать системы линейных алгебраических уравнений в том случае, если определитель не равен нулю. Такой метод позволяет находить определители матриц такого порядка, как на благодаря формулам Крамера, когда нужно найти неизвестные переменные. Если все свободные члены нулевые, тогда их определители равны нулю, так как в них содержится столбец с нулевыми элементами. И конечно же, если определители равняются нулю, лучше решать систему методом Гаусса, а не Крамера, только тогда ответ будет верный.

Рекомендуем почитать для общего развития

Решение методом Крамера в Excel

Как составить определитель системы уравнений

Дадим ряд необходимых определений.

Система линейных уравнений называется неоднородной, если хотя бы один ее свободный член отличен от нуля, и однородной, если все ее свободные члены равны нулю.

Решением системы уравнений называется упорядоченный набор чисел, который, будучи подставленным вместо переменных в систему, обращает каждое ее уравнение в тождество.

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она решений не имеет.

Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

Рассмотрим неоднородную систему линейных алгебраических уравнений, имеющую при n = m следующий общий вид:

Главной матрицей A системы линейных алгебраических уравнений называется матрица, составленная из коэффициентов, стоящих при неизвестных:

Определитель главной матрицы системы называется главным определителем и обозначается ∆.

Вспомогательный определитель ∆ i получается из главного определителя путем замены i -го столбца на столбец свободных членов .

Теорема 1.1 (теорема Крамера). Если главный определитель системы линейных алгебраических уравнений отличен от нуля, то система имеет единственное решение, вычисляемое по формулам:

Если главный определитель ∆=0, то система либо имеет бесконечное множество решений (при всех нулевых вспомогательных определителях), либо вообще решения не имеет (при отличии от нуля хотя бы одного из вспомогательных определителей).

В свете приведенных выше определений , теорема Крамера может быть сформулирована иначе: если главный определитель системы линейных алгебраических уравнений отличен от нуля, то система является совместной определенной и при этом ; если главный определитель нулевой, то система является либо совместной неопределенной (при всех ∆ i = 0), либо несовместной (при отличии хотя бы одного из ∆ i от нуля).

После этого следует провести проверку полученного решения.

Пример 1.4. Решить систему методом Крамера

Решение. Так как главный определитель системы

отличен от нуля, то система имеет единственное решение. Вычислим вспомогательные определители

Воспользуемся формулами Крамера (1.6):

Пример 1.5. Данные дневной выручки молочного цеха от реализации молока, сливочного масла и творога за три дня продаж (на 2017 год) занесены в таблицу 1.4.

Определить стоимость 1 единицы продукции молокоцеха каждого вида.

Решение. Обозначим через x – стоимость 1 литра молока, y – 1 кг сливочного масла, z – 1 кг творога. Тогда, учитывая данные таблицы 1.4, выручку молочного цеха каждого из трех дней реализации можно отобразить следующей системой:

Решим систему методом Крамера. Найдем главный определитель системы по формуле (1.2):

Так как он отличен от нуля, то система имеет единственное решение. Вычислим вспомогательные определители с помощью формулы (1.2):

По формулам Крамера (1.6) имеем:

Вернувшись к обозначениям, видим, что стоимость 1 литра молока равна 44 рубля, 1 кг масла – 540 рублей, 1 кг творога – 176 рублей

Примечание. Как видно, процесс вычисления определителей вручную с помощью калькулятора трудоемок, поэтому на практике используют персональный компьютер. Так, для решения систем линейных алгебраических уравнений методом Крамера в MS Excel высчитывают ее главный и вспомогательные определители с использованием функции МОПРЕД( ), где аргументом является диапазон ячеек и элементы матрицы, определитель которой находится.

В MathCAD для нахождения определителя пользуются палитрой оператора Matrix

источники:

http://nauchniestati.ru/spravka/resheneie-sistem-metodom-kramera/

http://www.sites.google.com/site/vyssaamatem/kupit-sklad/i-3-metod-kramera-resenia-sistem-linejnyh-algebraiceskih-uravnenij

Содержание:

Методы решения систем линейных алгебраических уравнений (СЛАУ)

Метод Крамера

Определение: Системой линейных алгебраических уравнений (СЛАУ) называется выражение Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Определение: Определитель, составленный из коэффициентов при неизвестных, называется главным определителем системы Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Крамер предложил следующий метод решения СЛАУ: умножим главный определитель на Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами для этого умножим все элементы первого столбца на эту неизвестную: Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Второй столбец умножим на Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами третий столбец — на Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами-ый столбец — на Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами и все эти произведения прибавим к первому столбцу, при этом произведение Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерамине изменится:

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Согласно записи СЛАУ первый столбец получившегося определителя представляет собой столбец свободных коэффициентов, т.е. Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Определение: Определитель Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами называется первым вспомогательным определителем СЛАУ.

Поступая аналогично тому, как описано выше, найдем все вспомогательные определители СЛАУ: Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

31. Для того чтобы найти вспомогательный определитель i, надо в главном определителе СЛАУ заменить столбец i на столбец свободных коэффициентов.

Определение: Полученные выше соотношения называются формулами Крамера. Используя формулы Крамера, находят неизвестные величины Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Проанализируем полученные формулы:

Пример:

Решить СЛАУ методом Крамера Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Решение:

Прежде всего, обращаем внимание на то, что в последнем уравнении переменные записаны в неправильном порядке, в этом случае говорят, что СЛАУ записана в ненормализованном виде. Нормализуем СЛАУ, для чего запишем неизвестные в последнем уравнении системы в правильном порядке, чтобы одноименные неизвестные были записаны друг под другом

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Найдем главный определитель СЛАУ (раскрываем по первой строке) Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Так как главный определитель системы отличен от нуля, то СЛАУ имеет единственное решение. Найдем три вспомогательных определителя Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Воспользуемся формулами Крамера

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Замечание: После нахождения решения СЛАУ надо обязательно провести проверку, для чего найденные числовые значения неизвестных подставляется в нормализованную систему линейных алгебраических уравнений.

Выполним проверку Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Отсюда видно, что СЛАУ решена верно.

  • Заказать решение задач по высшей математике

Матричный способ решения СЛАУ

Для решения СЛАУ матричным способом введем в рассмотрение матрицу, составленную из коэффициентов при неизвестных Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами матpицы-столбцы неизвестных Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами и свободных коэффициентов Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Тогда СЛАУ можно записать в матричном виде Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Матричный способ решения СЛАУ состоит в следующем: умножим слева матричное уравнение на обратную матрицу Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами к матрице А, получим Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами в силу того, что произведение Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами найдем Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Таким образом, для нахождения неизвестных матричным способом, надо найти обратную к А матрицу Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами после чего надо умножить эту матрицу на матрицу-столбец свободных коэффициентов.

Пример:

Решить СЛАУ матричным способом Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Решение:

Введем в рассмотрение следующие матрицы Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Найдем матрицу Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами (см. Лекцию № 2): найдем детерминант матрицы А.

Пример:

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Решение:

Найдем алгебраические дополнения всех элементов Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Запишем обратную матрицу Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами (в правильности нахождения обратной матрицы убедиться самостоятельно). Подействуем пай денной матрицей на матрицу-столбец свободных коэффициентов В:Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Отсюда находим, что х = 1; y = l; z = l.

Метод Гаусса

Метод Гаусса или метод исключения неизвестных состоит в том, чтобы за счет элементарных преобразований привести СЛАУ к треугольному виду. Покажем использование расширенной матрицы, составленной из коэффициентов при неизвестных и расширенной за счет столбца свободных коэффициентов, для приведения СЛАУ к треугольному виду на примере системы, рассматриваемой в этой лекции. Расширенная матрица для СЛАУ имеет вид: Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Замечание: В методе Гаусса желательно, чтобы первая строка расширенной матрицы начиналась с единицы.

Обменяем в расширенной матрице первую и вторую строки местами, получим Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Приведем матрицу к треугольному виду, выполнив следующие преобразования: умножим элементы первой строки на (-2) и прибавим к соответствующим элементам второй строки Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Разделим все элементы второй строки на (-5), получим эквивалентную матрицу Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Умножим элементы первой строки на (—1) и прибавим к соответствующим элементам третьей строки Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Разделим все элементы третьей строки на (-3), получим Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Таким образом, эквивалентная СЛАУ имеет вид (напомним, что первый столбец это коэффициенты при неизвестной х, второй — при неизвестной у, третий — при неизвестной z, а за вертикальной чертой находится столбец свободных коэффициентов):

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Из первого уравнения находим, что х = 1.

Вывод: Из вышеизложенного материала следует, что вне зависимости от

способа решения СЛАУ всегда должен получаться один и тот же ответ.

Замечание: После нахождения решения СЛАУ надо обязательно выполнить проверку, то есть подставить полученные значения неизвестных в заданную СЛАУ и убедиться в тождественности левой части всех равенств системы соответствующим правым частям. Отметим, что задание СЛАУ всегда верно, то есть, если проверка показывает нарушение оговоренной тождественности, то надо искать ошибку в проведенных вычислениях.

Ранг матрицы. Теорема Кронекера-Капелли

Определение: Рангом матрицы Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами называется наивысший порядок отличного от нуля минора этой матрицы.

Если Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами то среди всевозможных миноров этой матрицы есть хотя бы один минор порядка r, который отличен от нулю, а все миноры порядков больших, чем r, равны нулю.

При вычислении ранга необходимо начинать вычислять миноры 2 порядка, затем миноры 3 порядка и так далее, пока не будут найдены миноры, обращающиеся в нуль. Если все миноры порядка p равны нулю, то и все миноры, порядок которых больше p, равны нулю.

Пример:

Найти ранг матрицы Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Решение:

Очевидно, что среди миноров второго порядка есть миноры отличные от нуля, например, Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами среди миноров третьего порядка также есть миноры, которые не равны нулю, например, Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами Очевидно, что определитель четвертого порядка равен нулю, так как он будет содержать строку, состоящую из одних нулей (см. свойство Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами для определителей). Следовательно, ранг матрицы А равен 3.

Теорема Кронекера-Капелли (критерий совместности СЛАУ). Для совместности системы линейных алгебраических уравнений (СЛАУ) необходимо и достаточно, чтобы ранг расширенной матрицы совпадал с рангом основной матрицы, составленной из коэффициентов при неизвестных величинах.

Следствия из теоремы Кронекера — Капелли

Следствие: Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение (то есть она определенная).

Следствие: Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений (т.е. она неопределенная).

В случае неопределенной системы решения ищут следующим образом: выбираются главные неизвестные, число которых равно рангу, а остальные неизвестные считаются свободными; далее главные неизвестные выражаются через свободные и получают множество решений, зависящих от свободных неизвестных. Это множество решений называется общим решением системы. Придавая свободным неизвестным различные произвольные значения, получим бесчисленное множество решений, каждое из которых называется частным решением системы.

  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Экстремум функции

1.1. Определители и матрицы

1.1.1. Понятие числовой матрицы

1.1.2. Определители второго порядка

1.1.3. Подматрица, минор, алгебраическое дополнение

1.1.4. Определители третьего порядка

1.1.5. Свойства определителей

1.1.6. Определители порядка n

1.2. Решение систем линейных уравнений методом Крамера

1.2.1. Понятие системы линейных уравнений

1.2.2. Формулы Крамера

1.3. Матрицы. Операции над матрицами

1.3.1. Умножение матрицы на число

1.3.2. Сложение матриц

1.3.3. Произведение матриц

1.3.4. Транспонирование матриц

1.3.5. Понятие обратной матрицы

1.3.6. Нахождение обратной матрицы методом Крамера

1.3.7. Алгоритм нахождения обратной матрицы методом Крамера

1.3.8. Элементарные преобразования матриц

1.3.9. Вычисление обратной матрицы с помощью элементарных преобразований

1.4. Решение системы линейных уравнений

1.4.1. Системы линейных уравнений. Основные понятия

1.4.2. Метод Гаусса

1.5. Исследование систем линейных уравнений

1.5.1. Теоремы о ранге матриц

1.5.2. Исследование систем линейных уравнений

1.5.3. Теорема Кронекера-Капелли

1.5.4. Однородные системы линейных уравнений

1.5.5. Свойства решений линейной однородной системы уравнений

1.1. Определители и матрицы

1.1.1. Понятие числовой матрицы

Числовая матрица – прямоугольная таблица чисел, состоящая из строк и столбцов. Размеры матрицы обозначаются M * N, где M-число строк, N-число столбцов.

Пример:

A= Числовая матрица или A=Числовая матрица

Общее обозначение:

A=Числовая матрица или A=Числовая матрица, где элемент матрицы— элемент матрицы, находящийся на пересечении i-ой строки и j-ого столбца: i-ой строки j-ого столбца

Если M=N, то матрица называется квадратной. В этом случае N – ее порядок. В квадратной матрице выделяются две диагонали – главная и побочная:

. . .
.

. . главная
. . .
побочная

. .

. .

Пример:

A = Пример главную диагональ образуют эл-ты:

главную диагональ образуют эл-ты , а побочную побочную

1.1.2. Определители второго порядка

Пусть дана матрица второго порядка
A= дана матрица второго порядка.

Определителем второго порядка называется число, вычисляемое по правилу:

вычисляемое по правилу

Определитель второго порядка равен произведению элементов Главной диагонали минус произведение элементов Побочной диагонали.

Главной диагонали минус произведение элементов =
1*(-4)-6 = -10

1.1.3. Подматрица, минор, алгебраическое дополнение

Пусть дана какая-либо матрица (например, порядка 3):

А= дана какая-либо матрица

Подматрицей матрицы А называется часть этой матрицы, полученная вычеркиванием какого-либо количества строк, и(или) какого-либо количества столбцов.

Например, если вычеркнуть первую строку и второй столбец, то получим подматрицу данной матрицы:

получим подматрицу даной матрицы

Минором Минором элемента элемента определителя определителя называется определитель, полученный вычеркиванием i-ой строки и j-ого столбца.

Алгебраическим дополнением элемента Алгебраическим дополнением называется минор, взятый со знаком “+” или “- ” в зависимости от места этого элемента в определителе.

Обозначение: Обозначение=ОбозначениеОбозначение

Если i+j — четное число , то знак алгебраического дополнения и минора одинаковы, если нечетное , то их знаки противоположны.

Символически покажем положительные и отрицательные места в определителе:

положительные и отрицательные места в определителе или положительные и отрицательные места в определителе

1.1.4. Определители третьего порядка

Определителем третьего порядка называется число, вычисляемое по правилу:

= Определителем третьего порядка называется число, вычисляемое по правилу =

Определитель третьего порядка равен сумме произведений элементов первой строки на их алгебраические дополнения.

Заменим алгебраические дополнения на миноры:

алгебраические дополнения на миноры = алгебраические дополнения на миноры

= алгебраические дополнения на минорыалгебраические дополнения на миноры + алгебраические дополнения на миноры

Вычисляя миноры, получим:

= Вычисляя миноры, получим

Вычисляя миноры, получим

1.1.5. Свойства определителей

Свойство 1. При замене строк на столбцы определитель не меняется.

При замене строк на столбцы определитель не меняется = При замене строк на столбцы определитель не меняется

(такая операция называется транспонированием).

Следствие: строки и столбцы равноправны, т.е любые свойства или утверждения относительно строк справедливы и для столбцов и наоборот.

Свойство 2. При перестановке двух строк определитель меняет знак на противоположный.

При перестановке двух строк определитель меняет знак = — При перестановке двух строк определитель меняет знак

Следствие: любую строку (столбец) можно поставить первой (первым)

Свойство 3. Определитель с двумя равными строками равен нулю.

Определитель с двумя равными строками равен нулю = 0

Свойство 4. Общий множитель элементов строки можно выносить за знак определителя.

Общий множитель элементов строки можно выносить за знак определителя Общий множитель элементов строки можно выносить за знак определителя Общий множитель элементов строки можно выносить за знак определителя

Следствие: Постоянный множитель можно внести в какую-нибудь строку

Постоянный множитель можно внести в какую-нибудь строку Постоянный множитель можно внести в какую-нибудь строку

Свойство 5. Если элементы какой–либо строки состоят из двух слагаемых, то определитель можно представить в виде суммы двух определителей.

в виде суммы двух определите- в виде суммы двух определите- в виде суммы двух определите-

Свойство 6. Определитель не меняется, если любую строку умножить на любое число и прибавить к любой другой строке.

Определитель не меняетсяОпределитель не меняется

Случаи, когда определитель равен нулю:

  1. Все элементы какой-либо строки равны нулю
  2. Две строки одинаковы
  3. Элементы двух строк пропорциональны

1.1.6. Определители порядка n

Вычисление определителей порядка n.

Для вычисления порядка n используется метод разложения по cтроке.

Для вычисления порядка nДля вычисления порядка n Для вычисления порядка n

Алгебраическое дополнение получается вычеркиванием i-строки и j-столбца. Этот процесс мы будем продолжать до тех пор пока не получим определители порядка 2 или 3

получим определители порядка 2 или 3 получим определители порядка 2 или 3 получим определители порядка 2 или 3

Формулу (1) используют как правило при i=1

Пример:

используют как правило при i=1 используют как правило при i=1 используют как правило при i=1

1.2. Решение систем линейных уравнений методом Крамера

1.2.1. Понятие системы линейных уравнений

Система линейных уравнений порядка n имеет вид:

Система линейных уравнений порядка n имеет вид

называются коэфициентами при неизвестных При этом числа — называются коэффициентами
при неизвестных

называются коэфициентами при неизвестных

свободные члены — свободные члены

Матрица называется матрицей системыМатрица называется матрицей системы Матрица называется матрицей системы

Числа решение системы — решение системы, если при подстановке этих чисел в систему каждое из уравнений системы превращается в верное числовое тождество.

Система линейных уравнений называется совместной, если она имеет по крайней мере одно решение.

Если система линейных уравнений не имеет решений, то система называется несовместной.

1.2.2. Формулы Крамера

Рассмотрим систему уравнений (*). И пусть А — матрица системы

А- матрица системы

Если i – столбец заменим свободными членами, то соответствующую матрицу обозначим

i –столбец заменим свободными членами

Если система линейных уравнений (*) такова, что определитель системы отличен от нуля, то система линейных уравнений имеет единственное решение, которое находится по формуле:

имеетединственое решениеединственое решение

1.3. Матрицы. Операции над матрицами

Две матрицы A и B называются равными, если они имеют один и тот же порядок и если элементы стоящие на соответствующих местах равны.

Две матрицы A и B называются равными Две матрицы A и B называются равнымиДве матрицы A и B называются равными

К линейным операциям относятся:

1.3.1. Умножение матрицы на число

Для того чтобы умножить матрицу на число нужно каждый элемент матрицы умножить на это число:

Умножение матрицы на числоУмножение матрицы на числоУмножение матрицы на число

1.3.2. Сложение матриц

Складывать можно только матрицы одинаковых размеров:

Складывать можно только матрицы одинаковых размеров

Свойства линейных операций

Свойства линейных операций

Свойства линейных операций

Свойства линейных операций

Свойства линейных операций

Свойства линейных операций

Если матрица в качестве элементов имеет нули, то такая матрица называется нулевой.

1.3.3. Произведение матриц

Произведение матриц Произведение матрицПроизведение матриц

Произведение матриц Произведение матрицПроизведение матриц

Произведение матриц

Произведение матрицПроизведение матриц

Произведение матриц

Пример:

Пример:
Пример:

Пример:.Пример:=Пример:=Пример:

Пример:.Пример:=Пример:

Пример:.

Если для матриц А и В выполняется равенство А*В=В*А, то матрицы называются перестановочными.

Если для матриц А, В, С имеет смысл операция произведения, то выполняются равенства

A(B*C)=(A*B)*C

A(B+C)=AB+AC

(B+C)A=BA+CA

1.3.4. Транспонирование матриц

Рассмотрим матрицы

Транспонирование матриц Транспонирование матриц

AT называется транспонированной по отношению к A

Если AT получена из матрицы А заменой строк на столбцы то

Транспонирование матриц

назавают главной диагональю называют главной диагональю

Очевидно:

Если для квадратной матрицы выполняется условие

Если для квадратной матрицы выполняется условие

то матрица А называется симметричной и в этом случае достаточно указать элементы, стоящие на главной диагонали и элементы, стоящие над главной диагональю.

1.3.5. Понятие обратной матрицы

Обратные матрицы существуют только для квадратных матриц. Квадратная матрица, у которой на главной диагонали стоят единицы, а
вне главной диагонали — нули, называется единичной матрицей.

Например, единичная матрица второго порядка:

единичная матрица второго порядкаединичная матрица второго порядка

Теорема.

Если А и В – квадратные матрицы одного и того же порядка n, то определитель их произведения равен произведению определителей матриц-сомножителей:

Если А и В – квадратные матрицы одного и того же порядка n

Определение обратной матрицы:

Матрица В называется обратной для матрицы А, если А и В перестановочны и А*В=В*А=Е

Обозначение обратной матрицы:

Обозначение обратной матрицы Обозначение обратной матрицы

Теорема.

Если матрица А имеет обратную, то ее определитель отличен от нуля.

Доказательство.

Так как А имеет обратную матрицу, то

Так как А имеет обратную матрицу, то Так как А имеет обратную матрицу, то

Воспользуемся теоремой о том, что определитель произведения равен произведению определителей.

равен произведению определителейравен произведению определителей

что и требовалось доказать.

1.3.6. Нахождение обратной матрицы методом Крамера

Теорема.

Если квадратная матрица А имеет определитель отличный от нуля, то данная матрица имеет обратную.

Доказательство.

Пусть матрица А такова, что её определитель отличен от нуля.

Докажем, что существует матрица В, такая что:

Нахождение обратной матрицы методом Крамера*Нахождение обратной матрицы методом Крамера=Нахождение обратной матрицы методом Крамера

Отсюда, в частности, следует:

Нахождение обратной матрицы методом КрамераНахождение обратной матрицы методом Крамера

Система (3) –из трех уравнений с тремя неизвестными, и т.к. определитель системы (3) по условию отличен от нуля, то эту систему можно решить методом Крамера причем решение (3) — единственно.

Аналогично можно доказать существование и единственность всех остальных элементов матрицы В.

1.3.7. Алгоритм нахождения обратной матрицы методом Крамера

Первоначально находим определитель матрицы А и если он равен нулю, то обратной матрицы не существует.

Если определитель отличен от нуля, то находим союзную

определитель отличен от нуля матрицу

состоящую из алгебраических дополнений элементов матрицы А.

алгебраических дополнений элементов матрицы Аалгебраических дополнений элементов матрицы А

1.3.8. Элементарные преобразования матриц

Эквивалентные матрицы.

К элементарным преобразованиям относятся:

    1. умножение любой строки матрицы на число, отличное от нуля;

пример

умножение любой строки матрицы на число , отличное от нуля= умножение любой строки матрицы на число , отличное от нуля

  1. к любой строке можно добавить любую другую строку, умноженную на любое число;
  2. перестановка двух строк.

Матрицы, полученные с помощью элементарных преобразований называются эквивалентными

А~
В, В~
С, А~
С

1.3.9. Вычисление обратной матрицы с помощью элементарных преобразований

Рассмотрим квадратную матрицу А и предположим, что

Расмотрим квадратную матрицу А и предположим , что

тогда используя элементарные преобразования эту матрицу можно привести к единичной матрице. Таким образом единичная матрица эквивалентна любой невырожденной матрице того же порядка.

Теорема

Если элементарные преобразования:

Если элементарные преобразования

переводят невырожденную матрицу А в единичную, то те же самые преобразования, взятые в том же порядке, переводят единичную матрицу в обратную для A.

Доказательство:

единичную матрицу в обратную для A единичную матрицу в обратную для A

единичную матрицу в обратную для A

отсюда

единичную матрицу в обратную для Aединичную матрицу в обратную для A

1.4. Решение системы линейных уравнений

1.4.1. Системы линейных уравнений. Основные понятия

Система уравнений вида:

Системы линейных уравнений

называется линейной системой из n уравнений с m неизвестными.

(aij) коэффициенты при неизвестных x1, x2,…,xm

b1,b2,…,bn — свободные члены

Матрица А системы (*) состоит из коэффициентов aij, размера n*m .

Если неизвестные и свободные члены представим в виде:

Если неизвестные и свободные члены представим в видеЕсли неизвестные и свободные члены представим в виде Если неизвестные и свободные члены представим в видеЕсли неизвестные и свободные члены представим в виде ,

то систему уравнений (*) мы можем переписать в виде: систему уравнений (*) мы можем переписать в виде(3)

Запись системы в виде (3) называют матричной формой записи системы линейных уравнений (*). Следует особо обратить внимание на то, что m может быть неравно n. Если m=n и матрица А является невырожденной , то из соотношения (3) вытекает: Если m=n и матрица А является невырожденой (4)

Равенство (4) получается умножением (3) слева на А-1. Система (*) называется совместной, если она имеет по крайней мере одно решение. В противном случае система называется несовместной.
Решить систему — означает найти все её решения.

1.4.2. Метод Гаусса

Рассмотрим систему (*):Метод Гаусса

Припишем к матрице А
матрицу-столбец В Припишем к матрице А матрицу-столбец ВПрипишем к матрице А матрицу-столбец В

Припишем к матрице А матрицу-столбец
В: Припишем к матрице А матрицу-столбец ВПрипишем к матрице А матрицу-столбец В

Матрица H называется расширенной матрицей системы. Матрица, у которой ниже главной диагонали стоят нули называется треугольной. Метод Гаусса (метод исключения неизвестных) состоит в том, что расширенную матрицу системы с помощью элементарных преобразований мы приводим к треугольному виду. Если у нас при этом получается матрица вида: получается матрица видато, система решений не имеет.

Если треугольная матрица получается вида:бесконечно много решений , то система имеет бесконечно много решений. При этом какие-то неизвестные
объявляются свободными, а остальные неизвестные могут быть выражены через них. Свободные неизвестные могут принимать любые значения. Если матрица примет вид:имеет единственное решение , то в этом случае система имеет единственное решение.

Пример: Пример

Элементарные преобразования расширенной матрицы системы, приводящие её к треугольному виду, могут быть такими:

Элементарные преобразования расширенной матрицы~Элементарные преобразования расширенной матрицы~Элементарные преобразования расширенной матрицы

В итоге получим систему:В итоге получим систему

Откуда получим значения неизвестных: y = -7,25 x = 2,875 Откуда получим значения неизвестных: y = -7,25 x = 2,875

Пример: Пример

Пример~Пример~Пример~Пример

Пример

Пример

Пример

Пример Пример

Пример

Пример

Пример

Пример

Пример

1.5. Исследование систем линейных уравнений

Рассмотрим систему линейных уравнений.

Задача: определить:

  • Совместна или нет данная система
  • Если совместна, то сколько имеет решений а) единственное б) бесконечное множество

Понятие ранга матрицы

А=(Понятие ранга матрицы) i=Понятие ранга матрицы j=Понятие ранга матрицы

Возьмем в матрице К строк и К столбцов, тогда элементы матрицы, стоящие на пересечении этих строк и столбцов образуют квадратную матрицу порядка К. Определитель этой квадратной матрицы называется минором порядка К для матрицы А.

Опр.1. Наибольший порядок минора матрицы, отличный от нуля называется рангом матрицы.

Опр.2. Число r(A)=k называется рангом матрицы А, если среди миноров порядка k есть по крайней мере один, отличный от нуля, а все миноры большего порядка равны нулю.

Понятие ранга матрицы М=Понятие ранга матрицы=0 М=Понятие ранга матрицы=-20 М=Понятие ранга матрицы=0 М=Понятие ранга матрицы=3 Ранг равен 3.

Совершенно очевидно, что нулевой ранг имеет только нулевая матрица. Если матрица не нулевая то её ранг1.
С другой стороны если матрица имеет порядок MxN, то r(A)min(M,N).

1.5.1. Теоремы о ранге матриц

Теорема 1

Если матрица А эквивалентна матрице B, то ранг матрицы А равен рангу матрицы B (элементарные преобразования не изменяют ранга матрицы).

Доказательство

Для доказательства достаточно доказать, что каждое из преобразований не может изменить ранга матрицы.

1) А~B B получена умножением строки(столбца) на отличное от нуля число.

А=А~B B получена умножением строки(столбца) на отличное от нуля число B=А~B B получена умножением строки(столбца) на отличное от нуля число

Если i-я строка не входит в выделенный минор то миноры матриц А и B совпадают. Если i-я строка входит в выделенный минор В=А (по св-ву определителей). Если минор А был отличен от нуля, то В будет отличен от нуля. Таким образом умножение на отличное от нуля число не изменяет ранг матрицы.

2) A~B B получена прибавлением строк

А=A~B B получена прибавлением строк В=A~B B получена прибавлением строк

Если выбранные строки не содержат i-й строки, то соответствующие миноры матриц А и В полностью совпадают. Если минор матрицы А=0, то и минор матрицы В=0, если минор матрицы А0, то и минор матрицы В0.

Если выбранные миноры содержат i-ю и j-ю строки, тогда
М(А)=А=Если выбранные миноры содержат i-ю и j-ю строки, тогда

В=Если выбранные миноры содержат i-ю и j-ю строки, тогда

минор В получен из А путем прибавления строки.

Элементарные преобразования получаются с помощью конечного числа преобразований 1 и 2 типа и по уже доказанному на каждом из шагов ранг матрицы не меняется. Следовательно, он не изменится и за конечное число шагов. Ранг матрицы не меняется, если произведено конечное число элементарных преобразований.

Теорема 2

Ранг ступенчатой матрицы равен числу ее ненулевых строк.

Вычисление ранга матрицы

Используя утверждение доказанной теоремы, легко вычислить ранг матрицы

  1. с помощью элементарных преобразований матрица приводится к ступенчатому виду.
  2. считается число ненулевых строк ступенчатой матрицы

Ясно, что если матрица является квадратной и невырожденной, то её ранг равен порядку этой матрицы.

ПРИМЕР

Вычисление ранга матрицы~ Вычисление ранга матрицы~ Вычисление ранга матрицы

Ответ: r(A)=2

1.5.2. Исследование систем линейных уравнений

Рассмотрим систему линейных уравнений

(*)Исследование систем линейных уравнений. Теорема Кронекера-Капелли

А=()
H=Исследование систем линейных уравнений. Теорема Кронекера-Капелли

1.5.3. Теорема Кронекера-Капелли

Система ур-ний (*) совместна тогда и только тогда, когда ранг матрицы системы А равен рангу расширенной матрицы r(A)=r(H)

Если система совместна, то она имеет единственное решение, если r(A)=r(H)=n и его можно найти методами Крамера или Гаусса.

Если r(A)=r(H)=k<n, то система имеет бесконечно много решений. В этом случае n-k неизвестных объявляются свободными неизвестными (принимают любые значения), оставшиеся k неизвестных выражаются через эти свободные неизвестные.

1.5.4. Однородные системы линейных уравнений

Если в системе (*) все свободные члены все свободные члены равны нулю, то такая система является однородной.

Однородные системы всегда совместны т.к. ====0 всегда является решением. Такое решение называется тривиальным.

1) все свободные члены то все свободные члены

2) Если ранг матрицы А меньше числа неизвестных,то система имеет бесконечно много решений

1.5.5. Свойства решений линейной однородной системы уравнений

1) Если Свойства решений линейной однородной системы уравнений является решением системы, то Свойства решений линейной однородной системы уравнений также является решением.

Доказательство.

Свойства решений линейной однородной системы уравнений

Свойства решений линейной однородной системы уравнений

Свойства решений линейной однородной системы уравнений

2) Если Свойства решений линейной однородной системы уравнений является решением системы

также является решением той же самой системы, то и также является решением той же самой системы, то и

также является решением системы также является решением системы

Доказательство.

также является решением системы

+

также является решением системы

откуда получим откуда получим

3) Если откуда получим и откуда получим
два различных решения системы, то их линейная комбинация, равная их линейная комбинация, равная

также является решением системы.

Доказательство.

Доказательство

+

Доказательство

откуда получим откуда получим

Каждое из решений системы можно записать в виде строки матрицыКаждое из решений системы можно записать в виде строки, тогда на основании свойств можно утверждать, что матрицы есть решения, то также являются решением. Минимальная возможная система решений через которую выражаются все остальные решения называется фундаментальной системой решений.

Пример.

Пример

Пример~Пример~Пример

{Пример {Пример

{Пример{Пример

ПримерПример

Метод Крамера. Примеры решения систем линейных алгебраических уравнений методом Крамера.

Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Решение системы уравнений методом Крамера проходит за три шага простого алгоритма:

  1. Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. $Deltaneq 0$.
  2. Для каждой переменной $x_i$($i=overline{1,n}$) необходимо составить определитель $Delta_{x_i}$, полученный из определителя $Delta$ заменой i-го столбца столбцом свободных членов заданной СЛАУ.
  3. Найти значения неизвестных по формуле $x_i=frac{Delta_{x_{i}}}{Delta}$ ($i=overline{1,n}$).

Перед переходом к чтению примеров рекомендую ознакомиться с правилами вычисления определителей второго и третьего порядка, изложенными здесь.

Пример №1

Решить СЛАУ $left{begin{aligned}
& 3x_1+2x_2=-11;\
& -x_1+5x_2=15.
end{aligned}right.$ методом Крамера.

Решение

Матрица системы такова: $ A=left( begin{array} {cc} 3 & 2\ -1 & 5 end{array} right)$. Определитель этой матрицы:

$$Delta=left| begin{array} {cc} 3 & 2\ -1 & 5 end{array}right|=3cdot 5-2cdot(-1)=17.$$

Как вычисляется определитель второго порядка можете глянуть здесь.

Так как определитель системы не равен нулю, то продолжаем решение методом Крамера. Вычислим значения двух определителей: $Delta_{x_1}$ и $Delta_{x_2}$. Определитель $Delta_{x_1}$ получаем из определителя $Delta=left| begin{array} {cc} 3 & 2\ -1 & 5 end{array}right|$ заменой первого столбца (именно этот столбец содержит коэффициенты при $x_1$) столбцом свободных членов $left(begin{array} {c} -11\ 15end{array}right)$:

$$
Delta_{x_1}=left|begin{array}{cc}-11&2\15&5end{array}right|=-55-30=-85.
$$

Аналогично, заменяя второй столбец в $Delta=left|begin{array}{cc}3&2\-1&5end{array}right|$ столбцом свободных членов, получим:

$$
Delta_{x_2}=left|begin{array} {cc} 3 & -11\ -1 & 15end{array}right|=45-11=34.
$$

Теперь можно найти значения неизвестных $x_1$ и $x_2$.

$$x_1=frac{Delta_{x_1}}{Delta}=frac{-85}{17}=-5;;x_2=frac{Delta_{x_2}}{Delta}=frac{34}{17}=2.$$

В принципе, можно ещё проверить, правильно ли решена система методом Крамера. Подставим в заданную СЛАУ $x_1=-5$, $x_2=2$:

$$left{begin{aligned}
& 3x_1+2x_2=3cdot(-5)+2cdot{2}=-11;\
& -x_1+5x_2=-(-5)+5cdot{2}=15.
end{aligned}right.$$

Проверка пройдена, решение системы уравнений методом Крамера найдено верно. Осталось лишь записать ответ.

Ответ: $x_1=-5$, $x_2=2$.

Пример №2

Решить СЛАУ $
left{begin{aligned}
& 2x_1+x_2-x_3=3;\
& 3x_1+2x_2+2x_3=-7;\
& x_1+x_3=-2.
end{aligned} right.$, используя метод Крамера.

Решение

Определитель системы:

$$Delta=left| begin{array} {ccc} 2 & 1 & -1\ 3 & 2 & 2 \ 1 & 0 & 1 end{array}right|=4+2+2-3=5.$$

Как вычисляется определитель третьего порядка можете глянуть здесь.

Заменяя первый столбец в $Delta$ столбцом свободных членов, получим $Delta_{x_1}$:

$$
Delta_{x_1}=left| begin{array} {ccc} 3 & 1 & -1\ -7 & 2 & 2 \ -2 & 0 & 1 end{array}right|=6-4-4+7=5.
$$

Заменяя второй столбец в $Delta$ столбцом свободных членов, получим $Delta_{x_2}$:

$$
Delta_{x_2}=left| begin{array} {ccc} 2 & 3 & -1\ 3 & -7 & 2 \ 1 & -2 & 1 end{array}right|=-14+6+6-7-9+8=-10.
$$

Заменяя третий столбец в $Delta$ столбцом свободных членов, получим $Delta_{x_3}$:

$$
Delta_{x_3}=left| begin{array} {ccc} 2 & 1 & 3\ 3 & 2 & -7 \ 1 & 0 & -2 end{array}right|=-8-7-6+6=-15.
$$

Учитывая все вышеизложенное, имеем:

$$
x_1=frac{Delta_{x_1}}{Delta}=frac{5}{5}=1;; x_2=frac{Delta_{x_2}}{Delta}=frac{-10}{5}=-2; ; x_3=frac{Delta_{x_3}}{Delta}=frac{-15}{5}=-3.
$$

Метод Крамера завершён. Можно проверить, верно ли решена система уравнений методом Крамера, подставив значения $x_1=1$, $x_2=-2$ и $x_3=-3$ в заданную СЛАУ:

$$left{begin{aligned}
& 2x_1+x_2-x_3=2cdot{1}+(-2)-(-3)=3;\
& 3x_1+2x_2+2x_3=3cdot{1}+2cdot(-2)+2cdot(-3)=-7;\
& x_1+x_3=1+(-3)=-2.
end{aligned} right.$$

Проверка пройдена, решение системы уравнений методом Крамера найдено верно.

Ответ: $x_1=1$, $x_2=-2$, $x_3=-3$.

Пример №3

Решить СЛАУ $left{begin{aligned}
& 2x_1+3x_2-x_3=15;\
& -9x_1-2x_2+5x_3=-7.
end{aligned}right.$ используя метод Крамера.

Решение

Матрица системы $ left( begin{array} {ccc} 2 & 3 & -1\ -9 & -2 & 5 end{array} right) $ не является квадратной. Однако это вовсе не означает, что решение системы уравнений методом Крамера невозможно. Преобразуем заданную СЛАУ, перенеся переменную $x_3$ в правые части уравнений:

$$

left { begin{aligned}
& 2x_1+3x_2=x_3+15;\
& -9x_1-2x_2=-5x_3-7.

end{aligned} right.

$$

Теперь матрица системы $ left( begin{array} {cc} 2 & 3 \ -9 & -2 end{array} right) $ стала квадратной, и определитель её $Delta=left| begin{array} {cc} 2 & 3\ -9 & -2 end{array}right|=-4+27=23$ не равен нулю. Применим метод Крамера аналогично предыдущим примерам:

$$
begin{aligned}
& Delta_{x_1}
=left| begin{array} {cc} x_3+15 & 3\ -5x_3-7 & -2 end{array}right|
=-2x_3-30-left(-15x_3-21right)
=13x_3-9;\
\
& Delta_{x_2}
=left| begin{array} {cc} 2 & x_3+15\ -9 & -5x_3-7 end{array}right|
=-10x_3-14-left(-9x_3-135right)
=-x_3+121.
end{aligned}
$$

$$
x_1=frac{Delta_{x_1}}{Delta}=frac{13x_3-9}{23};;
x_2=frac{Delta_{x_2}}{Delta}=frac{-x_3+121}{23}.
$$

Ответ можно записать в таком виде: $left{begin{aligned}
& x_1=frac{13x_3-9}{23};\
& x_2=frac{-x_3+121}{23};\
& x_3in R.
end{aligned}right.$ Переменные $x_1$, $x_2$ – базисные (в иной терминологии – основные), а переменная $x_3$ – свободная (в иной терминологии – неосновная). Проверка, при необходимости, проводится так же, как и в предыдущих примерах.

Примечание

В подобных примерах возможна ситуация, когда после переноса переменной (или переменных) в правые части уравнений, определитель системы равняется нулю. В этом случае можно перенести в правую часть иную переменную (или переменные). Например, рассмотрим СЛАУ
$left{begin{aligned}
& 2x_1-5x_2+10x_3=14;\
& -4x_1+10x_2-7x_3=5.
end{aligned}right.$. Если перенести в правые части уравнений $x_3$, получим: $
left{begin{aligned}
&2x_1-5x_2=-10x_3+14;\
&-4x_1+10x_2=7x_3+5.
end{aligned}right.$. Определитель данной системы $Delta=left| begin{array} {cc} 2 & -5\ -4 & 10 end{array}right|=20-20=0$. Однако если перенести в правые части уравнений переменную $x_2$, то получим систему $
left{begin{aligned}
&2x_1+10x_3=5x_2+14;\
&-4x_1-7x_3=-10x_2+5.
end{aligned}right.$, определитель которой $Delta=left| begin{array} {cc} 2 & 10\ -4 & -7 end{array}right|=-14+40=26$ не равен нулю. Дальнейшее решение аналогично рассмотренному в примере №3.

Пример №4

Решить СЛАУ

$$left{begin{aligned}
&x_1-5x_2-x_3-2x_4+3x_5=0;\
&2x_1-6x_2+x_3-4x_4-2x_5=0; \
&-x_1+4x_2+5x_3-3x_4=0.
end{aligned}right.$$

методом Крамера.

Решение

Матрица системы $left(begin{array} {ccccc} 1 & -5 & -1 & -2 & 3 \
2 & -6 & 1 & -4 & -2 \
-1 & 4 & 5 & -3 & 0
end{array}right)$ не является квадратной. Преобразуем заданную СЛАУ, перенеся переменные $x_4$, $x_5$ в правые части уравнений, и применим метод Крамера:

$$
left{begin{aligned}
& x_1-5x_2-x_3=2x_4-3x_5;\
& 2x_1-6x_2+x_3=4x_4+2x_5; \
& -x_1+4x_2+5x_3=3x_4.
end{aligned}right.$$

$$
begin{aligned}
& Delta
=left| begin{array} {ccc} 1 & -5 & -1\ 2 & -6 & 1\-1 & 4 & 5 end{array}right|
=19;\
\
& Delta_{x_1}
=left| begin{array} {ccc} 2x_4-3x_5 & -5 & -1\ 4x_4+2x_5 & -6 & 1\3x_4 & 4 & 5 end{array}right|
=-17x_4+144x_5;\
\
& Delta_{x_2}
=left| begin{array} {ccc} 1 & 2x_4-3x_5 & -1\ 2 & 4x_4+2x_5 & 1\-1 & 3x_4 & 5 end{array}right|
=-15x_4+41x_5;\
\
& Delta_{x_3}
=left| begin{array} {ccc} 1 & -5 & 2x_4-3x_5\ 2 & -6 & 4x_4+2x_5\-1 & 4 & 3x_4 end{array}right|
=20x_4-4x_5.
end{aligned}
$$

Ответ таков: $left{begin{aligned}
& x_1=frac{-17x_4+144x_5}{19};\
& x_2=frac{-15x_4+41x_5}{19};\
& x_3=frac{20x_4-4x_5}{19}; \
& x_4in R; ; x_5in R.
end{aligned}right.$ Переменные $x_1$, $x_2$, $x_3$ – базисные, переменные $x_4$, $x_5$ – свободные.

Естественно, что применение метода Крамера в случаях вроде того, что рассмотрен в примере №4, не всегда оправдано с точки зрения временных затрат. Мы ведь не можем гарантировать, что после переноса каких-либо переменных в правые части уравнений, определитель системы не будет равен нулю. А перебирать различные варианты – слишком долгий процесс. Гораздо удобнее в таком случае применить метод Гаусса. Я привёл пример №4 лишь с одной целью – показать, что метод Крамера применим вне зависимости от содержимого правых частей уравнений заданной СЛАУ (числа, переменные, функции – не имеет значения). Главное, чтобы определитель матрицы системы был отличен от нуля.

Понравилась статья? Поделить с друзьями:
  • Как найти координаты основания перпендикуляра к плоскости
  • Как найти потери холостого хода в трансформаторе
  • Задачи по математике 2 класс петерсон как составить задачу по схеме
  • Как найти у кого apple
  • Как найти дисперсию задачи