Как составить схему блока питания

⇡#Линейный и импульсный источники питания

Начнем с основ. Блок питания в компьютере выполняет три функции. Во-первых, переменный ток из бытовой сети электропитания нужно преобразовать в постоянный. Второй задачей БП является понижение напряжения 110-230 В, избыточного для компьютерной электроники, до стандартных значений, требуемых конвертерами питания отдельных компонентов ПК, – 12 В, 5 В и 3,3 В (а также отрицательные напряжения, о которых расскажем чуть позже). Наконец, БП играет роль стабилизатора напряжений.

Есть два основных типа источников питания, которые выполняют перечисленные функции, – линейный и импульсный. В основе простейшего линейного БП лежит трансформатор, на котором напряжение переменного тока понижается до требуемого значения, и затем ток выпрямляется диодным мостом.

Однако от БП требуется еще и стабилизация выходного напряжения, что обусловлено как нестабильностью напряжения в бытовой сети, так и падением напряжения в ответ на увеличение тока в нагрузке.

Чтобы компенсировать падение напряжения, в линейном БП параметры трансформатора рассчитываются так, чтобы обеспечить избыточную мощность. Тогда при высоком токе в нагрузке будет наблюдаться требуемый вольтаж. Однако и повышенное напряжение, которое возникнет без каких-либо средств компенсации при низком токе в полезной нагрузке, тоже неприемлемо. Избыточное напряжение устраняется за счет включения в цепь неполезной нагрузки. В простейшем случае таковой является резистор или транзистор, подключенный через стабилитрон (Zener diode). В более продвинутом – транзистор управляется микросхемой с компаратором. Как бы то ни было, избыточная мощность просто рассеивается в виде тепла, что отрицательно сказывается на КПД устройства.

 Пример линейного источника питания со стабилизатором. Избыточная мощность рассеивается на транзисторе Q1

Пример линейного источника питания со стабилизатором. Избыточная мощность рассеивается на транзисторе Q1

В схеме импульсного БП возникает еще одна переменная, от которой зависит напряжение на выходе, в дополнение к двум уже имеющимся: напряжению на входе и сопротивлению нагрузки. Последовательно с нагрузкой стоит ключ (которым в интересующем нас случае является транзистор), управляемый микроконтроллером в режиме широтно-импульсной модуляции (ШИМ). Чем выше длительность открытых состояний транзистора по отношению к их периоду (этот параметр называется duty cycle, в русскоязычной терминологии используется обратная величина – скважность), тем выше напряжение на выходе. Из-за наличия ключа импульсный БП также называется Switched-Mode Power Supply (SMPS).

Через закрытый транзистор ток не идет, а сопротивление открытого транзистора в идеале пренебрежимо мало. В действительности открытый транзистор обладает сопротивлением и рассеивает какую-то часть мощности в виде тепла. Кроме того, переход между состояниями транзистора не идеально дискретный. И все же КПД импульсного источника тока может превышать 90%, в то время как КПД линейного БП со стабилизатором в лучшем случае достигает 50%.

 Простейшая схема импульсного преобразователя AC/DC с трансформатором

Простейшая схема импульсного преобразователя AC/DC с трансформатором

Другое преимущество импульсных источников питания состоит в радикальном уменьшении габаритов и массы трансформатора по сравнению с линейными БП такой же мощности. Известно, что чем выше частота переменного тока в первичной обмотке трансформатора, тем меньше необходимый размер сердечника и число витков обмотки. Поэтому ключевой транзистор в цепи размещают не после, а до трансформатора и, помимо стабилизации напряжения используют для получения переменного тока высокой частоты (для компьютерных БП это от 30 до 100 кГц и выше, а как правило – около 60 кГц). Трансформатор, работающий на частоте электросети 50-60 Гц, для мощности, требуемой стандартным компьютером, был бы в десятки раз массивнее.

Линейные БП сегодня применяются главным образом в случае маломощных устройств, когда относительно сложная электроника, необходимая для импульсного источника питания, составляет более чувствительную статью расходов в сравнении с трансформатором. Это, к примеру, блоки питания на 9 В, которые используются для гитарных педалей эффектов, а когда-то – для игровых приставок и пр. А вот зарядники для смартфонов уже сплошь импульсные – тут расходы оправданны. Благодаря существенно меньшей амплитуде пульсаций напряжения на выходе линейные БП также применяются в тех областях, где это качество востребованно.

⇡#Общая схема блока питания стандарта ATX

БП настольного компьютера представляет собой импульсный источник питания, на вход которого подается напряжение бытовой электросети с параметрами 110/230 В, 50-60 Гц, а на выходе есть ряд линий постоянного тока, основные из которых имеют номинал 12, 5 и 3,3 В. Помимо этого, БП обеспечивает напряжение -12 В, а когда-то еще и напряжение -5 В, необходимое для шины ISA. Но последнее в какой-то момент было исключено из стандарта ATX в связи с прекращением поддержки самой ISA.

 Блок-схема импульсного БП

Блок-схема импульсного БП

На упрощенной схеме стандартного импульсного БП, представленной выше, можно выделить четыре основных этапа. В таком же порядке мы рассматриваем компоненты блоков питания в обзорах, а именно:

  1. фильтр ЭМП – электромагнитных помех (RFI filter);
  2. первичная цепь – входной выпрямитель (rectifier), ключевые транзисторы (switcher), создающие переменный ток высокой частоты на первичной обмотке трансформатора;
  3. основной трансформатор;
  4. вторичная цепь – выпрямители тока со вторичной обмотки трансформатора (rectifiers), сглаживающие фильтры на выходе (filtering).

 Внутреннее устройство БП (AeroCool KCAS-650M)

 Полная схема простого блока питания стандарта ATX

Полная схема простого блока питания стандарта ATX

⇡#Фильтр ЭМП

Фильтр на входе БП служит для подавления двух типов электромагнитных помех: дифференциальных (differential-mode) – когда ток помехи течет в разные стороны в линиях питания, и синфазных (common-mode) – когда ток течет в одном направлении.

Дифференциальные помехи подавляются конденсатором CX (крупный желтый пленочный конденсатор на фото выше), включенным параллельно нагрузке. Иногда на каждый провод дополнительно вешают дроссель, выполняющий ту же функцию (нет на схеме).

Фильтр синфазных помех образован конденсаторами CY (синие каплевидные керамические конденсаторы на фото), в общей точке соединяющими линии питания с землей, и т.н. синфазным дросселем (common-mode choke, LF1 на схеме), ток в двух обмотках которого течет в одном направлении, что создает сопротивление для синфазных помех.

 Схема фильтра электромагнитных помех

Схема фильтра электромагнитных помех

В дешевых моделях устанавливают минимальный набор деталей фильтра, в более дорогих описанные схемы образуют повторяющиеся (полностью или частично) звенья. В прошлом нередко встречались БП вообще без фильтра ЭМП. Сейчас это скорее курьезное исключение, хотя, покупая совсем дешевый БП, можно, все-таки нарваться на такой сюрприз. В результате будет страдать не только и не столько сам компьютер, сколько другая техника, включенная в бытовую сеть, – импульсные БП являются мощным источником помех.

В районе фильтра хорошего БП можно обнаружить несколько деталей, защищающих от повреждения само устройство либо его владельца. Почти всегда есть простейший плавкий предохранитель для защиты от короткого замыкания (F1 на схеме). Отметим, что при срабатывании предохранителя защищаемым объектом является уже не блок питания. Если произошло КЗ, то, значит, уже пробило ключевые транзисторы, и важно хотя бы предотвратить возгорание электропроводки. Если в БП вдруг сгорел предохранитель, то менять его на новый, скорее всего, уже бессмысленно.

Отдельно выполняется защита от кратковременных скачков напряжения с помощью варистора (MOV – Metal Oxide Varistor). А вот никаких средств защиты от длительного повышения напряжения в компьютерных БП нет. Эту функцию выполняют внешние стабилизаторы со своим трансформатором внутри.

 Фильтр электромагнитных помех (Antec VP700P)

Конденсатор в цепи PFC после выпрямителя может сохранять значительный заряд после отключения от питания. Чтобы беспечного человека, сунувшего палец в разъем питания, не ударило током, между проводами устанавливают разряжающий резистор большого номинала (bleeder resistor). В более изощренном варианте – вместе с управляющей схемой, которая не дает заряду утекать при работе устройства.

Кстати, наличие фильтра в блоке питания ПК (а в БП монитора и практически любой компьютерной техники он тоже есть) означает, что покупать отдельный «сетевой фильтр» вместо обычного удлинителя, в общем-то, без толку. У него внутри все то же самое. Единственное условие в любом случае – нормальная трехконтактная проводка с заземлением. В противном случае конденсаторы CY, соединенные с землей, просто не смогут выполнять свою функцию.

⇡#Входной выпрямитель

После фильтра переменный ток преобразуется в постоянный с помощью диодного моста – как правило, в виде сборки в общем корпусе. Отдельный радиатор для охлаждения моста всячески приветствуется. Мост, собранный из четырех дискретных диодов, – атрибут дешевых блоков питания. Можно также поинтересоваться, на какой ток рассчитан мост, чтобы определить, соответствует ли он мощности самого БП. Хотя по этому параметру, как правило, имеется хороший запас.

⇡#Блок активного PFC

В цепи переменного тока с линейной нагрузкой (как, например, лампа накаливания или электроплитка) протекающий ток следует такой же синусоиде, как и напряжение. Но это не так в случае с устройствами, имеющими входной выпрямитель, – такими как импульсные БП. Блок питания пропускает ток короткими импульсами, примерно совпадающими по времени с пиками синусоиды напряжения (то есть максимальным мгновенным напряжением), когда подзаряжается сглаживающий конденсатор выпрямителя.

 Потребление тока импульсным БП

Потребление тока импульсным БП

Сигнал тока искаженной формы раскладывается на несколько гармонических колебаний в сумме с синусоидой данной амплитуды (идеальным сигналом, который имел бы место при линейной нагрузке).

Мощность, используемая для совершения полезной работы (которой, собственно, является нагрев компонентов ПК), указана в характеристиках БП и называется активной. Остальная мощность, порождаемая гармоническими колебаниями тока, называется реактивной. Она не производит полезной работы, но нагревает провода и создает нагрузку на трансформаторы и прочее силовое оборудование.

Векторная сумма реактивной и активной мощности называется полной мощностью (apparent power). А отношение активной мощности к полной называется коэффициентом мощности (power factor) – не путать с КПД!

У импульсного БП коэффициент мощности изначально довольно низкий – около 0,7. Для частного потребителя реактивная мощность не составляет проблемы (благо она не учитывается электросчетчиками), если только он не пользуется ИБП. На бесперебойник как раз таки ложится полная мощность нагрузки. В масштабе офиса или городской сети избыточная реактивная мощность, создаваемая импульсными БП уже значительно снижает качество электроснабжения и вызывает расходы, поэтому с ней активно борются.

 Электрическая схема и потребление тока блоком Active PFC

Электрическая схема и потребление тока блоком Active PFC

В частности, подавляющее большинство компьютерных БП оснащаются схемами активной коррекции фактора мощности (Active PFC). Блок с активным PFC легко опознать по единственному крупному конденсатору и дросселю, установленным после выпрямителя. В сущности, Active PFC является еще одним импульсным преобразователем, который поддерживает на конденсаторе постоянный заряд напряжением около 400 В. При этом ток из питающей сети потребляется короткими импульсами, ширина которых подобрана таким образом, чтобы сигнал аппроксимировался синусоидой – что и требуется для имитации линейной нагрузки. Для синхронизации сигнала потребления тока с синусоидой напряжения в контроллере PFC имеется специальная логика.

Схема активного PFC содержит один или два ключевых транзистора и мощный диод, которые размещаются на одном радиаторе с ключевыми транзисторами основного преобразователя БП. Как правило, ШИМ-контроллер ключа основного преобразователя и ключа Active PFC являются одной микросхемой (PWM/PFC Combo).

 Блок Active PFC и входной выпрямитель (Antec VP700P)

Коэффициент мощности у импульсных блоков питания с активным PFC достигает 0,95 и выше. Кроме того, у них есть одно дополнительное преимущество – не требуется переключатель сети 110/230 В и соответствующий удвоитель напряжения внутри БП. Большинство схем PFC переваривают напряжения от 85 до 265 В. Кроме того, снижается чувствительность БП к кратковременным провалам напряжения.

Кстати, помимо активной коррекции PFC, существует и пассивная, которая подразумевает установку дросселя большой индуктивности последовательно с нагрузкой. Эффективность ее невелика, и в современном БП вы такое вряд ли найдете.

⇡#Основной преобразователь

Общий принцип работы для всех импульсных БП изолированной топологии (с трансформатором) один: ключевой транзистор (или транзисторы) создает переменный ток на первичной обмотке трансформатора, а ШИМ-контроллер управляет скважностью их переключения. Конкретные схемы, однако, различаются как по количеству ключевых транзисторов и прочих элементов, так и по качественным характеристикам: КПД, форма сигнала, помехи и пр. Но здесь слишком многое зависит от конкретной реализации, чтобы на этом стоило заострять внимание. Для интересующихся приводим набор схем и таблицу, которая позволит по составу деталей опознавать их в конкретных устройствах.

Транзисторы Диоды Конденсаторы Ножки первичной обмотки трансформатора
Single-Transistor Forward 1 1 1 4
Two-Transistor Forward 2 2 0 2
Half Bridge 2 0 2 2
Full Bridge 4 0 0 2
Push-Pull 2 0 0 3

Помимо перечисленных топологий, в дорогих БП встречаются резонансные (resonant) варианты Half Bridge, которые легко опознать по дополнительному крупному дросселю (или двум) и конденсатору, образующим колебательный контур.

 Single-Transistor Forward  Screensforward2switch.jpg Two-Transistor Forward

Single-Transistor Forward

 Two-Transistor Forward

 Push-Pull

 Full Bridge

 Half Bridge

 Resonant Half-Bridge

⇡#Вторичная цепь

Вторичная цепь – это все, что находится после вторичной обмотки трансформатора. В большинстве современных блоков питания трансформатор имеет две обмотки: с одной из них снимается напряжение 12 В, с другой – 5 В. Ток сначала выпрямляется с помощью сборки из двух диодов Шоттки – одной или нескольких на шину (на самой высоконагруженной шине – 12 В — в мощных БП бывает четыре сборки). Более эффективными с точки зрения КПД являются синхронные выпрямители, в которых вместо диодов используются полевые транзисторы. Но это прерогатива по-настоящему продвинутых и дорогих БП, претендующих на сертификат 80 PLUS Platinum.

Шина 3,3 В, как правило, выводится от той же обмотки, что и шина 5 В, только напряжение понижается с помощью насыщаемого дросселя (Mag Amp). Специальная обмотка на трансформаторе под напряжение 3,3 В – экзотический вариант. Из отрицательных напряжений в текущем стандарте ATX осталось только -12 В, которое снимается со вторичной обмотки под шину 12 В через отдельные слаботочные диоды.

ШИМ-управление ключом преобразователя изменяет напряжение на первичной обмотке трансформатора, а следовательно – на всех вторичных обмотках сразу. При этом потребление тока компьютером отнюдь не равномерно распределено между шинами БП. В современном железе наиболее нагруженной шиной является 12-В.

Для раздельной стабилизации напряжений на разных шинах требуются дополнительные меры. Классический способ подразумевает использование дросселя групповой стабилизации. Три основные шины пропущены через его обмотки, и в результате если на одной шине увеличивается ток, то на других – падает напряжение. Допустим, на шине 12 В возрос ток, и, чтобы предотвратить падение напряжения, ШИМ-контроллер уменьшил скважность импульсов ключевых транзисторов. В результате на шине 5 В напряжение могло бы выйти за допустимые рамки, но было подавлено дросселем групповой стабилизации.

Напряжение на шине 3,3 В дополнительно регулируется еще одним насыщаемым дросселем.

 Стабилизирующие дроссели и выходной фильтр (Antec VP700P)

В более совершенном варианте обеспечивается раздельная стабилизация шин 5 и 12 В за счет насыщаемых дросселей, но сейчас эта конструкция в дорогих качественных БП уступила место преобразователям DC-DC. В последнем случае трансформатор имеет единственную вторичную обмотку с напряжением 12 В, а напряжения 5 В и 3,3 В получаются благодаря преобразователям постоянного тока. Такой способ наиболее благоприятен для стабильности напряжений.

 Преобразователь DC-DC для шины 5 В (CoolerMaster G650M)

Выходной фильтр

Финальной стадией на каждой шине является фильтр, который сглаживает пульсации напряжения, вызываемые ключевыми транзисторами. Кроме того, во вторичную цепь БП в той или иной мере пробиваются пульсации входного выпрямителя, чья частота равна удвоенной частоте питающей электросети.

В состав фильтра пульсаций входит дроссель и конденсаторы большой емкости. Для качественных блоков питания характерна емкость не менее 2 000 мкФ, но у производителей дешевых моделей есть резерв для экономии, когда устанавливают конденсаторы, к примеру, вдвое меньшего номинала, что неизбежно отражается на амплитуде пульсаций.

⇡#Дежурное питание +5VSB

Описание компонентов блока питания было бы неполным без упоминания об источнике дежурного напряжения 5 В, который делает возможным спящий режим ПК и обеспечивает работу всех устройств, которые должны быть включены постоянно. «Дежурка» питается от отдельного импульсного преобразователя с маломощным трансформатором. В некоторых БП встречается и третий трансформатор, использующийся в цепи обратной связи для изоляции ШИМ-контроллера от первичной цепи основного преобразователя. В других случаях эту функцию выполняют оптопары (светодиод и фототранзистор в одном корпусе).

 Трансформаторы (Corsair HX750i)

Трансформаторы (Corsair HX750i)

⇡#Методика тестирования блоков питания

Одним из основных параметров БП является стабильность напряжений, которая находит отражение в т.н. кросс-нагрузочной характеристике. КНХ представляет собой диаграмму, в которой на одной оси отложен ток или мощность на шине 12 В, а на другой – совокупный ток или мощность на шинах 3,3 и 5 В. В точках пересечения при разных значениях обеих переменных определяется отклонение напряжения от номинала на той или иной шине. Соответственно, мы публикуем две разные КНХ – для шины 12 В и для шины 5/3,3 В.

Цвет точки означает процент отклонения:

  • зеленый: ≤ 1%;
  • салатовый: ≤ 2%;
  • желтый: ≤ 3%;
  • оранжевый: ≤ 4%;
  • красный: ≤ 5%.
  • белый: > 5% (не допускается стандартом ATX).

 Пример отличной КНХ (Corsair HX750i)

 Посредственная КНХ (Antec VP700P)

Для получения КНХ используется сделанный на заказ стенд для тестирования блоков питания, который создает нагрузку за счет рассеивания тепла на мощных полевых транзисторах.

 Стенд для тестирования БП

Стенд для тестирования БП

Другой не менее важный тест – определение размаха пульсаций на выходе БП. Стандарт ATX допускает пульсации в пределах 120 мВ для шины 12 В и 50 мВ – для шины 5 В. Различают высокочастотные пульсации (на удвоенной частоте ключа основного преобразователя) и низкочастотные (на удвоенной частоте питающей сети).

Этот параметр мы измеряем при помощи USB-осциллографа Hantek DSO-6022BE при максимальной нагрузке на БП, заданной спецификациями. На осциллограмме ниже зеленый график соответствует шине 12 В, желтый – 5 В. Видно, что пульсации находятся в пределах нормы, и даже с запасом.

 Высокочастотные пульсации: хороший результат (AeroCool KCAS-650M)

 Низкочастотные пульсации: хороший результат (AeroCool KCAS-650M)

Для сравнения приводим картину пульсаций на выходе БП старого компьютера. Этот блок изначально не был выдающимся, но явно не стал лучше от времени. Судя по размаху низкочастотных пульсаций (обратите внимание, что деление развертки напряжения увеличено до 50 мВ, чтобы колебания поместились на экран), сглаживающий конденсатор на входе уже пришел в негодность. Высокочастотные пульсации на шине 5 В находятся на грани допустимых 50 мВ.

 Высокочастотные пульсации: на грани допустимого (старый БП)

Высокочастотные пульсации: на грани допустимого (старый БП)

 Низкочастотные пульсации: ужасно (старый БП)

Низкочастотные пульсации: ужасно (старый БП)

В следующем тесте определяется КПД блока при нагрузке от 10 до 100% от номинальной мощности (путем сравнения мощности на выходе с мощностью на входе, измеренной при помощи бытового ваттметра). Для сравнения на графике приводятся критерии различных категорий 80 PLUS. Впрочем, большого интереса в наши дни это не вызывает. На графике приведены результаты топового БП Corsair в сравнении с весьма дешевым Antec, а разница не то чтобы очень велика.

 График КПД

Более насущный для пользователя вопрос – шум от встроенного вентилятора. Непосредственно измерить его вблизи от ревущего стенда для тестирования БП невозможно, поэтому мы измеряем скорость вращения крыльчатки лазерным тахометром – также при мощности от 10 до 100%. На нижеприведенном графике видно, что при низкой нагрузке на этот БП 135-миллиметровый вентилятор сохраняет низкие обороты и вряд ли слышен вообще. При максимальной нагрузке шум уже можно различить, но уровень все еще вполне приемлемый.

 График скорости вращения вентилятора (AeroCool KCAS-650M)

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Общий
потребляемый ток блока измерения
температуры определяется простым
суммированием токов потребления основных
узлов. Основной составляющей суммарного
тока потребления является генератор,
потребляющий 45мА. Остальные узлы
потребляют меньший ток. Зададимся
условием, пусть блок питания обеспечивает
выходной ток в 100мА.

Согласно
техническому заданию блок измерения
должен питаться непосредственно от
сети переменного тока, поэтому в схему
питания обязательно должны входить
понижающий трансформатор, двухполупериодный
диодный выпрямитель и стабилизаторы,
формирующие постоянные уровни выходного
напряжения +/-5 В. Выберем трансформатор
ТПГ-2– 2х6В. С выхода трансформатора
напряжение поступает на диодный мост,
представляющий собой сборку W04M
(1.5A,
400В). Данное схемотехническое решение
эффективно, т.к. в каждом полупериоде
входного сигнала используется обе
половины вторичной обмотки трансформатора.
Выбираем емкость накопительного
электролитического конденсатора таким,
чтобы его сопротивление на передаваемой
частоте было мало. Данному требованию
удовлетворяет емкость номиналом 100 мкФ
(конденсаторы С1 и С2), в качестве которой
выберем К50-35-16В-100 мкФ.

В
качестве преобразователей выберем ИМС
фирмы Fairchild LM7805
для получения напряжения в +5 В и LM7905
для получения напряжения в −5В. Оба
преобразователя имеют диапазон входных
напряжений до +/-35В, могут обеспечить
выходной ток до 100 мА, что с запасом
отвечает нашим требованиям. Внешние
навесные элементы выбраны с учетом
рекомендаций самого производителя
микросхем. Поэтому выберем С3 К10-17б-0,33
мкФ, С4 К10-17-0,33 мкФ, С5 К10-17б-0,1 мкФ, С6
К10-17б -0,1 мкФ.

5 Алгоритм работы программы

6 Алгоритм подпрограммы

7 Код программы

.include»m8def.inc»

.def
Temp=R16

.def
Temp2=R17

.def
SPressTemp=R20

.def
DPressTemp=R21

.def
MesEnd=R22

.cseg

.org
0

rjmp
RESET ; Reset Handler

rjmp
EXT_INT0 ; IRQ0 Handler

rjmp
EXT_INT1 ; IRQ1 Handler

rjmp
TIM2_COMP ; Timer2 Compare Handler

rjmp
TIM2_OVF ; Timer2 Overflow Handler

rjmp
TIM1_CAPT ; Timer1 Capture Handler

rjmp
TIM1_COMPA ; Timer1 CompareA Handler

rjmp
TIM1_COMPB ; Timer1 CompareB Handler

rjmp
TIM1_OVF ; Timer1 Overflow Handler

rjmp
TIM0_OVF ; Timer0 Overflow Handler

rjmp
SPI_STC ; SPI Transfer Complete Handler

rjmp
USART_RXC ; USART RX Complete Handler

rjmp
USART_TXC ; USART TX Complete Handler

rjmp
ADC1 ; ADC Conversion Complete Handler

rjmp
EE_RDY ; EEPROM Ready Handler

rjmp
ANA_COMP ; Analog Comparator Handler

rjmp
TWSI ; Two-wire Serial Interface Handler

rjmp
SPM_RDY ; Store Program Memory Ready Handler

;RESET:

EXT_INT0:
; IRQ0 Handler

EXT_INT1: ;
IRQ1 Handler

TIM2_COMP:
; Timer2 Compare Handler

TIM2_OVF: ;
Timer2 Overflow Handler

TIM1_CAPT:
; Timer1 Capture Handler

TIM1_COMPA:
; Timer1 CompareA Handler

TIM1_COMPB:
; Timer1 CompareB Handler

TIM1_OVF: ;
Timer1 Overflow Handler

;TIM0_OVF:
; Timer0 Overflow Handler

SPI_STC: ;
SPI Transfer Complete Handler

USART_RXC:
; USART RX Complete Handler

USART_TXC:
; USART TX Complete Handler

ADC1:
; ADC Conversion Complete Handler

EE_RDY: ;
EEPROM Ready Handler

;ANA_COMP:
; Analog Comparator Handler

TWSI:
; Two-wire Serial Interface Handler

SPM_RDY:

reti

RESET:

sei

ldi
TEMP, high(RAMEND);

out
SPH, TEMP ; Set stack pointer to top of RAM

ldi
TEMP, low(RAMEND)

out
SPL, TEMP

ldiTemp, 0b00000001

out
TIMSK, Temp ;разрешить прерывание по
переполнению первого таймера

ldi
Temp, 0b10000100 ; разрешение работы АЦП

out
ADCSRA, Temp

ldi
Temp, 0b00100000

out
ADMUX, Temp

ldi
Stemp, 40

ldi
Temp, 0b00001011 ;настройка
портов

out
DDRС, Temp

Begin:

ldi
Time1, 0

m1:

ldi
Time, 8

mov
Time1L, Time2L

mov
Time1H, Time2H

mov
Time2L, Time3L

mov
Time2H, Time3H

a1:

sbi
ADCSRA, 6

rcall WaitM

in
Temp, ADCH

add
Temp3L, Temp

sbic
SREG, 0

inc
Temp3H

dec
Time

breq
b1

rjmp
a1

b1:

cpi
Temp3H, 0

breq
m1

cp
Temp2H, Temp1H

brlom1 ; если меньше

cpTemp2L,Temp1L

brlo
m1

cp
Temp2H, Temp3H

brlo
m1

cpTemp2L,Temp3L

brlom1

cpi
Time1, 0 ; если больше 0 то переход

brsh
Comp

mov
Temp2H0, Temp2H

mov
Temp2L0, Temp2L

inc
Time1

rjmp
m1

Comp:

cpi
Time1, 1

brsh
End

inc
Time1

cp
Temp2H, Temp2H0

brlo
End1

cp
Temp2L, Temp2L0

brlo
End1

rjmp
End2

End1:

ldi
TTemp, 0b01010101

rjmp
m1

End2:

ldi
TTemp, 0b10101010

rjmp
m1

End:

ROL
TTemp

Sbrc
TTemp, 0 ; пропустить если бит нет

rjmp
outsign

rjmp
m1

outsign:

sbi
PortC, 4

ldi
Temp, 0

out
TCNT0, Temp

ldi
Temp, 0b00000111

out
TCCR0, Temp

rjmp
Begin

TIM0_OVF:
; обработка прерывания
переполнения таймера0

cbi
PortC, 4 ; выключить звуковой сигнал

ldi
Temp, 0 ; выключить Таймер0

out
TCCR0, Temp

reti
; выход из прерывания

Соседние файлы в папке КУРСАЧ КОНЮХОВ

  • #
  • #

    07.08.2013242.04 Кб28pravilnaya.cdw

  • #
  • #

    07.08.20138.2 Кб19алг р.spl7

  • #
  • #

На чтение 13 мин Просмотров 48.4к. Опубликовано 15.08.2021 Обновлено 25.06.2022

Содержание

  1. Устройство и общая структурная схема
  2. Входные цепи
  3. Высоковольтный выпрямитель
  4. Инвертор
  5. Схема управления ключами
  6. Вторичные цепи
  7. Схема дежурного напряжения
  8. Формирование сигнала PG и обработка сигнала PS_ON
  9. Цепи обратной связи
  10. Описание схем блоков питания компьютера стандарта ATX
  11. 300-ваттный БП производства JNC computer
  12. ATX 350 WP4
  13. Sparkman 400 W
  14. ISO 450PP 4S
  15. IP-550DJ2

На рынке компонентов для персональных компьютеров (включая блоки питания для ПК и серверов) присутствует множество фирм, начиная от сверхкорпораций до малоизвестных мелких производителей. Несмотря на такое разнообразие, большинство БП строятся по схожему принципу, хотя и на разной элементной базе. Зная эти принципы, можно разобраться в работе любого источника питающих напряжений.

Устройство и общая структурная схема

Схема блока питания компьютера — полное описание с примерами

Структура ИИП для компьютера.

Источник питающих напряжений для ПК строится по обычной по традиционной схемотехнике, характерной для импульсных БП со стабилизацией напряжения. Но схема блока питания компьютера стандарта ATX имеет дополнительные специфические узлы, позволяющие управлять модулем сигналами от материнской платы. Далее все блоки рассмотрены подробно.

Входные цепи

Входные цепи защищают сеть от помех, генерируемых блоком питания во время работы. Помимо фильтра они содержат элементы защиты БП от скачков напряжения и замыканий внутри блока.

Схема блока питания компьютера — полное описание с примерами

Типовое построение входных цепей источника питающих напряжений.

Типовая схема содержит плавкий предохранитель, сгорающий при повышении потребляемого тока сверх номинала, а также варистор. В обычном режиме его сопротивление велико и он не участвует в работе узла. При выбросах в сети его сопротивление уменьшается, ток через него увеличивается, тем самым он ускоряет перегорание плавкой вставки. Также входные цепи содержат элементы фильтрации:

  • от синфазных помех (синфазный дроссель и конденсаторы Cy);
  • от дифференциальных помех (конденсаторы Cx и Cx1).

Высоковольтный выпрямитель

Обычно выполняется по мостовой двухполупериодной схеме. Сглаживающие конденсаторы включены последовательно. Назначение такого включения двойное:

  • создание средней точки для питания полумостового инвертора;
  • создание схемы удвоения напряжения при питании сети от 110 вольт.

Схема блока питания компьютера — полное описание с примерами

Работа выпрямителя в режиме двухполупериодного моста (а) и удвоителя (б).

Параллельно конденсаторам часто устанавливают резисторы для быстрого разряда емкостей при отключении питания, а также для выравнивания напряжения средней точки – оно может отличаться от половины Uпит из-за разного тока утечки оксидных конденсаторов. Для защиты от перенапряжений параллельно конденсаторам могут устанавливаться варисторы или стабилитроны.

Инвертор

Инвертор служит для преобразования выпрямленного сетевого напряжения в импульсное. Чаще всего они выполняются по двухтактной полумостовой схеме. Полумост является компромиссом между пушпульным и мостовым преобразователем – он свободен от выбросов напряжения, влекущих повышенные требования к параметрам транзисторов, для него применяются трансформаторы без средней точки в первичной обмотке и в нем используется всего два транзистора. Но к первичной обмотке прикладывается только половина напряжения питания (формируется за счет средней точки сглаживающего фильтра).

Схема блока питания компьютера — полное описание с примерами

Различные схемы инверторов.

В некоторых источниках используются и однотактные прямоходовые инверторы (у обратноходовых с ростом мощности значительно растут габариты и масса импульсных трансформаторов).

Схема управления ключами

В стабилизированных источниках питания ключи управляются методом широтно-импульсной модуляции. На управляющие электроды транзисторов подаются импульсы, следующие с одинаковой частотой, но с регулируемой длительностью. Чтобы увеличить напряжение, длительность импульсов также увеличивается. Чтобы снизить выходной уровень, транзисторы открываются на меньшее время. Для организации ШИМ обычно применяются микросхемы. У них «на борту» имеется полный набор узлов от генератора и усилителя ошибки до выходных транзисторных ключей (впрочем, достаточно маломощных, чтобы обойтись без внешних силовых транзисторов).

Вторичные цепи

Напряжение с первичной обмотки импульсного трансформатора преобразуется в пониженное импульсное на вторичных обмотках, а далее выпрямляется и сглаживается.

Схема блока питания компьютера — полное описание с примерами

Схема вторичных цепей БП KYP-150 W.

Обмотки обычно выполняются с отводом от средней точки. Выпрямители при этом исполняются по мостовой схеме. Наиболее энергоемкие каналы (+5 и +12 вольт) запитываются от верхней части мостов (для них устанавливаются мощные вентили или сборки), а отрицательные напряжения снимаются с нижних диодов (они менее мощные). Дальше выпрямленные напряжения сглаживаются с помощью LC-цепей (они включают в себя и обмотки дросселя групповой стабилизации). Для напряжения +3,3 VDC обычно применяется отдельный выпрямитель, либо оно формируется из канала +5 VDC с помощью дополнительного линейного стабилизатора.

Схема дежурного напряжения

Напряжение Stand By нужно для питания участка схемы материнской платы ПК, отвечающего за старт компьютера. Также оно используется для питания микросхемы ШИМ и драйвера инвертора до того, как БП запущен. Обычно узел выполняется в виде отдельного генератора, питающегося от высоковольтного выпрямителя.

Читайте также

Из чего состоит блок питания компьютера — его функции и напряжение

Формирование сигнала PG и обработка сигнала PS_ON

За эту задачу отвечают отдельные участки схемы. При наличии всех (или части) питающих напряжений формируется сигнал PG (Power Good), сигнализирующий компьютеру об исправности блока питания. При получении от материнской платы сигнала PS_ON, запускается генератор контроллера ШИМ. У некоторых специализированных микросхем есть отдельные входы для формирования и обработки этих сигналов (LPG899, AT2005B). Также существуют микросхемы-супервайзеры, которые выполняют эти функции и генерируют сигналы управления. В некоторых БП эти задачи возложены на участки схемы на дискретных элементах.

Цепи обратной связи

В большинстве БП для поддержания уровня используется только одно напряжение (обычно, +12 VDC или +5 VDC). Остальные каналы включены в систему групповой стабилизации, влияющие на измеряемое напряжение. Такой принцип не позволяет добиться высокого коэффициента стабилизации, но значительно упрощает построение схемы БП ATX.

В качестве примеров рассматриваются несколько схем источников питания различной мощности. Схемы подобраны так, чтобы одинаковые функциональные узлы строились на различных элементах.

300-ваттный БП производства JNC computer

Схема блока питания компьютера — полное описание с примерами

Схема блока питания SY-300ATX.

В качестве первого примера приведена схема электрическая принципиальная БП SY-300ATX 300W. Входные цепи построены несколько упрощенно. В нем отсутствует конденсатор Cx для защиты от дифференциальных помех. Также нет варистора для защиты от выбросов сетевого напряжения. Полностью выполнена лишь схема защиты от синфазных помех – на дросселе LF1 и конденсаторах CY1 и CY2.

Выпрямитель на сборке RL205 особенностей не имеет, сглаживающий фильтр С1С2 одновременно выполняет функции делителя напряжения. Для выравнивания средней точки и быстрого разряда емкостей при выключении применены резисторы R13, R12 и варисторы V1, V2. От выпрямленного напряжения величиной около 310 вольт работает схема, формирующая дежурное напряжение.

Читайте также

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Генератор выполнен на транзисторе Q3, первичные обмотки трансформатора T3 выполняют функцию нагрузки и обратной связи. Нижняя половина вторичной обмотки формирует собственно напряжение Stand By, которое выпрямляется диодом D7, сглаживается фильтром C13L2C14. Для его стабилизации организован еще один контур обратной связи через оптрон U1. Если выходной уровень повышается, свечение светодиода оптрона становится интенсивнее, приемный транзистор открывается, прикрывая транзистор Q4, который уменьшая напряжение на базе Q3, уменьшает время его открытого состояния. С двух обмоток (суммы верхней и нижней половин) снимается питание для микросхемы генератора и предварительного каскада инвертора. Оно выпрямляется диодом D8, сглаживается емкостью C12.

Рекомендуем: Как из старого БП компьютера сделать зарядное устройство

Средняя точка делителя выпрямленного высокого напряжения подключена к одному концу первичной обмотки импульсного трансформатора T3, защищенной от коммутационных выбросов снаббером R16C10. Другой конец первичной обмотки подключен к средней точке полумостового инвертора, образованного транзисторами Q1,Q2. Полумост изолирован от низковольтной части трансформатором T2. Импульсы на вторичных обмотках формируются драйвером на транзисторах Q5, Q6, которые, в свою очередь, попеременно открываются и закрываются под управлением выводов 7 и 8 микросхемы AT2005. Эта микросхема разработана для использования в качестве контроллера ШИМ в компьютерных блоках питания.

Как и любой PWM-контроллер она выполняет функции:

  • формирование импульсов управлениями транзисторами инвертора;
  • регулировка длительности импульсов в целях стабилизации выходных напряжений.

Кроме этого, она выполняет специфические для компьютерных БП задачи:

  • формирование сигнала Power_OK (PG);
  • запуск инвертора при получении сигнала Power_ON от материнской платы;
  • защита от превышения напряжений;
  • защита от снижения напряжений (при перегрузке).

Схема блока питания компьютера — полное описание с примерами

Расположение выводов AT2005.

Назначение выводов микросхемы указано в таблице.

Тип Описание Номер Номер Описание Тип
Аналоговый вход Контроль канала +3,3 вольта 1 16 Прямой вход усилителя ошибки Аналоговый вход
Аналоговый вход Контроль канала +5 вольт 2 15 Инверсный вход усилителя ошибки Аналоговый вход
Аналоговый вход Контроль канала +12 вольт 3 14 Выход усилителя ошибки Аналоговый выход
Аналоговый вход Внешняя блокировка 4 13 VCC Питание
Питание GND 5 12 Внешняя блокировка сигнала PG Аналоговый вход
Подключение частотозадающего конденсатора 6 11 Сигнал PG Логический выход
Аналоговый выход Управление транзисторами драйвера 7 10 Конденсатор времени задержки сигнала PG
Аналоговый выход Управление транзисторами драйвера 8 9 Включение микросхемы при низком уровне, выключение при высоком Логический вход

Статья по теме: Распиновка разъемов блока питания компьютера по цветам и напряжению

Мнение эксперта

Становой Алексей

Инженер-электроник. Работаю в мастерской по ремонту бытовых приборов. Увлекаюсь схемотехникой.

Задать вопрос

В данном БП применяется микросхема AT2005. Ее не следует путать с широко распространенной AT2005B, имеющей иное расположение выводов. Полным аналогом AT2005 является микросхема LPG899.

Сигнал PG снимается с вывода 11, если напряжения на 1,2,3 выводах находятся в пределах нормы. С материнской платы сигнал Power_ON приходит на вывод 9 — если уровень становится низким, генерация запускается. При таком построении управление контроллером ШИМ не требует дополнительных элементов.

На выход 12 подается напряжение от средней точки драйвера – при исчезновении импульсов микросхема выключается. На вход 16 подается напряжение канала +12 вольт – так сформирована цепь обратной связи для регулирования напряжения. При повышении напряжения на выходе канала, длительность импульсов уменьшается, при снижении – увеличивается. Остальные каналы стабилизируются с помощью дросселя групповой стабилизации – он на схеме своего буквенного обозначения не имеет.

Схема блока питания компьютера — полное описание с примерами

Фрагмент схемы вторичных цепей силового трансформатора с дросселем групповой стабилизации.

Он представляет собой дроссель с 5 обмотками, намотанными на одном тороидальном сердечнике. Каждая обмотка включается в цепь своего напряжения. Если изменяется напряжение любого канала, это приводит к соответствующему изменению в остальных каналах, включая +12 вольт. Изменение этого напряжения задействует ШИМ-регулятор и все остальные напряжения возвращаются в установленные пределы.

Схема блока питания компьютера — полное описание с примерами

Дроссель групповой стабилизации на плате.

Импульсный трансформатор выполнен с одной вторичной обмоткой с выведенной средней точкой и двумя симметричными отводами, с которых снимается напряжение для каналов +5 и -5 вольт. С крайних выводов снимается напряжение для канала +12 VDC и -12 VDC. Все напряжения выпрямляются двухтактными мостовыми выпрямителями и сглаживаются фильтрами, в которые входит соответствующая обмотка дросселя групповой стабилизации, индивидуальные для каждого канала дроссели L6..L9 и конденсаторы. От канала +12 VDC питается вентилятор охлаждения – стабилизатор собран на транзисторе Q6 и стабилитроне ZD2.

Канал +3,3 VDC выполнен от отдельного выпрямителя на сборке D17 и диодах D14, D15. В схему группового регулирования этот канал не включен.

Будет полезно ознакомиться: Схема и сборка самодельного БП с регулировкой напряжения и тока

ATX 350 WP4

Схема блока питания компьютера — полное описание с примерами

Схема импульсного БП ATX 350 WP4.

Следующий источник питания имеет мощность 350 W. Он построен по похожей схеме, в которой содержится ряд отличий от предыдущего БП:

  • входные цепи содержат два конденсатора защиты от синфазных помех (Cx, Cx2) и терморезистор для ограничения тока заряда конденсаторов;
  • в выходном каскаде инвертора применены намного более мощные транзисторы (с током коллектора 12 А против 3 А у предыдущего узла);
  • генератор дежурного напряжения выполнен на MOSFET.

Более глубокая разница состоит в применении микросхемы для ШИМ и в формировании сигнала PG и обработке команды PS_ON. Для управления широтно-импульсной модуляцией применена микросхема AZ7500BP – полный аналог популярнейшей TL494.

Схема блока питания компьютера — полное описание с примерами

Функционал и расположение выводов TL494.

Эта микросхема более универсальна, содержит два усилителя ошибки, что позволяет организовать стабилизацию не только по напряжению, но и по току. TL494 позволяет более гибко управлять ШИМ (за счет настройки времени Dead Time – паузы между импульсами). Но она не содержит супервайзера по наличию и уровню выходных напряжений, и эту задачу надо решать отдельно. В данной схеме для этого применена микросхема LP7510. При наличии трех напряжений — +12 VDC, +5 VDC, +3,3 VDC на выводе 8 появится сигнал PG, который сообщит компьютеру об исправности БП. При получении от материнской платы на выводе 4 сигнала низкого уровня Power_ON, на выводе 3 появится высокий уровень, разрешающий запуск микросхемы TL494 и запуск БП.

Рекомендуем к прочтению: Схема двухполярного блока питания

Sparkman 400 W

Схема блока питания компьютера — полное описание с примерами

Схема блока питания Sparkman 400 W.

Следующий блок питания – Sparkman 400 W. Его основная особенность – однотактный прямоходовый преобразователь. В качестве силового транзистора применен MOSFET SVD7N60F с током стока до 7 А, который напрямую управляется микросхемой KA3842. На ее вывод 1 через оптрон U38 заведена обратная связь, посредством которой регулируется выходной уровень путем изменения длительности импульсов.

Также применен дроссель групповой стабилизации. Для напряжения +3,3 VDC отдельной обмотки и выпрямителя не предусмотрено, оно формируется от канала +5 вольт с помощью отдельного стабилизатора на MOSFET SD1. Супервайзером напряжений, формирователем сигнала PG служит микросхема WT7510 в стандартном включении.

Схема формирования +5 V Stand By и другие узлы особенностей не имеют. Фильтр высоковольтного выпрямителя выполнен в виде делителя со средней точкой, которая в данном случае нужна для переключения сетевого напряжения с 220 VAC на 110 VAC. Во втором случае выпрямитель из мостового становится удвоителем сетевого напряжения.

Читайте также

Импульсный блок питания – подборка схем для самостоятельного изготовления

ISO 450PP 4S

Схема блока питания компьютера — полное описание с примерами

Схема БП ISO 450PP 4S.

Описанные выше технические решения закрывают практически все схемотехнические потребности блоков питания мощностью примерно до 500 ватт. Так, в схеме блока ISO 450PP 4S (450 W) ничего принципиально не описанного выше не использовано.

IP-550DJ2

Схема блока питания компьютера — полное описание с примерами

Схема 550-ваттного ИИП.

В более мощных источниках применяются специфичные технические решения. Так в БП IP-550DJ2 большее внимание уделено защите от импульсных помех. Применены два синфазных дросселя, а сглаживающие конденсаторы защищены двуханодными стабилитронами. В инверторе с однотактной схемой использованы два мощных MOSFET. У них меньше коммутационные потери, поэтому упрощается проблема теплоотвода. Для формирования +5 V Stand by используется интегральный конвертер TNY276.

Очевидно, что с увеличением потребляемых компьютером мощностей потребуются новые технические решения для создания БП в тех же габаритах. Тенденции развития силовой электроники и интегральных микросхем позволяет надеяться, что эти решения будут находиться по мере потребности.

Предисловие

В своей предыдущей статье я говорил, что продолжу рассказ о работе с датчиками тока на эффекте Холла. С того момента прошло не мало времени, выход продолжения затянулся, да и писать «скучную теорию» я не любитель, поэтому ждал практической задачи.

Еще одной причиной отсутствия статей была моя работа в одной «современной успешной IT-hardware-компании», сейчас наконец-то я ее покинул и окончательно пересел на фриланс, так что время для статьи появилось))

Недавно ко мне обратился мой старый наставник и просто очень хороший человек. Естественно я не мог отказать в помощи, а оказалось все достаточно просто — меня попросили сделать блок питания для КВ трансивера FT-450, который будет более стабильный в работе, особенно при пониженном входном напряжении, чем уже имеющийся Mean Well. Прошу заметить, я не говорю о том, что Mean Well плохая фирма, просто в данном случае нагрузка достаточно специфическая, а так продукция у них вполне себе хорошая.

Диагноз примерно такой:

— Заявлен выходной ток в 40А, на деле при потреблением в 30-35А (на передаче) блок уходит в защиту;
— Наблюдается сильный нагрев при длительной нагрузке;
— Совсем становится плохо, когда использует его на даче, где напряжение в сети 160-180В;
— Напряжение максимальное 13,2-13,4В, а хотелось бы 13,8-14В с возможностью подкрутить +-20%.

Особенностью данной статьи будет то, что проект продвигается вместе с ней. Я за него только засел и поэтому смогу рассказать обо всех этапах разработки: от ТЗ до готового прототипа. В таком формате статей с наскоку на гике я не нашел, обычно люди пишут уже проделав всю работу и забыв половину мелочей, которые часто несут в себе главный интерес. Так же эту статью я хочу написать доступным для новичков языком, поэтому местным гуру стоит чуточку проще относиться к «неакадемичности» моего слога.

Технические требования

Любой проект всегда начинается с технического задания и обсуждений. Обсуждения мы прошли, остается ТЗ. У меня проект не коммерческий, а так сказать open source, поэтому я не буду тратить большое количество времени и ограничусь перечнем технических требований.

Для чего это нужно? Те, кто работает в компаниях связанных с разработкой чего либо меня поймут — «без ТЗ проект не взлетает», но для людей не связанных с промышленной разработкой этот момент может быть не очевиден. Поэтому немного объясню…

В процессе разработки если вы не опираетесь на ТЗ, то с вероятностью около 100% уйдете от изначально желаемого результата. Например, вначале вы хотели получить 1000 Вт мощности блока питания, но не нашли трансформатор подходящий и поставили тот, что попался под руку. В результате железка стала на 700 Вт, а вы то планировали на 1000! Для любителя это не смертельно, он просто убьет кучу денег и времени, не получив результата. Для работодателя инженера же это финансовая катастрофа, просроченный проект, а для инженера часто просто пинок под зад на улицу. И таких нюансов будет море, по мимо трансформатора еще что-то не найдется, вам яблоко на голову упадет и вы решите добавить каких нибудь «светюлек» и так далее.

Как этого избежать? Именно для этого сумрачный советский гений придумал «ГОСТ 34. Разработка автоматизированной системы управления (АСУ)». Достаточно просто сделать как надо ТЗ по данному ГОСТу, которое займет 30-50 страниц и ваш проект на стадии идеи будет соответствовать конечному результату в виде железки, надо лишь идти по пунктам. Если написано «трансформатор на 1000 Вт», то вы ищите/добываете его именно на 1000Вт, а не на авось берет «чуть чуть поменьше». Я работал и в ВПК и в частных компаниях: первые молятся на адекватные ТЗ и тех. проекты, которые обычно выглядят как томик «Война и Мир», поэтому наши танки лучше всех. Вторые же забивают «на бестолковую порчу леса», поэтому гражданская электронная продукция на выходе в России в большинстве случаев — «гуано на ардуине».

И так, чтобы избежать «хлама» на выходе мы составим список технических требований, которыми должен обладать наш прототип. Пока он их не достиг — проект считается незавершенным. Вроде все просто.

Требования к импульсному блоку питания:

— Выходное напряжение с возможностью регулировки в пределах 10-15В DC;
— Входное напряжение сети: 160-255В AC;
— Ток вторичных цепей: 40А
— Наличие синфазного фильтра;
— Наличие корректора коэффициента мощности (ККМ);
— Косинус фи: не менее 0,9;
— Гальваническая развязка входа с выходом;
— Защита от КЗ во вторичной цепи;
— Время срабатывания защиты по току: не более 1 мс;
— Стабильность выходного напряжения: не хуже 0.1%;
— Температура силовых элементов устройства: не более 55 градусов при 100% нагрузке;
— Общий КПД устройства: не менее 90%;
— Наличие индикатора напряжения и тока.

Еще хотел бы отметить одну особенность проектируемого ИИП — он полностью аналоговый. Это было достаточно важным требованием, т.к. я последние годы в основном проектировал с использованием DSP процессоров в качестве управляющего «мозга», но это пугает «заказчика». Ибо на данный момент он проживает в 2500 км от меня и в случае поломки ремонт затянется на долго, поэтому необходимо сделать устройство с максимальной ремонтопригодностью. Заказчик человек опытный в аналоговой схемотехники и отремонтирует в случае проблем без каких либо пересылок, максимум придется позвонить да обсудить проблему.

Подытожим: когда я разработаю, изготовлю, а затем протестирую ИИП и получу в результате тестов ТТХ, которые как минимум не хуже описанных выше — можно будет считать, что проект успешен, блок можно отдавать владельцу, а самому радоваться еще одно успешной железке. Но это все далеко впереди…

Функциональная схема

Обычно я с начальством воевал на тему, что функциональные схемы для чайников и отказывался рисовать, но т.к. статья все таки предназначена для новичков в электронике и чтобы всем было интересно читать я все таки ее нарисую и распишу, что делает каждый блок. Да и при условии отсутствия полноценного ТЗ данная схема позволит мне не отклоняться в процессе работы от изначальной идеи.

image
Рисунок 1 — Функциональная схема ИИП

Теперь кратко пробегусь по каждому блоку, а более подробно данные решения разберем уже на этапе разработки схемотехники. И так сами модули:

1) Синфазный фильтр — он призван спасти сеть и бытовые приборы подключенные к ней от помех, которые генерирует наш блок питания. Не пугайтесь — любой импульсный блок питания их выдает, поэтому в 90% ИИП имеется фильтр синфазных помех. Так же он оберегает и наш блок от помех приходящих из сети. На эту тему недавно наткнулся на чью-то бакалаврскую работу, там достаточно понятно все расписано — статья. Автор диплома Куринков А.В., за что его сердечно поблагодарим, хоть один диплом бакалавра в этом мире станет полезен))

2) Дежурное питание «классическое» на микросхеме TOP227, схема скорее всего будет взята прямо из даташита с добавление гальванической развязки от сети через оптрон. Выход будет реализован в виде 2-х развязанных друг от друга обмоток с напряжением 15В и 1А каждая. Одна будет питать ШИМ контроллер корректора, вторая ШИМ контроллер полумоста.

3) Выпрямитель выполнен на диодном мосте. Изначально хотел применить синхронный на N-канальных Mosfet, но на таких напряжениях и при токе 3-4А это будет бесполезная трата ресурсов.

4) Активный корректор мощности — без него никуда как только речь идет о хорошем КПД, да и по требованиям законодательства применение ККМ обязательно. ККМ это по факту обычный бустерный преобразователь, который закроет 2 проблемы: низкое входное напряжение, т.к. на своем выходе он стабильно будет выдавать 380В и позволит равномерно отбирать мощность из сети. Микросхему применил весьма популярную, китайцы (и не только) любят ставить ее в сварочные инвертора в тех же целях — ICE2PCS01. Таить не буду — взял ее как проверенное временем решение, на ней собирал ККМ на 6 кВА для полуавтомата и проблем нет уже не первый год, надежность меня подкупает.

5) Непосредственно преобразователь напряжения реализован по топологии — «полумост», советую для знакомство с ней прочитать главу в книге Семенова «Силовая электроника: от простого к сложному». Контроллер полумоста реализован на «классической»

как Чайковский

микросхеме TL494: дешево, функционально, надежно, проверено временем — что еще требуется? Кто считает ее старой может обратить свой взор на что-то от Texas из серии UCC38xxx. В данном модуле реализована обратная связь по напряжению на TL431 + PC817, а так же защита по току на датчике на эффекте Холла — ACS758.

6) Силовой трансформатор я планирую реализовать на сердечнике компании Epcos типа ETD44/22/15 из материала N95. Возможно мой выбор изменится дальше, когда буду рассчитывать моточные данные и габаритную мощность.

7) Долго колебался между выбором типа выпрямителя на вторичной обмотке между сдвоенным диодом Шоттки и синхронным выпрямителем. Можно поставить сдвоенный диод Шоттки, но это P = 0,6В * 40А = 24 Вт в тепло, при мощности ИИП примерно в 650 Вт получается потеря в 4%! При использование в синхронном выпрямителе самых обычных IRF3205 с сопротивление канала тепла выделится P = 0,008 Ом * 40А * 40А = 12,8 Вт. Получается выигрываем в 2 раза или 2% кпд! Все было красиво, пока я не собрал на макете решение на IR11688S. К статическим потерям на канале добавились динамические потери на коммутацию, в итоге то на то и вышло. Емкость у полевиков на большие токи все таки большая. лечется это драйверами по типу HCPL3120, но это увеличение цены изделия и чрезмерное усложнение схемотехники. Собственно из этих соображений решено было поставить сдвоенный Шоттки и спать спокойно.

8) LC-контур на выходе, во-первых, уменьшит пульсации тока, во-вторых, позволит «срезать» все гармоники. Последняя проблема крайне актуальна при питании устройств работающих в радиочастотном диапазоне и имеющие в своем составе высокочастотные аналоговые цепи. У нас же речь идет от КВ трансивере, поэтому тут фильтр просто жизненно необходим, иначе помехи «пролезут» в эфир. В иделе тут еще можно поставить на выход линейный стабилизатор и получить минимальные пульсации в единицы мВ, но на деле скорость ОС позволит и без «кипятильника» получить пульсации напряжения в пределах 20-30 мВ, внутри трансивера критичные узлы запитываются через свои LDO, так что его избыточность очевидна.

Ну вот мы и пробежались по функционалу и это только начало)) Но ничего, дальше пойдет бодрее ибо начинается самая интересная часть — расчеты всего и вся!

Расчет силового трансформатора для полумостового преобразователя напряжения

Сейчас немного стоит подумать о конструктиве и топологии. Я планирую применять полевые транзисторы, а не IGBT, поэтому рабочую частоту можно выбрать побольше, пока задумываюсь о 100 или 125 кГц, такая же частота кстати будет и на ККМ. Повышение частоты позволит несколько уменьшить габариты трансформатора. С другой стороны задирать сильно частоту не хочу, т.к. применяю TL494 в качестве контроллера, после 150 кГц она себя уже не так хорошо показывает, да и динамические потери вырастут.

Исходя из таких вводных, посчитаем наш трансформатор. У меня есть в наличии несколько комплектов ETD44/22/15 и поэтому пока ориентируюсь на него,

список исходных данных таков:

1) Материал N95;
2) Тип сердечника ETD44/22/15;
3) Рабочая частота — 100 кГц;
4) Выходное напряжение — 15В;
5) Выходной ток — 40А.

Для расчетов трансформаторов до 5 кВт использую программу «Старичка», она удобна и достаточно точно считает. После 5 кВт начинается магия, частоты растут для уменьшения габаритов, а плотности поля и тока достигают таких значений, что даже скин-эффект способен менять параметры чуть ли не в 2 раза, поэтому для больших мощностей применяю дедовский метод «с формулами и выводом карандашом на бумаге». Вписав в программку свои вводные данные был получен следующий результат:

image
Рисунок 2 — Результат расчета трансформатора для полумоста

На рисунке с левой стороны отмечены вводные данные, их я описал выше. По центру фиолетовым цветом выделены результаты, которые нас больше всего интересуют,

пробегусь кратко по ним:

1) Входное напряжение составляет 380В DC, оно стабилизированное, т.к. полумост питается с ККМ. Такое питание упрощает конструкцию многих узлов, т.к. пульсации токов минимальны и трансформатору не придется вытягивать напряжение при входном сетевом напряжение 140В.

2) Потребляемая (прокачиваемая через сердечник) мощность получилась 600 Вт, что в 2 раза меньше габаритной (той, которую сердечник может прокачать не уйдя в насыщение) мощности, а значит все хорошо. В программке не нашел материал N95, но на сайте Epcos в даташите подсмотрел, что N87 и N95 дадут очень похожие результаты, проверив на листочке выяснил, что разница в 50 Вт габаритной мощности — не страшная погрешность.

3) Данные по первичной обмотке: 21 виток мотаем в 2 провода диаметром 0.8 мм, думаю тут все понятно? Плотность тока около 8А/мм2, а это значит, что обмотки не будут перегреваться — все хорошо.

4) Данные по вторичной обмотке: мотаем 2 обмотки по 2 витка в каждой проводом так же 0.8 мм, но уже в 14 — все таки ток 40А! Далее соединяем начало одной обмотки и конец другой, как это сделать я объясню дальше, почему-то часто люди при сборке на этом моменте в ступор впадают. Тут тоже вроде магии никакой нету.

5) Индуктивность выходного дросселя — 4.9 мкГн, ток соответственно 40А. Нужен он, чтобы на выходе нашего блока не было огромных пульсаций ток, в процессе отладки я покажу на осциллографе работу с ним и без него, все станет ясно.

Расчет занял 5 минут, если у кого-то вопросы, то в комментариях или ЛС спрашивайте — подскажу. Чтобы не искали саму программу, предлагаю скачать ее с облака по ссылке. И моя огромная благодарность Старичку за его труд!

Следующим логичным этапом будет расчет выходного дросселя для полумоста, это как раз тот, что на 4.9 мкГн.

Расчет моточных параметров для выходного дросселя

Вводные данные мы получили в предыдущем пункте при расчет трансформатора,

это:

1) Индуктивность — 4.9 мкГн;
2) Номинальный ток — 40А;
3) Амплитуда перед дросселем — 18В;
4) Напряжение после дросселя — 15В.

Используем так же программу от Старичка (все они есть в ссылке выше) и получаем следующие данные:

image
Рисунок 3 — Расчетные данные для намотки выходного дросселя

Теперь пробежимся по результатам:

1) По вводным данным есть 2 нюанса: частота выбирается та же самая, на которой работает преобразователь, это думаю логично. Второй момент связан с плотностью тока, сразу отмечу —

дроссель должен греться

! Вот только насколько сильно уже определяем мы, я выбрал плотность тока 8А/мм2, чтобы получить температуру в 35 градусов, это видно в выходных данных (отмечено зеленым). Ведь как мы помним по требованиям на выходе нужен «холодный ИИП». Так же хочется отметить для новичков возможно не совсем очевидный момент — дроссель будет греться меньше, если через него протекает большой ток, то есть при номинальной нагрузке 40А дроссель будет иметь минимальный нагрев. Когда ток меньше номинального, то для части энергии он начинает работать как активная нагрузка (резистор) и превращает все избытки энергии в тепло;

2) Максимальная индукция, это значение которое нельзя превышать, иначе магнитное поле насытит сердечник и будет все очень плохо. Данный параметр зависит от материала и его габаритных размеров. Для современных сердечников из распыленного железа типовым значение является 0,5-0,55 Тл;

3) Намоточные данные: 9 витков мотаются косой из 10 жил провода диаметром 0.8 мм. Программка даже примерно указывает сколько слоев для этого понадобится. Я буду мотать в 9 жил, т.к. потом удобно будет разделить большую косу на 3 «косички» по 3 жилы и без проблем их распаять на плате;

4) Собственно само кольцо на котором буду мотать имеет размеры — 40/24/14.5 мм, его хватает с запасом. Материал №52, думаю многие видели в АТХ блоках кольца желто-голубого цвета, часто они используются в дросселях групповой стабилизации (ДГС).

Расчет трансформатора дежурного источника питания

На функциональной схеме видно, что я хочу использовать в качестве дежурного блока питания «классический» flayback на TOP227, от него будут запитываться все ШИМ контроллеры, индикацию и вентиляторы системы охлаждения. То, что вентиляторы будут запитываться от дежурки я понял только спустя какое-то время, поэтому данный момент на схеме не отображен, но ничего это же реалтайм разработка))

Скорректируем немного наши вводные данные, что же нам нужно:

1) Выходные обмотки для ШИМ: 15В 1А + 15В 1А;
2) Выходная обмотка самопитания: 15В 0.1А;
3) Выходная обмотка для охлаждения: 15В 1А.

Получаем необходимость в блоке питания с суммарной мощностью — 2*15Вт + 1.5Вт + 15Вт = 46.5 Вт. Это нормальная мощность для TOP227, я ее использую в мелких ИИП до 75 Вт для всяких зарядок АКБ, шуруповертов и прочего хлама, за много лет

что странно

еще ни один пока не сгорел.

Идем в другую программку Старичка и считаем трансформатор для flayback:

image
Рисунок 4 — Расчетные данные для трансформатора дежурного питания

1) Выбор сердечника обоснован просто — он у меня есть в количестве ящика и те самый 75 Вт он вытягивает)) Данные на сердечника тут. Он из материала N87 и имеет зазор 0.2 мм на каждой половинке или 0.4 мм так называемый полный зазор. Данный сердечник прямо предназначен для дросселей, а у обратноходовых преобразователей эта индуктивность именно дроссель, но не буду пока в дебри влезать. Если в трансформаторе полумоста зазора не было, то для обратноходового преобразователя он обязателен иначе как и любой дроссель он просто уйдет в насыщение без зазора.

2) Данные о ключе 700В «сток-исток» и 2.7 Ом сопротивления канала, взяты из даташита на TOP227, у данного контроллера силовой ключ встроен в саму микросхему.

3) Входного напряжение минимальное взял чуть с запасом — 160В, это сделано для того, чтобы в случае выключения самого блока питания в работе осталась дежурка и индикация, они сообщат о аварийно низком напряжении питания.

4) Первичная обмотка у нас представляет из себя 45 витков проводом 0.335 мм в одну жилу. Вторичные обмотки силовые по 4 витка и 4 жилы проводом 0.335 мм (диаметр), обмотка самопитания обладает такими же параметрами, поэтому все тоже самое, только 1 жила, ибо ток на порядок ниже.

Расчет силового дросселя активного корректора мощности

Думаю самый интересный участок данного проекта именно корректор коэффициента мощности, т.к. по ним достаточно мало информации в интернете, а рабочих и описанных схем еще меньше.

Выбираем программку для расчета — PFC_ring (PFC это по-басурмански ККМ),

вводные используем следующие:

1) Входное напряжение питания — 140 — 265В;
2) Номинальная мощность — 600 Вт;
3) Выходное напряжение — 380В DC;
4) Рабочая частота — 100 кГц, обусловлена выбором ШИМ контроллера.

image
Рисунок 5 — Расчет силового дросселя активного ККМ

1) Слева как обычно вводим исходные данные, установив 140В минимальным порогом мы получаем блок, который сможет работать при напряжение сети 140В, так мы получаем «встроенный стабилизатор напряжения»;

2) Сердечник выбрал — К46/24/18. По расчетам впритык влезало и на кольцо диаметром 39 мм, но там получалось 110 витков — мотать сложно будет в кучу слоев, да и запас по индукции в ККМ весьма кстати, в итоге получает 0.35 Тл при допустимых 0.5 Тл;

3) Многих пугает такая надпись: «Емкость выходного конденсатора» 4000 мкФ! Те, кто в теме ужаснутся такой цифре, это 15 огромных и дорогих кондеров (300-350р/шт), но не пугайтесь — это цифра бесполезна для нас и ориентироваться на нее нельзя, Старичок наверное в расчетах или лишний ноль где-то дописал, или речь идет о конденсаторах к огромным ESR и надо 15 штук параллелить. Для нас есть параметр более грамотный — «Действующий ток в выходной емкости» 3.845А. 1 хороший электролит от Epcos со своим низким внутренним ESR способен отдавать 3-4А. Я перестрахуюсь и поставлю 2 штуки параллельно, чтобы уменьшить ESR и получить минимум 6А с ног кондеров.

Какие на самом деле конденсаторы надо применять

Существуют специальные пленочные конденсаторы, они способны отдавать огромные токи, а их ESR измеряется в единицах мили Ом! Да, у них меньшие емкости 10-50 мкФ, но 1 такой конденсатор заменяет батарею из нескольких огромных электролитов алюминиевых, а самое главное работает на больших частотах, тогда как «классически» электролит после 200 кГц превращается в резистор и просто греет планету.

Выглядят они вот так. Как видите ценник очень даже преятный на фоне тех же электролитов, так что советую использовать именно их. У меня их просто нету в наличии, а digikey только после праздников отправит.

Схемотехника активного корректора коэффициента мощности и входных цепей

Вот и подошли на верное к самому интересному пункту — схемотехника. Начну разумеется по порядку: от входа к выходу. Думаю те, кто разбирал любой импульсный блок питания видел скопление конденсаторов (чаще синего цвета) и дроссель сразу около разъема подключения вводного кабеля, этот модуль называется как раз — фильтр синфазных помех.

Что такое синфазные помехи и зачем с ними бороться можно нагуглить без проблем, я же лишь вкратце объясню. Синфазные помехи — это все помехи, блуждающие между проводниками тока и землей. Они приходят к нам из сети питания, да и наш блок питания так же излучает их в определенном виде, чтобы избавиться от них — мы и ставим фильтр.

Методика расчета есть во многих источниках, так же советую посмотреть книги Семенова: первую (3.3) и вторую (3.2). Я же предпочитаю задачи связанные с ЭМИ моделировать в CST Suite Studio и «методом подбора» получать наиболее оптимальные параметры. К тому же данный фильтр в отличии от LC фильтра низкой частоты не требует высокой точности, поэтому для 90% ИИП вы можете использовать данные приведенные в моем схематике.

Для управления ККМом я решил применить микросхему — ICE2PCS01GXUMA1. Она позволяет построить достаточно простой и надежный преобразователь, как уже было написано АККМ — это ни что иное как booster.

image
Рисунок 6 — Схема входных цепей и активного ККМ

Немного о схемотехнике… В современном мире трудно что-то изобрести — это факт. Можно сделать классную железку, но с вероятностью 99,99% ее уже кто-то делал, но возможно просто в более плохом исполнение. Все это касается и электроники, можно месяцами сидеть и изобретать схемы и в итоге окажется, что ее придумали лет так 10 назад. Это ни в коем случае не повод перестать изобретать! Это лишь повод получше поискать информацию. Я использую микросхему, которую производит гигант индустрии —

Infineon Technologies

. Поэтому с большой вероятностью они предусмотрели для своего контроллера некую отладочную плату, поэтому я сразу пошел на digikey.com, где обычно закупаюсь, и вбил название своего камня — по мимо возможности купить микросхему поисковик на сайте мне выдал одну отладку (Evaluation Board) — EVALPFC2-ICE2PCS01. Купить ее уже нельзя, только у производителя под заказ, но мне и не надо. Зато тут есть документация на готовое рабочее решение с открытой схемой, трассировкой платы и списком компонентов! Вот оно готовое решение, ничего не надо придумывать, производитель сделал все, чтобы его продукцию покупали, а для разработчиков практически всегда на первом месте в требованиях к элементам стоит доступность документации и только потом цена. Есть только одно «НО» — отладочная плата на 300Вт, а мне надо 700, но не страшно — сама архитектура это уже 90% работы, пересчитать номиналы это дело 15 минут,

и так поехали:

1) Силовой дроссель L5 я пересчитал и данные для его намотки отображены на рисунке 5. Мы получили, что вместо индуктивности в 1240 мкГн понадобится значение в 480 мкГн, правда и значение тока выросло в 2,5 раза;

2) Диоды VD11,12 должны быть на напряжение не менее выходного, то есть 400В и выше, а так же должны выдерживать импульсное значение тока в устройстве. Еще одним важнейшим параметром является время обратного восстановления, т.к. мой корректор работает на частоте в 100 кГц и обычный диод просто не будет успевать. Для данной задачи подойдут импульсные или ultrafast диоды. Я применил диоды VS-HFA16TB120-N3 на 1200В и 16А с временем восстановления всего 30 мкс, т.к. они соответствую всем параметрам, выпускаются в удобном для охлаждения корпусе TO-220-2 и стоят не дорого около 2-2,5$;

3) Транзистор VT1 должен быть не менее чем с 1,5 запасом по напряжению «сток-исток» и выдерживать импульсное значение тока (х2 от номинального). Учитывая частоту лучше применить N-канальный Mosfet, тем более в последние пару лет они стали очень доступны по цене. Я применил ключ на 800В, т.к. выбросы могут достигать 1,5й амплитуды (около 550В) и запас дополнительный лишним не бывает. Ток у данного ключа 11А и что важно он изготавливается в корпусе TO-247, а значит его очень легко охлаждать и изолировать от радиатора;

4) Выходные конденсаторы C18,19 являются важным узлом, т.к. у нас преобразователь однотактный и именно они сглаживают пульсации тока. Конденсатор должен быть желательно на 450В чтобы иметь запас по напряжению и способен отдавать до 8А тока на пиковых нагрузках. В спойлере выше я писал про конденсаторы, хороший электролит способен отдавать 3-4А мгновенного тока и он ограничивается исключительно ESR конденсатора. Чтобы получить необходимые 8А я решил уменьшить ESR за счет параллельного включения 2-х конденсаторов, каждый на 470 мкФ и 450В. Такая «батарея» способна отдать 11А, т.к. применил кондесаторы весьма хорошие от Epcos из линейки Low ESR;

5) Еще стоит пересчитать датчик тока в виде шунта, в даташите эта тема полностью раскрыта в виде целого раздела.

Узел дежурного питания ИИП

Немного по гальванической развязке, решение у меня тут немного своеобразное, объясню почему так и не иначе:

1) «Первичка и вторичка развязаны» — сделал для того, чтобы в случае пробоя TOP227 «мозги» не сгорели и ремонт ограничится лишь в замене самой микросхемы;

2) «Вторичные обмотки между собой не развязаны» — а зачем? У меня все модули управления объединены общей землей. Конечно можно озадачиться и развязать «мозги» ККМа, полумоста и индикации, но это актуально, когда цена управляющих цепей очень высока и составляют 20-30% от стоимости самого устройства. Такое бывает если для управления применяю DSP или какой-то МК motor control, в моем же случае TL-ка за 15 рублей и IR2110 не стоят таких затрат как оптическая развязка или развязка на трансформаторах — сложность такого решения сильно возрастет вместе с ценником;

3) «Если вторички гальванически связаны, то зачем делать их аж 3 штуки, когда можно сделать 1 штуку на 3А?» —

я художник и я так вижу

сделано это ради просто удобства: удорожание копеечное, а разводить ПП и искать дефекты при ремонте будет намного проще. Ведь каждая цепь питания целый, логически завершенный блок на схеме.

Теперь сама схемотехника, как я и предполагал — особо не удалялся от даташита на TOP227, из «изысков» добавил дроссели на вторичных обмотках ради уменьшения пульсаций тока, добавлена индикация светодиодная на каждый канал. Снаббер применил RC-шный, т.к. супрессор почему-то не успевал за выбросами, хотя должен. Да и я не сторонник использования супрессоров, ну не нравятся они мне просто после того, как пару раз намучился с ними. Еще «камень в их огород» — не работают на большой частоте, современная база позволяет проектировать обратноходовые преобразователи на частотах 1-1,5 МГц и там они нужны как козе баян.
Еще один момент — питание для дежурки я взял после синфазного фильтра, но до диодного моста. Да, мне пришлось поставить еще один диодный мост за 0.2$, но зато я сэкономил около 3$ на еще одном синфазнике — профит!

image
Рисунок 7 — Схема дежурного блока питания для цепей управления ИИП

Я упоминал, что данную статью в первую очередь пишу для новичков и тех, кто хочет познать джедайскую мощь схемотехники, поэтому покажу откуда взялись номиналы всех компонентов в данном модуле, ведь часто открыв даташит мы обнаруживаем, что далеко не все компоненты можно посчитать по имеющимся формулам, т.к. производители делают документацию для подготовленных инженеров, а не новичков и любители — о этот жестокий мир!

1) VD4 – напряжение его должно быть не менее, чем: UМ = 265В * 1.41 = 374В. Откуда взялись эти цифры: «265В» – максимальное напряжение работы ИИП равно 255В и 10В в запас, «1.41» — это множитель, что пересчитать переменное напряжение до диодного моста в постоянное напряжение после него.

Номинальный ток не менее: I = P/(µ * UВХ) = (15В * 1А * 3 + 15В * 0,1А) / (140В * 0,85) = 0,39А. Тут лучше взять хотя бы с двойным запасом, т.к. в момент включения будет заряжаться конденсатор и будет пик тока достаточно большой. Теперь по цифрам: «15В и 1А» – это наши обмотки, «140В» – это минимальное напряжение на входе нашего БП. Почему минимальное? А потому, что в данном случае будет максимальный ток – рассматривать всегда надо худшие условия, чтобы ничего не взрывалось. «0,85» — это КПД нашего преобразователя, как показывает практика — это среднее значение для данной микросхемы, и оно даже оговорено в даташите.

2) R1 и C13 – считаются в программе Старичка там же где и трансформатор, в левом верхнем углу «RCD-снаббер».

3) VD8 – берется исходя из соображений, что максимальное напряжение не меньше, чем у встроенного в микросхему силового ключа, в моем случае это не менее 700В. Ток не менее тока потребления схемой, то есть требования к диоду: >700В и >0.4А, у FR207 значения 1000В и 2А – все подходит.

4) VD2,3,5,6 – это должны быть диоды Шоттки или импульсные диоды. Шоттки предпочтительнее из-за меньшего падения напряжения, хотя при таких токах не критично. Так же в таблице расчета трансформатора (рисунок 4) есть показатель «обратное напряжение», у меня оно 46В – значит напряжение диодов должно быть, не менее 46В. Ближайшие Шоттки 60В отлично подойдут под эту задачу. Ток диода же не менее, чем номинальный, правда есть одна тонкость – нагрузка будет импульсная: ток номинальный 1А, но потребление теоретически может быть и выше до 2А просто кратковременно при заряде затвора ключа. Поэтому взял Шоттки на 60В и 2А – запас жопу не жмет как говорят в нашей доблестной армии.

5) С6-С11 – минимальная емкость выходного конденсатора указана на рисунке 4, в однотактных преобразователях именно он уменьшает пульсации тока, отдавая энергию. У меня получилось 99 мкФ – на деле работать будет, но пульсации будут около 1-2В. Это опять же опыт, либо считать руками. Чтобы не портить бумагу можно смоделировать выходную цепь в MicroCap. Я поставил суммарную емкость в 660 мкФ, этого более чем достаточно для получения пульсаций в пределах 100 мВ.

6) L2-L4 – индуктивности моделируются так же в MicroCap, самый простой способ и точный. А так можно ставить с индуктивностью от 2.2 до 10 мкГн без каких-либо опасений, будет работать достойно. Ток дросселя должен быть не менее, чем номинальный, то есть 1А. Я применил дроссели с индуктивностью 10 мкГн и током 1.1А от Epcos.

7) R3 – тут все по закону Ома: R = (UП — UД) / IС = (15,3В – 2,6В) / 0,008А = 1570 Ом – ближайший номинал 1,5 кОм. «15,3В» — это напряжение на выходе от которого питается светодиод оптрона. «2,6В» — падение на светодиоде (в даташите берется). «0.008А или 8 мА» — ток, который мы направим в оптрон, вообще можно до 20 мА, но смысла нет и 1-10 мА вполне достаточно – дольше проживет.

8) R6 и R8 – образуют делитель напряжения, который собственно задает напряжение на выходе. Оно считается так: UВЫХ = UREF * (1+R2/R8) = 2,56В * (1+100/20) = 2,56В * 6 = 15,36В – отлично же! «UREF = 2,56В» — это напряжение при котором пробивает «программируемый стабилитрон» TL431, то есть при достижении напряжения 2,56В на управляющей ноге 2 стабилитрон открывается и подает «землю» с ноги 3 на ногу 1 и соответственно на анод светодиода оптрон. Так TOP227 узнает, что хватит качать энергию. Сами номиналы резисторов подбираются так, чтобы при деление выходного напряжения (которое мы хотим) получалось ровно 2,56В.

9) R2, R4, R7 – токоограничивающие резисторы на светодиодах, я не хочу светить ими в полный накал, поэтому подавать буду не 12-15 мА, которые они хотят по даташиту, а всего 5 мА иначе они слепят не плохо так. Опять прибегаем к закону Ому: R = (UП — UД) / IС = (15,3В – 2,6В) / 0,005А = 2540 Ом – ближайший номинал 2,4 кОм.

Схемотехника преобразователя напряжения по топологии «полумост»

Задача данного модуля преобразовать напряжение с ККМ с номиналом 380В в необходимое выходное 15В. Полумост я выбрал исходя из уменьшенного количества компонентов на фоне полного моста, а так же достаточно высокого значения КПД. С резонансником я заморачиваться не стал, габариты мне не критичны, а выигрыш в 1-2% не стоит таких усилий.

Устройство построено по распространенной схеме: «ШИМ контроллер (TL494) + драйвер полумоста (IR2110S) + 2 х N-канальных Mosfet-ах + диод Шоттки в выходном выпрямителе», поэтому ничего сверхнового тут не будет, единственное я добавил защиту по току на Холловском датчике тока ACS758, т.к. ток достаточно большой и измерять его хочется по возможности точнее — оборудование целее будет.

image
Рисунок 8 — Схема полумостового преобразователя напряжения

Теперь пробегусь по компонентам, чтобы читателю, желающему повторить данное устройство, было понятно

откуда что берется и как пересчитать номиналы под собственную задачу

:

1) Один из основных параметров для ШИМ контроллера — это частота встроенного генератора. Рабочая частота для двухтактного блока питания будет составлять 1/2 от частоты генератора. Задается данный параметр с помощью RC-цепочки, на схеме это R37-C43. Формула для расчета частоты генератора приведена в даташите и выглядит следующим образом: fosc = 1,1 / (RT * CT). Рабочая частота у меня 100 кГц, значит расчетная частота для генератора должна быть вдвое больше — 200 кГц. Считаем: пусть С43 имеет емкость 2.2 нФ, тогда RT = 1,1 / (200 000 Гц * 0,0000022 Ф) = 2500 Ом — беру ближайший номинал 2.4 кОм;

2) Обратная связь по току реализована на встроенном, в ШИМ-контроллер, компараторе. При токе 40А согласно даташиту на ACS758-50B будет напряжение: UВЫХ = UVCC + Iизм*0,04В/А = (5В / 2) + (40А * 0,04В/А) = 2,5В + 1,6В = 4,1В. Чтобы компаратор выдал ошибку в видел лог.1 и ШИМ-контроллер понял, что пора уменьшить скважность ШИМа, неоходимо сигнал с датчика подавать на положительный вход ОУ, а на инверсный надо подать опорное напряжение значение 4.1В. У TL494 есть встроенный источник опорного напряжения (ИОН) на 5В, необходимо сделать делитель напряжения с коэф. деления равному: 5В / 4.1В = 1.22. Данный делитель реализован на R27-R26, я подобрал номиналы 2 и 10 кОм, коэф. деления будет равен 1,2В и на инверсном входе компаратора будет опорное напряжение, равное: UОП = UREF / (1+R27 / R26) = 5В / (1 + 2/10) = 4,16В — это значение соответствует току в 41.3А. Так и оставляем;

3) Обратная связь по напряжению «классическая», сильно рассказывать о ней не будут. Выходное напряжение через делитель поступает на TL431 с напряжением открытия 2,56В. Как только напряжение достигает нужного значения TL431 подключает светодиод оптрона к земле и он загорается, подавая +5В на положительный вход встроенного ОУ (их аж 2 штуки у TL494). Когда оптрон закрыт вход через резистор R30 подтянут к земле и компаратор выдает лог.0. На инверсный вход через делитель подается 1/2 UREF равное 2.5В, поэтому при закрытом оптроне на прямом входе 0В и выход ОУ равен 0, когда оптрон открыт, то на прямом входе 5В, что больше 2.5В и на выходе ОУ устанавливается 1, сообщая об ошибке;

4) C25, 26 — конденсаторы создают «среднюю точку», конденсаторы применяются с рабочим напряжением 200-250В. Я поставил конденсаторы от Epcos на 220 мкФ и 250В;

5) VT2, 3 — полевые транзисторы, такие же как в ККМ. Напряжение «сток-исток» с большим запасом, реально там не будет более 200В + выбросы 50-100В. Такой запас позволяет отказаться от снабберных цепей. Ток в ключах будет: IVT = PВЫХ / UДЕЛ = 600 Вт / (380В / 2) = 600 Вт / 190В = 3,15А. Наши ключи на 11А, так что даже пиковые кратковременные перегрузки не навредят преобразователю;

6) Выходной дроссель L6 мы уже рассчитывали и результаты приведены на рисунке 3.

Схемотехника силовой части и управления достаточно стандартные, если вдруг у вас остались вопросы, то смело спрашивайте в комментариях или в личных сообщениях. По возможности постараюсь всем ответить и объяснить.

Дизайн печатной платы импульсного блока питания

Вот я и добрался до этапа, который остается для многих чем-то сакральным — дизайн/разработка/трассировка печатной платы. Почему предпочитаю именно термин «дизайн»? Он ближе к сущности данной операции, для меня «разводка» платы всегда процесс творческий как у художника написание картины, да и людям из других стран будет проще понять чем вы занимаетесь.

Сам процесс проектирования платы не содержит в себе каких либо подводных камней, они содержатся в том устройстве для которого она предназначена. На деле силовая электроника не выдвигает какое-то дикое количество правил и требований на фоне того же СВЧ аналога или скоростных цифровых шин данных.

Я перечислю основные требования и правила касающиеся именно силовой схемотехники, это позволит реализовать 99% любительских конструкций. О нюансах и «хитростях» рассказывать не буду — каждый должен сам набить себе шишек, получить опыт и уже оперировать им.

И так поехали:

1) Ширина проводников — чем они шире, тем лучше. Причин для этого несколько. Во-первых, увеличивая данный параметр мы снижаем паразитную индуктивность проводников, а значит помех, наводок и прочих гадостей в управляющем сигнале будет меньше. Во-вторых, мы сможем пропускать больший ток, т.к. сечение проводника будет больше. В-третьих, увеличивая площадь поверхности проводника мы увеличиваем количество тепла и интенсивность с которой оно отдается, а значит и охлаждать такие проводники намного проще и можно позволить себе большую плотность тока;

Немного о плотности тока в печатных проводниках

Часто люди не задумываются о данном параметре и мне приходилось встречать, где силовая часть выполнена проводниками 0.6 мм при 80% площади платы просто пустующей. Зачем так делать для меня лично загадка.

Так какую же плотность тока можно брать в расчеты? Для обычного провода стандартной цифрой является 10А/мм2, это ограничение привязано к охлаждению провода. Можно пропускать и больший ток, но перед этим опустите его в жидкий азот. У плоских проводников, как на печатной плате к примеру, площадь поверхности большая, охлаждать их проще, а значит можно позволить себе большие плотности тока. Для нормальных условий с пассивных или воздушным охлаждением принято брать в расчет 35-50 А/мм2, где 35 — для пассивного охлаждения, 50 — при наличии искусственной циркуляции воздуха (мой случай). Есть еще одна цифра — 125 А/мм2, это по настоящему большая цифра, не все сверхпроводники могут ее себе позволить, но она достижима лишь при погружном жидкостном охлаждение.

С последним я столкнулся при работе с одной компанией, занимавшейся инженерными коммуникациями и проектированием серверов, на мою доля выпал как раз дизайн материнской платы, а именно часть с многофазным питанием и коммутацией. Сильно удивился, когда увидел плотность тока в 125 А/мм2, но мне объяснили и показали на стенде такую возможность — тут я понял зачем же целые стеллажи с серверами погружают в огромные бассейны с маслом)))

В моей железке все по проще, 50 А/мм2 цифра вполне себе адекватная, при толщине меди в 35 мкм полигоны без проблем обеспечат нужное сечение. Остальное же было для общего развития и понимания вопроса.

2) Длина проводников — в данном пункте нету необходимости равнять линии с точностью до 0,1 мм как это делают, например, при «разводке» шины данных DDR3. Хотя все равно крайне желательно делать длину сигнальных линий примерно равно длины. Достаточно будет и +-30% длины, главное не делать HIN в 10 раз длиннее, чем LIN. Это необходимо, чтобы фронты сигналов не смещались относительно друг друга, ведь даже на частоте всего в сотню килогерц разница в 5-10 раз может вызвать сквозной ток в ключах. Особенно это актуально при малом значение «мертвого времени», даже при 3% у TL494 это актуально;

3) Зазор между проводниками — он необходим для уменьшения токов утечки, особенно это касается проводников, где протекает ВЧ сигнал (ШИМ), ведь поле в проводниках возникает сильно и ВЧ сигнал за счет скин-эффекта стремится вырваться как на поверхность проводника, так и за его пределы. Обычно достаточно зазора в 2-3 мм;

4) Зазор гальванической развязки — это зазор между гальванически развязанными участками платы, обычно требование на пробой около 5 кВ. Чтобы пробить 1 мм воздуха надо около 1-1,2 кВ, но у нас пробой возможен не только по воздуху, но и по текстолиту и маске. В заводских условиях используются материалы проходящие электротестирование и можно спать спокойно. Поэтому основная проблема воздух и из вышеописанных условий можно сделать вывод, что достаточно будет около 5-6 мм зазора. В основном разделение полигонов под трансформатором, т.к. он является основным средством гальванической развязки.

Теперь перейдем непосредственно к дизайну платы, я не буду в данной статье рассказывать ну супер подробно, да и вообще писать целую книгу текста желания не много. Если наберется большая группа желающих (в конце опрос сделаю), то просто сниму видеоролики по «разводке» данного устройства, это будет и быстрее и информативнее.

Этапы создания печатной платы:

1) Первым делом необходимо определиться с примерными габаритами устройства. Если у вас есть уже готовый корпус, то вы должны измерить посадочное место в нем и отталкиваться в размерах платы именно от него. Я же планирую корпус сделать на заказ из алюминия или латуни, поэтому буду стараться сделать максимально компактное устройство без потери качества и ТТХ.

image
Рисунок 9 — Создаем заготовку будущей платы

Запомните — габариты платы должны быть кратны 1 мм! Или хотя бы 0.5 мм, иначе вы еще вспомните мое завещание Ленина, когда будете собирать все в панели и делать заготовку на производство, а конструкторы, которые будут создавать по вашей плате корпус засыпят вас проклятиями. Не надо создавать плату с размерами аля «208,625 мм» без крайней необходимости!
P.S. спасибо тов. Лунькову за то, что он все таки донес мне эту светлую мысль))

Тут я сделал 4 операции:

а) Сделал саму плату с габаритными размерами 250х150 мм. Пока это примерный размер, дальше думаю ужмется ощутимо;
б) Закруглил углы, т.к. в процессе доставки и сборку острые убьются и сомнутся + плата приятнее выглядит;
в) Разместил крепежные отверстия, не металлизированные, с диаметром отверстия 3 мм под стандартный крепеж и стойки;
г) Создал класс «NPTH», в который определил все не металлизированные отверстия и создал для него правило, создающие зазор 0.4 мм между всеми другими компонентами и компонентами класса. Это технологическое требование «Резонита» для стандартного класса точности (4-й).

image
Рисунок 10 — Создание правила для не металлизированных отверстий

2) Следующим этапом необходимо сделать расстановку компонентов с учетом всех требований, она должна быть уже сильно приближена к конечному варианту, т.к. побольше части сейчас определятся финальные габариты платы и ее форм-фактор.

image
Рисунок 11 — Выполнена первичная расстановка компонентов

Установил основные компоненты, они уже с большой вероятностью не будут перемещаться, а следовательно габаритные размеры платы окончательно определены — 220 х 150 мм. Свободное место на плате оставлено не просто так, там будут размещены модули управления и прочие мелкие SMD компоненты. Для удешевления платы и удобства монтажа все компоненты будут только на верхнем слое, соответственно и слой шелкографии только один.

image
Рисунок 13 — 3D вид платы после расстановки компонентов

3) Теперь, определив расположение и общую структуру расставляем оставшиеся компоненты и «разводим» плату. Дизайн платы можно выполнить двумя способами: в ручную и с помощью автотрассировщика, предварительно описав его действия парой десятков правил. Оба способа хороши, но данную плату сделаю все таки руками, т.к. компонентов мало и особых требований по выравниваю линий и целостности сигналов тут нет и не должно быть. Так будет определенно быстрее, автотрассировка хороша, когда много компонентов (от 500 и далее) и основная часть схемы цифровая. Хотя если кому-то будет интересно, то могу показать как «разводить» платы автоматически за 2 минуты. Правда перед этим надо будет весь день писать правила, хех.

После 3-4х часов «колдунства» (половину времени отрисовывал модели недостающие) с температурой и чашечкой чая я наконец-то развел плату. Я даже не задумывался от экономии места, многие скажу, что габариты можно было ужать на 20-30% и будут правы. У меня штучный экземпляр и тратить свое время, которое явно дороже 1 дм2 за двухслойную плату, было просто жалко. Кстати о цене платы — при заказе в «Резонит»-е, 1 дм2 двухслойной платы стандартного класса, обходится примерно в 180-200 рублей, так что много тут не сэкономить если у вас конечно не партия в 500+ штук. Исходя из этого, могу посоветовать — не извращайтесь с уменьшением площади, если 4 класс и не требований к габаритам. И вот что получилось на выходе:

image
Рисунок 14 — Дизайн платы для импульсного блока питания

В дальнейшем я буду проектировать корпус для данного устройства и мне необходимо знать его полные габариты, а так же иметь возможность «примерить» его внутрь корпуса, чтобы на финальной стадии не выяснилось, например, что основная плата мешает разъемам на корпусе или индикации. Для этого я всегда страюсь отрисовывать все компоненты в 3D виде, на выходе вот такой результат и файлик в формате .step для моего Autodesk Inventor:

image
Рисунок 15 — Трехмерный вид на получившиеся устройство

image
Рисунок 16 — Трехмерный вид на устройство (вид сверху)

Теперь документация готова. Сейчас необходимо сформировать необходимый пакет файлов для заказа компонентов, у меня все настройки уже прописаны в Altium-е, поэтому выгружается все одной кнопкой. Нам необходимы Gerber-файлы и файл NC Drill, в первом хранится информация о слоях, во втором координаты сверловки. Посмотреть файлик для выгрузки документации можно будет в конце статьи в проекте, выглядит это все примерно так:

image
Рисунок 17 — Формирования пакета документации для заказа печатных плат

После того, как файлы готовы можно заказывать платы. Конкретных производителей рекомендовать не буду, наверняка есть лучше и дешевле именно для прототипов. Все платы стандартного класса 2,4,6 слоев я заказываю в Резоните, там же 2 и 4-х слойный платы 5-го класса. Платы 5 класса, где 6-24 слоя в Китае (например, pcbway), а вот платы HDI и 5-го класса с 24 и более слоями уже только на Тайване, все таки качество к Китае еще хромает, а где не хромает ценник уже не такой приятный. Это все касается прототипов!

Следуя своим убеждениям я иду в Резонит, ох сколько они нервов потрепали и крови выпили… но в последнее время вроде исправились и начали более адекватно работать, хоть и с пинками. Заказы я формирую через личный кабинет, вводите данные о плате, подгружаете файлы и отправляете. Личный кабинет у них мне нравится, цену кстати тут же считает и можно меняя параметры добиться лучше цены без потери качества.

Например, сейчас я хотел плату на текстолите 2 мм с медью 35 мкм, но оказалось, что такой вариант в 2,5 раза дороже чем вариант с 1,5 мм текстолитом и 35 мкм — поэтому выбрал последний. Для увеличения жесткости платы я добавил дополнительные отверстия под стойки — проблема решена, цена оптимизирована. Кстати, если бы плата шла в серию, то где-то на 100 штуках эта разница в 2,5 раза пропала и цены сравнялись, ибо тогда нестандартный лист закупали под нас и потратили без остатков.

image
Рисунок 18 — Финальный вид расчета стоимости плат

Финальная стоимость определена: 3618 рублей. Из них 2100 — это подготовка, она платится только один раз на проект, все последующие повторения заказа идут уже без нее и выплатите лишь за площадь. В данном случае 759 рублей за плату площадью 3.3 дм2, чем больше серия, тем меньше будет стоимость, хотя и сейчас она 230 руб/дм2, что вполне приемлемо. Можно было конечно сделать срочное изготовление, но я заказываю часто, работаю с одним менеджером и девушка всегда старается пропихнуть заказ быстрее если производство не загружено — в итоге и с вариантом «мелкая серия» по сроком выходит 5-6 дней, достаточно просто вежливо общаться и не хамить людям. Да и спешить мне сильно некуда, поэтому решено сэкономить около 40%, что как минимум приятно.

Эпилог

Ну вот я и подошел к логическому завершению статьи — получение схемотехники, дизайна платы и заказ плат на производстве. Всего же будет 2 части, первая перед вами, а во второй буду рассказывать как я проводил монтаж, сборку и отладку устройства.

Как и обещал делюсь исходниками проекта и прочими продуктами деятельности:

1) Исходник проекта в Altium Designer 16 — тут;
2) Файлы для заказа печатных плат — тут. Вдруг вы захотите повторить и заказать, например, в Китае, этого архива более чем достаточно;
3) Схема устройства в pdf — тут. Для тех, кто с телефона или для ознакомления не хочет тратить время на установку Altium (качество высокое);
4) Опять же для тех, кто не хочет ставить тяжеловесный софт, но интересно покрутить железку выкладываю 3D модель в pdf — тут. Для просмотра надо обязательно скачать файл, когда откроете в правом верхнем углу жмем «доверять документу только один раз», дальше тыкаем в центр файла и белый экран превращается в модельку.

Так же хочется поинтересоваться мнение читателей… Сейчас платы заказаны, компоненты тоже — по факту есть 2 недели, о чем написать статью? По мимо таких «мутантов» как эта иногда хочется наваять что-то миниатюрное, но полезное, несколько вариантов я представил в опросах, либо предлагайте свой вариант наверное в личку, чтобы не засорять комментарии.

Схемы блоков АТХ

Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы.

Схема JNC LC-250ATX

Схема JNC LC-250 ATX

Схема JNC LC-B250ATX

Схема JNC LC-B250 ATX

Схема JNC SY-300ATX

Схема JNC SY-300ATX

Схема JNC LC-B250ATX

Схема JNC LC-B250ATX

Схема FSP145-60SP

FSP145-60SP схема

Схема Enlight HPC-250 и HPC-350

Схема Enlight HPC-250 и HPC-350

Схема Linkworld 200W, 250W и 300W

схема Linkworld 200W 250W 300W

Схема Linkworld 200W 250W 300W

Схема Green Tech MAV-300W-P4

схема Green Tech MAV-300W-P4

Схема AcBel API3PCD2 ATX-450P-DNSS 450W

Схема AcBel API3PCD2 ATX-450P-DNSS 450W

Схема AcBel API4PC01 400W

Схема AcBel API4PC01 400W

Схема Maxpower PX-300W

Схема Maxpower PX-300W

Схема PowerLink LPJ2-18 300W

Схема PowerLink LPJ2-18 300W

Схема Shido LP-6100 ATX-250W

Схема Shido LP-6100 ATX-250W

Схема Sunny ATX-230

Схема Sunny ATX-230

Схема KME PM-230W

KME PM-230W

Схема Delta Electronics DPS-260-2A

Схема Delta Electronics DPS-260-2A

Схема Delta Electronics DPS-260-2A

Схема Delta Electronics DPS-200PB-59

Схема Delta Electronics DPS-200PB-59

Схема InWin IW-P300A2-0

Схема InWin IW-P300A2-0

Схема SevenTeam ST-200HRK

SevenTeam ST-200HRK

Схема SevenTeam ST-230WHF

Схема SevenTeam ST-230WHF

Схема DTK PTP-2038

Схема DTK PTP-2038

Схема PowerMaster LP-8

Схема PowerMaster LP-8

Схема PowerMaster FA-5-2

Схема PowerMaster FA-5-2

Схема Codegen 200XA1 250XA1 CG-07A CG-11

Codegen 200XA1 250XA1 CG-07A CG-11

Схема Codegen 300X 300W

Схема Codegen 300X 300W

Схема ISO-450PP

Схема ISO-450PP

Схема PowerMan IP-P550DJ2-0

Схема PowerMan IP-P550DJ2-0

Схема LWT 2005

Схема LWT 2005

Схема Microlab 350w

схема Microlab 350w

Схема Sparkman SM-400W (STM-50CP)

Схема Sparkman SM-400W

Схема GEMBIRD 350W (ShenZhon 350W)

Схема GEMBIRD 350W

Схема блока питания FSP250-50PLA (FSP500PNR)

Схема блока питания FSP250-50PLA (FSP500PNR)

Схема блока питания FSP250-50PLA (FSP500PNR)

Схема блока ATX Colorsit 330U (Sven 330U-FNK) на SG6105

colors it 330u на sg6105

Схема блока NT-200ATX (KA3844B+LM339)

Схема блока NT-200ATX (KA3844B+LM339)

comments powered by HyperComments

  • схема

Понравилась статья? Поделить с друзьями:
  • Как найти базу на калькуляторе
  • У кого впалые глаза как исправить
  • Как составить блок схему ввести четыре
  • Как найти автосейвы премьер про
  • Моя подписка на дзен как найти