Как составить схему питания бактерий

Содержание

  1. Особенности питания бактерий: типы и механизмы питания, факторы роста, ферменты бактерий
  2. Особенности питания бактерий
  3. Типы питания микроорганизмов
  4. Факторы роста
  5. Механизмы питания бактерий
  6. Ферменты бактерий
  7. Питание бактерий
  8. Что такое питание бактерий?
  9. Особенности питания бактерий
  10. Способы питания бактерий
  11. Типы питания бактерий
  12. Цепи питания бактерий
  13. Автотрофный тип питания бактерий
  14. Гетеротрофный тип питания бактерий
  15. Питание бактерий-сапрофитов
  16. Питание бактерий-паразитов
  17. Питание бактерий-симбионтов

Особенности питания бактерий: типы и механизмы питания, факторы роста, ферменты бактерий

Особенности питания бактерий

Типы питания микроорганизмов

Чтобы бактерии могли осуществлять нормальные процессы жизнедеятельности, им нужны определенные химические вещества. Среди них — калий, фосфор, углевод, азот, сера и др. Поэтому тема питания бактерий в микробиологии крайне важна.

Тип питания бактерий зависит от источника получения ими углерода. Бактерии по типу питания делятся на:

  • автотрофы. Такие микроорганизмы используют для образования органических соединений, которые потом послужат основой для строения тела, диоксид углерода и прочие неорганические вещества. Среди таких неорганических веществ можно назвать серобактерии, нитрифицирующие бактерии, железобактерии и др;
  • гетеротрофы. Это группа микроорганизмов, которые употребляют в пищу уже готовые органические вещества. В группе гетеротрофов выделяют сапрофитов (организмы, которые утилизируют остатки отмерших организмов) и паразитов (организмы, которые питаются за счет организма своего хозяина).

Еще одна классификации бактерий по типу питания основана на виде окисляемого субстрата, который является донором водорода или электронов. Выделяют:

  • литотрофные микроорганизмы. В качестве доноров водорода они используют неорганические соединения;
  • органотрофные микроорганизмы. В качестве доноров водорода они используют органические соединения.

Также деление бактерий по способам питания зависит от источника энергии. Выделяют:

  • фототрофы. К ним относят фотосинтезирующие организмы.
  • хемотрофы. К ним относят организмы, которые используют химические источники энергии.

Факторы роста

Микроорганизмы нуждаются в дополнительных компонентах, чтобы они могли расти на питательных средах. Такие компоненты называются факторами роста.

Факторы роста — соединения, которые нужны микроорганизмам для роста, и которые они не могут самостоятельно вырабатывать.

Факторы роста добавляются в питательные среды.

Соединения, относящиеся к факторам роста:

  • аминокислоты, участвующие в построении белков;
  • пиримидины и пурины, образующие нуклеиновые кислоты;
  • витамины, входящие в состав отдельных ферментов.

В зависимости от того, как микроорганизмы относятся к факторам роста, они делятся на прототрофы и ауксотрофы:

Ауксотрофы нуждаются в одном или нескольких факторах роста.

Прототрофы синтезируют необходимые для роста соединения самостоятельно. Их особенность в том, что они способны создавать компоненты из солей глюкозы и аммония.

Механизмы питания бактерий

Есть целый ряд факторов, обуславливающих поступление веществ в бактериальную клетку. Это:

  • pH среда;
  • растворимость молекул в воде или липидах;
  • концентрация веществ;
  • различные факторы, которые влияют на проницаемость мембран и др.

Цитоплазматическая мембрана — основной регулятор поступления в клетку различных соединений.

Существуют (условно) 4 механизма поступления в клетку веществ:

  1. Простая диффузия. Вещества перемещаются за счет того, что существует разница концентраций по разным сторонам ЦМП. В процессе такого транспорта не тратится энергия. Органические молекулы и медицинские препараты в большинстве случаев проходят через липидный слой цитоплазматической мембраны. В отдельных случаях они проходят по каналам ЦМП, которые заполнены водой.
  2. Облегченная диффузия. В этом случае вещества также перемещаются за счет разницы концентраций по разным сторонам ЦМП. Такое перемещение возможно только в том случае, если есть специфические молекулы-переносчики, которые находятся в ЦМП. Каждый такой переносчик может перемещать через мембрану конкретное вещество.

Пример 1

К примеру, пермеазы выступают как белки-переносчики. Пермеазы синтезируются в цитоплазматической мембране.

  1. Активный транспорт. Он протекает при участии пермеаз — в направлении от веществ с меньшей концентрацией к веществам с большей концентрацией. В процессе расходуется АТФ, образованная в результате окислительно-восстановительных процессов в клетке.
  2. Транслокация или перенос групп. Этот процесс похож на предыдущий, но отличается тем, что в процессе переноса молекула видоизменяется (например, фосфорилируется). Выход веществ из клетки осуществляется в результате диффузии с участием транспортных систем.

Мы рассмотрели типы и механизмы питания бактерий. Теперь обратимся к ферментам.

Ферменты бактерий

Ферменты — белковые соединения, которые принимают участие в таких процессах как анаболизм и катаболизм, а также распознают нужные субстраты, взаимодействуют с ними и ускоряют химические процессы.

Выделяют эндоферменты — они катализируют метаболизм, который протекает внутри клетки.

Есть еще экзоферменты — это ферменты, выделяемые бактериальной клеткой в окружающую среду. Они расщепляют макромолекулы питательных сред до простых веществ, которые клетка легко усваивает.

Отдельные экзоферменты, к примеру, пенициллиназа, инактивируют антибиотики, выполняя тем самым защитную функцию.

Конститутивные ферменты синтезируются клеткой непрерывно. Этот процесс не зависит от наличия субстратов в питательной среде.

Индуцибельные или адаптивные ферменты могут синтезироваться клеткой только в том случае, если в среде есть субстрат этого фермента.

Ферменты агрессии призваны разрушать клетки и ткани. Благодаря этому бактерии и их токсины получают возможность широкого распространения. К таким ферментам относятся коллагеназа, дезоксирибонуклеаза, гиалуронидаза, лецитовителлаза, нейраминидаза и др.

Ферменты бактерий делятся на классы:

  • ферменты окислительно-восстановительные или оксидоредуктазы. К ним относятся оксидазы, дегидрогеназы;
  • трансферазы. Их задача — перенос атомов и радикалов;
  • гидролазы. Этот класс ферментов участвует в процессах гидролиза. Среди ферментов выделяют фосфатазы, эстеразы, глюкозидазы и др;
  • лиазы. Они отщепляют группы веществ от субстратов при помощи негидролитического способа. Это карбоксилазы;
  • изомеразы. Они могут преобразовывать органические вещества в изомеры. Это фосфогексоизомераза;
  • синтетазы или лигазы. Они катализируют синтез сложных веществ из простых. Это глютаминсинтетаза и аспарагинсинтетаза.

Источник

Питание бактерий

Что такое питание бактерий?

Бактерии – простейшие существа, которые появились на Земле более трех миллиардов лет назад. Они очень неприхотливы. Выдерживают влагу и высокую температуру, поэтому могут жить везде: и в воде, и в воздухе, и в земле, и в растениях, в организме животных и человека. Конечно, как и любым существам, обитающим на планете, необходимо питание. Оно зависит от среды, в которой растут и развиваются микроорганизмы.

Любые существа для своей жизнедеятельности должны питаться. В результате этого процесса бактерии получают вещества, которые служат источником энергии.

Микроорганизмам жизненно необходимы азот, углерод, водород, так как они есть в любом живом организме. Именно от того, как и в каком количестве микроорганизмы получают полезные для них вещества, зависят типы их питания. Одни бактерии получают питание в уже растворенном или молекулярном виде, так как не могут сами выделять ферменты в окружающую среду. Другие бактерии сами выделяют ферменты и могут расщеплять поступающие вещества до молекул. Таким образом, питание бактерий – это получение ими питательных веществ для полноценного развития микроорганизмов, их роста и размножения.

Особенности питания бактерий

И все-таки питание бактерий существенно отличается от получения пищи всеми другими организмами. У микроорганизмов нет собственной пищеварительной системы, они берут питательные вещества из окружающей среды или из других организмов, в которых находятся. Усваиваются эти вещества всей клеткой, хотя их расщепление происходит вне самой клетки.

Эти факторы влияют на то, что проникновение энергии в бактерии не встречает никаких препятствий, процесс происходит достаточно быстро. Проживая в любых условиях и имея очень хорошую приспособляемость, микроорганизмы, перемещаясь из одной среды обитания в другую, очень быстро к ней привыкают и даже могут поменять способ питания. Именно разные способы питания бактерий являются их еще одной особенностью.

Способы питания бактерий

Способы питания бактерий – это процессы поступления в клетку бактерии питательных веществ. Существует несколько способов питания микроорганизмов:

• При поступлении веществ в клетку бактерии она не затрачивает энергию. Такой процесс называется облегченной диффузией, когда концентрация молекул вне клетки больше, чем внутри нее Молекулы, несущие питательные вещества, начинают проникать в клетку и распределяться по ней.

• При процессе простой или пассивной диффузии молекулы находятся внутри клетки в разной концентрации по сторонам мембраны, они постепенно распределяются по клетке, так как имеют разные размеры.

• Активный перенос питательных веществ требует затраты энергии, так как количество веществ в клетке может в несколько раз превышать их количества во внешней среде. Такой способ питания характерен окислительно-восстановительным процессам, происходящим в период питания бактерий.

• При четвертом способе переноса питательных веществ химически измененные молекулы походят через мембрану, так как в обычном виде они восприниматься бактерией не могут.

В процессе питания участвует и выделительная система, так как поступающие вещества в любом случае должны удаляться. Выходят они тремя способами: с помощью фосфотрансферазной реакции, контранселяционных секций (образование специального канала, через который молекулы белка выходят в окружающую среду), почковании мембраны (молекулы выходят в мембранном пузырьке).

Но способы поступления питательных веществ в бактерии неразрывно связаны с типами их питания.

Типы питания бактерий

Изучая типы питания бактерии, нельзя говорить об их единообразии. Они зависят от поступления внутрь бактерии веществ, позволяющих ей полноценно развиваться. К ним относятся углерод, водород, электроны и поступление энергии.

В зависимости от транспортировки в клетки бактерий углерода они делятся на два типа питания: автотрофное и гетеротрофное. Гетеротрофы не могут самостоятельно выделять органические вещества из неорганических и получают первые в готовом виде.

Автотрофные выполняют эту работу самостоятельно внутри клетки разными способами: с помощью выработки фотосинтеза и благодаря химическим реакциям. Гетеротрофы в свою очередь подразделяются на паразиты, симбионты и сапрофиты. А автотрофы могут быть фототрофами и хемотрофами. Именно разновидности автотрофных бактерий влияют на получение бактериями энергии.

В зависимости от поступления в бактерии электронов и водорода питание происходит с помощью литотрофов, переносящих неорганические вещества средствами сероводорода, аммиака, углекислого газа и других соединений, и органотрофов, которые доставляют электроны с помощью органических соединений. Разновидности питания бактерий позволяют им принимать активное участие в пищеварительных цепях.

Цепи питания бактерий

Цепь питания – это взаимодействие между организмами с целью получения питательных веществ. Простейшие организмы, к которым и относятся бактерии, играют в цепи питания очень важную роль. Они участвуют и в начальной ее стадии, и в завершающей, так как участвуют в разложении растений и живых организмов. Такие бактерии относятся к разряду деструкторов, то есть разрушающих микроорганизмов.

Участвуя в разложении органических веществ, они обогащают почву, так как возвращают ей то, что было взято у нее растениями или животными. Также деструкторы поглощают энергию погибших организмов. Происходит этот процесс двумя способами: при распаде углеводов и при образовании гумуса в почве. Бактерии, возвращая в почву питательные вещества, замыкают пищеварительную цепь.

В самой цепи питания выделяются пять уровней. На первом, втором, третьем и четвертом уровнях находятся автотрофы, живущие в растениях, воде и другой среде, они разносят питательные вещества. Пятый уровень принадлежит бактериям, участвующим в разлагающемся процессе умерших организмов. Тем самым бактерии с автотрофным типом питания проходят через всю цепь, а бактерии с гетеротрофным типом питания завершают ее.

Автотрофный тип питания бактерий

Автотрофный тип питания существенно отличается от гетеротрофного, так как бактерии не получают органические вещества в готовом виде, а перерабатывают их самостоятельно. Такой процесс может происходить с помощью фотосинтеза или хемосинтеза. В зависимости от процесса получения питательных веществ и получения из них энергии бактерии с автотрофным питанием делятся на два вида.

Фототрофные бактерии получают энергию за счет солнечного света путем участия в процессе фотосинтеза. Длина волн светового поглощения колеблется от 850 до 1100 нм.

Фотосинтез, в котором участвуют бактерии, выделяющие кислород в окружающую среду, называют аноксигенным. В нем принимают участие бактерии, живущие в зеленых и пурпурны водорослях, которые растут в пресной и соленой воде. Оксигенный фотосинтез происходит под воздействием кислорода, в нем участвуют цианобактерии. Он состоит из нескольких этапов. Сначала бактерии поглощают свет (фотофизический этап), затем образуется АТФ (фотохимический этап), и происходит выделение органических веществ (химический этап).

Бактерии-хемотрофы используют в качестве получения энергии хемосинтез. Это процесс химических реакций окисления неорганических веществ.

В зависимости от того, какие вещества окисляются, можно выделить разные виды бактерий:

• Железобактерии могут окислять железо, участвовать в процессе появления ржавчины

• Серобактерии способны перерабатывать серу

• Нитрифицирующие бактерии живут за счет переработки аммиака

• Водородные бактерии при очень высокой температуре могут окислять водород

Организмы, в которых живут бактерии-хемитрофы, не могут обладать фотосинтезом, так как не способны воспринимать солнечный свет.

Гетеротрофный тип питания бактерий

Гетеротрофный тип питания бактерий основан на паразитическом существовании, то есть он происходит за счет тех организмов, в которых бактерии находятся. Бактерии могут быть полезными, а могут нанести организму вред. Все гетеротрофы подразделяют на три группы: паразиты, симбионты и сапрофиты. Бактерии, вызывающие заболевания организмов, называют патогенными. Если паразиты находятся внутри клетки и поражают только ее, они являются облигатными, к ним могут относиться вирусы. Факультативные паразиты уничтожают не только клетки, но и ткани организма, но существовать они могут только в искусственной среде и в особенных условиях.

Болезнетворные бактерии приносят вред человеку и животным, заражая вирусными инфекциями. Но не все микроорганизмы с гетеротрофным типом питания вредны. Гетеротрофы играют важную роль в переработке органических веществ, они добывают из них углерод и поглощают его. Благодаря гетеротрофам почва становится плодородной, природа очищается от погибших организмов как на земле, так и в водоемах. Процесс питания гетеротрофных организмов не одинаков.

Его можно рассмотреть с разных сторон. Любые организмы имеют определенные стадии питания, во время которых пища попадает внутрь и после некоторых процессов выводится наружу. Такие же действия происходят и во время питания бактерий. Так, процесс питания некоторых гетеротрофов можно разделить на пять стадий: сначала они поглощают пищу, затем идет процесс переваривания, потом органические вещества транспортируются в клетку, и на последней стадии происходит процесс ассимиляции и выделения.

При этом гетеротрофные бактерии имеют несколько типов питания:

• Голозойный позволяет расщеплять твердые органические соединения, так как проходят все стадии пищеварения

• Сапрофитный тип питания – это участие в разложении мертвых организмов

• Паразитический тип питания предполагает использование другого организма в качестве добывания питательных веществ.

• Симбиотический тип питания подразумевает взаимовыгодное взаимодействие двух микроорганизмов или бактерии и организма

В связи с таким распределением на типы питания все гетеротрофные бактерии можно называть либо свободноживущими, не зависящими от другого микроорганизма, либо симбиотическими, то есть взаимодействующими с другими организмами.

Таким образом, можно заметить, что гетеротрофный тип питания не может быть одинаков для всех бактерий.

Он имеет три основных вида:

1) Бактерии, питающиеся готовыми органическими веществами

2) Бактерии, питающиеся мертвыми организмами

3) Бактерии, питающиеся живыми организмами

Эти виды составляют основу питания гетеротрофных бактерий.

Питание бактерий-сапрофитов

Сапрофиты – одна из разновидностей гетеротрофных бактерий. Они получают питание, перерабатывая мертвые организмы. Сапрофиты помогают разлагаться органическим веществам, выделяя ферменты. Поглощение мертвых организмов происходит путем их разложения, поэтому сапрофиты можно назвать «санитарами» окружающей среды. Участвуя в разложении, они уничтожают мертвых животных, погибшие растения.

Даже в гниении листьев участвуют сапрофиты. Для питания бактериям-сапрофитам необходимы азот, белки, витамины, пептиды, нуклеотиды, которые они получают, используя ту среду, в которой обитают. Сапрофиты могут быть анаэробными, не нуждающимися в кислороде. Их можно обнаружить в любых видах брожения: кисломолочные продукты, вина. Другой вид сапрофитов – аэробные, нуждающиеся в кислороде. Это гнилистые бактерии, которые участвуют в процессе гниения. Некоторые сапрофитные бактерии могут быть опасными для человека. Такие сапрофиты иногда путают с паразитами.

Питание бактерий-паразитов

К бактериям-паразитам можно отнести болезнетворные микроорганизмы, которые обитают внутри клеток живых организмов. Там они получают питание и размножаются, принося вред, так как организмы получают повреждения. Вредные вещества, выделяемые паразитами, распространяются по всему организму, неся такие вирусные болезни, как чума, холера, ботулизм, туберкулез и так далее. Бактерии-паразиты очень хорошо привыкают к той среде, в которую они попадают с водой, пищей, через контакт с заболевшим.

При этом они могут полностью уничтожить организм, в который попали, и тогда вынуждены искать новую среду обитания. Борьба с бактериями-паразитами идет постоянно. Ученые разрабатывают лекарства, пытаясь уничтожить болезнетворные бактерии. Но паразиты могут обитать в воздухе, поднимаясь на тридцать километров от земли, в почве, в воде. При этом одни паразиты все время живут в одном организме, питаясь им. Другие паразиты факультативные.

Они заражают организм, заставляют его погибнуть, а потом питаются его остатками, участвуя в разложении, как сапрофиты. Следовательно, живые организмы для бактерий-паразитов – это прекрасная среда для питания и дальнейшего размножения.

Питание бактерий-симбионтов

Бактерии-симбионты – это различные вещества, которые живут в одном организме и взаимодействуют между собой. У этих бактерий две функции: они оказывают положительное действие на организм, в котором живут, и защищают его от проникновения болезнетворных микроорганизмов. Например, бактерии-симбионты живут в кишечнике человека.

Они помогают переваривать остатки пищи, выделяя полезные для организма вещества. Симбионты находятся и в растениях, оказывая помощь в усвоении азота, в котором растения нуждаются. Бактерии соединяют молекулы азота с другими молекулами, создавая полезные вещества для растений. Находясь в корнях молодых растений симбионты взаимодействуют с ними, помогая им усваивать азот и забирая углеводы. Такое взаимодействие взаимовыгодно обоим организмам, помогает им развиваться.

Бактерии могут быть полезными и вредными, но без них жизнь на планете приостановилась бы. Бактерии участвуют во всех процессах жизнедеятельности живых организмов. Являясь простейшими, они составляют основу всей жизни на планете

Источник

Содержание

  1. Бактерии
  2. Бактерии
  3. Форма тела
  4. Способы передвижения
  5. Место обитания
  6. Внешнее строение
  7. Внутреннее строение
  8. Способы питания
  9. Обмен веществ
  10. Хемосинтез
  11. Бактериальный фотосинтез
  12. Спорообразование
  13. Размножение
  14. Роль бактерий в природе
  15. Круговорот
  16. Почвообразование
  17. Распространение в природе
  18. Микрофлора почвы
  19. Микрофлора водоёмов
  20. Микрофлора воздуха
  21. Микрофлора организма человека
  22. Бактерии в круговороте веществ
  23. Круговорот азота
  24. Круговорот углерода
  25. Круговорот серы
  26. Круговорот железа

Бактерии

Люди — редкое исключение в мире бактерий.

Бактерии (греч. bakterion — палочка) — простые одноклеточные микроскопические организмы, принадлежащие к прокариотам. В пищевых цепях они играют важнейшую роль редуцентов: разлагают органические вещества мертвых животных и растений.

Бактерии обладают исключительной устойчивостью: их можно обнаружить даже на стенках ядерного реактора. Такая способность связана с их быстрым размножением — при благоприятных условиях бактерии делятся каждые 20 минут. При изменении условий внешней среды (за счет мутаций) выживают и размножаются те формы, которые устойчивы к действию того или иного фактора (к примеру, радиации).

Строение бактерий

Бактерии имеют клеточную стенку, состоящую из муреина (пептидогликана) и выполняющую защитную функцию. У бактерий (прокариот, доядерных) отсутствуют мембранные органоиды. В их клетке можно найти только немембранные: рибосомы, жгутики, пили. Пили — поверхностные структуры, которые служат для прикрепления бактерии к субстрату.

Наследственный материал находится прямо в цитоплазме (не в ядре, как у эукариот) в виде нуклеоида. Нуклеоид (лат. nucleus — ядро + греч. eidos вид) — одна сложная кольцевидная молекула ДНК, не ограниченная мембранами от остальной части клетки.

Долгое время выделяли «особый органоид» бактерий — мезосомы, считали, что они могут участвовать в некоторых клеточных процессах.

Спешу сообщить, что на данный момент установлено однозначно: мезосомы это складки цитоплазматический мембраны, образующиеся только лишь при подготовке бактерий к электронной микроскопии (это артефакты, в живой бактерии их нет).

При наступлении неблагоприятных для жизни условий бактерии образуют защитную оболочку — спору. При образовании споры клетка частично теряет воду, уменьшаясь при этом в объеме. В таком состоянии бактерии могут сохраняться тысячи лет!

В состоянии споры бактерии очень устойчивы к изменениям температуры, механическим и химическим факторам. При изменении условий среды на благоприятные, бактерии покидают спору и приступают к размножению.

Энергетический обмен бактерий

Бактерии получают энергию за счет окисления веществ. Существуют аэробные бактерии, живущие в воздушной среде, и анаэробные бактерии, которые могут жить только в условиях отсутствия кислорода.

К аэробным бактериям относят многочисленных редуцентов, которые разлагают органические вещества мертвых растений и животных. Анаэробные бактерии составляют микрофлору нашего кишечника — бескислородную среду обитания.

Получают энергию бактерии путем хемо- или фотосинтеза. Среди хемосинтезирующих бактерий можно встретить нитрифицирующие бактерии, железобактерии, серобактерии.

Важно заметить, что клубеньковые бактерии (азотфиксирующие) не осуществляют хемосинтез: клубеньковые бактерии относятся к гетеротрофам.

Среди фотосинтезирующих бактерий особое место принадлежит цианобактериями (сине-зеленым водорослям). Благодаря им сотни миллионов лет назад возник кислород, а с ним и озоновый слой: появилась жизнь на поверхность земли и аэробный тип дыхания (поглощение кислорода), которым мы сейчас с вами пользуемся 🙂

Что касается бактерий гетеротрофов, то их способ питания основан на разложении останков животных и растений — сапротрофы (редуценты), либо же они питаются органами и тканями животных и растений — паразиты.

Биотехнология

Бактерии широко применяются в направлении биотехнологии — генной инженерии. Их используют для получения различных химических веществ (белков).

В ДНК бактерии вставляют нужный ген (к примеру, ген, кодирующий белковый гормон — инсулин), бактерия принимает новый участок гена за свой собственный, в результате чего начинает синтезировать белок с данного участка. На рибосомах подобных бактерий синтезируется инсулин, который человек собирает, обрабатывает и использует как лекарство.

Бактерии используются для получения антибиотиков (тетрациклина, стрептомицина, грамицидина), широко применяемых в медицине. Бактерии также применяют в пищевой промышленности, где их используют для получения молочнокислых продуктов, алкогольных напитков.

Классификация бактерий по форме

При микроскопии становятся заметны явные отличия форм бактерий.

По форме бактериальные клетки подразделяются на:

  • Стафилококки — их скопления похожи на виноградные грозди
  • Диплококки — округлой формы, расположенные попарно
  • Стрептококки — объединяются в цепочки, напоминающие нити жемчуга
  • Палочки
  • Вибрионы — изогнутые в виде запятой
  • Спириллы — спирально извитые палочки
  • Спирохеты — сильно извитые (до 10-15 витков) палочки

Размножение бактерий

Бактерии, как прокариоты (доядерные организмы), не могут делиться митозом, так как основное условие митоза — наличие ядра. Бактерии делятся бинарным делением клетки.

В ходе бинарного деления бактерия делится на две дочерние клетки, являющиеся генетическими копиями материнской. Деление в среднем происходит раз в 20 минут, популяция бактерий растет в геометрической прогрессии.

При размножении в лабораторных условиях бактерии образуют колонии. Колонии — видимые невооруженным глазом скопления клеток, образуемые в процессе роста и размножения микроорганизмов на питательном субстрате. Колонии выращиваются в чашках Петри.

Бактериальные инфекции

Многие патогенные бактерии приводят к развитию тяжелых заболеваний у человека. На настоящий момент при бактериальных инфекциях применяются антибиотики, дающие хороший эффект.

От некоторых болезней: дифтерия, коклюш и т.д. разработаны вакцины, дающие стойкий пожизненный иммунитет. После вакцинации образуются антитела к возбудителю, вследствие чего организм становится защищен от подобных инфекций: при встрече с возбудителем человек не заболевает, или переносит болезнь в легкой форме.

К бактериальным инфекциям относятся: чума, дифтерия, туберкулез, коклюш, гонорея, сифилис, тиф, столбняк, брюшной тиф, сальмонеллез, дизентерия, холера. Ниже вы можете видеть возбудителей данных заболеваний и место их локализации в организме.

Для борьбы с бактериями, вирусами и грибами в медицинских учреждениях (уже часто и в домашних условиях) используется кварцевание. Кварцевание — процесс обеззараживания помещения, суть которого в лампе, испускающей ультрафиолетовое излучение, губительное для микроорганизмов.

При проведении медицинских процедур локального кварцевания (облучения УФ отдельных участков) тела следует надевать защитные очки для избежания ожога сетчатки глаза. При кварцевании помещений следует покинуть их по той же причине.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Бактерии

Бактерии — самая древняя группа организмов из ныне существующих на Земле. Первые бактерии появились, вероятно, более 3,5 млрд лет назад и на протяжении почти миллиарда лет были единственными живыми существами на нашей планете. Поскольку это были первые представители живой природы, их тело имело примитивное строение.

Со временем их строение усложнилось, но и поныне бактерии считаются наиболее примитивными одноклеточными организмами. Интересно, что некоторые бактерии и сейчас ещё сохранили примитивные черты своих древних предков. Это наблюдается у бактерий, обитающих в горячих серных источниках и бескислородных илах на дне водоёмов.

Большинство бактерий бесцветно. Только немногие окрашены в пурпурный или в зелёный цвет. Но колонии многих бактерий имеют яркую окраску, которая обусловливается выделением окрашенного вещества в окружающую среду или пигментированием клеток.

Первооткрывателем мира бактерий был Антоний Левенгук — голландский естествоиспытатель 17 века, впервые создавший совершенную лупу-микроскоп, увеличивающую предметы в 160-270 раз.

Бактерии относят к прокариотам и выделяют в отдельное царство — Бактерии.

Форма тела

Бактерии — многочисленные и разнообразные организмы. Они различаются по форме.

Название бактерии Форма бактерии Изображение бактерии
Кокки Шарообразная
Бацилла Палочковидная
Вибрион Изогнутая в виде запятой
Спирилла Спиралевидная
Стрептококки Цепочка из кокков
Стафилококки Грозди кокков
Диплококки Две круглые бактерии, заключённые в одной слизистой капсуле

Способы передвижения

Среди бактерий есть подвижные и неподвижные формы. Подвижные передвигаются за счёт волнообразных сокращений или при помощи жгутиков (скрученные винтообразные нити), которые состоят из особого белка флагеллина. Жгутиков может быть один или несколько. Располагаются они у одних бактерий на одном конце клетки, у других — на двух или по всей поверхности.

Но движение присуще и многим иным бактериям, у которых жгутики отсутствуют. Так, бактерии, покрытые снаружи слизью, способны к скользящему движению.

У некоторых лишённых жгутиков водных и почвенных бактерий в цитоплазме имеются газовые вакуоли. В клетке может быть 40-60 вакуолей. Каждая из них заполнена газом (предположительно — азотом). Регулируя количество газа в вакуолях, водные бактерии могут погружаться в толщу воды или подниматься на её поверхность, а почвенные бактерии — передвигаться в капиллярах почвы.

Место обитания

В силу простоты организации и неприхотливости бактерии широко распространены в природе. Бактерии обнаружены везде: в капле даже самой чистой родниковой воды, в крупинках почвы, в воздухе, на скалах, в полярных снегах, песках пустынь, на дне океана, в добытой с огромной глубины нефти и даже в воде горячих источников с температурой около 80ºС. Обитают они на растениях, плодах, у различных животных и у человека в кишечнике, ротовой полости, на конечностях, на поверхности тела.

Бактерии — самые мелкие и самые многочисленные живые существа. Благодаря малым размерам они легко проникают в любые трещины, щели, поры. Очень выносливы и приспособлены к различным условиям существования. Переносят высушивание, сильные холода, нагревание до 90ºС, не теряя при этом жизнеспособность.

Практически нет места на Земле, где не встречались бы бактерии, но в разных количествах. Условия жизни бактерий разнообразны. Одним из них необходим кислород воздуха, другие в нём не нуждаются и способны жить в бескислородной среде.

В воздухе: бактерии поднимаются в верхние слои атмосферы до 30 км. и больше.

Особенно много их в почве. В 1 г. почвы могут содержаться сотни миллионов бактерий.

В воде: в поверхностных слоях воды открытых водоёмов. Полезные водные бактерии минерализуют органические остатки.

В живых организмах: болезнетворные бактерии попадают в организм из внешней среды, но лишь в благоприятных условиях вызываю заболевания. Симбиотические живут в органах пищеварения, помогая расщеплять и усваивать пищу, синтезируют витамины.

Внешнее строение

Клетка бактерии одета особой плотной оболочкой — клеточной стенкой, которая выполняет защитную и опорную функции, а также придаёт бактерии постоянную, характерную для неё форму. Клеточная стенка бактерии напоминает оболочку растительной клетки. Она проницаема: через неё питательные вещества свободно проходят в клетку, а продукты обмена веществ выходят в окружающую среду. Часто поверх клеточной стенки у бактерий вырабатывается дополнительный защитный слой слизи — капсула. Толщина капсулы может во много раз превышать диаметр самой клетки, но может быть и очень небольшой. Капсула — не обязательная часть клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она предохраняет бактерию от высыхания.

На поверхности некоторых бактерий имеются длинные жгутики (один, два или много) или короткие тонкие ворсинки. Длина жгутиков может во много раз превышать разметы тела бактерии. С помощью жгутиков и ворсинок бактерии передвигаются.

Внутреннее строение

Внутри клетки бактерии находится густая неподвижная цитоплазма. Она имеет слоистое строение, вакуолей нет, поэтому различные белки (ферменты) и запасные питательные вещества размещаются в самом веществе цитоплазмы. Клетки бактерий не имеют ядра. В центральной части их клетки сконцентрировано вещество, несущее наследственную информации. Бактерии, — нуклеиновая кислота — ДНК. Но это вещество не оформлено в ядро.

Внутренняя организация бактериальной клетки сложна и имеет свои специфические особенности. Цитоплазма отделяется от клеточной стенки цитоплазматической мембраной. В цитоплазме различают основное вещество, или матрикс, рибосомы и небольшое количество мембранных структур, выполняющих самые различные функции (аналоги митохондрий, эндоплазматической сети, аппарата Гольджи). В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Гранулы могут состоять из соединений, которые служат источником энергии и углерода. В бактериальной клетке встречаются и капельки жира.

В центральной части клетки локализовано ядерное вещество — ДНК, не отграниченная от цитоплазмы мембраной. Это аналог ядра — нуклеоид. Нуклеоид не обладает мембраной, ядрышком и набором хромосом.

Способы питания

У бактерий наблюдаются разные способы питания. Среди них есть автотрофы и гетеротрофы. Автотрофы — организмы, способные самостоятельно образовывать органические вещества для своего питания.

Гетеротрофы — организмы, использующие для своего питания готовые органические вещества. Гетеротрофные бактерии подразделяются на сапрофитов, симбионтов и паразитов.

Бактерии-сапрофиты Бактерии-симбионты Бактерии-паразиты
Извлекают питательные вещества из мёртвого и разлагающего органического материала. Обычно они выделяют в этот гниющий материал свои пищеварительные ферменты, а затем всасывают и усваивают растворённые продукты. Живут совместно с другими организмами и часто приносят им ощутимую пользу. Бактерии, живущие в утолщениях корней бобовых растений. Живут внутри другого организма или на нём, укрываются и питаются его тканями. Вызывают различные заболевания – бактериозы.

Растения нуждаются в азоте, но сами усваивают азот воздуха не могут. Некоторые бактерии соединяют содержащиеся в воздухе молекулы азота с другими молекулами, в результате чего получаются вещества, доступные для растений.

Эти бактерии поселяются в клетках молодых корней, что приводит к образованию на корнях утолщений, называемых клубеньками. Такие клубеньки образуются на корнях растений семейства бобовых и некоторых других растений.

Корни дают бактериям углеводы, а бактерии корням — такие содержащие азот вещества, которые могут быть усвоены растением. Их сожительство взаимовыгодно.

Корни растений выделяют много органических веществ (сахара, аминокислоты и другие), которыми питаются бактерии. Поэтому в слое почвы, окружающем корни, поселяется особенно много бактерий. Эти бактерии превращают отмершие остатки растений в доступные для растения вещества. Этот слой почвы называют ризосферой.

Существует несколько гипотез о проникновении клубеньковых бактерий в ткани корня:

  • через повреждения эпидермальной и коровой ткани;
  • через корневые волоски;
  • только через молодую клеточную оболочку;
  • благодаря бактериям-спутникам, продуцирующим пектинолитические ферменты;
  • благодаря стимуляции синтеза В-индолилуксусной кислоты из триптофана, всегда имеющегося в корневых выделениях растений.

Процесс внедрения клубеньковых бактерий в ткань корня состоит из двух фаз:

  • инфицирование корневых волосков;
  • процесс образования клубеньков.

В большинстве случаев внедрившаяся клетка, активно размножается, образует так называемые инфекционные нити и уже в виде таких нитей перемещается в ткани растения. Клубеньковые бактерии, вышедшие из инфекционной нити, продолжают размножаться в ткани хозяина.

Наполняющиеся быстро размножающимися клетками клубеньковых бактерий растительные клетки начинают усиленно делиться. Связь молодого клубенька с корнем бобового растения осуществляется благодаря сосудисто-волокнистым пучкам. В период функционирования клубеньки обычно плотные. К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.

Бактерии клубеньков создают десятки и сотни килограммов азотных удобрений на гектаре почвы.

Обмен веществ

Бактерии отличаются друг от друга обменом веществ. У одних он идёт при участии кислорода, у других — без его участия.

Большинство бактерий питается готовыми органическими веществами. Лишь некоторые из них (сине-зелёные, или цианобактерии), способны создавать органические вещества из неорганических. Они сыграли важную роль в накоплении кислорода в атмосфере Земли.

Бактерии впитывают вещества извне, разрывают их молекулы на части, из этих частей собирают свою оболочку и пополняют своё содержимое (так они растут), а ненужные молекулы выбрасывают наружу. Оболочка и мембрана бактерии позволяет ей впитывать только нужные вещества.

Если бы оболочка и мембрана бактерии были полностью непроницаемыми, в клетку не попали бы никакие вещества. Если бы они были проницаемыми для всех веществ, содержимое клетки перемешалось бы со средой — раствором, в которой обитает бактерия. Для выживания бактерии необходима оболочка, которая нужные вещества пропускает, а ненужные — нет.

Бактерия поглощает находящиеся близ неё питательные вещества. Что происходит потом? Если она может самостоятельно передвигаться (двигая жгутик или выталкивая назад слизь), то она перемещается, пока не найдёт необходимые вещества.

Если она двигаться не может, то ждёт, пока диффузия (способность молекул одного вещества проникать в гущу молекул другого вещества) не принесёт к ней необходимые молекулы.

Бактерии в совокупности с другими группами микроорганизмов выполняют огромную химическую работу. Превращая различные соединения, они получают необходимую для их жизнедеятельности энергию и питательные вещества. Процессы обмена веществ, способы добывания энергии и потребности в материалах для построения веществ своего тела у бактерий разнообразны.

Одни бактерии нуждаются в готовых органических веществах — аминокислотах, углеводах, витаминах, — которые должны присутствовать в среде, так как сами они не смогут их синтезировать. Такие микроорганизмы называются гетеротрофами. Они получают необходимую им энергию при окислении органических веществ кислородом или при сбраживании (без участия кислорода). В зависимости от субстрата, на котором развиваются бактерии, различают:

  • сапрофитные формы — питаются мёртвым органическим веществом (молочно-кислые бактерии, бактерии гниении я и др.);
  • бактерии-паразиты — развиваются только на живых организмах (менингококки, гонококки, и др.);
  • относятся и к паразитическому, и к сапрофитному образу жизни (палочки сыпного тифа, сибирской язвы, бруцеллёза и др.).

Другие бактерии все потребности в углероде, необходимом для синтеза органических веществ тела, удовлетворяют за счёт неорганических соединений. Они называются автотрофами. Автотрофные бактерии способны синтезировать органические вещества из неорганических. Среди них различают:

Cинтезируют органические вещества за счёт солнечной энергии.

Цианобактерии, пурпурные бактерии и зелёные бактерии.

Фотосинтезирующие бактерии Хемосинтетики Метилотрофы
Синтезируют органические вещества за счёт химической энергии окисления серы – серобактерии; аммония и нитрита – нитрифицирующие; железа – железобактерии; водорода – водородные бактерии. Синтезируют органическое вещество за счёт химической энергии метаболизма углеродных соединений, содержащих метильную группу, простейшими из которых является метан.

Хемосинтез

Использование лучистой энергии — важнейший, но не единственный путь создания органического вещества из углекислого газа и воды. Известны бактерии, которые в качестве источника энергии для такого синтеза используют не солнечный свет, а энергию химических связей, происходящих в клетках организмов при окислении некоторых неорганических соединений — сероводорода, серы, аммиака, водорода, азотной кислоты, закисных соединений железа и марганца. Образованное с использованием этой химической энергии органическое вещество они используют для построения клеток своего тела. Поэтому такой процесс называют хемосинтезом.

Важнейшую группу хемосинтезирующих микроорганизмов составляют нитрифицирующие бактерии. Эти бактерии живут в почве и осуществляют окисление аммиака, образовавшегося при гниении органических остатков, до азотной кислоты. Последняя, реагирует с минеральными соединениями почвы, превращаются в соли азотной кислоты. Этот процесс проходит в две фазы.

Железобактерии превращают закисное железо в окисное. Образованная гидроокись железа оседает и образует так называемую болотную железную руду.

Некоторые микроорганизмы существуют за счёт окисления молекулярного водорода, обеспечивая тем самым автотрофный способ питания.

Характерной особенностью водородных бактерий является способность переключаться на гетеротрофный образ жизни при обеспечении их органическими соединениями и отсутствии водорода.

Таким образом, хемоавтотрофы являются типичными автотрофами, так как самостоятельно синтезируют из неорганических веществ необходимые органические соединения, а не берут их в готовом виде от других организмов, как гетеротрофы. От фототрофных растений хемоавтотрофные бактерии отличаются полной независимостью от света как источника энергии.

Бактериальный фотосинтез

Некоторые пигментосодержащие серобактерии (пурпурные, зелёные), содержащие специфические пигменты — бактериохлорофиллы, способны поглощать солнечную энергию, с помощью которой сероводород в их организмах расщепляется и отдаёт атомы водорода для восстановления соответствующих соединений. Этот процесс имеет много общего с фотосинтезом и отличается только тем, что у пурпурных и зелёных бактерий донором водорода является сероводород (изредка — карбоновые кислоты), а у зелёных растений — вода. У тех и других отщепление и перенесение водорода осуществляется благодаря энергии поглощённых солнечных лучей.

Такой бактериальный фотосинтез, который происходит без выделения кислорода, называется фоторедукцией. Фоторедукция углекислого газа связана с перенесением водорода не от воды, а от сероводорода:

Биологическое значение хемосинтеза и бактериального фотосинтеза в масштабах планеты относительно невелико. Только хемосинтезирующие бактерии играют существенную роль в процессе круговорота серы в природе. Поглощаясь зелёными растениями в форме солей серной кислоты, сера восстанавливается и входит в состав белковых молекул. Далее при разрушении отмерших растительных и животных остатков гнилостными бактериями сера выделяется в виде сероводорода, который окисляется серобактериями до свободной серы (или серной кислоты), образующий в почве доступные для растения сульфиты. Хемо- и фотоавтотрофные бактерии имеют существенное значение в круговороте азота и серы.

Спорообразование

Внутри бактериальной клетки образуются споры. В процессе спорообразования бактериальная клетка претерпевает ряд биохимических процессов. В ней уменьшается количество свободной воды, снижается ферментативная активность. Это обеспечивает устойчивость спор к неблагоприятным условиям внешней среды (высокой температуре, высокой концентрации солей, высушиванию и др.). Спорообразование свойственно только небольшой группе бактерий.

Споры — не обязательная стадия жизненного цикла бактерий. Спорообразование начинается лишь при недостатке питательных веществ или накоплении продуктов обмена. Бактерии в виде спор могут длительное время находиться в состоянии покоя. Споры бактерий выдерживают продолжительное кипячение и очень длительное проммораживание. При наступлении благоприятных условий спора прорастает и становится жизнеспособной. Спора бактерий — это приспособление к выживанию в неблагоприятных условиях.

Размножение

Размножаются бактерии делением одной клетки на две. Достигнув определённого размера, бактерия делится на две одинаковые бактерии. Затем каждая из них начинает питаться, растёт, делится и так далее.

После удлинения клетки постепенно образуется поперечная перегородка, а затем дочерние клетки расходятся; у многих бактерий в определённых условиях клетки после деления остаются связанными в характерные группы. При этом в зависимости от направления плоскости деления и числа делений возникают разные формы. Размножение почкованием встречается у бактерий как исключение.

При благоприятных условиях деление клеток у многих бактерий происходит через каждые 20-30 минут. При таком быстром размножении потомство одной бактерии за 5 суток способно образовать массу, которой можно заполнить все моря и океаны. Простой подсчёт показывает, что за сутки может образоваться 72 поколения (720 000 000 000 000 000 000 клеток). Если перевести в вес — 4720 тонн. Однако в природе этого не происходит, так как большинство бактерий быстро погибают под действием солнечного света, при высушивании, недостатке пищи, нагревании до 65-100ºС, в результате борьбы между видами и т.д.

Бактерия (1), поглотившая достаточно пищи, увеличивается в размерах (2) и начинает готовиться к размножению (делению клетки). Её ДНК (у бактерии молекула ДНК замкнута в кольцо) удваивается (бактерия производит копию этой молекулы). Обе молекулы ДНК (3,4) оказываются, прикреплены к стенке бактерии и при удлинении бактерии расходятся в стороны (5,6). Сначала делится нуклеотид, затем цитоплазма.

После расхождения двух молекул ДНК на бактерии появляется перетяжка, которая постепенно разделяет тело бактерии на две части, в каждой из которых есть молекула ДНК (7).

Бывает (у сенной палочки), две бактерии слипаются, и между ними образуется перемычка (1,2).

По перемычке ДНК из одной бактерии переправляется в другую (3). Оказавшись в одной бактерии, молекулы ДНК сплетаются, слипаются в некоторых местах (4), после чего обмениваются участками (5).

Роль бактерий в природе

Круговорот

Бактерии — важнейшее звено общего круговорота веществ в природе. Растения создают сложные органические вещества из углекислого газа, воды и минеральных солей почвы. Эти вещества возвращаются в почву с отмершими грибами, растениями и трупами животных. Бактерии разлагают сложные вещества на простые, которые снова используют растения.

Бактерии разрушают сложные органические вещества отмерших растений и трупов животных, выделения живых организмов и разные отбросы. Питаясь этими органическими веществами, сапрофитные бактерии гниения превращают их в перегной. Это своеобразные санитары нашей планеты. Таким образом, бактерии активно участвуют в круговороте веществ в природе.

Почвообразование

Поскольку бактерии распространены практически повсеместно и встречаются в огромном количестве, они во многом определяют различные процессы, происходящие в природе. Осенью опадают листья деревьев и кустарников, отмирают надземные побеги трав, опадают старые ветки, время от времени падают стволы старых деревьев. Всё это постепенно превращается в перегной. В 1 см 3 . поверхностного слоя лесной почвы содержатся сотни миллионов сапрофитных почвенных бактерий нескольких видов. Эти бактерии превращают перегной в различные минеральные вещества, которые могут быть поглощены из почвы корнями растений.

Некоторые почвенные бактерии способны поглощать азот из воздуха, используя его в процессах жизнедеятельности. Эти азотофиксирующие бактерии живут самостоятельно или поселяются в корнях бобовых растений. Проникнув в корни бобовых, эти бактерии вызывают разрастание клеток корней и образование на них клубеньков.

Эти бактерии выделяют азотные соединения, которые используют растения. От растений бактерии получают углеводы и минеральные соли. Таким образом, между бобовым растением и клубеньковыми бактериями существует тесная связь, полезная как одному, так и другому организму. Это явление носит название симбиоза.

Благодаря симбиозу с клубеньковыми бактериями бобовые растения обогащают почву азотом, способствуя повышению урожая.

Распространение в природе

Микроорганизмы распространены повсеместно. Исключение составляют лишь кратеры действующих вулканов и небольшие площадки в эпицентрах взорванных атомных бомб. Ни низкие температуры Антарктики, ни кипящие струи гейзеров, ни насыщенные растворы солей в соляных бассейнах, ни сильная инсоляция горных вершин, ни жёсткое облучение атомных реакторов не мешают существованию и развитию микрофлоры. Все живые существа постоянно взаимодействуют с микроорганизмами, являясь часто не только их хранилищами, но и распространителями. Микроорганизмы — аборигены нашей планеты, активно осваивающие самые невероятные природные субстраты.

Микрофлора почвы

Количество бактерий в почве чрезвычайно велико — сотни миллионов и миллиардов особей в 1 грамме. В почве их значительно больше, чем в воде и воздухе. Общее количество бактерий в почвах меняется. Количество бактерий зависит от типа почв, их состояния, глубины расположения слоёв.

На поверхности почвенных частиц микроорганизмы располагаются небольшими микроколониями (по 20-100 клеток в каждой). Часто они развиваются в толщах сгустков органического вещества, на живых и отмирающих корнях растений, в тонких капиллярах и внутри комочков.

Микрофлора почвы очень разнообразна. Здесь встречаются разные физиологические группы бактерий: бактерии гниения, нитрифицирующие, азотфиксирующие, серобактерии и др. среди них есть аэробы и анаэробы, споровые и не споровые формы. Микрофлора — один из факторов образования почв.

Областью развития микроорганизмов в почве является зона, примыкающая к корням живых растений. Её называют ризосферой, а совокупность микроорганизмов, содержащихся в ней, — ризосферной микрофлорой.

Микрофлора водоёмов

Вода — природная среда, где в большом количестве развиваются микроорганизмы. Основная масса их попадает в воду из почвы. Фактор, определяющий количество бактерий в воде, наличие в ней питательных веществ. Наиболее чистыми являются воды артезианских скважин и родниковые. Очень богаты бактериями открытые водоёмы, реки. Наибольшее количество бактерий находится в поверхностных слоях воды, ближе к берегу. При удалении от берега и увеличении глубины количество бактерий уменьшается.

Чистая вода содержит 100-200 бактерий в 1 мл., а загрязнённая — 100-300 тыс. и более. Много бактерий в донном иле, особенно в поверхностном слое, где бактерии образуют плёнку. В этой плёнке много серо- и железобактерий, которые окисляют сероводород до серной кислоты и тем самым предотвращают замор рыбы. В иле больше спороносных форм, в то время как в воде преобладают неспороносные.

По видовому составу микрофлора воды сходна с микрофлорой почвы, но встречаются и специфические формы. Разрушая различные отбросы, попавшие в воду, микроорганизмы постепенно осуществляют так называемое биологическое очищение воды.

Микрофлора воздуха

Микрофлора воздуха менее многочисленна, чем микрофлора почвы и воды. Бактерии поднимаются в воздух с пылью, некоторое время могут находиться там, а затем оседают на поверхность земли и гибнут от недостатка питания или под действием ультрафиолетовых лучей. Количество микроорганизмов в воздухе зависит от географической зоны, местности, времени года, загрязнённостью пылью и др. каждая пылинка является носителем микроорганизмов. Больше всего бактерий в воздухе над промышленными предприятиями. Воздух сельской местности чище. Наиболее чистый воздух над лесами, горами, снежными пространствами. Верхние слои воздуха содержат меньше микробов. В микрофлоре воздуха много пигментированных и спороносных бактерий, которые более устойчивы, чем другие, к ультрафиолетовым лучам.

Микрофлора организма человека

Тело человека, даже полностью здорового, всегда является носителем микрофлоры. При соприкосновении тела человека с воздухом и почвой на одежде и коже оседают разнообразные микроорганизмы, в том числе и патогенные (палочки столбняка, газовой гангрены и др.). Наиболее часто загрязняются открытые части человеческого тела. На руках обнаруживают кишечные палочки, стафилококки. В ротовой полости насчитывают свыше 100 видов микробов. Рот с его температурой, влажностью, питательными остатками — прекрасная среда для развития микроорганизмов.

Желудок имеет кислую реакцию, поэтому основная масса микроорганизмов в нём гибнет. Начиная с тонкого кишечника реакция становится щелочной, т.е. благоприятной для микробов. В толстых кишках микрофлора очень разнообразна. Каждый взрослый человек выделяет ежедневно с экскрементами около 18 млрд. бактерий, т.е. больше особей, чем людей на земном шаре.

Внутренние органы, не соединяющиеся с внешней средой (мозг, сердце, печень, мочевой пузырь и др.), обычно свободны от микробов. В эти органы микробы попадают только во время болезни.

Бактерии в круговороте веществ

Микроорганизмы вообще и бактерии в частности играют большую роль в биологически важных круговоротах веществ на Земле, осуществляя химические превращения, совершенно недоступные ни растениям, ни животным. Различные этапы круговорота элементов осуществляются организмами разного типа. Существование каждой отдельной группы организмов зависит от химического превращения элементов, осуществляемого другими группами.

Круговорот азота

Циклическое превращение азотистых соединений играет первостепенную роль в снабжении необходимыми формами азота различных по пищевым потребностям организмов биосферы. Свыше 90% общей фиксации азота обусловлено метаболической активностью определённых бактерий.

Круговорот углерода

Биологическое превращение органического углерода в углекислый газ, сопровождающееся восстановлением молекулярного кислорода, требует совместной метаболической активности разнообразных микроорганизмов. Многие аэробные бактерии осуществляют полное окисление органических веществ. В аэробных условиях органические соединения первоначально расщепляются путём сбраживания, а органические конечные продукты брожения окисляются далее в результате анаэробного дыхания, если имеются неорганические акцепторы водорода (нитрат, сульфат или СО2).

Круговорот серы

Для живых организмов сера доступна в основном в форме растворимых сульфатов или восстановленных органических соединений серы.

Круговорот железа

В некоторых водоёмах с пресной водой содержатся в высоких концентрациях восстановленные соли железа. В таких местах развивается специфическая бактериальная микрофлора — железобактерии, окисляющие восстановленное железо. Они участвуют в образовании болотных железных руд и водных источников, богатых солями железа.

Бактерии являются самыми древними организмами, появившимися около 3,5 млрд. лет назад в архее. Около 2,5 млрд. лет они доминировали на Земле, формируя биосферу, участвовали в образовании кислородной атмосферы.

После появления многоклеточных организмов между ними и бактериями образовались многочисленные связи, включая преобразование органических веществ органотрофами, и разного рода симбиотические отношения, паразитизм, иногда внутриклеточный (риккетсии), и патогенез. Наличие бактерий и др. микроорганизмов в естественных местах обитания является важнейшим фактором, определяющим целостность экологии, систем. В экстремальных условиях, непригодных для существования других организмов, бактерии могут представлять единственную форму жизни.

Бактерии являются одними из наиболее просто устроенных живых организмов (кроме вирусов). Полагают, что они — первые организмы, появившиеся на Земле.

Источник

Contents

  • 1 Что такое питание бактерий?
  • 2
    Особенности питания бактерий
  • 3
    Способы питания бактерий
  • 4
    Типы питания бактерий
  • 5
    Цепи питания бактерий
  • 6
    Автотрофный тип питания бактерий
  • 7
    Гетеротрофный тип питания бактерий
  • 8 Питание бактерий-сапрофитов
  • 9
    Питание бактерий-паразитов
  • 10
    Питание бактерий-симбионтов

Что такое питание бактерий?

Бактерии – простейшие существа, которые появились на Земле более трех миллиардов лет назад. Они очень неприхотливы. Выдерживают влагу и высокую температуру, поэтому могут жить везде: и в воде, и в воздухе, и в земле, и в растениях, в организме животных и человека. Конечно, как и любым существам, обитающим на планете, необходимо питание. Оно зависит от среды, в которой растут и развиваются микроорганизмы.

Любые существа для своей жизнедеятельности должны питаться. В результате этого процесса бактерии получают вещества, которые служат источником энергии.

Микроорганизмам жизненно необходимы азот, углерод, водород, так как они есть в любом живом организме. Именно от того, как и в каком количестве микроорганизмы получают полезные для них вещества, зависят типы их питания. Одни бактерии получают питание в уже растворенном или молекулярном виде, так как не могут сами выделять ферменты в окружающую среду. Другие бактерии сами выделяют ферменты и могут расщеплять поступающие вещества до молекул. Таким образом, питание бактерий – это получение ими питательных веществ для полноценного развития микроорганизмов, их роста и размножения.


Особенности питания бактерий

И все-таки питание бактерий существенно отличается от получения пищи всеми другими организмами. У микроорганизмов нет собственной пищеварительной системы, они берут питательные вещества из окружающей среды или из других организмов, в которых находятся. Усваиваются эти вещества всей клеткой, хотя их расщепление происходит вне самой клетки.

Эти факторы влияют на то, что проникновение энергии в бактерии не встречает никаких препятствий, процесс происходит достаточно быстро. Проживая в любых условиях и имея очень хорошую приспособляемость, микроорганизмы, перемещаясь из одной среды обитания в другую, очень быстро к ней привыкают и даже могут поменять способ питания. Именно разные способы питания бактерий являются их еще одной особенностью.


Способы питания бактерий

Способы питания бактерий – это процессы поступления в клетку бактерии питательных веществ. Существует несколько способов питания микроорганизмов:

• При поступлении веществ в клетку бактерии она не затрачивает энергию. Такой процесс называется облегченной диффузией, когда концентрация молекул вне клетки больше, чем внутри нее Молекулы, несущие питательные вещества, начинают проникать в клетку и распределяться по ней.

• При процессе простой или пассивной диффузии молекулы находятся внутри клетки в разной концентрации по сторонам мембраны, они постепенно распределяются по клетке, так как имеют разные размеры.

• Активный перенос питательных веществ требует затраты энергии, так как количество веществ в клетке может в несколько раз превышать их количества во внешней среде. Такой способ питания характерен окислительно-восстановительным процессам, происходящим в период питания бактерий.

• При четвертом способе переноса питательных веществ химически измененные молекулы походят через мембрану, так как в обычном виде они восприниматься бактерией не могут.

В процессе питания участвует и выделительная система, так как поступающие вещества в любом случае должны удаляться. Выходят они тремя способами: с помощью фосфотрансферазной реакции, контранселяционных секций (образование специального канала, через который молекулы белка выходят в окружающую среду), почковании мембраны (молекулы выходят в мембранном пузырьке).

Но способы поступления питательных веществ в бактерии неразрывно связаны с типами их питания.


Типы питания бактерий

Изучая типы питания бактерии, нельзя говорить об их единообразии. Они зависят от поступления внутрь бактерии веществ, позволяющих ей полноценно развиваться. К ним относятся углерод, водород, электроны и поступление энергии.

В зависимости от транспортировки в клетки бактерий углерода они делятся на два типа питания: автотрофное и гетеротрофное. Гетеротрофы не могут самостоятельно выделять органические вещества из неорганических и получают первые в готовом виде.

Автотрофные выполняют эту работу самостоятельно внутри клетки разными способами: с помощью выработки фотосинтеза и благодаря химическим реакциям. Гетеротрофы в свою очередь подразделяются на паразиты, симбионты и сапрофиты. А автотрофы могут быть фототрофами и хемотрофами. Именно разновидности автотрофных бактерий влияют на получение бактериями энергии.

В зависимости от поступления в бактерии электронов и водорода питание происходит с помощью литотрофов, переносящих неорганические вещества средствами сероводорода, аммиака, углекислого газа и других соединений, и органотрофов, которые доставляют электроны с помощью органических соединений. Разновидности питания бактерий позволяют им принимать активное участие в пищеварительных цепях.


Цепи питания бактерий

Цепь питания – это взаимодействие между организмами с целью получения питательных веществ. Простейшие организмы, к которым и относятся бактерии, играют в цепи питания очень важную роль. Они участвуют и в начальной ее стадии, и в завершающей, так как участвуют в разложении растений и живых организмов. Такие бактерии относятся к разряду деструкторов, то есть разрушающих микроорганизмов.

Участвуя в разложении органических веществ, они обогащают почву, так как возвращают ей то, что было взято у нее растениями или животными. Также деструкторы поглощают энергию погибших организмов. Происходит этот процесс двумя способами: при распаде углеводов и при образовании гумуса в почве. Бактерии, возвращая в почву питательные вещества, замыкают пищеварительную цепь.

В самой цепи питания выделяются пять уровней. На первом, втором, третьем и четвертом уровнях находятся автотрофы, живущие в растениях, воде и другой среде, они разносят питательные вещества. Пятый уровень принадлежит бактериям, участвующим в разлагающемся процессе умерших организмов. Тем самым бактерии с автотрофным типом питания проходят через всю цепь, а бактерии с гетеротрофным типом питания завершают ее.


Автотрофный тип питания бактерий

Автотрофный тип питания существенно отличается от гетеротрофного, так как бактерии не получают органические вещества в готовом виде, а перерабатывают их самостоятельно. Такой процесс может происходить с помощью фотосинтеза или хемосинтеза. В зависимости от процесса получения питательных веществ и получения из них энергии бактерии с автотрофным питанием делятся на два вида.

Фототрофные бактерии получают энергию за счет солнечного света путем участия в процессе фотосинтеза. Длина волн светового поглощения колеблется от 850 до 1100 нм.

Фотосинтез, в котором участвуют бактерии, выделяющие кислород в окружающую среду, называют аноксигенным. В нем принимают участие бактерии, живущие в зеленых и пурпурны водорослях, которые растут в пресной и соленой воде. Оксигенный фотосинтез происходит под воздействием кислорода, в нем участвуют цианобактерии. Он состоит из нескольких этапов. Сначала бактерии поглощают свет (фотофизический этап), затем образуется АТФ (фотохимический этап), и происходит выделение органических веществ (химический этап).

Бактерии-хемотрофы используют в качестве получения энергии хемосинтез. Это процесс химических реакций окисления неорганических веществ.

В зависимости от того, какие вещества окисляются, можно выделить разные виды бактерий:

• Железобактерии могут окислять железо, участвовать в процессе появления ржавчины

• Серобактерии способны перерабатывать серу

• Нитрифицирующие бактерии живут за счет переработки аммиака

• Водородные бактерии при очень высокой температуре могут окислять водород

Организмы, в которых живут бактерии-хемитрофы, не могут обладать фотосинтезом, так как не способны воспринимать солнечный свет.


Гетеротрофный тип питания бактерий

Гетеротрофный тип питания бактерий основан на паразитическом существовании, то есть он происходит за счет тех организмов, в которых бактерии находятся. Бактерии могут быть полезными, а могут нанести организму вред. Все гетеротрофы подразделяют на три группы: паразиты, симбионты и сапрофиты. Бактерии, вызывающие заболевания организмов, называют патогенными. Если паразиты находятся внутри клетки и поражают только ее, они являются облигатными, к ним могут относиться вирусы. Факультативные паразиты уничтожают не только клетки, но и ткани организма, но существовать они могут только в искусственной среде и в особенных условиях.

Болезнетворные бактерии приносят вред человеку и животным, заражая вирусными инфекциями. Но не все микроорганизмы с гетеротрофным типом питания вредны. Гетеротрофы играют важную роль в переработке органических веществ, они добывают из них углерод и поглощают его. Благодаря гетеротрофам почва становится плодородной, природа очищается от погибших организмов как на земле, так и в водоемах. Процесс питания гетеротрофных организмов не одинаков.

Его можно рассмотреть с разных сторон. Любые организмы имеют определенные стадии питания, во время которых пища попадает внутрь и после некоторых процессов выводится наружу. Такие же действия происходят и во время питания бактерий. Так, процесс питания некоторых гетеротрофов можно разделить на пять стадий: сначала они поглощают пищу, затем идет процесс переваривания, потом органические вещества транспортируются в клетку, и на последней стадии происходит процесс ассимиляции и выделения.

При этом гетеротрофные бактерии имеют несколько типов питания:

• Голозойный позволяет расщеплять твердые органические соединения, так как проходят все стадии пищеварения

• Сапрофитный тип питания — это участие в разложении мертвых организмов

• Паразитический тип питания предполагает использование другого организма в качестве добывания питательных веществ.

• Симбиотический тип питания подразумевает взаимовыгодное взаимодействие двух микроорганизмов или бактерии и организма

В связи с таким распределением на типы питания все гетеротрофные бактерии можно называть либо свободноживущими, не зависящими от другого микроорганизма, либо симбиотическими, то есть взаимодействующими с другими организмами.

Таким образом, можно заметить, что гетеротрофный тип питания не может быть одинаков для всех бактерий.

Он имеет три основных вида:

1) Бактерии, питающиеся готовыми органическими веществами

2) Бактерии, питающиеся мертвыми организмами

3) Бактерии, питающиеся живыми организмами

Эти виды составляют основу питания гетеротрофных бактерий.

Питание бактерий-сапрофитов

Сапрофиты – одна из разновидностей гетеротрофных бактерий. Они получают питание, перерабатывая мертвые организмы. Сапрофиты помогают разлагаться органическим веществам, выделяя ферменты. Поглощение мертвых организмов происходит путем их разложения, поэтому сапрофиты можно назвать «санитарами» окружающей среды. Участвуя в разложении, они уничтожают мертвых животных, погибшие растения.

Даже в гниении листьев участвуют сапрофиты. Для питания бактериям-сапрофитам необходимы азот, белки, витамины, пептиды, нуклеотиды, которые они получают, используя ту среду, в которой обитают. Сапрофиты могут быть анаэробными, не нуждающимися в кислороде. Их можно обнаружить в любых видах брожения: кисломолочные продукты, вина. Другой вид сапрофитов – аэробные, нуждающиеся в кислороде. Это гнилистые бактерии, которые участвуют в процессе гниения. Некоторые сапрофитные бактерии могут быть опасными для человека. Такие сапрофиты иногда путают с паразитами.


Питание бактерий-паразитов

К бактериям-паразитам можно отнести болезнетворные микроорганизмы, которые обитают внутри клеток живых организмов. Там они получают питание и размножаются, принося вред, так как организмы получают повреждения. Вредные вещества, выделяемые паразитами, распространяются по всему организму, неся такие вирусные болезни, как чума, холера, ботулизм, туберкулез и так далее. Бактерии-паразиты очень хорошо привыкают к той среде, в которую они попадают с водой, пищей, через контакт с заболевшим.

При этом они могут полностью уничтожить организм, в который попали, и тогда вынуждены искать новую среду обитания. Борьба с бактериями-паразитами идет постоянно. Ученые разрабатывают лекарства, пытаясь уничтожить болезнетворные бактерии. Но паразиты могут обитать в воздухе, поднимаясь на тридцать километров от земли, в почве, в воде. При этом одни паразиты все время живут в одном организме, питаясь им. Другие паразиты факультативные.

Они заражают организм, заставляют его погибнуть, а потом питаются его остатками, участвуя в разложении, как сапрофиты. Следовательно, живые организмы для бактерий-паразитов – это прекрасная среда для питания и дальнейшего размножения.


Питание бактерий-симбионтов

Бактерии-симбионты – это различные вещества, которые живут в одном организме и взаимодействуют между собой. У этих бактерий две функции: они оказывают положительное действие на организм, в котором живут, и защищают его от проникновения болезнетворных микроорганизмов. Например, бактерии-симбионты живут в кишечнике человека.

Они помогают переваривать остатки пищи, выделяя полезные для организма вещества. Симбионты находятся и в растениях, оказывая помощь в усвоении азота, в котором растения нуждаются. Бактерии соединяют молекулы азота с другими молекулами, создавая полезные вещества для растений. Находясь в корнях молодых растений симбионты взаимодействуют с ними, помогая им усваивать азот и забирая углеводы. Такое взаимодействие взаимовыгодно обоим организмам, помогает им развиваться.

Бактерии могут быть полезными и вредными, но без них жизнь на планете приостановилась бы. Бактерии участвуют во всех процессах жизнедеятельности живых организмов. Являясь простейшими, они составляют основу всей жизни на планете

Бактерии очень разнообразны. Среди них встречаются и гетеротрофные, и автотрофные организмы. Большинство известных науке бактерий относятся к гетеротрофам. 

Гетеротрофы не способны самостоятельно производить органические вещества и поэтому используют то, что образовали другие организмы. 

В зависимости от способа питания среди этих бактерий выделяют три группы: сапрофиты, симбионты и паразиты.

Бактерии-сапрофиты (или сапротрофы) (от греч. сапрос — «гнилой», трофе — «пища») питаются мёртвыми остатками живых организмов. Это наиболее распространённая группа гетеротрофных бактерий. Сначала они выделяют ферменты, которые расщепляют и растворяют пищевые частицы, а затем всасывают полученные вещества.

Бактерии-паразиты (от греч. паразитос — «нахлебник») питаются за счёт живых организмов и наносят им вред. Многие бактерии-паразиты являются болезнетворными, они вызывают болезни растений, животных и человека.

Бактерии-симбионты (от греч. симбионтос — «сожительствующий») обитают в других организмах и приносят им пользу. Так, на корнях гороха, фасоли, люпина и других бобовых растений живут клубеньковые бактерии и обеспечивают их азотом. Известны бактерии, которые обитают в кишечнике человека, питаются там и производят необходимые организму человека витамины.

Существуют бактерии, которые сами производят органические вещества из неорганических. Их называют автотрофами.

Автотрофы (от греч. аутос — «сам» и трофе — «пища») — это живые организмы, которые сами создают питательные вещества для своего питания.

К ним относятся цианобактерии (сине-зелёные водоросли), которые содержат в своих клетках хлорофилл и способны создавать органические вещества из неорганических, используя световую энергию (в их клетках происходит процесс фотосинтеза). Цианобактерии сыграли важную роль в накоплении кислорода в атмосфере Земли.

Другие, например, железобактерии, серобактерии, используют энергию, полученную из химических реакций, т. е. преобразования одних минеральных веществ в другие.

Питание бактерий – это процесс поглощения и усвоения бактериальной клеткой пластического материала и энергии в результате преобразовательных реакций[4].

Питание является неотъемлемой функцией каждого живого организма. В процессе питания организм получает вещества, идущие на синтез клеточных структур и служащие источником энергии для всех процессов жизнедеятельности. Для питания микроорганизмов необходимы те же элементы, что и для животных, и растений. Первоочередные элементы питания – углерод, азот, кислород, водород, являющиеся основой всех органических веществ, которые входят в состав живой клетки как прокариоритеческих так и эукариоэтических организмов[5].

Типы питания бактерий чрезвычайно разнообразны. Различаются они в зависимости от способа поступления питательных веществ бактериальной клетки, источников углерода и азота, способа получения энергии, природы доноров электронов[4].

Содержание:

  • Способы поступления питательных веществ
  • Источники углерода
  • Источники энергии
  • Природа доноров электронов
  • Источники углерода, энергии и доноров электронов
  • Источники азота

Способы поступления питательных веществ

По способам поступления питательных веществ бактерии подразделяются на:

  • голофиты (греч. holos – полноценный и греч. phyticos – относящийся к растениям) – бактерии неспособные выделять в окружающую среду ферменты, расщепляющие субстраты, потребляют вещества только в растворенном, молекулярном виде;
  • голозои (греч. holos – полноценный и греч. zoikos – относящийся к животным) – бактерии, обладающие комплексом ферментов, обеспечивающие внешнее питание – расщепление субстратов до молекул вне бактериальной клетки, после чего молекулы питательных веществ транспортируются внутрь бактерии[4].

Питание бактерий - Гетеротрофные бактерии: культура <i>Erwinia amylovora</i>

Гетеротрофные бактерии: культура Erwinia amylovora

Гетеротрофные бактерии: культура Erwinia amylovora


Питание бактерий - Гетеротрофные бактерии: культура <i>Erwinia amylovora</i>

Источники углерода

По источникам углерода различают:

  • автотрофы (греч. autos– сам, trophe – пища) – бактерии, использующие в качестве источника углерода углекислый газ (CO2), из которого осуществляют синтез всех углеродосодержащих веществ;
  • гетеротрофы (греч.geteros– другой, trophe– пища) – бактерии, использующие в качестве источника углерода различные органические вещества в молекулярной форме (многоатомные спирты, углеводы, жирные кислоты, аминокислоты)[4].

Наибольшая степень гетеротрофности отмечается у прокариот, живущих только внутри других живых клеток, в частности хламидий и риккетсий[4].

Источники энергии

В зависимости от используемых источников энергии бактерии подразделяют на два типа:

  • фототрофы – бактерии способные использовать солнечную энергию;
  • хемотрофы – бактерии, получающие энергию при окислительно-восстановительных реакциях[4].

Питание бактерий - Хемоорганотрофные бактерии

Хемоорганотрофные бактерии

Хемоорганотрофные бактерии


Питание бактерий - Хемоорганотрофные бактерии

Pectobacterium carotovorum ssp. carotovorum вытекают из  тканей капусты[6].

Природа доноров электронов

По природе доноров электронов бактерии делят на:

  • литотрофы (греч. litos – камень) – бактерии, использующие в качестве доноров электронов неорганические вещества: водород (Н2), сероводород (Н2S), аммиак (NH3), серу (S), углекислый газ(CО2), ионы железа (Fe2+) и многие другие;
  • органотрофы – бактерии, использующие в качестве донора электронов органические соединения (углеводы, аминокислоты)[4].

В зависимости от источника энергии и природы донора электронов возможно четыре основных типа энергетического метаболизма: хемолитотрофия, хемоорганотрофия, фотолитотрофия, фотоорганотрофия. Таки образом, бактерии разделяют на:

  • хемолитотрофы – бактерии, получающие энергию при окислительно-восстановительных реакциях и использующие в качестве доноров электронов неорганические вещества;
  • хемоорганотрофы – бактерии, получающие энергию при окислительно-восстановительных реакциях и использующие в качестве донора электронов органические соединения;
  • фотолитотрофы – бактерии, получающие энергию в результате фотосинтеза (солнечная энергия) и использующие в качестве доноров электронов неорганические вещества;
  • фотоорганотрофы – бактерии, получающие энергию в результате фотосинтеза (солнечная энергия) и использующие в качестве донора электронов органические соединения[2].

Источники углерода, энергии и доноров электронов

Каждый тип энергетического метаболизма осуществляется на базе различных биосинтетических способностей организма. Как отмечалось выше, прокариоты, прежде всего, делятся на автрофов и гетеротрофов. В последствие, те же микроорганизмы распределяются ещё по группам: фототрофы, хемотрофы, литотрофы, органотрофы[3].

Следовательно, выделяется восемь сочетаний типов энергетического и конструктивного метаболизма, отражающие возможности способов питания прокариот:

  • хемолитоавтотрофы – хемотрофы+литотрофы+ автотрофы;
  • хемолитогетеротрофы – хемотрофы+литотрофы+ гетеротрофы;
  • хемоорганоавтотрофы – хемотрофы+ органотрофы+ автотрофы;
  • хемоорганогетеротрофы – хемотрофы+органотрофы+гетеротрофы;
  • фотолитоавтотрофы – фототрофы+ литотрофы+ автотрофы;
  • фотолитогетеротрофы – фототрофы + литотрофы+ гетеротрофы;
  • фотоорганоавторофы – фототрофы+органотрофы+автотрофы;
  • фотоорганогетеротрофы – фототрофы+органотрофы+гетеротрофы[3].

Способы питания прокариот представлены в Таблице 1[2].

Всем перечисленным способам питания соответствуют реально существующие прокариоты. Однако число видов, относящихся к той или иной группе, далеко не одинаково. Большинство видов сосредоточено в группе с хемоорганогетеротрофным типом питания. В числе фотосинтезирующих прокариот (фототрофов) подавляющее число (все цианобактерии, большинство пурпурных и зеленых серобактерий) – фотолитотрофы[2].

Кроме указанных восьми типов питания, отмечается существование миксотрофов – организмов, способных одновременно использовать различные возможности питания. Например, способные одновременно окислять органические и минеральные соединения или использующие в качестве источника углерода, как диоксид углерода, так и органические вещества[3].

Таблица 1: Способы питания прокариот[2].

№ п/п

Способ питания

Источник углерода

Источники

энергии

Донор электронов

Представители

1

хемолитоавтотрофия

СО2 (автотрофы)

Окислительно-восстановительные реакции

(хемотрофы)

Неорганические соединения (литотрофы)

нитрифицирующие бактерии, тионовые бактерии, водородные бактерии, ацидофильные железобактерии

2

хемолитогетеротрофия

органические соединения (гетеротрофы)

метанобразующие бактерии,

водородные бактерии

3

хемоорганоавтотрофия

СО2 (автотрофы)

Органические соединения (органотрофы)

факультативные метилотрофы, окисляющие муравьиную кислоту

4

хемоорганогетеротрофия

органические соединения (гетеротрофы)

большинство прокариот

5

фотолитоавтотрофия

СО2 (автотрофы)

Свет ( фототрофы)

Неорганические соединения (литотрофы)

цианобактерии, пурпурные и зеленые бактерии

6

фотолитогетеротрофия

органические соединения (гетеротрофы)

некоторые цианобактерии,

пурпурные и зеленые бактерии

7

фотоорганоавторофия

СО2 (автотрофы)

Органические соединения (органотрофы)

некоторые пурпурные бактерии

8

фотоорганогетеротрофия

органические соединения (гетеротрофы)

пурпурные и некоторые зеленые бактерии,

галобактерии,

некоторые цианобактерии

Источники азота

Основные источники азотного питания аутотрофных (автотрофных) бактерий – неорганические соединения азота, то есть соли азота[1].

Основные источники азотного питания гетеротрофных бактерий – аминокислоты. Бактерии могут получать аминокислоты непосредственно из белков организма-хозяина при паразитизме или готовыми из питательных сред[1].

По способам азотного питания (усвоения азотистых веществ) выделяют четыре группы:

  • протеолитические микробы – способны расщеплять нативные белки (содержащие все аминокислоты и способные выполнять все биологические функции), пептиды, аминокислоты;
  • дезаминирующие микробы – способны отщеплять аминогруппы только у свободных аминокислот;
  • нитритно-нитратные микробы – способны усваивать окисленные формы азота;
  • азотфиксирующие бактерии (микробы) – способны усваивать атмосферные формы азота[1].

Статья составлена с использованием следующих материалов:

Литературные источники:

1.

Госманов Р.Г., Галиуллин А.К., Волков А.Х., Ибрагимова А.И. Микробиология: Учебное пособие. — 2-е изд., стер. — СПб.: Издательство «Лань», 2017. — 496 с.

2.

Гусев М.В., Минеева Л.А., Микробиология: Учебник. – 2-е издание. Москва, Издательство Московского университета, 1985 – 376 с.

3.

Емцев В. Т. Микробиология: учебник для вузов / В. Т. Емцев, Е. Н. Мишустин – 5-е изд., переработанное и дополненное – Москва: Дрофа, 2005. – 445 с.

4.

Пилькевич Н.Б., Виноградов А.А., Боярчук Е.Д. Основы микробиологии: Учебное пособие для студентов высших учебных заведений. – Луганск: Альма-матер, 2008. — 192 с.

Источники из сети интернет:

5.

Изображения (переработаны):

6.

7.


Свернуть
Список всех источников

Понравилась статья? Поделить с друзьями:
  • Как найти материально оборотные средства
  • Как найти подходящего продавца
  • Windows com stopcode код остановки как исправить
  • Smart lock пароли как найти
  • Как найти левую руку на аукционе