Как составить схемы электрических цепей

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь.  Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Обозначения элементов электрической цепи

 

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

Способы соединения элементов электрической цепи

 

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Схема электрической цепи

 

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

Электрическая цепь

 

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

решение электрических цепей

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

решение электрических цепей

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Здравствуйте, друзья! Сегодня мы рассмотрим один из этапов проектирования электрических устройств – составление электрических схем. Однако рассматривать их мы будем очень поверхностно, поскольку многое из того, что необходимо для проектирования, нам еще неизвестно, а минимальные знания уже необходимы. Тем не менее, эти начальные знания помогут нам в дальнейшем при чтении и составлении электрических схем. Тема довольно скучная, но правила есть правила и их необходимо соблюдать. Итак…

Что же такое электрическая схема? Какие они бывают? Зачем нужны? Как их составлять и как их читать? Начнем с того, какие же вообще схемы существуют. Для того, чтобы унифицировать составление технической документации (а схемы есть ни что иное, как часть этой документации) в нашей стране, Постановлением Государственного комитета СССР по стандартам от 29 августа 1984 г. № 3038 был введен Государственный Стандарт (ГОСТ) «Единая система конструкторской документации. Схемы. Виды и типы. Общие требования к выполнению», иначе именуемый ГОСТ 2.701-84, которому должны подчиняться любые схемы, выполненные вручную или автоматизированным способом, изделий всех отраслей промышленности, а также электрические схемы энергетических сооружений (электрических станций, электрооборудования промышленных предприятий и т. п.). Этим документом определены следующие виды схем:

  • электрические;
  • гидравлические;
  • пневматические;
  • газовые (кроме пневматических);
  • кинематические;
  • вакуумные;
  • оптические;
  • энергетические;
  • деления;
  • комбинированные.

Нас в первую очередь будет интересовать самый первый пункт – электрические схемы, которые составляются для электрических устройств. Однако ГОСТ определено так же несколько типов схем в зависимости от основного назначения:

  • структурные;
  • функциональные;
  • принципиальные (полные);
  • соединений (монтажные);
  • подключения;
  • общие;
  • расположения;
  • объединенные.

Сегодня мы рассмотрим электрические принципиальные схемы и основные правила их составления. Остальные виды схем имеет смысл рассматривать после того, как будут изучены электрические компоненты, и обучение подойдет к этапу проектирования сложных устройств и систем, тогда другие виды схем будут иметь смысл. Что же такое электрическая принципиальная схема и зачем она нужна? Согласно ГОСТ 2.701-84 схема принципиальная – схема, определяющая полный состав элементов и связей между ними и, как правило, дающая детальное представление о принципах работы изделия (установки). Такие схемы, например, поставлялись в документации к старым советским телевизорам. Это были огромные листы бумаги формата А2 или даже А1, на которых указывались абсолютно все составляющие телевизора. Наличие такой схемы существенно облегчало процесс ремонта. Сейчас такие схемы практически не поставляются с электронными приборами, потому как продавец надеется, что пользователю проще будет выкинуть прибор, чем его ремонтировать. Такой вот маркетинговый ход! Но это уже тема для отдельного разговора. Итак, принципиальная схема устройства необходима, во-первых, для того, чтобы иметь представление о том, какие элементы входят в состав устройства, во-вторых, как эти элементы соединены между собой и, в-третьих, какие характеристики имеют эти элементы. Так же, согласно ГОСТ 2.701-84 принципиальная схема должна давать понимание принципов работы устройства. Приведем пример такой схемы:
усилительный каскад схема

Рисунок 7.1 – Усилительный каскад на биполярном транзисторе, включенном по схеме с общим эмиттером, с термостабилизацией рабочей точки. Схема электрическая принципиальная

Однако перед нами встаёт небольшая проблема: а никаких, собственно, электронных элементов мы и не знаем… Что, например, за прямоугольники или параллельные черточки нарисованы на рисунке 7.1? Что обозначают надписи C2, R4, +Eпит? Рассмотрение электронных компонентов мы начнём через урок и постепенно узнаем основные характеристики каждого из них. И обязательно изучим принцип работы этого устройства с таким страшным названием по его принципиальной схеме. Сейчас же мы изучим основные правила рисования принципиальных электрических схем. Вообще правил много, но в основном они направлены на увеличение наглядности и понятности схемы, поэтому со временем запомнятся. Знакомиться с ними будем по мере необходимости, чтобы сразу не забивать голову лишней, пока не нужной информацией. Начнём с того, что каждый электрический компонент на электрической схеме обозначается соответствующим условным графическим обозначением (УГО). УГО элементов мы будем рассматривать параллельно с самими элементами, либо вы можете сразу посмотреть их в ГОСТ 2.721 – 2.768.

Правило 1. Порядковые номера элементам (устройствам) следует присваивать, начиная с единицы, в пределах группы элементов (устройств), которым на схеме присвоено одинаковое буквенное позиционное обозначение, например, R1, R2, R3 и т.д., C1, C2, С3 и т.д. Не допускается пропуск одного или нескольких порядковых номеров на схеме.

Правило 2. Порядковые номера должны быть присвоены в соответствии с последовательностью расположения элементов или устройств на схеме сверху вниз в направлении слева направо. При необходимости допускается изменять последовательность присвоения порядковых номеров в зависимости от размещения элементов в изделии, направления прохождения сигналов или функциональной последовательности процесса.

Правило 3. Позиционные обозначения проставляют на схеме рядом с условными графическими обозначениями элементов и (или) устройств с правой стороны или над ними. Кроме того, не допускается пересечение позиционного обозначения линиями связи, УГО элемента или любыми другими надписями и линиями.
правила отрисовки электрических схем

Рисунок 7.2 – К правилу 3

Правило 4. Линии связи должны состоять из горизонтальных и вертикальных отрезков и иметь наименьшее количество изломов и взаимных пересечений. В отдельных случаях допускается применять наклонные отрезки линий связи, длину которых следует по возможности ограничивать. Пересечение линий связи, которого не удаётся избежать, выполняется под углом 90°.

Правило 5. Толщина линий связи зависит от формата схемы и размеров графических обозначений и выбирается из диапазона 0.2 – 1.0мм. Рекомендуемая толщина линий связи – 0.3 – 0.4мм. В пределах схемы все линии связи должны быть изображены одинаковой толщины. Допускается использование нескольких (не более трех) различных по толщине линий связи для выделения функциональных групп в пределах изделия.

Правило 6. Условные графические обозначения элементов изображают на схеме в положении, в котором они приведены в соответствующих стандартах, или повернутыми на угол, кратный 90°, если в соответствующих стандартах отсутствуют специальные указания. Допускается условные графические обозначения поворачивать на угол, кратный 45°, или изображать зеркально повернутыми.

Правило 7. При указании около условных графических обозначений номиналов элементов (резисторов, конденсаторов) допускается применять упрощенный способ обозначения единиц измерения:
единицы измерения таблица

составление схем правила

Рисунок 7.3 – К правилу 7

Правило 8. Расстояние между линиями связи, между линей связи и УГО элемента, а так же краем листа должно быть не менее 5мм.

Для начала этих восьми правил вполне достаточно, чтобы научиться правильно составлять простые электрические принципиальные схемы. В уроке 5 мы рассматривали источники питания электрических схем, в частности, «сухие» элементы и аккумуляторные батареи, а в уроке 6 была рассмотрена лампа накаливания в качестве потребителя электрической энергии. Давайте исходя из описанных выше правил попробуем составить простейшую принципиальную схему, состоящую из трех элементов: источника (аккумуляторная батарея), приемника (лампа накаливания) и выключателя. Но сначала приведем УГО этих элементов:
обозначения элементов электрических схем

А теперь последовательно включим эти элементы, собрав электрическую цепь:
принципиальная схема

Рисунок 7.4 – Первая принципиальная электрическая схема

Контакт SA1 называется нормально разомкнутым контактом, потому что в изначальном положении он разомкнут и ток через него не течет. При замыкании SA1 (например, это может быть выключатель, которым мы все зажигаем дома свет) лампа HL1 загорится, подпитываясь энергией батареи GB1, и гореть она будет до тех пор, пока не разомкнется ключ SA1, либо не кончится заряд аккумулятора.
Данная схема абсолютно точно и наглядно показывает последовательность соединения элементов и тип этих элементов, что исключает ошибки при сборке устройства на практике.
На сегодня пожалуй всё, еще один ужасно скучный урок на этом закончен. До скорых встреч!

← Урок 6: Работа и мощность тока | Содержание | Урок 8. Делим ток и роняем напряжение →

Из прошлых уроков вы уже знаете, что для возникновения электрического тока должны выполняться определенные условия.

Во-первых, необходимо наличие зарядов в проводнике — свободных электронов или ионов. А во-вторых, обязательно наличие источника тока, который создает в проводнике электрическое поле, что и приводит к возникновению тока.

Все ли это необходимые условия? Нет, нам осталось изучить всего еще одно — наличие электрической цепи. Именно о ней и пойдет речь на данном уроке.

Необходимые части электрической цепи

Итак, первое, что должно обязательно присутствовать в электрической цепи — это источник тока.

Он создаст электрическое поле и будет его поддерживать, возникнет электрический ток. Мы же можем использовать его энергию.

Каким образом? Для этого нам нужен потребитель или приемник электрической энергии. Так называют все электрические приборы, которые мы используем, начиная от простых лампочек и фонариков, заканчивая компьютерами, электродвигателями, различной бытовой техникой.

Источник тока и его потребитель необходимо соединить друг с другом проводами. По ним ток от источника будет достигать потребителя.

Обозначения частей электрической цепи

Электрические цепи принято изображать с помощью специальных схем. На них все элементы обозначаются специальными условными знаками.

На рисунке 1 изображены такие знаки для источников тока и их систем, таких потребителей тока, как лампа и электрический звонок.

Рисунок 1. Условные обозначения, применяемые на схемах электрической цепи

Также на рисунке 1 изображен условный знак для ключа. Его (а также рубильники, кнопки и различные выключатели) используют для того, чтобы включать или выключать приемники электрической энергии. Такие устройства называют замыкающими или размыкающими устройствами (рисунок 2).

Рисунок 2. Замыкающее устройство (ключ)

В ходе изучения материала данного раздела вы будете знакомиться с различными новыми устройствами, которые используют в электричестве. При этом для каждого так же будет специальный условный знак. Так, вы познакомитесь с реостатами, конденсаторами, электрическими лампами и предохранителями.

Схема простейшей электрической цепи

Итак, самый простой вариант электрической цепи изображен на рисунке 3.

Рисунок 3. Схема простейшей электрической цепи

Из каких частей она состоит?

  1. Источник тока
  2. Приемник тока
  3. Замыкающее устройство
  4. Соединяющие провода

В данном случае источником тока является гальванический элемент или аккумулятор, приемником — лампочка, замыкающим устройством — ключ. Все эти элементы соединены между собой проводами.

Замкнутость электрической цепи

Чтобы в цепи был ток, она должна быть замкнутой.

Что это означает? Цепь должна состоять только из проводников электричества.

Если в каком-то месте соединительный провод будет поврежден или оборван, то тока в цепи не будет. Именно на этом основывается действие замыкающих устройств.

Упражнения

Упражнение №1

Начертите схему цепи, содержащей один гальванический элемент и два звонка, каждый из которых можно включать отдельно.

Что будет отвечать в цепи за включение звонка? Ключ. А так как у нас два звонка и каждый нужно включать независимо от другого, то и ключа должно быть два (рисунок 4).

Рисунок 4. Схема электрический цепи с двумя звонками, каждый из которых можно включать отдельно

Обратите внимание на расположение звонков. Если мы соединим их просто один друг за другом, это будет неверным вариантом решения. Ведь если тогда выключим один звонок, он будет являться для второго своеобразным «оборванным проводом», и второй звонок работать не будет. 

Упражнение №2

Придумайте схему соединения гальванического элемента, звонка и двух кнопок, расположенных так, чтобы можно было позвонить из двух разных мест.

Чтобы звонить из двух разных мест мы можем разместить кнопки, как показано на рисунке 5.

Рисунок 5. Схема электрической цепи со звонком и двумя кнопками

Второй ключ (кнопку) можно разместить и с другой стороны цепи похожим способом.

Упражнение №3

На рисунке 6 дана схема соединения лампы и двух переключателей. Рассмотрите схему и подумайте, где можно применить такую проводку.

Рисунок 6. Схема электрической цепи с лампой и двумя переключателями

Обратите внимание, таким способом изображают ключипереключатели, связанные между собой. Т.е. при замыкании одного замыкается и другой, и наоборот.

Такую проводку удобно использовать в больших помещениях. Например, заходя в длинный коридор, вы включаете свет рядом с дверью. Идете в другой конец коридора до другого помещения, и нужно выключить за собой свет. Рядом с вами находится вторая кнопка. Нажав на нее, вы выключаете свет.

Также можно использовать такой вариант электрической цепи, если включать/выключать свет необходимо разным людям из разных мест помещения.

Упражнение №4

Нарисуйте схему цепи карманного фонаря (рисунок 7) и назовите части этой цепи. Какие элементы фонаря отмечены цифрами?

Рисунок 7. Устройство карманного фонаря

На рисунке 6 под цифрой 1 обозначены два источника тока (гальванических элемента или аккумулятора). Цифрой 2 обозначена лампа, а цифрой 3 — кнопка включения/выключения (замыкающее устройство).

Нарисуем схему цепи такого фонаря (рисунок 8).

Рисунок 8. Схема электрической цепи карманного фонаря

На схеме у нас расположены все вышеперечисленные элементы, соединенные между собой проводами.

Параметры и элементы электрической
цепи

Параметрами электрической цепи называется
величина, связывающая ток и напряжение
на конкретном участке цепи (r –
сопротивлением, L – индуктивностью, C
– ёмкостью).

Элементами электрической цепи называют
отдельные устройства входящие в
электрическую цепь и выполняющие в ней
определённую функцию. Пример отдельных
элементов и простой схемы электрической
цепи:

Рис.2

Схемы электрических цепей

При конструировании, монтаже и
работе электрических установок
(электрооборудования) нельзя обойтись
без электрических схем. Электрические
схемы по своему назначению различаются
на несколько типов: структурные,
функциональные, принципиальные,
монтажные, однолинейные, и др.

Принципиальная схема даёт полное
представление о работе электроустановки,
полный состав элементов и связи между
ними.

Схема электрической цепи – это
графическое представление изображения
электрической цепи, которая содержит
условные обозначения элементов и
соединение этих элементов. Условные
обозначение в электрических схемах
установлены стандартами системы ЕСКД.
Различают последовательное и параллельное
соединение элементов в схемах и
электрических цепях. Сложные электрические
схемы образуются в результате включения
групп элементов соединенных между собой
последовательно или параллельно (см.
на рис.).

Рис.3

3 Исследование электрических цепей с использованием законов Кирхгофа

Этот метод наиболее универсален и
применяется для расчета любых цепей.
при расчете этим методом первоначально
определяются токи в ветвях, а затем
напряжения на всех элементах. токи
находятся из уравнений, полученных с
помощью законов кирхгофа. так как в
каждой ветви цепи протекает свой ток,
то число исходных уравнений должно
равняться числу ветвей цепи. число
ветвей принято обозначать через n.
часть этих уравнений записываются по
первому закону кирхгофа, а часть – по
второму закону кирхгофа. все полученные
уравнения должны быть независимыми.
это значит, чтобы не было таких уравнений,
которые могут быть получены путем
перестановок членов в уже имеющемся
уравнении или путем арифметических
действий между исходными уравнениями.
при составлении уравнений используются
понятия независимых и зависимых узлов
и контуров. рассмотрим эти понятия.

независимым узлом называется
узел, в который входит хотя бы одна
ветвь, не входящая в другие узлы. если
число узлов обозначим через к, то
число независимых узлов равно (к–1).
на схеме (рис. 1.16) из двух узлов только
один независим.

независимым контуром называется
контур, который отличается от других
контуров хотя бы одной ветвью, не входящей
в другие контура. в противном случае
такой контур называется зависимым.

если число ветвей цепи равно n, то
число независимых контуров равно [n
(к–1)].

в схеме (рис. 1.16) всего три контура,
но только два независимых контура, а
третий – зависим. выделять независимые
контура можно произвольно, т. е. в
качестве независимых контуров можно
выбрать при первом расчете одни, а при
втором расчете (повторном) – другие,
которые раньше были зависимыми. результаты
расчета будут одинаковыми.

если по первому закону кирхгофа составить
уравнения для (к–1) независимых
узлов, а по второму закону кирхгофа
составить уравнения для [n – (к–1)]
независимых контуров, то общее число
уравнений будет равно:

(Группа 8
K–1)
+ [n – (K–1)]
= n.

Это означает, что для расчёта имеется
необходимое число уравнений.

Последовательность расчёта:

1. Расставляем условно – положительные
направления токов и напряжений.

2. Определяем число неизвестных токов,
которое равно числу ветвей (n).

3. Выбираем независимые узлы и независимые
контура.

4. С помощью первого закона Кирхгофа
составляем (К–1) уравнений для
независимых узлов.

5. С помощью второго закона Кирхгофа
составляем [n – (К–1)] уравнений
для независимых контуров. При этом
напряжения на элементах выражаются
через токи, протекающие через них.

6. Решаем составленную систему уравнений
и определяем токи в ветвях. При получении
отрицательных значений для некоторых
токов, необходимо их направления в схеме
изменить на противоположные, которые
и являются истинными.

7. Определяем падения напряжений на всех
элементах схемы.

Рассмотрим последовательность расчета
на примере схемы, приведенной на
рис. 1.16. Учитывая направление источника
E, расставляем условно–положительные
направления токов и напряжений. В схеме
три ветви, поэтому нам необходимо
составить три уравнения. В схеме два
узла, следовательно, из них только один
независимый. В качестве независимого
узла выберем узел 1. Для него запишем
уравнение по первому закону Кирхгофа:

I1 = I2
+ I3.

Д
алее
необходимо составить два уравнения по
второму закону Кирхгофа. В схеме всего
три контура, но независимых только два.
В качестве независимых контуров выберем
контур из элементов ER1R2
и контур из элементов R2R3.
Обходя эти два контура по направлению
движения часовой стрелки, записываем
следующие два уравнения:

E = I1,R1
+ I2R2
,

0 = – I2R2
+ I3R3
.

Решаем полученные три уравнения и
определяем токи в ветвях. Затем через
найденные токи по закону Ома определяем
падения напряжений на всех элементах
цепи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

  • § 1  Электрическая цепь, ее составные части
  • § 2  Схема электрической цепи
  • § 3  Простая электрическая цепь. Пример
  • § 4  Виды соединения элементов цепи
  • § 5  Краткие итоги урока

§ 1  Электрическая цепь, ее составные части

В связи с обширным использованием электричества возникает необходимость более детального изучения электрического тока. Совокупность устройств, по которым течет электрический ток, называется электрической цепью. Цепи бывают простые (как при демонстрации) и сложные (электропроводка), но во всех можно выделить составные части.

Электрическая цепь– это совокупность соединенных между собой проводов (т.е. такие элементы, которые способны проводить электрический ток и обладают большим количеством свободных заряженных частиц):

https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcQOM92A_wQE79Z6X_-eAXkE1_CNuV24wM4EvadA_dHcF_zROmdnjg

1.Источника тока (батарейка, генератор, солнечные батареи, термоэлемент).https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcQOM92A_wQE79Z6X_-eAXkE1_CNuV24wM4EvadA_dHcF_zROmdnjg

2.Потребителя электрического тока (лампа накаливания, фонарик, электродвигатели, электроприборы).

3.Замыкающего устройства (ключ, выключатель, тумблер, рубильник).

https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTXW7XXUDVCRg_czWZQjcbgeJyHiASOc9Yc08O-qt1-ZpYuvJVOYAhttps://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcTuxH2dC2tSRmSZn-vL4fIzu-e37-zlHyg2K35Xx0dKAcfTcCy3https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcQLeIM1D3NL_woDZa1w_gCTtevi6Eu2hnmTtQn0F9nSLpHJ-2-j

§ 2  Схема электрической цепи

Вышла из строя швейная машина или любой электроприбор, необходима информация, из чего состоит электрическая цепь. Для этого придумали элементы цепи изображать графически с помощью условных обозначений. Чтобы не было путаницы, каждый элемент имеет свое обозначение.

Таким образом, схема электрической цепи– это чертеж, на котором изображают соединения всех элементов данной электрической цепи. Каждый элемент цепи на схеме обозначают определенным условным знаком. Обратите внимание, как выглядят графические обозначения элементов цепи, где изображены источники тока, потребители и соединительные провода, которые являются составными элементами простой электрической цепи.

Таблица графических обозначений элементов

http://fshla72.ucoz.ru/KAPTA.gif

Как видно из рисунка:

Гальванический элемент: длинной полоской обозначают положительный полюс источника, а короткой – отрицательный. 

Ключ — элемент цепи для ее замыкания и размыкания.

Соединяющиеся провода. Место соединения проводов обозначается жирной точкой, которую еще зачастую именуют узлом.

Клеммы. К подобному элементу на схеме можно подключать какой-либо электроприбор.

Резистор. Этот элемент цепи имеет большое сопротивление.

Плавкий предохранитель. Прибор, который обеспечивает безопасность работы электрической цепи.

§ 3  Простая электрическая цепь. Пример

Рассмотрим простую электрическую цепь. Если соединить проводами источник тока – батарейку, электрическую лампочку и замыкающее устройство – ключ, то получится замкнутая цепь, состоящая из элементов.

Каждый раз, нажимая на ключ, замыкаем и размыкаем цепь, при этом лампочка начинает светиться и угасать. Как собрать такую цепь?

https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcQYW0CVUg4W_EC6cJsdQhyzX8gzmSQbv5WlVhSAY9VFTCXiQ88zYw

Собирать цепь удобно в следующей последовательности: сначала подключим лампочку к одному из полюсов источника тока (батарейки), затем второй вывод на лампочке подключаем к разомкнутому предварительно ключу (выключателю) и, чтобы замкнуть цепь, второй контакт ключа соединяем со свободным полюсом источника тока. Помним, что ток внутри проводника будет двигаться от плюса к минусу.

Теперь изобразим ее схему с учетом обозначений элементов. На схеме обозначены: лампа накаливания, замыкающее устройство, источник постоянного тока, соединительные провода.

§ 4  Виды соединения элементов цепи

http://files.school-collection.edu.ru/dlrstore/b6ca6b52-3631-4d08-f81b-51ed1b3238ec/3036.gif

Чтобы правильно распределить нагрузку на электрическую цепь, важно знать виды соединения элементов цепи:

Последовательное соединение– это соединение, при котором конец одного потребителя является началом следующего. Составим схему цепи с двумя лампочками и источником тока. Рис. А.

Параллельное соединение– это соединение, при котором начало всех потребителей имеет одну общую точку, а концы имеют другую общую точку. Составим схему цепи с двумя лампочками и источником тока. Рис. Б.

§ 5  Краткие итоги урока

Таким образом, мы познакомились с понятием электрическая цепь. Выяснили, что каждому элементу цепи ставится графический элемент. Собрали простую цепь из трех элементов: источника тока, потребителя, замыкающего устройства.

Список использованной литературы:

  1. Физика. 8 класс: Учебник для общеобразовательных учреждений/А.В. Перышкин. – М.: Дрофа, 2010.
  2. Физика 7-9 Учебник. И.В. Кривченко.
  3. Физика Справочник. О.Ф. Кабардин. – М.: АСТ-ПРЕСС, 2010.

Использованные изображения:

Понравилась статья? Поделить с друзьями:
  • Как можно найти электронные часы
  • Как найти отопление в полу в квартире
  • 401 unauthorized access is denied due to invalid credentials росимущество как исправить
  • Как исправить интернет долго грузиться
  • Как найти план помещения по кадастровому номеру