Как составить систему неравенств по графику

Решение систем уравнений неравенств с помощью графиков

Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться , такую группу уравнений мы называем системой.

Объединяем уравнения в систему с помощью фигурной скобки:

Графический метод

Недаром ответ записывается так же, как координаты какой-нибудь точки.

Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.

Например, построим графики уравнений из предыдущего примера.

Пример 1

Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):

Для того чтобы графически решить систему уравнений с двумя переменными нужно:

1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);

Разберем это задание на примере.

Решить графически систему линейных уравнений.

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Пример 2

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Пример 3

Графическое решение системы

Пример 4

Решить графическим способом систему уравнений.

Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.

Прямую y=2x-3 провели через точки (0; -3) и (2; 1).

Прямую y=x+1 провели через точки (0; 1) и (2; 3).

Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.

Пример 5

Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.

Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).

Наши прямые пересеклись в точке В(-2; 5).

ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.

Видео YouTube

Системы неравенств с двумя переменными

п.1. Алгоритм графического решения системы неравенств с двумя переменными

Найти на координатной плоскости множество решений системы неравенств: $$ left< begin < l >mathrm & \ mathrm & endright. $$ Множество решений – сегмент круга, отсекаемый отрезком AB. Сам отрезок в множество решений не входит.

п.2. Примеры

Пример 1. Найдите на координатной плоскости множество решений системы неравенств.

Выразим y(x) в явном виде

Строим прямые, заштриховываем области над ними, находим пересечение.

Выразим y(x) в явном виде

Заштриховываем область под первой параболой и над второй параболой.

Выразим y(x) в явном виде

Строим гиперболу и прямую. Заштриховываем области под гиперболой и над прямой.

Заштриховываем области вне первой окружности и внутри второй.

Находим пересечение – кольцо.

Пример 2. Задайте системой неравенств треугольник с вершинами
A(2; 3), B(4; 4), C(3; 0)
Уравнения прямых, на которых лежат стороны треугольника:

Решение систем уравнений

Содержание:

Графический метод решения систем уравнений

Вспоминаем то, что знаем

Что такое график уравнения с двумя неизвестными?

Что представляет собой график линейного уравнения с двумя неизвестными?

Решите графическим методом систему линейных уравнений:

Открываем новые знания

Решите графическим методом систему уравнений:

Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту

В курсе алгебры 7-го класса вы изучали системы линейных уравнений.

Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Начнём с графического метода

Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений.

Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков.

Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему.

Возможно вам будут полезны данные страницы:

Примеры с решением

Пример 1:

Решим систему уравнений:

Построим графики уравнений

Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0).

Парабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2).

Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы.

Ответ: (2; 5) и (-1; 2).

Пример 2:

Выясним количество решений системы уравнений:

Построим графики уравнений

Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3.

Окружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем.

Ответ: Два решения.

Решение систем уравнений методом подстановки

Вспоминаем то, что знаем

Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки.

Решите систему линейных уравнений методом подстановки:

Открываем новые знания

Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать?

Решите систему уравнений методом подстановки:

Как решить систему двух уравнений с двумя неизвестными методом подстановки?

Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки?

Ранее вы решали системы уравнений первой степени.

Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки.

Пример 3:

Пусть (х; у) — решение системы.

Выразим х из уравнения

Подставим найденное выражение в первое уравнение:

Решим полученное уравнение:

Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой.

Чуть сложнее дело обстоит в следующем примере.

Пример 4:

Решим систему уравнений:

Пусть (х; у) — решение системы.

Выразим у из линейного уравнения:

Подставим найденное выражение в первое уравнение системы:

После преобразований получим:

Ответ: (-0,5; 0,5), (4; 5).

Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом».

Пример 5:

Подставим во второе уравнение тогда его можно переписать в виде:

Теперь выразим х через у из первого уравнения системы:

Подставим в полученное ранее уравнение ху = 2:

Корни этого уравнения:

.

Иногда решить систему можно, используя метод алгебраического сложения.

Пример 6:

Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим:

.

Корни этого уравнения:

Подставим найденные значения в первое уравнение. Рассмотрим два случая:

1)

2) , получим уравнение корней нет.

Иногда упростить решение удаётся, используя различные варианты замены неизвестных.

Пример 7:

Решим систему уравнений:

Обозначим

Второе уравнение системы примет вид:

Решим полученное уравнение. Получим, умножая обе части на 2а:

Осталось решить методом подстановки линейные системы:

Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями

Напомним, что при решении задач обычно действуют следующим образом:

1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений;

2) решают полученную систему;

3) отвечают на вопрос задачи.

Пример 8:

Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника.

Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — см.

Воспользуемся теоремой Пифагора:

Решим систему. Выразим из первого уравнения у:

Подставим во второе уравнение:

Корни уравнения:

Найдём

С учётом условия получим ответ: длина — 12 см, ширина — 5 см.

Пример 9:

Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа.

Пусть х — первое число, у — второе число.

Тогда: — произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число.

Вычтем из второго уравнения первое. Получим:

Дальше будем решать методом подстановки:

Подставим в первое уравнение выражение для у:

Корни уравнения: (не подходит по смыслу задачи).

Найдём у из уравнения:

Получим ответ: 16 и 7.

Симметричные системы уравнений с двумя неизвестными

Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид , то есть не меняется. А вот уравнение не симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид , то есть меняется.

Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное.

ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось.

Например, если в системе уравнений

переставить местами неизвестные х и у, то получим систему:

Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось.

Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных:

Сначала научитесь выражать через неизвестные выражения:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

источники:

http://reshator.com/sprav/algebra/9-klass/sistemy-neravenstv-s-dvumya-peremennymi/

http://natalibrilenova.ru/reshenie-sistem-uravnenij/

Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Неравенства

Что такое неравенство? Если взять любое уравнение и знак     =     поменять на любой из знаков неравенства:

>    больше,

≥    больше или равно,

<    меньше,

≤    меньше или равно,

то получится неравенство.

Линейные неравенства

Линейные неравенства – это неравенства вида:

a x < b a x ≤ b a x > b a x ≥ b

где a и b – любые числа, причем a ≠ 0, x – переменная.

Примеры линейных неравенств:

3 x < 5 x − 2 ≥ 0 7 − 5 x < 1 x ≤ 0

Решить линейное неравенство – получить выражение вида:

x < c x ≤ c x > c x ≥ c

где c – некоторое число.

Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.

  • Если знак неравенства строгий > , < , точка на оси будет выколотой (не закрашенной), а скобка, обнимающая точку – круглой.

Смысл выколотой точки в том, что сама точка в ответ не входит.

  • Если знак неравенства нестрогий ≥ , ≤ , точка на оси будет жирной (закрашенной), а скобка, обнимающая точку – квадратной.

Смысл жирной точки в том, что сама точка входит в ответ.

  • Скобка, которая обнимает знак бесконечности всегда круглая – не можем мы объять необъятное, как бы нам этого ни хотелось.

Таблица числовых промежутков

Неравенство Графическое решение Форма записи ответа
x < c

x<c

x ∈ ( − ∞ ; c )
x ≤ c

x≤c

x ∈ ( − ∞ ; c ]
x > c

x>c

x ∈ ( c ; + ∞ )
x ≥ c

x≥c

x ∈ [ c ; + ∞ )

Алгоритм решения линейного неравенства

  1. Раскрыть скобки (если они есть), перенести иксы в левую часть, числа в правую и привести подобные слагаемые. Должно получиться неравенство одного из следующих видов:

a x < b a x ≤ b a x > b a x ≥ b

  1. Пусть получилось неравенство вида a x ≤ b. Для того, чтобы его решить, необходимо поделить левую и правую часть неравенства на коэффициент a.
  • Если a > 0 то неравенство приобретает вид x ≤ b a .
  • Если a < 0 , то знак неравенства меняется на противоположный, неравенство приобретает вид x ≥ b a .
  1. Записываем ответ в соответствии с правилами, указанными в таблице числовых промежутков.

Примеры решения линейных неравенств:

№1. Решить неравенство    3 ( 2 − x ) > 18.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 − 3 x > 18

− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )

Делим обе части неравенства на (-3) – коэффициент, который стоит перед  x. Так как    − 3 < 0 ,   знак неравенства поменяется на противоположный. x < 12 − 3 ⇒ x < − 4 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ ( − ∞ ; − 4 )

№2. Решить неравество    6 x + 4 ≥ 3 ( x + 1 ) − 14.

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x + 4 ≥ 3 x + 3 − 14

6 x − 3 x ≥ 3 − 14 − 4

3 x ≥ − 15         |     ÷ 3 Делим обе части неравенства на (3) – коэффициент, который стоит перед  x. Так как 3 > 0,   знак неравенства после деления меняться не будет.

x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).

Ответ: x ∈ [ − 5 ;     + ∞ )

Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).

Примеры:

№1. Решить неравенство    6 x − 1 ≤ 2 ( 3 x − 0,5 ).

Решение:

Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

6 x − 1 ≤ 6 x − 1

6 x − 6 x ≤ − 1 + 1

0 ≤ 0

Получили верное неравенство, которое не зависит от переменной x. Возникает вопрос, какие значения может принимать переменная x, чтобы неравенство выполнялось? Любые! Какое бы значение мы ни взяли, оно все равно сократится и результат неравенства будет верным. Рассмотрим три варианта записи ответа.

    Ответ:

    1. x – любое число
    2. x ∈ ( − ∞ ; + ∞ )
    3. x ∈ ℝ

    №2. Решить неравенство    x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).

    Решение:

    Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.

    x + 6 − 9 x > − 8 x + 48

    − 8 x + 8 x > 48 − 6

    0 > 42

    Получили неверное равенство, которое не зависит от переменной x. Какие бы значения мы ни подставляли в исходное неравенство, результат окажется одним и тем же – неверное неравенство. Ни при каких значениях x исходное неравенство не станет верным. Данное неравенство не имеет решений. Запишем ответ.

    Ответ: x ∈ ∅

    Квадратные неравенства

    Квадратные неравенства – это неравенства вида: a x 2 + b x + c > 0 a x 2 + b x + c ≥ 0 a x 2 + b x + c < 0 a x 2 + b x + c ≤ 0 где a, b, c — некоторые числа, причем   a ≠ 0, x — переменная.

    Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.

    Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).

    Алгоритм решения квадратного неравенства методом интервалов

    1. Решить уравнение a x 2 + b x + c = 0 и найти корни x 1 и x 2 .
    1. Отметить на числовой прямой корни трехчлена.

    Если знак неравенства строгий > , < , точки будут выколотые.

    Решение квадратного неравенства, знак неравенства строгий

    Если знак неравенства нестрогий ≥ , ≤ , точки будут жирные (заштрихованный).

    Решение квадратного неравенства, знак неравенства нестрогий

    1. Расставить знаки на интервалах. Для этого надо выбрать точку из любого промежутка (в примере взята точка A) и подставить её значение в выражение a x 2 + b x + c вместо x.

    Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Решение квадратного неравенства, знаки на интервалах +-+

    Точки жирные, если знак неравенства нестрогий.

    Решение квадратного неравенства, знаки на интервалах +-+

    Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.

    Точки выколотые, если знак неравенства строгий.

    Решение квадратного неравенства, знаки на интервалах -+-

    Точки жирные, если знак неравенства нестрогий.

    Решение квадратного неравенства, знаки на интервалах -+-

    1. Выбрать подходящие интервалы (или интервал).

    Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.

    Если знак неравенства < или ≤ в ответ выбираем интервалы со знаком -.

    1. Записать ответ.

    Примеры решения квадратных неравенств:

    №1. Решить неравенство    x 2 ≥ x + 12.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    x 2 ≥ x + 12

    x 2 − x − 12 ≥ 0

    x 2 − x − 12 = 0

    a = 1, b = − 1, c = − 12

    D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 1 ) ± 49 2 ⋅ 1 = 1 ± 7 2 = [ 1 + 7 2 = 8 2 = 4 1 − 7 2 = − 6 2 = − 3

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 6. Подставляем эту точку в исходное выражение:

    x 2 − x − 1 = 6 2 − 6 − 1 = 29 > 0

    Это значит, что знак на интервале, в котором лежит точка 6 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2≥x+12

    В ответ пойдут два интервала. В математике для объединения нескольких интервалов используется знак объединения: ∪ .

    Точки -3 и 4 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ ( − ∞ ; − 3 ] ∪ [ 4 ; + ∞ )

    №2. Решить неравенство    − 3 x − 2 ≥ x 2 .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    − 3 x − 2 ≥ x 2

    − x 2 − 3 x − 2 ≥ 0

    − x 2 − 3 x − 2 = 0

    a = − 1, b = − 3, c = − 2

    D = b 2 − 4 a c = ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ ( − 2 ) = 9 − 8 = 1

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 1 2 ⋅ ( − 1 ) = 3 ± 1 − 2 = [ 3 + 1 − 2 = 4 − 2 = − 2 3 − 1 − 2 = 2 − 2 = − 1

    x 1 = − 2, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение:

    − x 2 − 3 x − 2 = − ( 0 ) 2 − 3 ⋅ 0 − 2 = − 2 < 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет   − .

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства -3x-2≥x^2

    Поскольку знак неравенства   ≥ , выбираем в ответ интервал со знаком   +.

    Точки -2 и -1 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ [ − 2 ; − 1 ]

    №3. Решить неравенство   4 < x 2 + 3 x .

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    4 < x 2 + 3 x

    − x 2 − 3 x + 4 < 0

    − x 2 − 3 x + 4 = 0

    a = − 1, b = − 3, c = 4

    D = b 2 − 4 a c =   ( − 3 ) 2 − 4 ⋅ ( − 1 ) ⋅ 4 = 9 + 16 = 25

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 3 ) ± 25 2 ⋅ ( − 1 ) = 3 ± 5 − 2 = [ 3 + 5 − 2 = 8 − 2 = − 4 3 − 5 − 2 = − 2 − 2 = 1

    x 1 = − 4, x 2 = 1

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение:

    − x 2 − 3 x + 4 = − ( 2 ) 2 − 3 ⋅ 2 + 4 = − 6 < 0

    Это значит, что знак на интервале, в котором лежит точка 2, будет   -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства 4<x^2+3x

    Поскольку знак неравенства   < ,  выбираем в ответ интервалы со знаком   − .

    Точки -4 и 1 будут в круглых скобках, так как они выколотые.

    Ответ:   x ∈ ( − ∞ ; − 4 ) ∪ ( 1 ; + ∞ )

    №4. Решить неравенство   x 2 − 5 x < 6.

    Решение:

    Приводим неравенство к виду a x 2 + b x + c   ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.

    x 2 − 5 x < 6

    x 2 − 5 x − 6 < 0

    x 2 − 5 x − 6 = 0

    a = 1, b = − 5, c = − 6

    D = b 2 − 4 a c = ( − 5 ) 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 25 + 25 = 49

    D > 0 ⇒ будет два различных действительных корня

    x 1,2 = − b ± D 2 a = − ( − 5 ) ± 49 2 ⋅ 1 = 5 ± 7 2 = [ 5 + 7 2 = 12 2 = 6 5 − 7 2 = − 2 2 = − 1

    x 1 = 6, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 10. Подставляем эту точку в исходное выражение:

    x 2 − 5 x − 6 = 10 2 − 5 ⋅ 10 − 6 = 100 − 50 − 6 =   44 > 0

    Это значит, что знак на интервале, в котором лежит точка 10 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2-5x<6

    Поскольку знак неравенства   < , выбираем в ответ интервал со знаком   -.

    Точки -1 и 6 будут в круглых скобках, так как они выколотые

    Ответ:   x ∈ ( − 1 ; 6 )

    №5. Решить неравенство   x 2 < 4.

    Решение:

    Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.

    x 2 < 4

    x 2 − 4 < 0

    x 2 − 4 = 0

    ( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0   [ x = 2 x = − 2

    x 1 = 2, x 2 = − 2

    Наносим точки на ось x. Так как знак неравенства строгий, точки будут выколотыми. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 3. Подставляем эту точку в исходное выражение:

    x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0

    Это значит, что знак на интервале, в котором лежит точка 3 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2<4

    Поскольку знак неравенства   < ,   выбираем в ответ интервал со знаком   − .

    Точки -2 и 2 будут в круглых скобках, так как они выколотые.

    Ответ:   x ∈ ( − 2 ; 2 )

    №6. Решить неравенство   x 2 + x ≥ 0.

    Решение:

    Выносим общий множитель за скобку, находим корни уравнения   x 2 + x = 0.

    x 2 + x ≥ 0

    x 2 + x = 0

    x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1

    x 1 = 0, x 2 = − 1

    Наносим точки на ось x. Так как знак неравенства нестрогий, точки будут жирными. Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 1. Подставляем эту точку в исходное выражение:

    x 2 + x = 1 2 + 1 = 2 > 0

    Это значит, что знак на интервале, в котором лежит точка 1 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    Решение квадратного неравенства x^2+x≥0

    Поскольку знак неравенства   ≥ ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Точки -1 и 0 будут в квадратных скобках, так как они жирные.

    Ответ:   x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )

    Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.

    Дробно рациональные неравенства

    Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:

    f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).

    Примеры дробно рациональных неравенств:

    x − 1 x + 3 < 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3

    Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.

    Алгоритм решения дробно рациональных неравенств:

    1. Привести неравенство к одному из следующих видов (в зависимости от знака в исходном неравенстве):

    f ( x ) g ( x ) < 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0

    1. Приравнять числитель дроби к нулю   f ( x ) = 0.  Найти нули числителя.
    1. Приравнять знаменатель дроби к нулю   g ( x ) = 0.  Найти нули знаменателя.

    В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.

    1. Нанести нули числителя и нули знаменателя на ось x.

    Вне зависимости от знака неравенства
    при нанесении на ось x нули знаменателя всегда выколотые.

    Если знак неравенства строгий,
    при нанесении на ось x нули числителя выколотые.

    Если знак неравенства нестрогий,
    при нанесении на ось x нули числителя жирные.

    1. Расставить знаки на интервалах.
    1. Выбрать подходящие интервалы и записать ответ.

    Примеры решения дробно рациональных неравенств:

    №1. Решить неравенство   x − 1 x + 3 > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду  f ( x ) g ( x ) > 0.
    1. Приравниваем числитель к нулю  f ( x ) = 0.

    x − 1 = 0

    x = 1 — это ноль числителя. Поскольку знак неравенства строгий, ноль числителя при нанесени на ось x будет выколотым. Запомним это.

    1. Приравниваем знаменатель к нулю  g ( x ) = 0.

    x + 3 = 0

    x = − 3 — это ноль знаменателя. При нанесении на ось x точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение f ( x ) g ( x ) : x − 1 x + 3   =   2 − 1 2 + 3 = 1 5 > 0,

    Это значит, что знак на интервале, в котором лежит точка 2 будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   > ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Точки -3 и 1 будут в круглых скобках, так как обе они выколотые.

    Решение дробно рационального неравенства (x-1)/(x+3)<0

    Ответ:   x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )

    №2. Решить неравенство   3 ( x + 8 ) ≤ 5.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Привести неравенство к виду  f ( x ) g ( x ) ≤ 0.

    3 ( x + 8 ) ≤ 5

    3 ( x + 8 ) − 5 x + 8 ≤ 0

    3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 ( x + 8 ) x + 8 ≤ 0

    3 − 5 x − 40 x + 8 ≤ 0

    − 5 x − 37 x + 8 ≤ 0

    1. Приравнять числитель к нулю  f ( x ) = 0.

    − 5 x − 37 = 0

    − 5 x = 37

    x = − 37 5 = − 37 5 = − 7,4

    x = − 7,4 — ноль числителя. Поскольку знак неравенства нестрогий, при нанесении этой точки на ось x точка будет жирной.

    1. Приравнять знаменатель к нулю  g ( x ) = 0.

    x + 8 = 0

    x = − 8 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 0. Подставляем эту точку в исходное выражение  f ( x ) g ( x ) :

    − 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 < 0

    Это значит, что знак на интервале, в котором лежит точка 0 будет   -.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   ≤ ,  выбираем в ответ интервалы со знаком   -.

    В ответ пойдут два интервала. Точка -8 будет в круглой скобке, так как она выколотая, точка -7,4 будет в квадратных скобках, так как она жирная.

    Решение дробно рационального неравенства 3/(x+8)≤5

    Ответ:   x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )

    №3. Решить неравенство   x 2 − 1 x > 0.

    Решение:

    Будем решать данное неравенство в соответствии с алгоритмом.

    1. Первый шаг алгоритма уже выполнен. Неравенство приведено к виду  f ( x ) g ( x ) > 0.
    1. Приравнять числитель к нулю  f ( x ) = 0.

    x 2 − 1 = 0

    ( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1

    x 1 = 1, x 2 = − 1  — нули числителя. Поскольку знак неравенства строгий, при нанесении этих точек на ось x точки будут выколотыми.

    1. Приравнять знаменатель к нулю g ( x ) = 0.

    x = 0 — это ноль знаменателя. При нанесении на ось x, точка будет всегда выколотой (вне зависимости от знака неравенства).

    1. Наносим нули числителя и нули знаменателя на ось x.

    При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.

    1. Расставляем знаки на интервалах.

    Выбираем точку из любого интервала для проверки знака на интервале. Пусть это будет точка 2. Подставляем эту точку в исходное выражение  f ( x ) g ( x ) :

    x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет   +.

    Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.

    1. Выбираем подходящие интервалы и записываем ответ.

    Поскольку знак неравенства   > ,  выбираем в ответ интервалы со знаком   +.

    В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.

    Решение дробно рационального неравенства (x^2-1)/x>0

    Ответ:   x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )

    Системы неравенств

    Сперва давайте разберёмся, чем отличается знак { системы от знака [ совокупности. Система неравенств ищет пересечение решений, то есть те точки, которые являются решением и для первого неравенства системы, и для второго. Проще говоря, решить систему неравенств — это найти пересечение решений всех неравенств этой системы друг с другом. Совокупность неравенств ищет объединение решений, то есть те точки, которые являются решением либо для первого неравенства, либо для второго, либо одновременно и для первого неравенства, и для второго. Решить совокупность неравенств означает объединить решения обоих неравенств этой совокупности. Более подробно об этом смотрите короткий видео-урок.

    Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.

    Пример системы неравенств:

    { x + 4 > 0 2 x + 3 ≤ x 2

    Алгоритм решения системы неравенств

    1. Решить первое неравенство системы, изобразить его графически на оси x.
    1. Решить второе неравенство системы, изобразить его графически на оси x.
    1. Нанести решения первого и второго неравенств на ось x.
    1. Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

    Примеры решений систем неравенств:

    №1. Решить систему неравенств   { 2 x − 3 ≤ 5 7 − 3 x ≤ 1

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x − 3 ≤ 5  

    2 x ≤ 8 | ÷ 2 , поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x ≤ 4 ;

    Графическая интерпретация:

    Решение неравенства 2x-3≤5

    Точка 4 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    7 − 3 x ≤ 1

    − 3 x ≤ 1 − 7

    − 3 x ≤ − 6 | ÷ ( − 3 ),  поскольку  − 3 < 0,  знак неравенства после деления меняется на противоположный.

    x ≥ 2

    Графическая интерпретация решения:

    Решение неравенства 7-3x<=1

    Точка 2 на графике жирная, так как знак неравенства нестрогий.

    1. Наносим оба решения на ось x.

    Решение системы неравенств 2x-3≤=5; 7-3x≤=1

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на отрезке от 2 до 4. Точки 2 и 4 в ответе буду в квадратных скобках, так как обе они жирные.

    Ответ:   x ∈ [ 2 ; 4 ]

    №2. Решить систему неравенств   { 2 x − 1 ≤ 5 1 < − 3 x − 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    2 x − 1 ≤ 5

    2 x ≤ 6 | ÷ 2 , поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x ≤ 3

    Графическая интерпретация:

    Решение неравенства 2x-1≤5

    Точка 3 на графике жирная, так как знак неравенства нестрогий.

    1. Решаем второе неравенство системы.

    1 < − 3 x − 2

    3 x < − 1 − 2

    3 x < − 3 | ÷ 3 ,  поскольку  3 > 0,  знак неравенства после деления сохраняется.

    x < − 1

    Графическая интерпретация решения:

    Решение неравенства 1<-3x-2

    Точка -1 на графике выколотая, так как знак неравенства строгий.

    1. Наносим оба решения на ось x.

    Решение системы неравенств 2x-1≤5; 1<-3x-2

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается на самом левом участке. Точка -1 будет в ответе в круглых скобках, так как она выколотая.

    Ответ:   x ∈ ( − ∞ ; − 1 )

    №3. Решить систему неравенств   { 3 x + 1 ≤ 2 x x − 7 > 5 − x

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    3 x + 1 ≤ 2 x

    3 x − 2 x ≤ − 1

    x ≤ − 1

    Графическая интерпретация решения:

    Решение неравенства 3x+1≤2x-1

    1. Решаем второе неравенство системы

    x − 7 > 5 − x

    x + x > 5 + 7

    2 x > 12 |   ÷ 2 ,  поскольку  2 > 0,  знак неравенства после деления сохраняется.

    x > 6

    Графическая интерпретация решения:

    Решение неравенства x-7>5-x

    1. Наносим оба решения на ось x.

    Решение системы неравенств 3x+1≤2x-1; x-7>5-x

    1. Выбираем подходящие участки и записываем ответ.

    Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.

    Ответ:   x ∈ ∅

    №4. Решить систему неравенств   { x + 4 > 0 2 x + 3 ≤ x 2

    Решение:

    Будем решать данную систему неравенств в соответствии с алгоритмом.

    1. Решаем первое неравенство системы.

    x + 4 > 0

    x > − 4

    Графическая интерпретация решения первого неравенства:

    Решение неравенства x+4>0

    1. Решаем второе неравенство системы

    2 x + 3 ≤ x 2

    − x 2 + 2 x + 3 ≤ 0

    Решаем методом интервалов.

    − x 2 + 2 x + 3 = 0

    a = − 1, b = 2, c = 3

    D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16

    D > 0 — два различных действительных корня.

    x 1,2 = − b ± D 2 a = − 2 ± 16 2 ⋅ ( − 1 ) = − 2 ± 4 − 2 = [ − 2 − 4 − 2 = − 6 − 2 = 3 − 2 + 4 − 2 = 2 − 2 = − 1

    Наносим точки на ось x и расставляем знаки на интервалах. Поскольку знак неравенства нестрогий, обе точки будут заштрихованными.

    Решение квадратного неравенства 2x+3≤x^2

    Графическая интерпретация решения второго неравенства:

    Решение квадратного неравенства 2x+3≤x^2

    1. Наносим оба решения на ось x.

    Решение системы неравенств x+4>0; 2x+3<=x^2

    1. Выбираем подходящие участки и записываем ответ.

    Пересечение решений наблюдается в двух интервалах. Для того, чтобы в ответе объединить два интервала, используется знак объединения  ∪ .

    Точка -4 будет в круглой скобке, так как она выколотая, а точки -1 и 3 в квадратных, так как они жирные.

    Ответ:   x ∈ ( − 4 ; − 1 ] ∪ [ 3 ; + ∞ )

    Скачать домашнее задание к уроку 8.

    Системы неравенств с двумя переменными

    1. Алгоритм графического решения системы неравенств с двумя переменными
    2. Примеры

    п.1. Алгоритм графического решения системы неравенств с двумя переменными

    На входе система: (left{ begin{array}{ l } mathrm{F(x,y) lt 0} & \ mathrm{G(x,y gt 0)} & end{array}right. )
    Шаг 1. Построить на координатной плоскости кривую F(x, y) = 0. Заштриховать область F(x, y) < 0.
    Шаг 2. Построить на координатной плоскости кривую G(x, y) = 0. Заштриховать область G(x, y) > 0.
    Шаг 3. Множество решений данной системы – это пересечение двух заштрихованных областей.
    Системы с другими знаками сравнения (≤, ≥ и т.д.), а также системы с любым количеством неравенств решаются аналогично.

    Например:

    Пример

    Найти на координатной плоскости множество решений системы неравенств: $$ left{ begin{array}{ l } mathrm{x^2+y^2leq 9} & \ mathrm{x+ygt 3} & end{array}right. $$ Множество решений – сегмент круга, отсекаемый отрезком AB. Сам отрезок в множество решений не входит.

    п.2. Примеры

    Пример 1. Найдите на координатной плоскости множество решений системы неравенств.

    a) ( left{ begin{array}{ l } mathrm{x+ygeq 4} & \ mathrm{2x-yleq 2} & end{array}right. )

    Выразим y(x) в явном виде

    ( left{ begin{array}{ l } mathrm{ygeq -x+4} & \ mathrm{ygeq 2x-2} & end{array}right. )

    Строим прямые, заштриховываем области над ними, находим пересечение.

    Пример 1 a)

    б) ( left{ begin{array}{ l } mathrm{y+x^2-6leq 0} & \ mathrm{2y-x^2geq 0} & end{array}right. )

    Выразим y(x) в явном виде

    ( left{ begin{array}{ l } mathrm{yleq -x^2+6} & \ mathrm{ygeq frac{x^2}{2}} & end{array}right. )

    Строим параболы.

    Заштриховываем область под первой параболой и над второй параболой.

    Находим пересечение.

    Пример 1 б)

    в) ( left{ begin{array}{ l } mathrm{y-frac{6}{x}leq 0} & \ mathrm{3x-2ylt 0} & end{array}right. )

    Выразим y(x) в явном виде

    ( left{ begin{array}{ l } mathrm{yleq frac{6}{x}} & \ mathrm{ygt 1,5x} & end{array}right. )

    Строим гиперболу и прямую. Заштриховываем области под гиперболой и над прямой.

    Находим пересечение.

    Пример 1 в)

    г) ( left{ begin{array}{ l } mathrm{x^2+y^2gt 4} & \ mathrm{x^2+y^2leq 9} & end{array}right. )

    Строим окружности.

    Заштриховываем области вне первой окружности и внутри второй.

    Находим пересечение – кольцо.

    Пример 1 г)

    Пример 2. Задайте системой неравенств треугольник с вершинами
    A(2; 3), B(4; 4), C(3; 0)
    Уравнения прямых, на которых лежат стороны треугольника:

    AB

    begin{gather*} mathrm{ frac{x-x_A}{x_B-x_A}=frac{y-y_A}{y_B-y_A}Rightarrowfrac{x-2}{4-2}=frac{y-3}{4-3}Rightarrow x-2=2(y-3) }\ mathrm{ x-2y+4=0} end{gather*}

    BC

    begin{gather*} mathrm{ frac{x-x_B}{x_C-x_B}=frac{y-y_B}{y_C-y_B}Rightarrowfrac{x-4}{3-4}=frac{y-4}{0-4}Rightarrow -4(x-4)=-(y-4) }\ mathrm{ 4x-y-12=0} end{gather*}

    AC

    begin{gather*} mathrm{ frac{x-x_A}{x_C-x_A}=frac{y-y_A}{y_C-y_A}Rightarrowfrac{x-2}{3-2}=frac{y-3}{0-3}Rightarrow -2(x-2)=y-3 }\ mathrm{ 3x+y-9=0} end{gather*}

    Чтобы расставить знаки ≤, ≥, выбираем произвольную точку внутри треугольника, например D(3; 2), подставляем в полученные уравнения и получаем необходимые знаки:
    3 – 2 · 2 + 4 = 3 > 0,   4 · 3 – 2 – 12 = –2 < 0,    3 · 3 + 2 – 9 = 2 > 0

    Пример 2

    Искомая система неравенств: ( left{ begin{array}{ l } mathrm{x-2y+4geq 0} & \ mathrm{4x-y-12leq 0} & \ mathrm{3x+y-9geq 0} & end{array}right. )

    Рейтинг пользователей

      Скачать материал

      Неравенства и системы неравенств  
с двумя переменными

      Скачать материал

      • Сейчас обучается 83 человека из 35 регионов

      • Сейчас обучается 174 человека из 50 регионов

      • Сейчас обучается 27 человек из 13 регионов

      Описание презентации по отдельным слайдам:

      • Неравенства и системы неравенств  
с двумя переменными

        1 слайд

        Неравенства и системы неравенств
        с двумя переменными

      • Неравенства с двумя переменными  Выражения, составленные с помощью чисел, дву...

        2 слайд

        Неравенства с двумя переменными
        Выражения, составленные с помощью чисел, двух переменных, знаков действий и знаков сравнения : больше (больше или равно), меньше (меньше или равно), называются неравенствами с двумя переменными.

      • Устно:Найти отличия:
x + 5 &gt; 10,             у-9 &lt; 2у + 11,   

х + 4 &lt; y +...

        3 слайд

        Устно:
        Найти отличия:

        x + 5 > 10, у-9 < 2у + 11,

        х + 4 < y + 12, 2х + 3y > 16,

        x + 2 > y, 6y > 21y + 3.

      • Решением неравенства с двумя переменными   называется
  пара значений перемен...

        4 слайд

        Решением неравенства с двумя переменными
        называется
        пара значений переменных, обращающая данное неравенство в верное числовое неравенство.

      • Задание 1.  Изобразить на координатной плоскости XOY фигуру M, состоя-
щую из...

        5 слайд

        Задание 1. Изобразить на координатной плоскости XOY фигуру M, состоя-
        щую из точек, координаты которых удовлетворяют неравенству
        2x + 3y > 6 .

      • План выполнения задания3. Построить график полученного 
уравнения;
y = – 2/3х...

        6 слайд

        План выполнения задания
        3. Построить график полученного
        уравнения;

        y = – 2/3х + 2

        2. Выразить переменную у через переменную х;

        2x + 3y = 6

        1. Заменить знак неравенства на равно;

      • 4. Выделить часть плоскости, соответствующую знаку неравенства    
2x + 3y &gt;...

        8 слайд

        4. Выделить часть плоскости, соответствующую знаку неравенства
        2x + 3y > 6 .
        y > – 2/3х + 2

      • Задание 2.  Изобразить на координатной плоскости множество точек,  координаты...

        9 слайд

        Задание 2. Изобразить на координатной плоскости множество точек, координаты которых удовлетворяют неравенству
        Выполняем задание по плану.

      • План выполнения задания:1. Заменить знак неравенства на равно;
2. Выразить п...

        10 слайд

        План
        выполнения задания:
        1. Заменить знак неравенства на равно;
        2. Выразить переменную у через переменную х;
        3. Построить график полученного
        уравнения;
        4. Выделить часть плоскости, соответствующую знаку неравенства

      • Задание 3.  Изобразить на координатной плоскости множество точек, координаты...

        13 слайд

        Задание 3. Изобразить на координатной плоскости множество точек, координаты которых удовлетворяют неравенству
        х2 + y2 < 4

      • План выполнения заданиях2 + y2 = 4 – уравнение окружности, с центром в начале...

        14 слайд

        План выполнения задания
        х2 + y2 = 4 – уравнение окружности, с центром в начале координат, R = 2.
        2. Определить, какая фигура задаётся таким уравнением:

        х2 + y2 = 4

        1. Заменить знак неравенства на равно;

      • 3. Построить данную фигуру в системе координат и выделить область, соответств...

        15 слайд

        3. Построить данную фигуру в системе координат и выделить область, соответствующую знаку неравенства.

      • Системы неравенств с двумя переменными

        16 слайд

        Системы неравенств с двумя переменными

      • Изображение на координатной плоскости множества решений системы неравенствП...

        17 слайд

        Изображение на координатной плоскости множества

        решений системы неравенств
        Первое неравенство задает
        открытую полуплоскость,
        расположенную выше прямой
        Второе неравенство задает
        открытую полуплоскость,
        расположенную ниже прямой
        у =2x – 3
        у =-0,5x+2
        Пересечением этих множеств
        является угол
        – множество решений данной
        системы неравенств

      • Изображение на координатной плоскости множества решений системы неравенствП...

        18 слайд

        Изображение на координатной плоскости множества

        решений системы неравенств
        Первое неравенство задает
        открытую полуплоскость,
        расположенную выше прямой
        Второе неравенство задает
        открытую полуплоскость,
        расположенную ниже прямой
        у =3x – 4
        у = 3x+3,5
        Пересечением этих множеств
        является полоса, ограниченная
        этими прямыми, – множество
        решений данной системы неравенств
        Запишем систему
        неравенств в виде:

      • Изображение на координатной плоскости множества решений системы неравенствП...

        19 слайд

        Изображение на координатной плоскости множества

        решений системы неравенств
        Первое неравенство задает
        открытую полуплоскость,
        расположенную ниже прямой
        Второе неравенство задает
        открытую полуплоскость,
        расположенную выше прямой
        у =3x – 4
        у = 3x+3,5
        Множество точек, заданное
        данной системой неравенств –
        пустое множество.
        Запишем систему
        неравенств в виде:

      • Изображение на координатной плоскости множества решений системы неравенствИ...

        20 слайд

        Изображение на координатной
        плоскости множества
        решений системы неравенств
        Изобразим множества точек
        решений каждого неравенства:
        у = 3x – 6
        у = 0,25x+4
        Пересечением этих множеств
        является треугольник,
        образованный прямыми,
        – множество решений данной
        системы неравенств.
        у = — x-4
        Запишем систему
        неравенств в виде:

      • Изображение на координатной плоскости множества решений системы неравенствЗ...

        21 слайд

        Изображение на координатной
        плоскости множества
        решений системы неравенств
        Запишем систему
        неравенств в виде:
        Изобразим множества точек
        решений каждого неравенства:
        Данная система неравенств задает ту из образовавшихся областей, которая расположена выше параболы и ниже прямой.

      • Данная система задает 
две области, образовавшиеся
при пересечении множеств
р...

        22 слайд

        Данная система задает
        две области, образовавшиеся
        при пересечении множеств
        решений ее неравенств.
        Изображение на координатной
        плоскости множества
        решений системы неравенств
        Изобразим множества точек
        решений каждого неравенства:

      • Домашнее задание:Глава 2 Параграф 5 – пункт 5 «Неравенства и системы неравенс...

        23 слайд

        Домашнее задание:
        Глава 2 Параграф 5 – пункт 5 «Неравенства и системы неравенств с двумя переменными» — читать.
        №5.22 – (а,б)
        №5.39
        +тест ОГЭ

      Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

      6 265 664 материала в базе

      • Выберите категорию:

      • Выберите учебник и тему

      • Выберите класс:

      • Тип материала:

        • Все материалы

        • Статьи

        • Научные работы

        • Видеоуроки

        • Презентации

        • Конспекты

        • Тесты

        • Рабочие программы

        • Другие методич. материалы

      Найти материалы

      Материал подходит для УМК

      • «Алгебра», Мордкович А.Г., Николаев Н.П.

        «Алгебра», Мордкович А.Г., Николаев Н.П.

        Тема

        § 10. Основные понятия, связанные с системами уравнений и неравенств с двумя переменными

        Больше материалов по этой теме

      Другие материалы

      • 07.11.2020
      • 152
      • 2

      «Алгебра», Мордкович А.Г., Николаев Н.П.

      «Алгебра», Мордкович А.Г., Николаев Н.П.

      «Алгебра», Мордкович А.Г., Николаев Н.П.

      «Алгебра», Мордкович А.Г., Николаев Н.П.

      «Алгебра», Мордкович А.Г., Николаев Н.П.

      «Алгебра», Мордкович А.Г., Николаев Н.П.

      «Алгебра», Мордкович А.Г., Николаев Н.П.

      «Алгебра», Мордкович А.Г., Николаев Н.П.

      Вам будут интересны эти курсы:

      • Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»

      • Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»

      • Курс повышения квалификации «Экономика и право: налоги и налогообложение»

      • Курс повышения квалификации «Правовое регулирование рекламной и PR-деятельности»

      • Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»

      • Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»

      • Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»

      • Курс повышения квалификации «Методы и инструменты современного моделирования»

      • Курс повышения квалификации «Мировая экономика и международные экономические отношения»

      • Курс профессиональной переподготовки «Методика организации, руководства и координации музейной деятельности»

      • Курс повышения квалификации «Международные валютно-кредитные отношения»

      • Курс профессиональной переподготовки «Организация и управление процессом по предоставлению услуг по кредитному брокериджу»

      Графическое решение систем неравенств

      Здесь мы рассмотрим графические решения нескольких систем неравенств. Умение решать такие задачи очень помогает впоследствии, при освоении задач с параметрами.

      Задача 1.

        Найти площадь фигуры, задаваемой на плоскости множеством решений системы неравенств:

      Графическое решение систем неравенств

      Перепишем иначе:

      Графическое решение систем неравенств

      Графическое решение неравенств1

      Рисунок 1

      Нас интересует только правая полуплоскость (Графическое решение систем неравенств), область, лежащая выше оси Графическое решение систем неравенств (Графическое решение систем неравенств), но ниже прямой Графическое решение систем неравенств (Графическое решение систем неравенств) – проведена серым цветом.

      Теперь построим графики первых двух функций. Возьмем в решения область ниже зеленой прямой Графическое решение систем неравенств, но выше синей Графическое решение систем неравенств.

      Определим площадь полученной фигуры (залита бежевым) по формуле Пика:

      Графическое решение систем неравенств

      Ответ: 7,5

      Задача 2.  Найти площадь фигуры, задаваемой на плоскости множеством решений системы неравенств:

      Графическое решение систем неравенств

      Перепишем иначе:

      Графическое решение систем неравенств

      Графическое решение неравенств2

      Рисунок 2

      Нас интересует только левая полуплоскость (Графическое решение систем неравенств), область, лежащая выше оси Графическое решение систем неравенств (Графическое решение систем неравенств), но ниже прямой Графическое решение систем неравенств (Графическое решение систем неравенств) – проведена серым цветом.

      Теперь построим графики первых двух функций. Возьмем в решения область выше рыжей прямой Графическое решение систем неравенств, но ниже синей Графическое решение систем неравенств.

      Определим площадь данной фигуры путем разбиения ее на простейшие геометрические фигуры: две трапеции. У левой трапеции основания 0,5 и 2, высота 2,5, площадь ее равна

      Графическое решение систем неравенств

      У правой основания 2,5 и 1,5 (она на боку лежит), а высота  равна 1. Ее площадь

      Графическое решение систем неравенств

      Общая площадь фигуры равна 5, 125.

      Ответ: 5, 125.

      Задача 3.

        Изобразить на плоскости множество решений системы неравенств. Найти площадь замкнутой части получившейся фигуры:

      Графическое решение систем неравенств

      Вместо исходной системы можем записать совокупность из двух:

      Графическое решение систем неравенств

      и

      Графическое решение систем неравенств

      Первая система имеет решения, но область решений не замкнута.

      Графическое решение неравенств3_1

      Рисунок 3

      Вторая дает нам искомую замкнутую область:

      Графическое решение неравенств3

      Рисунок 4

      Графическое решение систем неравенств

      Определим площадь данной фигуры путем разбиения ее на простейшие геометрические фигуры: два треугольника и  трапецию. У  трапеции основания 1,5 и 2, высота 1, площадь ее равна

      Графическое решение систем неравенств

      У верхнего малого треугольника основание 1, а высота  равна 0,5. Его площадь

      Графическое решение систем неравенств

      У правого треугольника основание 1,5, высота – 1, его площадь

      Графическое решение систем неравенств

      Общая площадь фигуры равна 2, 75.

      Ответ: 2,75.

      Задача 4.  Изобразить на плоскости множество решений системы неравенств. При каком значении Графическое решение систем неравенств площадь получившейся фигуры Графическое решение систем неравенств?

      Графическое решение систем неравенств

      Первое двойное неравенство задает две окружности и область между ними. Две прямые вырезают сектор, показанный на рисунке фиолетовым цветом. Для рисунка был выбран радиус Графическое решение систем неравенств, на самом деле он может быть любым – собственно, его и нужно определить.

      Графическое решение неравенств4

      Рисунок 5

      Так как прямые перпендикулярны (это понятно по их коэффициентам наклона, их произведение – (-1)), то необходимо определить четверть площади кольца.

      Графическое решение систем неравенств

      По условию, эта площадь равна Графическое решение систем неравенств:

      Графическое решение систем неравенств

      Графическое решение систем неравенств

      Графическое решение систем неравенств

      Графическое решение систем неравенств

      Ответ: Графическое решение систем неравенств.

      Задача 5.

        Изобразить на плоскости множество решений системы неравенств. При каком значении Графическое решение систем неравенств площадь получившейся фигуры Графическое решение систем неравенств?

      Графическое решение систем неравенств

      Снова имеем окружность, центр ее лежит на прямой Графическое решение систем неравенств, поэтому она вписана в первый координатный угол (квадрант). Причем по условию, нас интересует внешняя часть этой окружности.

      Графическое решение неравенств5

      Рисунок 6

      Из этой внешней части мы возьмем в решения область над осью Графическое решение систем неравенств (Графическое решение систем неравенств), а по оси Графическое решение систем неравенств нас интересует полоса от 0 до центра окружности.

      Нас интересует маленький, закрашенный зеленым, уголок. Его площадь можно найти как разность площади треугольника Графическое решение систем неравенств и сектора круга. Этот сектор  — Графическое решение систем неравенств часть круга. Поэтому

      Графическое решение систем неравенств

      По условию, эта площадь равна Графическое решение систем неравенств.

      Определим Графическое решение систем неравенств:

      Графическое решение систем неравенств

      Графическое решение систем неравенств

      Графическое решение систем неравенств

      Ответ: Графическое решение систем неравенств.

      Понравилась статья? Поделить с друзьями:
    • Err address unreachable как исправить на андроид
    • Как найти свои комментарии в стиме
    • Как найти основание правильного треугольника через высоту
    • Как найти сундук в клондайке
    • Как составить план работы вожатого