Как составить соль для серы

1. Положение серы в периодической системе химических элементов
2. Электронное строение атома серы
3. Физические свойства и нахождение в природе
4. Соединения серы
5. Способы получения
6. Химические свойства
6.1. Взаимодействие с простыми веществами
6.1.1. Взаимодействие с кислородом
6.1.2. Взаимодействие с галогенами
6.1.3. Взаимодействие с серой и фосфором 
6.1.4. Взаимодействие с металлами
6.1.5. Взаимодействие с водородом
6.2. Взаимодействие со сложными веществами
6.2.1. Взаимодействие с окислителями
6.2.2. Взаимодействие с щелочами

Сероводород
1. Строение молекулы и физические свойства 
2. Способы получения
3. Химические свойства
3.1. Кислотные свойства
3.2. Взаимодействие с кислородом
3.3. Восстановительные свойства
3.4. Взаимодействие с солями тяжелых металлов

Сульфиды
Способы получения сульфидов
Химические свойства сульфидов

Оксиды серы
 1. Оксид серы (IV)
 2. Оксид серы (VI)

Серная кислота 
 1. Строение молекулы и физические свойства
 2. Способы получения 
3. Химические свойства

3.1. Диссоциация серной кислоты
3.2. Основные свойства серной кислоты
3.3. Взаимодействие с солями более слабых кислот
3.4. Разложение при нагревании
3.5. Взаимодействие с солями
3.6. Качественная реакция на сульфат-ионы
3.7. Окислительные свойства серной кислоты

Сернистая кислота 

Соли серной кислоты – сульфаты

Сера

Положение в периодической системе химических элементов

Сера расположена в главной подгруппе VI группы  (или в 15 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение серы

Электронная конфигурация  серы в основном состоянии:

Атом серы содержит на внешнем энергетическом уровне 2 неспаренных электрона и две неподеленные электронные пары в основном энергетическом состоянии. Следовательно, атом серы может образовывать 2 связи по обменному механизму, как и кислород. Однако, в отличие от кислорода, за счет вакантной 3d орбитали атом серы может переходить в возбужденные энергетические состояния. Электронная конфигурация  серы в первом возбужденном состоянии:

Электронная конфигурация  серы во втором возбужденном состоянии:

Таким образом, максимальная валентность серы в соединениях равна VI (в отличие от кислорода). Также для серы характерна валентность — IV.

Степени окисления атома серы – от -2 до +4. Характерные степени окисления -2, 0, +4, +6.

Физические свойства и нахождение в природе

Сера образует различные простые вещества (аллотропные модификации).

Наиболее устойчивая модификация серы – ромбическая сера S8. Это хрупкое вещество желтого цвета

Моноклинная сера – это аллотропная модификация серы, в которой атомы соединены в циклы в виде «короны». Это твердое вещество, состоящее из темно-желтых игл, устойчивое при температуре более 96оС, а при обычной температуре превращающееся в ромбическую серу. 

Пластическая сера – это вещество, состоящее из длинных полимерных цепей. Коричневая резиноподобная аморфная масса, нерастворимая в воде.

В природе сера встречается:

  • в самородном виде;
  • в составе сульфидов (сульфид цинка ZnS, пирит FeS2, сульфид ртути HgS — киноварь и др.)
  • в составе сульфатов (CaSO4·2H2O гипс, Na2SO4·10H2O — глауберова соль)

Соединения серы

Типичные соединения серы:

Степень окисления Типичные соединения
+6 Оксид серы(VI) SO3

Серная кислота H2SO4

Сульфаты MeSO4

Галогенангидриды: SО2Cl2

+4 Оксид серы (IV) SO2

Сернистая кислота H2SO3

Сульфиты MeSO3

Гидросульфиты MeHSO3

Галогенангидриды: SOCl2

–2 Сероводород H2S

Сульфиды металлов MeS

Способы получения серы

1. В промышленных масштабах серу получают открытым способом на месторождениях самородной серы, либо из вулканов. Из серной руды серу получают также пароводяными, фильтрационными, термическими, центрифугальными и экстракционными методами. Пароводяной метод —  это выплавление из руды с помощью водяного пара.

2. Способ получения серы в лаборатории – неполное окисление сероводорода.

2H2S   +   O2    →   2S    +   2H2O

3. Еще один способ получения серы – взаимодействие сероводорода с оксидом серы (IV):

2H2S  +  SO2   →   3S   +  2H2O

Химические свойства серы

В нормальных условиях химическая активность серы невелика: при нагревании сера активна, и может быть как окислителем, так и восстановителем.

1. Сера проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому сера реагирует с металлами и неметаллами.

1.1. При горении серы на воздухе образуется оксид серы (IV):

S  +  O2  →  SO2

1.2. При взаимодействии серы с галогенами (со всеми, кроме йода) образуются галогениды серы:

S   +   Cl2  →  SCl2   (S2Cl2)

S   +  3F2  →   SF6

1.3. При взаимодействии фосфора и углерода с серой образуются сульфиды фосфора и сероуглерод:

2P    +   3S   →   P2S3

2P    +   5S   →   P2S5

2S  +   C   →   CS2

1.4. При взаимодействии с металлами сера проявляет свойства окислителя, продукты реакции называют сульфидами. С щелочными металлами сера реагирует без нагревания, а с остальными металлами (кроме золота и платины) – только при нагревании.

Например, железо и ртуть реагируют с серой с образованием сульфидов железа (II)  и ртути:

S   +   Fe   →  FeS

S   +  Hg   →  HgS

Еще пример: алюминий взаимодействует с серой с образованием сульфида алюминия:

3S   +  2Al   →  Al2S3

1.5. С водородом сера взаимодействует при нагревании с образованием сероводорода:

S  +  H2  →  H2S

2. Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства. Сера диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителями сера окисляется до оксида серы (IV) или до серной кислоты (если реакция протекает в растворе).

Например, азотная кислота окисляет серу до серной кислоты:

S   +   6HNO3   →  H2SO4  +  6NO2   +   2H2O

Серная кислота также окисляет серу. Но, поскольку S+6 не может окислить серу же до степени окисления +6, образуется оксид серы (IV):

S    +    2H2SO4   →   3SO2   +   2H2O

Соединения хлора, например, бертолетова соль,  также окисляют серу до +4:

3S   +  2KClO3  →   3SO2   +   2KCl

Взаимодействие серы с сульфитами (при кипячении) приводит к образованию тиосульфатов:

S   +   Na2SO3  →   Na2S2O3

2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида.

Например, сера реагирует с гидроксидом натрия:

S    +   6NaOH   →  Na2SO3   +   2Na2S   +   3H2O

При взаимодействии с перегретым паром сера диспропорционирует:

3S   +   2H2O (пар)   →  2H2S   +   SO2

Сероводород

Строение молекулы и физические свойства

Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода похожа на структуру воды — уголковая молекула. Но валентный угол H-S-H меньше, чем угол H-O-H в воде и составляет 92,1о.

Способы получения сероводорода

В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например, при действии соляной кислоты на сульфид железа (II):

FeS   +   2HCl   →   FeCl2   +   H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

S  +  H2  →  H2S

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например, сероводород реагирует с гидроксидом натрия:

H2S  +  2NaOH  →   Na2S   +  2H2O
H2S  +  NaOH → NaНS   +  H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

2H2S   +   O2    →   2S    +   2H2O

В избытке кислорода:

2H2S   +   3O2    2SO2  +   2H2O           

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S  +  Br2     2HBr  +   S↓

H2S  +  Cl2   →  2HCl  +   S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

H2S   +  4Cl2   +   4H2O   H2SO4  +  8HCl

Например, азотная кислота окисляет сероводород до молекулярной серы:

H2S  +  2HNO3(конц.)    S  +  2NO2  +  2H2O

При кипячении сера окисляется до серной кислоты:

H2S   +  8HNO3(конц.)   H2SO4  +  8NO2   +   4H2O

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например, оксид серы (IV) окисляет сероводород:

2H2S  +  SO2  →  3S   +  2H2O

Соединения железа (III) также окисляют сероводород:

H2S  +  2FeCl3  →  2FeCl2  +  S  +  2HCl

Бихроматы, хроматы и прочие окислители также  окисляют сероводород до молекулярной серы:

3H2S   +   K2Cr2O7   +    4H2SO4      3S    +   Cr2(SO4)3   +   K2SO4   +   7H2O

2H2S   +   4Ag  +  O2   2Ag2S  +  2H2O

Серная кислота окисляет сероводород либо до молекулярной серы:

H2S   +   H2SO4(конц.)   S   +   SO2   +   2H2O

Либо до оксида серы (IV):

H2S   +   3H2SO4(конц.)   4SO2   +  4H2O

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например, сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

H2S   +   Pb(NO3)2   →  PbS   +   2HNO3

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Сульфиды

Сульфиды  это бинарные соединения серы и металлов или некоторых неметаллов, соли сероводородной кислоты.

По растворимости в воде и кислотах сульфиды разделяют на растворимые в воде, нерастворимые в воде, но растворимые в минеральных кислотах, нерастворимые ни в воде, ни в минеральных кислотах, гидролизуемые водой.

Растворимые в воде Нерастворимые в воде, но растворимые в минеральных кислотах Нерастворимые ни в воде, ни в минеральных кислотах (только в азотной и серной конц.) Разлагаемые водой, в растворе не существуют
Сульфиды щелочных металлов и аммония Сульфиды прочих металлов, расположенных  до железа в ряду активности. Белые и цветные сульфиды (ZnS, MnS, FeS, CdS) Черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS) Сульфиды трехвалентных металлов (алюминия и хрома (III))
Реагируют с минеральными кислотами с образованием сероводорода Не реагируют с минеральными кислотами, сероводород получить напрямую нельзя

Разлагаются водой

ZnS   +   2HCl   →   ZnCl2   +   H2S

Al2S+ 6H2O → 2Al(OH)+ 3H2S

Способы получения сульфидов

1. Сульфиды получают при взаимодействии серы с металлами. При этом сера проявляет свойства окислителя.

Например, сера взаимодействует с магнием и кальцием:

S    +   Mg   →   MgS

S    +   Ca   →   CaS

Сера взаимодействует с натрием:

S    +   2Na   →  Na2S

2. Растворимые сульфиды можно получить при взаимодействии сероводорода и щелочей.

Например, гидроксида калия с сероводородом:

H2S  +  2KOH  →   K2S   +  2H2O

3. Нерастворимые сульфиды получают взаимодействием растворимых сульфидов с солями (любые сульфиды) или взаимодействием сероводорода с солями (только черные сульфиды).

Например, при взаимодействии нитрата меди и сероводорода:

Pb(NO3)2   +  Н2S    →   2НNO3   +   PbS

Еще пример: взаимодействие сульфата цинка с сульфидом натрия:

ZnSO4   +  Na2S    →   Na2SO4   +   ZnS

Химические свойства сульфидов

1. Растворимые сульфиды гидролизуются по аниону, среда водных растворов сульфидов щелочная:

K2S  + H2O  ⇄  KHS  +  KOH
S2–  +  H2O  ⇄  HS  +  OH

2. Сульфиды металлов, расположенных в ряду напряжений левее железа (включительно), растворяются в сильных минеральных кислотах.

Например, сульфид кальция растворяется в соляной кислоте:

CaS  +  2HCl →  CaCl2  +  H2S

А сульфид никеля, например, не растворяется:

NiS   +   HСl   ≠

3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При этом сера окисляется либо до простого вещества, либо до сульфата.

Например, сульфид меди (II) растворяется в горячей концентрированной азотной кислоте:

CuS   +   8HNO3  →   CuSO4   +   8NO2   +  4H2O

или горячей концентрированной серной кислоте:

CuS   +   4H2SO4(конц. гор.)  →   CuSO4   +   4SO2    +    4H2O

4. Сульфиды проявляют восстановительные свойства и окисляются пероксидом водорода, хлором и другими окислителями.

Например, сульфид свинца (II) окисляется пероксидом водорода до сульфата свинца (II):

PbS + 4H2O2    →   PbSO4 + 4H2O

Еще пример: сульфид меди (II) окисляется хлором:

СuS   +   Cl2  → CuCl2   +   S

5. Сульфиды горят (обжиг сульфидов). При этом образуются оксиды металла и серы (IV).

Например, сульфид меди (II) окисляется кислородом до оксида меди (II) и оксида серы (IV):

2CuS   +   3O2  →   2CuO   +   2SO2

Аналогично сульфид хрома (III) и сульфид цинка:

2Cr2S3   +   9O2  →   2Cr2O3   +   6SO2

2ZnS    +   3O2  →   2SO2   +   ZnO

6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественные на ион S2−.

Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:

Na2S    +   Pb(NO3)2    →   PbS↓   +   2NaNO3

Na2S    +   2AgNO3    →   Ag2S↓   +   2NaNO3

Na2S    +   Cu(NO3)2    →   CuS↓   +   2NaNO3

7. Сульфиды трехвалентных металлов (алюминия и хрома) разлагаются водой (необратимый гидролиз).

Например, сульфид алюминия разлагается до гидроксида алюминия и сероводорода:

Al2S+ 6H2O → 2Al(OH)+ 3H2S

Разложение происходит и взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.

Например, сульфид натрия реагирует с хлоридом алюминия в растворе. Но сульфид алюминия не образуется, а сразу же необратимо гидролизуется (разлагается) водой:

3Na2S + 2AlCl3 + 6H2O → 2Al(OH)+ 3H2S + 6NaCl

Оксиды серы

Оксиды серы Цвет  Фаза Характер оксида
SO2 Оксид сера (IV), сернистый газ бесцветный газ кислотный
SOОксид серы (VI), серный ангидрид бесцветный жидкость кислотный

Оксид серы (IV)

Оксид серы (IV) –  это кислотный оксид. Бесцветный газ с резким запахом, хорошо растворимый в воде.

Cпособы получения оксида серы (IV):

1. Сжигание серы на воздухе:

S    +   O2  →  SO2

2. Горение сульфидов и сероводорода:

2H2S   +   3O2  →   2SO2   +   2H2O

2CuS   +   3O2  →   2SO2   +   2CuO

3. Взаимодействие сульфитов с более сильными кислотами:

Например, сульфит натрия взаимодействует с серной кислотой:

Na2SO3    +   H2SO4    →  Na2SO4   +   SO2    +   H2O

4. Обработка концентрированной серной кислотой неактивных металлов.

Например, взаимодействие меди с концентрированной серной кислотой:

Cu    +   2H2SO4   →   CuSO4   +   SO2   +   2H2O

Химические свойства оксида серы (IV):

Оксид серы (IV) – это типичный кислотный оксид. За счет серы в степени окисления +4 проявляет свойства окислителя и восстановителя.

1. Как кислотный оксид, сернистый газ реагирует с щелочами и оксидами щелочных и щелочноземельных металлов.

Например, оксид серы (IV) реагирует с гидроксидом натрия. При этом образуется либо кислая соль (при избытке сернистого газа), либо средняя соль (при избытке щелочи):

SO2   +   2NaOH(изб)   →   Na2SO3   +   H2O

SO2(изб)   +   NaOH  → NaHSO3

Еще пример: оксид серы (IV) реагирует с основным оксидом натрия:

SO2  +  Na2O   →  Na2SO3 

2. При взаимодействии с водой SO2 образует сернистую кислоту. Реакция обратимая, т.к. сернистая кислота в водном растворе в значительной степени распадается на оксид и воду.

SO2  +   H2O   ↔  H2SO3  

3. Наиболее ярко выражены восстановительные свойства SO2. При взаимодействии с окислителями степень окисления серы повышается.

Например, оксид серы окисляется кислородом на катализаторе в жестких условиях. Реакция также сильно обратимая:

2SO2    +   O2    ↔  2SO3

Сернистый ангидрид обесцвечивает бромную воду:

SO2   +   Br2  +   2H2O   →  H2SO4  +  2HBr

Азотная кислота очень легко окисляет сернистый газ:

SO2   +   2HNO3   →  H2SO4   +   2NO2

Озон также окисляет оксид серы (IV):

SO2    +   O3  →   SO3  +  O2

Качественная реакция на сернистый газ и на сульфит-ион – обесцвечивание раствора перманганата калия:

5SO2   +   2H2O   +   2KMnO4  → 2H2SO4   +   2MnSO4   +   K2SO4    

Оксид свинца (IV) также окисляет сернистый газ:

SO2   +   PbO2  → PbSO4

4. В присутствии сильных восстановителей SO2  способен проявлять окислительные свойства.

Например, при взаимодействии с сероводородом сернистый газ восстанавливается до молекулярной серы:

SO2    +   2Н2S    →    3S  +  2H2O

Оксид серы (IV) окисляет угарный газ и углерод:

SO2    +   2CO    →   2СО2    +    S 

SO2    +   С  →   S   +  СO2

Оксид серы (VI)

Оксид серы (VI) –  это кислотный оксид. При обычных условиях – бесцветная ядовитая жидкость. На воздухе «дымит», сильно поглощает влагу.

Способы получения. Оксид серы (VI) получают каталитическим окислением оксида серы (IV) кислородом.

2SO2    +   O2    ↔   2SO3

Сернистый газ окисляют и другие окислители, например, озон или оксид азота (IV):

SO2    +   O3  →   SO3   +   O2

SO +   NO2  →   SO3   +   NO

Еще один способ получения оксида серы (VI) – разложение сульфата железа (III):

Fe2(SO4)3    →   Fe2O3   +   3SO3

Химические свойства оксида серы (VI)

1. Оксид серы (VI) активно поглощает влагу и реагирует с водой с образованием серной кислоты:

SO3  +   H2O  →  H2SO4 

2. Серный ангидрид является типичным кислотным оксидом, взаимодействует с щелочами и основными оксидами.

Например, оксид серы (VI) взаимодействует с гидроксидом натрия. При этом образуются средние или кислые соли:

SO3  +  2NaOH(избыток)  →   Na2SO4   +   H2O

SO3(избыток)   +   NaOH → NaHSO4

Еще пример: оксид серы (VI) взаимодействует с оксидом оксидом (при сплавлении):

SO3  +  MgO   →  MgSO4 

3. Серный ангидрид – очень сильный окислитель, так как сера в нем имеет максимальную степень окисления (+6). Он энергично взаимодействует с такими восстановителями, как иодид калия, сероводород или фосфор:

SO3    +   2KI   →   I2    +   K2SO3

3SO3   +   H2S   →   4SO2     +    H2O

5SO3    +    2P   →    P2O5    +     5SO2

4. Растворяется в концентрированной серной кислоте, образуя олеум – раствор SO3 в H2SO4.

 Серная кислота

Строение молекулы и физические свойства

Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.

Растворение серной кислоты в воде сопровождается выделением значительного количества теплоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в воду небольшими порциями при постоянном перемешивании.

Валентность серы в серной кислоте равна VI.

Способы получения

1. Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

Аппарат Назначение и уравненяи реакций
Печь для обжига 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800оС

Циклон  Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр  Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня  Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник  Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат  2SO2 + O2 ↔ 2SO3 + Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  •  температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500оС. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  •  давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня  Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

nSO3 + H2SO4  →  H2SO4·nSO3

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Химические свойства

Серная кислота – это сильная двухосновная кислота.

1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:

H2SO4  ⇄  H+ + HSO4

По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:

HSO4  ⇄  H+ + SO42–

2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами

Например, серная кислота взаимодействует с оксидом магния:

H2SO4    +   MgO   →   MgSO4   +   H2O

Еще пример: при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:

H2SO4    +   КОН     →     KHSО4  +   H2O

H2SO4    +   2КОН      →     К24  +   2H2O

Серная кислота взаимодействует с амфотерным гидроксидом алюминия:

3H2SO4     +    2Al(OH)3    →   Al2(SO4)3    +   6H2O

3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.).  Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).

Например, серная кислота взаимодействует с гидрокарбонатом натрия:

Н2SO4   +   2NaHCO3   →   Na2SO4   +   CO2   +  H2O

Или с силикатом натрия:

H2SO4    +   Na2SiO3    →  Na2SO4  +   H2SiO3

Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:

NaNO3 (тв.)   +   H2SO4   →   NaHSO4   +   HNO3

Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например, хлорида натрия:

NaCl(тв.)   +   H2SO4   →   NaHSO4   +   HCl

4. Также серная кислота вступает в обменные реакции с солями.

Например, серная кислота взаимодействует с хлоридом бария:

H2SO4  + BaCl2  →  BaSO4   +   2HCl

5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Например, серная кислота реагирует с железом. При этом образуется сульфат железа (II):

H2SO4(разб.)    +   Fe   →  FeSO4   +   H2

Серная кислота взаимодействует с аммиаком с образованием солей аммония:

H2SO4   +   NH3    →    NH4HSO4

Концентрированная серная кислота является сильным окислителем. При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы  S, или сероводорода Н2S.

Железо Fe, алюминий  Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.

6H2SO4(конц.)    +   2Fe   →   Fe2(SO4)3   +   3SO2   +  6H2O

6H2SO4(конц.)    +   2Al   →   Al2(SO4)3   +   3SO2   +  6H2O

При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:

2H2SO4(конц.)   +   Cu     →  CuSO4   +   SO2 ↑ +   2H2O

2H2SO4(конц.)   +   Hg     →  HgSO4   +   SO2 ↑ +   2H2O

2H2SO4(конц.)   +   2Ag     →  Ag2SO4   +   SO2↑+   2H2O

При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:

3Mg   +   4H2SO4   →   3MgSO4   +   S   +  4H2O

При взаимодействии с щелочными металлами и цинком  концентрированная серная кислота восстанавливается до сероводорода:

5H2SO4(конц.)   +  4Zn     →    4ZnSO4   +   H2S↑   +   4H2O

6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 + Na2SO4      BaSO4  + 2NaCl

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе  (качественная реакция на сульфат-ион) можно посмотреть здесь.

7. Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.

Например, концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):

5H2SO4(конц.)   +    2P     2H3PO4   +   5SO2↑  +   2H2O

2H2SO4(конц.)   +    С     СО2↑   +   2SO2↑  +   2H2O

2H2SO4(конц.)   +    S     3SO2 ↑  +   2H2O

Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:

3H2SO4(конц.)   +   2KBr    Br2↓   +  SO2↑   +   2KHSO4    +  2H2O

5H2SO4(конц.)   +   8KI      4I2↓    +   H2S↑   +   K2SO4   +  4H2O

H2SO4(конц.)   +   3H2S  4S↓  +  4H2O

Сернистая кислота

Сернистая кислота H2SO3 это двухосновная кислородсодержащая кислота. При нормальных условиях — неустойчивое вещество, которое распадается на диоксид серы и воду.

Валентность серы в сернистой кислоте равна IV, а степень окисления +4.

Химические свойства

1. Сернистая кислота H2SO3  в водном растворе – двухосновная кислота средней силы. Частично диссоциирует по двум ступеням:

H2SO3     ↔  HSO3   +  H+

HSO3    ↔  SO32–   +  H+

2. Сернистая кислота самопроизвольно распадается на диоксид серы и воду:

H2SO3     ↔   SO2   +  H2O

Соли серной кислоты – сульфаты

Серная кислота образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

1. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 + Na2SO4      BaSO4  + 2NaCl

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе  (качественная реакция на сульфат-ион) можно посмотреть здесь.

2. Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо (II) Fe  подвергаются термическому разложению на оксид металла, диоксид серы SO2 и кислород O2;

2CuSO4     2CuO   +   SO2   +   O2     (SO3)

2Al2(SO4)3      2Al2O3   +   6SO2   +   3O2

2ZnSO4     2ZnO   +   SO2   +   O2

2Cr2(SO4)3       2Cr2O3   +   6SO2   +   3O2

При разложении сульфата железа (II) в FeSO4 Fe (II)  окисляется до Fe (III)

4FeSO4      2Fe2O3   +   4SO2   +   O2  

Сульфаты самых тяжелых металлов разлагаются до металла.

3. За счет серы со степенью окисления +6 сульфаты проявляют окислительные свойства и могут взаимодействовать с восстановителями.

Например, сульфат кальция при сплавлении реагирует с углеродом с образованием сульфида кальция и угарного газа:

CaSO4  +  4C   →   CaS   +  4CO

4. Многие средние сульфаты образуют устойчивые кристаллогидраты:

Na2SO4 ∙ 10H2O − глауберова соль

CaSO4 ∙ 2H2O − гипс

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

Запишем цепочку превращений для соединений серы:
S — SO2 — SO3 — H2SO4 — CaSO4 — Ca(HSO4)2
Осуществим решение:
S + O2 = SO2 — реакция окисления, получен оксид серы (4);
2SO2 + O2 = 2SO3 — окисление, реакция возможна при нагревании до 450 градусов, выделяется оксид серы (6);
SO3 + H2O = H2SO4 — соединения, образовалась серная кислота;
H2SO4 + CaCl2 = CaSO4 + 2HCl — ионного обмена, получен сульфат кальция;
CaSO4 + H2SO4(конц.) = Ca(HSO4)2 — обмена, выделился гидросульфат кальция. 
Продукты реакций имеют практическое значение. Оксиды серы необходимы для получения кислот, наличие сульфата кальция в воде является показателем жесткости воды. Гидросульфат кальция применяется в строительстве как гипс и алебастр. Данные реакции показывают связь неметалла с кислотными оксидами, кислотами, солями.

I. Оксид серы (VI) (серный ангидридтриокись серысерный газ)


SO3 — высший оксид серы, тип химической связи: ковалентная полярная химическая связь.

1. Физические свойства

Бесцветная летучая маслянистая жидкость, t°пл. = 17°C; t°кип. = 66°С; на воздухе «дымит», сильно поглощает влагу (хранят в запаянных сосудах).

SO3 + H2O → H2SO4

SO3 хорошо растворяется в 100%-ной серной кислоте, этот раствор называется олеумом. 

2. Получение

1) 2SO2 + O2  →  2SO3 (катализатор – V2O5, при 450˚С)

 2) Fe2(SO4)3  →  Fe2O3 + 3SO3­ (разложение при нагревании) 

3. Химические свойства 

Серный ангидрид — кислотный оксид. Его химическая активность достаточно велика.

1) Взаимодействие с водой

При растворении в воде дает сильную двухосновную серную кислоту:

Анимация: “Взаимодействие оксида серы (VI) с водой”

SO3 + H2O → H2SO4

2) Взаимодействие со щелочами 

2NaOH + SO3 → Na2SO4 + H2O

NaOH + SO3 (избыток) → NaHSO4

3) Взаимодействие с основными оксидами

Na2O + SO3 → Na2SO4

4) SO3 — сильный окислитель

5SO3 + 2P = P2O5 + 5SO2

3SO3 + H2S = 4SO2 + H2O

2SO3 + 2KI = SO2 + J2 + K2SO4

II. Серная кислота и ее соли


Серная кислота H2SO4 — сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). 

В XVIII—XIX веках серу для пороха производили из серного колчедана (пирит) на купоросных заводах. Серную кислоту в то время называли «купоросным маслом» (как правило это был кристаллогидрат, по консистенции напоминающий масло), очевидно отсюда происхождение названия её солей (а точнее именно кристаллогидратов) — купоросы.

1. Физические свойства

Тяжелая маслянистая жидкость («купоросное масло»); r = 1,84 г/см3; нелетучая, хорошо растворима в воде – с сильным нагревом; t°пл. = 10,3°C, t°кип. = 296°С, очень гигроскопична, обладает водоотнимающими свойствами (обугливание бумаги, дерева, сахара). 

Помните!
Кислоту вливать малыми порциями в воду, а не наоборот! 

Видео: «Разбавление серной кислоты водой»

2. Производство серной кислоты

Макет производсва серной кислоты

1-я стадия. Печь для обжига колчедана 

4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q

Процесс гетерогенный:

  • измельчение железного колчедана (пирита)
  • метод «кипящего слоя»
  • 800°С; отвод лишнего тепла
  • увеличение концентрации кислорода в воздухе 

2-я стадия. Контактный аппарат

После очистки, осушки и теплообмена сернистый газ поступает в контактный аппарат, где окисляется в серный ангидрид (450°С – 500°С; катализатор V2O5):

2SO2 + O2 → 2SO3

3-я стадияПоглотительная башня

nSO3 + H2SO4(конц) → (H2SO4 • nSO3)  (олеум) 

Воду использовать нельзя из-за образования тумана. Применяют керамические насадки и принцип противотока. 

3. Химические свойства разбавленной серной кислоты

H2SO4 — сильная двухосновная кислота, водный раствор изменяет окраску индикаторов (лакмус и универсальный индикатор краснеют). 

H2SO4 образует два ряда солей — средние (сульфаты) и кислые (гидросульфаты)

1) Диссоциация протекает ступенчато:

H2SO4→ H+ HSO4 (первая ступень, образуется гидросульфат – ион)

HSO4 → H+ SO42-  (вторая ступень, образуется сульфат – ион)

H2SO4 образует два ряда солей — средние (сульфаты) и кислые (гидросульфаты)

2) Взаимодействие с металлами: 

Разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода:

Zn0 + H2+1SO4(разб) → Zn+2SO4 + H20↑ 

Zn0 + 2H+ → Zn2+ + H20↑ 

3) Взаимодействие с основными и амфотерными  оксидами:

CuO + H2SO4 → CuSO4 + H2O

CuO + 2H→ Cu2+ + H2O

4) Взаимодействие с основаниями:

H2SO4 + 2NaOH → Na2SO4 + 2H2O (реакция нейтрализации)

H+ OH— → H2O

Если кислота в избытке, то образуется кислая соль:

H2SO4 + NaOH → NaНSO4 + H2O

H2SO4 + Cu(OH)2 → CuSO4 + 2H2O

2H+ Cu(OH)2 → Cu2+ + 2H2

5) Обменные реакции с солями:

образование осадка

BaCl2 + H2SO4 → BaSO4↓ + 2HCl

Ba2+ + SO42- → BaSO4↓ 

Качественная реакция на сульфат-ион:

Образование белого осадка BaSO4 (нерастворимого в кислотах) используется для идентификации серной кислоты и растворимых сульфатов.

Видео: «Качественная реакция на сульфит- и сульфат-ионы»

образование газа —  как сильная нелетучая кислота серная вытесняет из солей другие менее сильные кислоты, например, угольную

MgCO3 + H2SO4 → MgSO4 + H2O + CO2

MgCO3 + 2H→ Mg2+ + H2O + CO2­

4. Применение серной кислоты

  • в производстве минеральных удобрений;
  • как электролит в свинцовых аккумуляторах;
  • для получения различных минеральных кислот и солей;
  • в производстве химических волокон, красителей, дымообразующих веществ и взрывчатых веществ;
  • в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;
  • в пищевой промышленности — зарегистрирована в качестве пищевой добавкиE513(эмульгатор);
  • в промышленном органическом синтезе в реакциях:
    • дегидратации (получение диэтилового эфира, сложных эфиров);
    • гидратации (получение этанола);
    • сульфирования (получение СМС и промежуточные продукты в производстве красителей);
    • и др.

Самый крупный потребитель серной кислоты — производство минеральных удобрений. На 1 т P₂O₅ фосфорных удобрений расходуется 2,2-3,4 т серной кислоты, а на 1 т (NH₄)₂SO₄ — 0,75 т серной кислоты. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.

Это интересно

История серной кислоты (материал взят с сайта alhimikov.net)

Вы все, наверное, знакомы с медным купоросом, кристаллогидратом сульфата меди (II). Купоросами называют кристаллогидраты двухвалентных металлов. Купоросы изучались еще с древних времен. Так, в некоторых работах конца-начала новой эры обсуждались свойства купоросов и их происхождение. Они упоминаются в трудах греческого врача Диоскорида, римского исследователя природы Плиния Старшего. Об использовании купоросов в металлургии рассказано в работах древнегреческих алхимиков Зосимы из Панополиса. Древний лекарь Ибн Сина использовал различные вещества-купоросы в медицине. 
Самым первым способом получения был процесс нагревания алюмокалиевых квасцов . Сведения об этом способе содержатся в алхимической литературе XIII века. Но алхимики не знали сути процесса и состава квасцов. А целенаправленно химическим синтезом серной кислоты стали заниматься в XV веке. Алхимики обрабатывали смесь сульфида сурьмы(III) Sb2S3 и серы при нагревании с азотной кислотой. 
Серную кислоту средневековые европейские алхимики называли «купоросным маслом», в последствии купоросной кислотой. Алхимики получали небольшие количества, которые использовались для проведения экспериментов. В XVII веке Иоганн Глаубер получил серную кислоту в результате горения самородной серы с калийной селитрой( нитратом калия) в присутствии паров воды. Селитра окисляла серу до оксида серы (VI, который впоследствии реагировал с парами воды, в результате чего образовывалась серная кислота. В 30-е годы XVIII века лондонский фармацевт Уорд Джошуа использовал эту реакцию для промышленного производства серной кислоты. Потребности в серной кислоте в средние века исчислялись всего несколькими десятками килограммов. Она использовалась для аптечных нужд и алхимических опытов. Небольшое количество концентрированной серной кислоты шло производство спичек, которые содержали бертолетовую соль. количество концентрированной кислоты шло для производства особых спичек, содержащих бертолетову соль. На Руси купоросная кислота появилась в семнадцатом веке.
В 1746 г. Джон Робак в английском Бирмингеме наладил производство, адаптировав этот способ для производства серной кислоты, используя освинцованные камеры, которые были прочными , дешевыми более крупными чем стеклянные контейнеры.

Джон Робак
Джон Робак

Этот способ использовался в промышленности в течение почти двух столетий. В камерах получали кислоту с концентрацией около 65 %, впоследствии усовершенствовав сам процесс (Это сделали французский химик Гей-Люссак и английский Гловер), концентрацию довели до 78%. Однако этих концентраций для некоторых химических процессов, например, при производстве красителей не хватало. 
Лишь в 1831 г. британский торговец уксусной кислотой Перегрин Филипс запатентовал экономичный процесс для производства оксида серы (VI) и концентрированной серной кислоты, который известен нам в настоящее время как контактный способ получения серной кислоты.
В 1864 году стали производить суперфосфат. В восьмидесятые годы XIX века производство серной кислоты достигло в Европе 1 млн. тонн. Основными производителями были Англия и Германия, на долю которых приходилось более 72% от мирового объема производства.

5. Применение солей серной кислоты

Железный купорос FеSО4•7Н2O применяли раньше для лечения чесотки, гельминтоза и опухолей желез, в настоящее время используют для борьбы с сельскохозяйственными вредителями.

Медный купорос CuSO4•5Н2O широко используют в сельском хозяйстве для борьбы с вредителями растений.

«Глауберова соль» (мирабилит) Nа2SO4•10Н2O была получена немецким химиком И. Р. Глаубером при действии серной кислоты на хлорид натрия, в медицине ее используют как слабительное средство.

«Бариевая каша» BaSO4 обладает способностью задерживать рентгеновские лучи в значительно большей степени, чем ткани организма. Это позволяет рентгенологам при заполнении «бариевой кашей» полых органов определить в них наличие анатомических изменений.

Гипс СаSO4•2Н2O находит широкое применение в строительном деле, в медицинской практике для накладывания гипсовых повязок, для изготовления гипсовых скульптур.

III. Тренажеры


Тренажёр №1 — Сероводород. Оксиды серы

Тренажёр №2 — Свойства разбавленной серной кислоты

IV. Задания для закрепления


№1. Осуществите превращения по схеме:

1) Zn →ZnSO4→Zn(OH)2 →ZnSO→ BaSO4

2) S →SO2 →SO3→H2SO4 →K2SO4

№2. Закончите уравнения практически осуществимых реакций в полном и кратком ионном виде:

Na2CO+ H2SO4

Cu + H2SO4 (раствор) →

Al(OH)3 + H2SO4 →

MgCl+ H2SO4 →

№3. Запишите уравнения реакций взаимодействия разбавленной серной кислоты с магнием, гидроксидом железа (III), оксидом алюминия, нитратом бария и сульфитом калия в молекулярном, полном и кратком ионном виде.

ЦОРы


Видео: «Разбавление серной кислоты водой»

Макет производсва серной кислоты

Видео:«Качественная реакция на сульфит- и сульфат-ионы»

Химические свойства разбавленной серной кислоты

H2SO4 — сильная двухосновная кислота, водный раствор изменяет окраску индикаторов (лакмус и универсальный индикатор краснеют)

1) Диссоциация протекает ступенчато:

H2SO4→ H+ + HSO4 (первая ступень, образуется гидросульфат – ион)

HSO4 → H+ + SO42- (вторая ступень, образуется сульфат – ион)

H2SO4 образует два ряда солей — средние (сульфаты) и кислые (гидросульфаты)

2) Взаимодействие с металлами:

Разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода:

Zn0 + H2+1SO4(разб) → Zn+2SO4 + H20

Zn0 + 2H+ → Zn2+ + H20

3) Взаимодействие с основными и амфотерными оксидами:

CuO + H2SO4 → CuSO4 + H2O

CuO + 2H+ → Cu2+ + H2O

4) Взаимодействие с основаниями:

· H2SO4 + 2NaOH → Na2SO4 + 2H2O (реакция нейтрализации)

H+ + OH→ H2O

Если кислота в избытке, то образуется кислая соль:

H2SO4 + NaOH → NaНSO4 + H2O

· H2SO4 + Cu(OH)2 → CuSO4 + 2H2O

2H+ + Cu(OH)2 → Cu2+ + 2H2O

5) Обменные реакции с солями:

образование осадка

BaCl2 + H2SO4 → BaSO4↓ + 2HCl

Ba2+ + SO42- → BaSO4

Качественная реакция на сульфат-ион

Образование белого осадка BaSO4 (нерастворимого в кислотах) используется для идентификации серной кислоты и растворимых сульфатов.

Видео «Качественная реакция на сульфит- и сульфат-ионы»

образование газа — как сильная нелетучая кислота серная вытесняет из солей другие менее сильные кислоты, например, угольную

MgCO3 + H2SO4 → MgSO4 + H2O + CO2

MgCO3 + 2H+ → Mg2+ + H2O + CO2­↑

Применение серной кислоты

  • в производстве минеральных удобрений;

  • как электролит в свинцовых аккумуляторах;

  • для получения различных минеральных кислот и солей;

  • в производстве химических волокон, красителей, дымообразующих веществ и взрывчатых веществ;

  • в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;

  • в пищевой промышленности — зарегистрирована в качестве пищевой добавки E513(эмульгатор);

  • в промышленном органическом синтезе в реакциях:

  • дегидратации (получение диэтилового эфира, сложных эфиров);

  • гидратации (получение этанола);

  • сульфирования (получение СМС и промежуточные продукты в производстве красителей);

  • Самый крупный потребитель серной кислоты — производство минеральных удобрений. На 1 т P₂O₅ фосфорных удобрений расходуется 2,2-3,4 т серной кислоты, а на 1 т (NH₄)₂SO₄ — 0,75 т серной кислоты. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.

Применение солей серной кислоты

Железный купорос FеSО4•7Н2O применяли раньше для лечения чесотки, гельминтоза и опухолей желез, в настоящее время используют для борьбы с сельскохозяйственными вредителями.

Медный купорос CuSO4•5Н2O широко используют в сельском хозяйстве для борьбы с вредителями растений.

«Глауберова соль» (мирабилит) Nа2SO4•10Н2O была получена немецким химиком И. Р. Глаубером при действии серной кислоты на хлорид натрия, в медицине ее используют как слабительное средство.

«Бариевая каша» BaSO4 обладает способностью задерживать рентгеновские лучи в значительно большей степени, чем ткани организма. Это позволяет рентгенологам при заполнении «бариевой кашей» полых органов определить в них наличие анатомических изменений.

Гипс СаSO4•2Н2O находит широкое применение в строительном деле, в медицинской практике для накладывания гипсовых повязок, для изготовления гипсовых скульптур.

Соединения серы

Сероводород

Получение сероводорода

  • Получение из простых веществ:
  • Взаимодействие минеральных кислот и сульфидов металлов, расположенных в ряду напряжений левее железа:
  • Нагревание парафина с серой:

Физические свойства и строение сероводорода

Сероводород H2S – это бинарное летучее водородное соединение соединение с серой. H2S — бесцветный ядовитый газ, с неприятным удушливым запахом тухлых яиц. При концентрации > 3 г/м 3 вызывает смертельное отравление.

Сероводород тяжелее воздуха и легко конденсируется в бесцветную жидкость. Растворимость в воде H2S при обычной температуре составляет 2,5.

В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода представляет собой сцепленные между собой атомы H-S-H с валентным углом 92,1 о .

Качественная реакция для обнаружения сероводорода

Для обнаружения анионов S 2- и сероводорода используют реакцию газообразного H2S с Pb(NO3)2:

Влажная бумага, смоченная в растворе Pb(NO3)2 чернеет в присутствии H2S из-за получения черного осадка PbS.

Химические свойства серы

H2S является сильным восстановителем

При взаимодействии H2S с окислителями образуются различные вещества — S, SО2, H2SO4

  • Окисление кислородом воздуха:
  • Окисление галогенами:
  • Взаимодействие с кислотами-окислителями:
  • Взаимодействие со сложными окислителями:
  • Сероводородная кислота H2S двухосновная кислота и диссоциирует по двум ступеням:

1-я ступень: H2S → Н + + HS —

2-я ступень: HS — → Н + + S 2-

H2S очень слабая кислота, несмотря на это имеет характерные для кислот химические свойства. Взаимодействует:

  • с активными металлами
  • с малоактивными металлами (Аg, Си, Нg) при совместном присутствии окислителей:
  • с основными оксидами:
  • с некоторыми солями сильных кислот, если образующийся сульфид металла нерастворим в воде и в сильных кислотах:

Реакция с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Сульфиды

Получение сульфидов

  • Непосредственно из простых веществ:

S + Fe FeS

  • Взаимодействие H2S с растворами щелочей:
  • Взаимодействие H2S или (NH4)2S с растворами солей:
  • Восстановление сульфатов при прокаливании с углем:

Физические свойства сульфидов

Сульфиды – это бинарные соединения серы с элементами с меньшей электроотрицательностью, в том числе с некоторыми неметаллами (С, Si, Р, As и др.).

По растворимости в воде и кислотах сульфиды классифицируют на:

  • растворимые в воде — сульфиды щелочных металлов и аммония;
  • нерастворимые в воде, но растворимые в минеральных кислотах — сульфиды металлов, расположенных до железа в ряду активности (белые и цветные сульфиды ZnS, MnS, FeS, CdS);
  • нерастворимые ни в воде, ни в минеральных кислотах — черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS)
  • гидролизуемые водой — сульфиды трехвалентных металлов (алюминия и хрома (III))

По цвету сульфиды можно разделить на:

Химические свойства сульфидов

Обратимый гидролиз сульфидов

  • Хорошо растворимыми в воде являются сульфиды щелочных металлов и аммония, но в водных растворах они в значительной степени подвергаются гидролизу. Реакция среды — сильнощелочная:

S 2- + H2O → HS — + ОН —

  • Сульфиды щелочно-земельных металлов и Mg, при взаимодействии с водой подвергаются полному гидролизу и переходят в растворимые кислые соли — гидросульфиды:

При нагревании растворов сульфидов гидролиз протекает и по 2-й ступени:

Необратимый гидролиз сульфидов

  • Сульфиды некоторых металлов (Cr2S3, Fe2S3, Al2S3) подвергаются необратимому гидролизу, полностью разлагаясь в водных растворах:

Нерастворимые сульфиды гидролизу не подвергаются

NiS + HСl ≠

  • Некоторые из сульфидов растворяются в сильных кислотах:
  • Сульфиды Ag2S, HgS, Hg2S, PbS, CuS не pacтворяются не только в воде, но и во многих кислотах.
  • Сульфиды обладают восстановительными свойствами и вступают в реакции с окислителями:
  • Окислительный обжиг сульфидов является важной стадией переработки сульфидного сырья в различных производствах

Взаимодействия сульфидов с растворимыми солями свинца, серебра, меди являются качественными на ион S 2− :

Оксид серы (IV), диоксид серы, сернистый газ, сернистый ангидрид (SO2)

Способы получения сернистого газа

  • Окисление серы, сероводорода и сульфидов кислородом воздуха:
  • Действие высокой температуры на сульфиты (термическое разложение):
  • Действие сильных кислот на сульфиты:
  • Взаимодействие концентрированной H2SO4 с восстановителями, например с неактивными металлами:

Физические свойства сернистого газа

При обычной температуре SO2 — газ с резким запахом без цвета. В воде растворим хорошо — при 20°С в 1 л воды растворяется 40 л SO2.

Химические свойства сернистого газа

SO2 – типичный кислотный оксид. За счет того, что сера находится в промежуточной степени окисления (+4) SO2 может проявлять свойства как окислителя так и восстановителя.

  • При растворении в воде SO2 частично соединяется с молекулами воды с образованием слабой сернистой кислоты.
  • Как кислотный оксид, SO2 вступает в реакции с щелочами и оксидами щелочных и щелочноземельных металлов:
  • При взаимодействии с окислителями SO2проявляет восстановительные свойства. При этом степень окисления серы повышается:

Обесцвечивание раствора перманганата калия KMnO4 является качественной реакцией для обнаружения сернистого газа и сульфит-иона

  • SO2 проявляет окислительные свойства при взаимодействии с сильными восстановителями, восстанавливаясь чаще всего до свободной серы:

Оксид серы (VI), триоксид серы, серный ангидрид (SO3)

Способы получения серного ангидрида

  • SO3 можно получить из SO2путем каталитического окисления последнего кислородом:
  • ОкислениемSO2другими окислителями:
  • Разложением сульфата железа (III):

Физические свойства серного ангидрида

При обычных условиях SO3 представляет собой бесцветную жидкость с характерным резким запахом. На воздухе SO3 «дымит» и сильно поглощает влагу.

SO3 – тяжелее воздуха, хорошо растворим в воде.

Химические свойства серного ангидрида

Оксид серы (VI) – это кислотный оксид.

  • Хорошо поглощает влагу и реагирует с водой образуя серную кислоту:
  • Как кислотный оксид, SO3взаимодействует с щелочами и основными оксидами, образуются средние или кислые соли:

SO3 + MgO → MgSO4 (при сплавлении):

SO3 + ZnO = ZnSO4

  • SO3проявляет сильные окислительные свойства, так как сера в находится в максимальной степени окисления (+6).

Вступает в реакции с восстановителями:

  • При растворении в концентрированной серной кислоте образует олеум (раствор SO3 в H2SO4).

Сернистая кислота (H2SO3)

Способы получения сернистой кислоты

При растворении в воде SO2 образует слабую сернистую кислоту, которая сразу частично разлагается:

Физические свойства сернистой кислоты

Сернистая кислота H2SO3 двухосновная кислородсодержащая кислота. При обычных условиях неустойчива.

Валентность серы в сернистой кислоте равна IV, а степень окисления +4.

Химические свойства сернистой кислоты

Общие свойства кислот

  • Сернистая кислота – слабая кислота, диссоциирует в две стадии. Образует два типа солей:
  • кислые – гидросульфиты
  • Сернистая кислота самопроизвольно распадается на SO2 и H2O:

Соли сернистой кислоты, сульфиты и гидросульфиты

Способы получения сульфитов

Соли сернистой кислоты получаются при взаимодействии SO2 с щелочами и оксидами щелочных и щелочноземельных металлов:

Физические свойства сульфитов

Сульфиты щелочных металлов и аммония растворимы в воде, сульфиты остальных металлов — нерастворимы или не существуют.

Гидросульфиты металлов хорошо растворимы в Н2O, а некоторые из них, такие как Ca(HSO3)2 существуют только в растворе.

Химические свойства сульфитов

Cернистая кислота – двухосновная, образует нормальные (средние) соли — сульфиты Mex(SO3)y и кислые соли — гидросульфиты Me(HSO3)x.

  • Водные растворы сульфитов подвергаются гидролизу. Реакция среды – щелочная(окрашивают лакмус в синий цвет):

Реакции, протекающие без изменения степени окисления:

  • Реакция с сильными кислотами:
  • Термическое разложение сульфитов:
  • Нормальные сульфиты в водных растворах, при избытке SO2, переходят в гидросульфиты:
  • Ионно-обменные реакции с другими солями, протекающие с образованием нерастворимых сульфитов:

Сульфиты, также как и SO2, могут быть как восстановителями, так и окислителями, т.к. атомы серы в анионах находятся в промежуточной степени окисления +4

  • Окисление водных растворов сульфитов, и гидросульфитов до сульфатов:
  • Твердые сульфиты при хранении на воздухе также медленно окисляются до сульфатов:
  • При нагревании сухих сульфитов с активными восстановителями (С, Mg, Al, Zn) сульфиты превращаются в сульфиды:
  • При нагревании сухих сульфитов до высоких температур сульфиты диспропорционируют, превращаются в смесь сульфатов и сульфидов:

Серная кислота (H2SO4)

Способы получения серной кислоты

В промышленности серную кислоту производят из серы, сульфидов металлов, сероводорода и др.

Наиболее часто серную кислоту получают из пирита FeS2.

Основные стадии получения серной кислоты включают:

1.Обжиг пирита в кислороде в печи для обжига с получением сернистого газа:

2. Очистка полученного сернистого газа от примесей в циклоне, электрофильтре.

3. Осушка сернистого газа в сушильной башне

4. Нагрев очищенного газа в теплообменнике.

5. Окисление сернистого газа в серный ангидрид в контактном аппарате:

6. Поглощение серного ангидрида серной кислотой в поглотительной башне – получение олеума.

Физические свойства, строение серной кислоты

При обычных условиях серная кислота – тяжелая бесцветная маслянистая жидкость, хорошо растворимая в воде. Максимальная плотность равна 1,84 г/мл

При растворении серной кислоты в воде выделяется большое количество теплоты. Поэтому, по правилам безопасности в лаборатории при приготовлении разбавленного раствора серной кислоты во избежание разбрызгивания необходимо наливать серную кислоту в воду тонкой струйкой по стеклянной палочке при постоянном перемешивании. Но не наоборот!

Валентность серы в серной кислоте равна VI.

Качественные реакции для обнаружения серной кислоты и сульфат ионов

Для обнаружения сульфат-ионов используют реакцию с растворимыми солями бария. В результате взаимодействия, образуется белый кристаллический осадок сульфата бария:

Химические свойства серной кислоты

Серная кислота — сильная двухосновная кислота, образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

  • Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени и достаточно по второй ступени:

Характерны все свойства кислот:

  • Реагирует с основными оксидами, основаниями, амфотерными оксидами, амфотерными гидроксидами и аммиаком:
  • Вытесняетболее слабые кислоты из их солей в растворе (карбонаты, сульфиды и др.) и летучие кислоты из их солей (кроме солей HBr и HI):
  • Концентрированная серная кислота реагирует с твердыми солями, например нитратом натрия, хлорида натрия.
  • Вступает в обменные реакции ссолями:
  • Взаимодействует с металлами:

Разбавленная серная кислота взаимодействует с металлами, расположенными в ряду напряжения металлов до водорода. В результате реакции образуются соль и водород:

Концентрированная серная кислота — сильный окислитель. Реакция с металлами протекает без вытеснения водорода из кислоты. В зависимости от активности металла образуются различные продукты реакции:

  • Активные металлы и цинк при обычной температуре с концентрированной серной кислотой образуют соль, сероводород (или серу) и воду:
  • Металлы средней активности с концентрированной H2SO4 образуют соль, серу и воду:
  • Такие металлы, как железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании, при удалении оксидной пленки реакция возможна.
  • Неактивные металлы восстанавливают концентрированную серную кислоту до сернистого газа:
  • В реакциях с неметаллами концентрированная серная кислота также проявляет окислительные свойства:
  • Концентрированная серная кислота широко используется в химических процессах как водоотнимающий агент, т.к. проявляет сильное водоотнимающее действие. В органической химии ее используют при получении спиртов, простых и сложных эфиров, альдегидов и т.д.

Соли серной кислоты, сульфаты, гидросульфаты

Способы получения солей серной кислоты

Сульфаты можно получить при взаимодействии серной кислоты с металлами, оксидами, гидроксидами (см. Химические свойства серной кислоты). А также при взаимодействии с другими солями, если продуктом реакции является нерастворимое соединение.

Физические свойства солей серной кислоты

Кристаллы разного цвета. Многие средние и кислые сульфаты растворимы в воде. Плохо растворяются или не растворяются в воде сульфаты многозарядных щёлочноземельных металлов (BaSO4, RaSO4), сульфаты лёгких щёлочноземельных металлов (CaSO4, SrSO4) и сульфат свинца.

Средние сульфаты щелочных металлов термически устойчивы. Кислые сульфаты щелочных металлов при нагревании разлагаются.

Многие средние сульфаты образуют устойчивые кристаллогидраты:

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

KАl(SO4)2 x 12H2O – алюмокалиевые квасцы.

Химические свойства солей серной кислоты

Разложение сульфатов на различные классы соединений в зависимости от металла, входящего в состав соли.

  • Сульфаты щелочных металлов плавятся без разложения.
  • Кислые сульфаты щелочных металлов разлагаются с отщеплением воды:
  • Сульфаты металлов средней активности разлагаются на соответствующие оксиды:
  • Сульфаты тяжёлых или малоактивных металлов разлагаются с образованием металла и кислорода:
  • Некоторые сульфаты проявляют окислительные свойства и вступают в реакции с простыми веществами:

Составить уравнения всех возможных реакций для серы

Сера — элемент VIa группы 3 периода периодической таблицы Д.И. Менделеева. Относится к группе халькогенов — элементов VIa группы.

Сера — S — простое вещество имеет светло-желтый цвет. Использовалась еще до нашей эры в составе священных курений при религиозных обрядах.

Основное и возбужденное состояние атома серы

Электроны s- и p-подуровня способны распариваться и переходить на d-подуровень. Как и всегда, количество валентных электронов отражает количество возможных связей у атома.

В разных электронных конфигурациях сера способна принимать валентности: II, IV и VI.

Природные соединения
  • FeS2 — пирит, колчедан
  • ZnS — цинковая обманка
  • PbS — свинцовый блеск (галенит), Sb2S3 — сурьмяный блеск, Bi2S3 — висмутовый блеск
  • HgS — киноварь
  • CuFeS2 — халькопирит
  • Cu2S — халькозин
  • CuS — ковеллин
  • BaSO4 — барит, тяжелый шпат
  • CaSO4 — гипс

В местах вулканической активности встречаются залежи самородной серы.

В промышленности серу получают из природного газа, который содержит газообразные соединения серы: H2S, SO2.

Серу можно получить разложением пирита

В лабораторных условиях серу можно получить слив растворы двух кислот: серной и сероводородной.

    Реакции с неметаллами

На воздухе сера окисляется, образуя сернистый газ — SO2. Реагирует со многими неметаллами, без нагревания — только со фтором.

При нагревании сера бурно взаимодействует со многими металлами с образованием сульфидов.

Реакции с кислотами

При взаимодействии с концентрированными кислотами (при длительном нагревании) сера окисляется до сернистого газа или серной кислоты.

Реакции с щелочами

Сера вступает в реакции диспропорционирования с щелочами.

Реакции с солями

Сера вступает в реакции с солями. Например, в кипящем водном растворе сера может реагировать с сульфитами с образованием тиосульфатов.

Сероводород — H2S

Бесцветный газ с характерным запахом тухлых яиц. Огнеопасен. Используется в химической промышленности и в лечебных целях (сероводородные ванны).

Сероводород получают в результате реакции сульфида алюминия с водой, а также взаимодействия разбавленных кислот с сульфидами.

Сероводород плохо диссоциирует в воде, является слабой кислотой. Реагирует с основными оксидами, основаниями с образованием средних и кислых солей (зависит от соотношения основания и кислоты).

KOH + H2S = KHS + H2O (гидросульфид калия, избыток кислоты)

Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.

Сероводород — сильный восстановитель (сера в минимальной степени окисления S 2- ). Горит в кислороде синим пламенем, реагирует с кислотами.

Качественной реакцией на сероводород является реакция с солями свинца, при котором образуется сульфид свинца.

Оксид серы — SO2

Сернистый газ — SO2 — при нормальных условиях бесцветный газ с характерным резким запахом (запах загорающейся спички).

В промышленных условиях сернистый газ получают обжигом пирита.

В лаборатории SO2 получают реакцией сильных кислот на сульфиты. В ходе подобных реакций образуется сернистая кислота, распадающаяся на сернистый газ и воду.

Сернистый газ получается также в ходе реакций малоактивных металлов с серной кислотой.

С основными оксидами, основаниями образует соли сернистой кислоты — сульфиты.

Химически сернистый газ очень активен. Его восстановительные свойства продемонстрированы в реакциях ниже.

В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства (понижать степень окисления).

Сернистая кислота

Слабая, нестойкая двухосновная кислота. Существует лишь в разбавленных растворах.

Диссоциирует в водном растворе ступенчато.

В реакциях с основными оксидами, основаниями образует соли — сульфиты и гидросульфиты.

H2SO3 + KOH = H2O + KHSO3 (соотношение кислота — основание, 1:1)

С сильными восстановителями сернистая кислота принимает роль окислителя.

Как и сернистый газ, сернистая кислота и ее соли обладают выраженными восстановительными свойствами.

Оксид серы VI — SO3

Является высшим оксидом серы. Бесцветная летучая жидкость с удушающим запахом. Ядовит.

В промышленности данный оксид получают, окисляя SO2 кислородом при нагревании и присутствии катализатора (оксид ванадия — Pr, V2O5).

В лабораторных условиях разложением солей серной кислоты — сульфатов.

Является кислотным оксидом, соответствует серной кислоте. При реакции с основными оксидами и основаниями образует ее соли — сульфаты и гидросульфаты. Реагирует с водой с образованием серной кислоты.

SO3 + 2KOH = K2SO4 + 2H2O (основание в избытке — средняя соль)

SO3 + KOH = KHSO4 + H2O (кислотный оксид в избытке — кислая соль)

SO3 — сильный окислитель. Чаще всего восстанавливается до SO2.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Сера. Химия серы и ее соединений

Положение в периодической системе химических элементов

Сера расположена в главной подгруппе VI группы (или в 15 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение серы

Электронная конфигурация серы в основном состоянии :

Атом серы содержит на внешнем энергетическом уровне 2 неспаренных электрона и две неподеленные электронные пары в основном энергетическом состоянии. Следовательно, атом серы может образовывать 2 связи по обменному механизму, как и кислород. Однако, в отличие от кислорода, за счет вакантной 3d орбитали атом серы может переходить в возбужденные энергетические состояния. Электронная конфигурация серы в первом возбужденном состоянии:

Электронная конфигурация серы во втором возбужденном состоянии:

Таким образом, максимальная валентность серы в соединениях равна VI (в отличие от кислорода). Также для серы характерна валентность — IV.

Степени окисления атома серы – от -2 до +4. Характерные степени окисления -2, 0, +4, +6.

Физические свойства и нахождение в природе

Сера образует различные простые вещества (аллотропные модификации).

Наиболее устойчивая модификация серы – ромбическая сера S8. Это хрупкое вещество желтого цвета .

Моноклинная сера – это аллотропная модификация серы, в которой атомы соединены в циклы в виде «короны» . Это твердое вещество, состоящее из темно-желтых игл, устойчивое при температуре более 96 о С, а при обычной температуре превращающееся в ромбическую серу.

Пластическая сера это вещество, состоящее из длинных полимерных цепей. Коричневая резиноподобная аморфная масса, нерастворимая в воде.

В природе сера встречается:

  • в самородном виде;
  • в составе сульфидов (сульфид цинка ZnS, пирит FeS2, сульфид ртути HgS — киноварь и др.)
  • в составе сульфатов (CaSO4·2H2O гипс, Na2SO4·10H2O — глауберова соль)

Соединения серы

Типичные соединения серы:

Степень окисления Типичные соединения
+6 Оксид серы(VI) SO3

Галогенангидриды: SО2Cl2

+4 Оксид серы (IV) SO2

Галогенангидриды: SOCl2

–2 Сероводород H2S

Сульфиды металлов MeS

Способы получения серы

1. В промышленных масштабах серу получают открытым способом на месторождениях самородной серы, либо из вулканов. Из серной руды серу получают также пароводяными, фильтрационными, термическими, центрифугальными и экстракционными методами. Пароводяной метод — это выплавление из руды с помощью водяного пара.

2. Способ получения серы в лаборатории – неполное окисление сероводорода.

3. Еще один способ получения серы – взаимодействие сероводорода с оксидом серы (IV):

Химические свойства серы

В нормальных условиях химическая активность серы невелика: при нагревании сера активна, и может быть как окислителем, так и восстановителем.

1. Сера проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому сера реагирует с металлами и неметаллами .

1.1. При горении серы на воздухе образуется оксид серы (IV) :

1.2. При взаимодействии серы с галогенами (со всеми, кроме йода) образуются галогениды серы:

1.3. При взаимодействии фосфора и углерода с серой образуются сульфиды фосфора и сероуглерод:

2S + C → CS2

1.4. При взаимодействии с металлами сера проявляет свойства окислителя, продукты реакции называют сульфидами. С щелочными металлами сера реагирует без нагревания, а с остальными металлами (кроме золота и платины) – только при нагревании.

Например , железо и ртуть реагируют с серой с образованием сульфидов железа (II) и ртути:

S + Fe → FeS

S + Hg → HgS

Еще пример : алюминий взаимодействует с серой с образованием сульфида алюминия:

1.5. С водородом сера взаимодействует при нагревании с образованием сероводорода:

2. Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства. Сера диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителями сера окисляется до оксида серы (IV) или до серной кислоты (если реакция протекает в растворе).

Например , азотная кислота окисляет серу до серной кислоты:

Серная кислота также окисляет серу. Но, поскольку S +6 не может окислить серу же до степени окисления +6, образуется оксид серы (IV):

Соединения хлора, например , бертолетова соль , также окисляют серу до +4:

S + 2KClO3 → 3SO2 + 2KCl

Взаимодействие серы с сульфитами (при кипячении) приводит к образованию тиосульфатов:

2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида.

Например , сера реагирует с гидроксидом натрия:

При взаимодействии с перегретым паром сера диспропорционирует:

Сероводород

Строение молекулы и физические свойства

Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода похожа на структуру воды — уголковая молекула. Но валентный угол H-S-H меньше, чем угол H-O-H в воде и составляет 92,1 о .

Способы получения сероводорода

В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например , при действии соляной кислоты на сульфид железа (II):

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например , сероводород реагирует с гидроксидом натрия:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

В избытке кислорода:

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

Например , азотная кислота окисляет сероводород до молекулярной серы:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например , оксид серы (IV) окисляет сероводород:

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

Либо до оксида серы (IV):

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например , сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Сульфиды

Сульфиды – это бинарные соединения серы и металлов или некоторых неметаллов, соли сероводородной кислоты.

По растворимости в воде и кислотах сульфиды разделяют на растворимые в воде, нерастворимые в воде, но растворимые в минеральных кислотах, нерастворимые ни в воде, ни в минеральных кислотах, гидролизуемые водой.

Способы получения сульфидов

1. Сульфиды получают при взаимодействии серы с металлами . При этом сера проявляет свойства окислителя.

Например , сера взаимодействует с магнием и кальцием:

S + Mg → MgS

S + Ca → CaS

Сера взаимодействует с натрием:

S + 2Na → Na2S

2. Растворимые сульфиды можно получить при взаимодействии сероводорода и щелочей.

Например , гидроксида калия с сероводородом:

3. Нерастворимые сульфиды получают взаимодействием растворимых сульфидов с солями (любые сульфиды) или взаимодействием сероводорода с солями (только черные сульфиды).

Например , при взаимодействии нитрата меди и сероводорода:

Еще пример : взаимодействие сульфата цинка с сульфидом натрия:

Химические свойства сульфидов

1. Растворимые сульфиды гидролизуются по аниону, среда водных растворов сульфидов щелочная:

K2S + H2O ⇄ KHS + KOH
S 2– + H2O ⇄ HS – + OH –

2. Сульфиды металлов, расположенных в ряду напряжений левее железа (включительно), растворяются в сильных минеральных кислотах .

Например , сульфид кальция растворяется в соляной кислоте:

CaS + 2HCl → CaCl2 + H2S

А сульфид никеля, например , не растворяется:

NiS + HСl ≠

3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте . При этом сера окисляется либо до простого вещества, либо до сульфата.

Например , сульфид меди (II) растворяется в горячей концентрированной азотной кислоте:

или горячей концентрированной серной кислоте:

4. Сульфиды проявляют восстановительные свойства и окисляются пероксидом водорода, хлором и другими окислителями.

Например , сульфид свинца (II) окисляется пероксидом водорода до сульфата свинца (II):

Еще пример : сульфид меди (II) окисляется хлором:

СuS + Cl2 → CuCl2 + S

5. Сульфиды горят (обжиг сульфидов). При этом образуются оксиды металла и серы (IV).

Например , сульфид меди (II) окисляется кислородом до оксида меди (II) и оксида серы (IV):

2CuS + 3O2 → 2CuO + 2SO2

Аналогично сульфид хрома (III) и сульфид цинка:

2ZnS + 3O2 → 2SO2 + ZnO

6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественные на ион S 2− .

Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:

7. Сульфиды трехвалентных металлов (алюминия и хрома) разлагаются водой (необратимый гидролиз).

Например , сульфид алюминия разлагается до гидроксида алюминия и сероводорода:

Разложение происходит и взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.

Например , сульфид натрия реагирует с хлоридом алюминия в растворе. Но сульфид алюминия не образуется, а сразу же необратимо гидролизуется (разлагается) водой:

Оксиды серы

Растворимые в воде Нерастворимые в воде, но растворимые в минеральных кислотах Нерастворимые ни в воде, ни в минеральных кислотах (только в азотной и серной конц.) Разлагаемые водой, в растворе не существуют
Сульфиды щелочных металлов и аммония Сульфиды прочих металлов, расположенных до железа в ряду активности. Белые и цветные сульфиды (ZnS, MnS, FeS, CdS) Черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS) Сульфиды трехвалентных металлов (алюминия и хрома (III))
Реагируют с минеральными кислотами с образованием сероводорода Не реагируют с минеральными кислотами, сероводород получить напрямую нельзя
ZnS + 2HCl → ZnCl2 + H2S
Оксиды серы Цвет Фаза Характер оксида
SO2 Оксид сера (IV), сернистый газ бесцветный газ кислотный
SO3 Оксид серы (VI), серный ангидрид бесцветный жидкость кислотный

Оксид серы (IV)

Оксид серы (IV) – это кислотный оксид . Бесцветный газ с резким запахом, хорошо растворимый в воде.

Cпособы получения оксида серы (IV):

1. Сжигание серы на воздухе :

2. Горение сульфидов и сероводорода:

2CuS + 3O2 → 2SO2 + 2CuO

3. Взаимодействие сульфитов с более сильными кислотами:

Например , сульфит натрия взаимодействует с серной кислотой:

4. Обработка концентрированной серной кислотой неактивных металлов.

Например , взаимодействие меди с концентрированной серной кислотой:

Химические свойства оксида серы (IV):

Оксид серы (IV) – это типичный кислотный оксид. За счет серы в степени окисления +4 проявляет свойства окислителя и восстановителя .

1. Как кислотный оксид, сернистый газ реагирует с щелочами и оксидами щелочных и щелочноземельных металлов .

Например , оксид серы (IV) реагирует с гидроксидом натрия. При этом образуется либо кислая соль (при избытке сернистого газа), либо средняя соль (при избытке щелочи):

SO2(изб) + NaOH → NaHSO3

Еще пример : оксид серы (IV) реагирует с основным оксидом натрия:

2. При взаимодействии с водой S O2 образует сернистую кислоту. Реакция обратимая, т.к. сернистая кислота в водном растворе в значительной степени распадается на оксид и воду.

3. Наиболее ярко выражены восстановительные свойства SO2. При взаимодействии с окислителями степень окисления серы повышается.

Например , оксид серы окисляется кислородом на катализаторе в жестких условиях. Реакция также сильно обратимая:

Сернистый ангидрид обесцвечивает бромную воду:

Азотная кислота очень легко окисляет сернистый газ:

Озон также окисляет оксид серы (IV):

Качественная реакция на сернистый газ и на сульфит-ион – обесцвечивание раствора перманганата калия:

Оксид свинца (IV) также окисляет сернистый газ:

4. В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства.

Например , при взаимодействии с сероводородом сернистый газ восстанавливается до молекулярной серы:

Оксид серы (IV) окисляет угарный газ и углерод:

SO2 + 2CO → 2СО2 + S

Оксид серы (VI)

Оксид серы (VI) – это кислотный оксид. При обычных условиях – бесцветная ядовитая жидкость. На воздухе «дымит», сильно поглощает влагу.

Способы получения. Оксид серы (VI) получают каталитическим окислением оксида серы (IV) кислородом.

Сернистый газ окисляют и другие окислители, например , озон или оксид азота (IV):

Еще один способ получения оксида серы (VI) – разложение сульфата железа (III):

Химические свойства оксида серы (VI)

1. Оксид серы (VI) активно поглощает влагу и реагирует с водой с образованием серной кислоты:

2. Серный ангидрид является типичным кислотным оксидом , взаимодействует с щелочами и основными оксидами.

Например , оксид серы (VI) взаимодействует с гидроксидом натрия. При этом образуются средние или кислые соли:

SO3(избыток) + NaOH → NaHSO4

Еще пример : оксид серы (VI) взаимодействует с оксидом оксидом (при сплавлении):

SO3 + MgO → MgSO4

3. Серный ангидрид – очень сильный окислитель , так как сера в нем имеет максимальную степень окисления (+6). Он энергично взаимодействует с такими восстановителями, как иодид калия, сероводород или фосфор:

4. Растворяется в концентрированной серной кислоте, образуя олеум – раствор SO3 в H2SO4.

Серная кислота

Строение молекулы и физические свойства

Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.

Растворение серной кислоты в воде сопровождается выделением значительного количества кислоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в воду небольшими порциями при постоянном перемешивании.

Валентность серы в серной кислоте равна VI.

Способы получения

1. Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

Аппарат Назначение и уравненяи реакций
Печь для обжига 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800 о С

Циклон Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат 2SO2 + O2 ↔ 2SO3 + Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  • температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500 о С. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  • давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Химические свойства

Серная кислота – это сильная двухосновная кислота .

1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:

По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:

HSO4 – ⇄ H + + SO4 2–

2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.

Например , серная кислота взаимодействует с оксидом магния:

Еще пример : при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:

Серная кислота взаимодействует с амфотерным гидроксидом алюминия:

3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.). Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).

Например , серная кислота взаимодействует с гидрокарбонатом натрия:

Или с силикатом натрия:

Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:

Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например , хлорида натрия:

4. Т акже серная кислота вступает в обменные реакции с солями .

Например , серная кислота взаимодействует с хлоридом бария:

5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Например , серная кислота реагирует с железом. При этом образуется сульфат железа (II):

Серная кислота взаимодействует с аммиаком с образованием солей аммония:

Концентрированная серная кислота является сильным окислителем . При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы S, или сероводорода Н2S.

Железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.

При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:

При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:

При взаимодействии с щелочными металлами и цинком концентрированная серная кислота восстанавливается до сероводорода:

6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.

7. Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.

Например , концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):

Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:

Сернистая кислота

Сернистая кислота H2SO3 это двухосновная кислородсодержащая кислота. При нормальных условиях — неустойчивое вещество, которое распадается на диоксид серы и воду.

Валентность серы в сернистой кислоте равна IV, а степень окисления +4.

Химические свойства

1. Сернистая кислота H2SO3 в водном растворе – двухосновная кислота средней силы. Частично диссоциирует по двум ступеням:

HSO3 – ↔ SO3 2– + H +

2. Сернистая кислота самопроизвольно распадается на диоксид серы и воду:

Соли серной кислоты – сульфаты

Серная кислота образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

1. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.

2. Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо (II) Fe подвергаются термическому разложению на оксид металла, диоксид серы SO2 и кислород O2;

При разложении сульфата железа (II) в FeSO4 Fe (II) окисляется до Fe (III)

Сульфаты самых тяжелых металлов разлагаются до металла.

3. За счет серы со степенью окисления +6 сульфаты проявляют окислительные свойства и могут взаимодействовать с восстановителями.

Например , сульфат кальция при сплавлении реагирует с углеродом с образованием сульфида кальция и угарного газа:

CaSO4 + 4C → CaS + 4CO

4. Многие средние сульфаты образуют устойчивые кристаллогидраты:

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

источники:

http://studarium.ru/article/173

http://chemege.ru/sera/

Понравилась статья? Поделить с друзьями:
  • Как найти диагональ треугольника по клеткам
  • Как найти центр фары при регулировке
  • Рис слипается после варки как исправить
  • Как исправить ошибку гугл плей df dferh 01
  • Как найти сайт для учителей